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Abstract

We introduce a method to find, in a systematic way, rank-one convex polynomials. We show how it works in several examples.
It can also be applied to convexity along general cones.

Keywords: Rank-one convexity; Laminate

1. Introduction

It is well known that quasiconvexity is a fundamental concept for vector problems in the Calculus of Variations
[7,3]. Two important related convexity conditions are polyconvexity (a sufficient condition [2]), and rank-one convex-
ity (a necessary condition [7]). Even these two types of convexity, though more manageable, are not easy to check
on explicit examples [4,6]. In particular, rank-one convexity is an appealing property as it is like the usual convexity.
Namely, we say that ϕ : M → R is rank-one convex provided that

ϕ(t1ξ1 + t2ξ2) � t1ϕ(ξ1) + t2ϕ(ξ2)

whenever ti � 0, t1 + t2 = 1, and ξ2 − ξ1 is a rank-one matrix. M stands for the space of m × n matrices. If ϕ is
smooth, the rank-one convexity is equivalent to the Legendre–Hadamard condition

AT ∇2ϕ(ξ)A � 0,

for every A ∈ A, ξ ∈ M, where A is the rank-one cone.
Deciding when a given function is or is not rank-one convex is not an easy task. Our aim is to provide a way to

determine (at least in some specific situations) the rank-one convexity of functions of a particular structure.
Our method can be applied to the following situation. Let

ϕi : M → R, i = 1,2,

be two polynomials such that
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1. the combination

ϕ(ξ) = ϕ1(ξ) − cϕ2(ξ) (1)

for any constant c ∈ R is coercive with superlinear growth;
2. ϕ1 is strictly convex.

The basic important problem we would like to address is

Problem 1. Determine the range of the constant c so that ϕ(ξ) is rank-one convex.

For a general parameter c, it is possible to determine the range of this constants for which the corresponding family
of functions are rank-one convex. In fact, the rank-one convexity of (1) is then equivalent to

AT ∇2ϕ1(ξ)A − cAT ∇2ϕ2(ξ)A � 0,

or to

cAT ∇2ϕ2(ξ)A

AT ∇2ϕ1(ξ)A
� 1, A ∈ A, ξ ∈ M.

If

1

c−

(
resp.

1

c+

)
= inf

A∈A, ξ∈M

(resp. sup)
AT ∇2ϕ2(ξ)A

AT ∇2ϕ1(ξ)A
,

then it is easy to derive

Theorem 1. Let

ϕ = ϕ1 − cϕ2,

where ϕi are smooth and ϕ1 is strictly convex. Then ϕ is rank-one convex if and only if

1. c ∈ [c−, c+], if ϕ2 is neither rank-one convex nor rank-one concave (alternatively, we can write: AT ∇2ϕ2(ξ)A

attains both positive and negative values);
2. c ∈ (−∞, c+], if

inf
A∈A, ξ∈M

AT ∇2ϕ2(ξ)A

AT ∇2ϕ1(ξ)A
= 0;

3. c ∈ [c−,+∞), if

sup
A∈A, ξ∈M

AT ∇2ϕ2(ξ)A

AT ∇2ϕ1(ξ)A
= 0.

Remark 1. We will make the assumption that if 1
c− = −∞ (resp. 1

c+ = +∞) then c− = 0 (resp. c+ = 0).

Though the proof of this result is straightforward in these terms, it is quite remarkable that these optimal constants
can be computed explicitly in specific examples, as we show in Section 3.

Before that, we also provide an appropriate description of this theorem in terms of laminates. This seems interesting
as this strategy looks more promising for other situations like polyconvexity and, even, quasiconvexity. The proof of
this theorem from this point of view can be found in Section 4.

2. Alternative route: Laminates

We know that laminates are the class of probability measures which play a fundamental role with respect to rank-
one convexity through duality with Jensen’s inequality [8]. In this section it is presented the result of the previous one,
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from the point of view of laminates. We think that this gives further insight into the problem, specially because it is
more easily visualized. To state the main result in terms of laminates requires some notation.

Let Λ(ξ0) denote the set of laminates with barycenter ξ0. Consider the linear mapping

T : Λ(ξ0) �→ R
2, T (μ) =

(∫
ϕ1(ξ) dμ(ξ),

∫
ϕ2(ξ) dμ(ξ)

)
.

It is clear that T (Λ(ξ0)) is a convex set in R
2. If (x, y) designate usual coordinates in R

2, and we put

x0 = ϕ1(ξ0), y0 = ϕ2(ξ0),

we know, due to convexity of ϕ1, that

T
(
Λ(ξ0)

) ⊂ {
(x, y) ∈ R

2: x � x0
}
.

Even more, because of strict convexity of ϕ1, the intersection of T (Λ(ξ0)) with the vertical line x = x0 is the unique
point (x0, y0). Then solving Problem 1 is equivalent to determining the best constants c−, c+ so that

T
(
Λ(ξ0)

) ⊂ C
(
(x0, y0), c−, c+

)
,

for every ξ0 ∈ M, where C((x̄, ȳ), c1, c2) is the cone in R
2 defined by

C
(
(x̄, ȳ), c1, c2

) = {
(x, y) ∈ R

2: c1(x − x̄) + ȳ � y � c2(x − x̄) + ȳ, x � x̄
}
.

For s ∈ [0,1], we consider our basic first-order laminates

μs = 1

2
δξ0+sA + 1

2
δξ0−sA,

for A of rank one. Finally, consider the plane curve

σ (A,ξ0)(s) = T (μs) =
(

1

2
ϕ1(ξ0 + sA) + 1

2
ϕ1(ξ0 − sA),

1

2
ϕ2(ξ0 + sA) + 1

2
ϕ2(ξ0 − sA)

)
.

A stands for the cone of rank-one matrices.

Theorem 2. Let ϕ be as in Theorem 1 and

1

c−

(
resp.

1

c+

)
= inf

A∈A, ξ0∈M

(resp. sup)
σ̈

(A,ξ0)
2 (0)

σ̈
(A,ξ0)
1 (0)

.

Then ϕ is rank-one convex if and only if

1. c ∈ [c−, c+], if σ̈2 attains both positive and negative values;
2. c ∈ (−∞, c+], if

inf
A∈A, ξ0∈M

σ̈
(A,ξ0)
2 (0)

σ̈
(A,ξ0)
1 (0)

= 0;

3. c ∈ [c−,+∞), if

sup
A∈A, ξ0∈M

σ̈
(A,ξ0)
2 (0)

σ̈
(A,ξ0)
1 (0)

= 0.

Remark 2. Obviously, we have that

σ̈
A,ξ0
i (0) = AT ∇2ϕi(ξ0)A,

where

rank(A) � 1.
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3. Examples

We now want to solve problem

inf
A,ξ0∈M

(resp. sup)
AT ∇2ϕ2(ξ0)A

AT ∇2ϕ1(ξ0)A

subject to the restriction

rank(A) � 1.

To fix ideas, consider the minimization problem as a partial double minimization problem. If we minimize first in
A ∈ M, the above quotient is always a quotient of two expressions which are homogeneous of degree two in A, where

AT ∇2ϕ1(ξ0)A > 0.

So, we can consider the equivalent problem

min
A∈M

AT ∇2ϕ2(ξ0)A

subject to the restrictions{
AT ∇2ϕ1(ξ0)A = 1,

A, rank-one.

In the particular case of 2×2 matrices, we can replace the rank-one condition on A by the more quantitative condition
AT DA = detA. Anyhow, this minimum is attained since the function to minimize is continuous, and the domain is
the intersection between a compact set and a closed set.

Let us stick to the 2 × 2 situation for the sake of this short discussion. If α, β are Lagrange multipliers, we put

L(A,α,β) = AT ∇2ϕ2(ξ0)A − α
(
AT ∇2ϕ1(ξ0)A − 1

) − βAT DA.

From first-order optimality conditions, if A is a critical point of the objective function, one obtains

AT ∇2ϕ2(ξ0)A = α,

where α can be recovered from solving the following system⎧⎨
⎩

(∇2ϕ2(ξ0) − α∇2ϕ1(ξ0) − βD
)
A = 0,

AT ∇2ϕ1(ξ0)A = 1,

AT DA = 0.

α will be a function of ξ0, and to finish, we would have to compute the infimum with respect to the variable ξ0 ∈ M
2×2.

In the case where the ϕi ’s are polynomials, the above system of equations is indeed a parametric system of polynomial
equations, where ξ0 is the parameter, and A, α, β are the variables to solve for. There exist several algorithms which
deal with the problem of describing the solutions of these systems in terms of the parameters, such as comprehensive
Gröbner bases [11], triangular sets decomposition [10] and rational parametrizations [9]. The description of the generic
solutions of this systems is in general difficult and is beyond the scope of this work. Here we will deal with a simple
example, whose system can be solved with several recent symbolic mathematical softwares.

For a more general situation, we can replace the matrix A by a ⊗ n even under the constraints |a| = |n| = 1. In this
case, we would have to solve the problem

inf
ξ0

min
a,n

n ⊗ a∇2ϕ2(ξ0)a ⊗ n

subject to the constraint

n ⊗ a∇2ϕ2(ξ0)a ⊗ n = 1.

We can then use optimality conditions to make some progress in the calculations. However, one has to keep track of
the dependence on a and ξ0 when solving the minimization problem for n. In general, it is not so easy to compute the
range for the constant c through this approach.
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In the case of 4th degree homogeneous polynomials, we can easily overcome this difficulties. For this special
situation, we can take advantage of the fact that AT ∇2ϕi(ξ0)A is also quadratic in ξ0. In other words, we can write

AT ∇2ϕi(ξ0)A = ξT
0 Mi(A)ξ0,

where Mi(A), for i = 1,2 is a matrix whose entries only depend on A ∈ A. This is a huge advantage, as in this case
we can perform first the minimization in ξ0, and then in A, avoiding in this way to include the additional rank-one
restriction, but still dealing with quadratic problems. We want hence to compute

min
A∈A

(
min
ξ0∈M

ξT
0 M2(A)ξ0

ξT
0 M1(A)ξ0

)
.

To evaluate the first minimum, we can now fix

ξT
0 M1(A)ξ0 = 1,

and calculate

min
ξ0

ξT
0 M2(A)ξ0

subject to this restriction. Notice that this minimum is attained, as the smallest eigenvalue of ∇2ϕ1(ξ0) is strictly
positive. If α is a Lagrange multiplier, we put

L(A,α) = ξT
0 M2(A)ξ0 − α

(
ξT

0 M1(A)ξ0 − 1
)
,

and from first-order optimality conditions, if ξ0 is a critical point, one obtains

ξT
0 M2(A)ξ0 = α,

where α are the solutions of

det
(
M2(A) − αM1(A)

) = 0.

Notice that in this case this condition is a necessary and sufficient condition for the existence of minimizers.
α will be a function of A, and to finish we have to compute the minimum with respect to this variable A ∈ M with

rank(A) � 1.

3.1. Classical examples

We deal first with some classical examples [1,3,5].

Example 1.

ϕ : M
2×2 → R,

given by

ϕ(ξ) = |ξ |4 − c|ξ |2 det ξ.

If A ∈ M
2×2 is such that |A| = 1, by putting

A =
(

a b

c d

)
,

we get here that

M2(A) =

⎛
⎜⎜⎝

2ad bd − ac cd − ab 1
2 + a2 + d2

bd − ac −2bc − 1
2 − b2 − c2 ab − cd

cd − ab − 1
2 − b2 − c2 −2bc ac − bd

1 2 2

⎞
⎟⎟⎠
2 + a + d ab − cd ac − bd 2ad
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and

M1(A) =
⎛
⎜⎝

2 + 4a2 4ab 4ac 4ad

4ab 2 + 4b2 4bc 4bd

4ac 4bc 2 + 4c2 4cd

4ad 4bd 4cd 2 + 4d2

⎞
⎟⎠ .

To obtain the values of α we have to solve the equation

det
(
M2(A) − αM1(A)

) = 0.

But if we now perform the substitution

A = (cos θ1, sin θ1) ⊗ (cos θ2, sin θ2),

with θ1, θ2 ∈ [0,2π ], the above equation becomes

9

16
− 12α2 + 48α4 = 0,

and the maximum and the minimum values are, respectively, α =
√

3
4 and α = −

√
3

4 . So, ϕ is rank-one convex if and
only if

c ∈
[
− 4√

3
,

4√
3

]
.

In the case of convexity, it is known [1] that ϕ is convex if and only if

c ∈
[
−4

√
2

3
,

4
√

2

3

]
.

Example 2.

ϕ : M
2×2 → R,

given by

ϕ(ξ) = |ξ |4 − c(det ξ)2.

If we proceed as in the previous example, and put

A =
(

a b

c d

)
,

for A ∈ M
2×2 with |A| = 1, M1(A) will be the same as before, and

M2(A) =
⎛
⎜⎝

2d2 −2cd −2bd 2ad

−2cd 2c2 2bc −2ac

−2bd 2bc 2b2 −2ab

2ad −2ac −2ab 2a2

⎞
⎟⎠ .

For

A = (cos θ1, sin θ1) ⊗ (cos θ2, sin θ2),

with θ1, θ2 ∈ [0,2π ], we have

det
(
M2(A) − αM1(A)

) = 384α3(−1 + 2α) = 0,

and so, the maximum value of α is 1
2 and the minimum is 0. In this case, it is clear that ϕ is rank-one convex if and

only if

c ∈ (−∞,2].
The range for the constant c for which the corresponding ϕ is convex is given by

c ∈ [−4,1].
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3.2. New examples

We now present some other examples to stress our main result.

Example 3. For

ϕ : M
2×2 → R,

put

ϕ(ξ) = |ξ |4 − c(tr ξ)4,

where tr ξ represents the trace of the matrix ξ . For

A =
(

a b

c d

)
,

with A ∈ M
2×2, |A| = 1, M1(A) is given above, and

M2(A) =
⎛
⎜⎝

12(a + d)2 0 0 12(a + d)2

0 0 0 0
0 0 0 0

12(a + d)2 0 0 12(a + d)2

⎞
⎟⎠ .

In the rank-one directions

A = (cos θ1, sin θ1) ⊗ (cos θ2, sin θ2),

where θ1, θ2 ∈ [0,2π ], we have

det
(
M2(A) − αM1(A)

) = 0

⇔ 768α3(−4 + 2 cos(θ2)
2 − 16 cos(θ1)

2 cos(θ2)
4 + 2 cos(θ2)

4 + 2 cos(θ1)
2 + 2 cos(θ1)

4

+ 8 cos(θ2)
2 cos(θ1)

2 − 4 cos(θ1) cos(θ2) sin(θ1) sin(θ2) + 16 cos(θ1)
4 cos(θ2)

4

− 8 cos(θ1)
3 cos(θ2) sin(θ1) sin(θ2) + 16 cos(θ1)

3 cos(θ2)
3 sin(θ1) sin(θ2)

− 8 cos(θ1) cos(θ2)
3 sin(θ1) sin(θ2) − 16 cos(θ2)

2 cos(θ1)
4 + α

) = 0.

Consequently the maximum value for α is 4. Regarding the minimum value of α, notice that ϕ2 is convex and so ϕ is
rank-one convex if and only if

c ∈
(

−∞,
1

4

]
.

ϕ is convex if and only if

c ∈
(

−∞,
2

9

]
.

Example 4. An example with a non-homogeneous polynomial

ϕ : M
2×2 → R,

defined by

ϕ(ξ) = (tr ξ)4 + |ξ |2 − c(tr ξ)3.

For

ξ =
(

x y

z w

)
,
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we have

∇2ϕ1(ξ) =
⎛
⎜⎝

12(x + w)2 + 2 0 0 12(x + w)2

0 2 0 0
0 0 2 0

12(x + w)2 0 0 12(x + w)2 + 2

⎞
⎟⎠

and

∇2ϕ2(ξ) =
⎛
⎜⎝

6(x + w) 0 0 6(x + w)

0 0 0 0
0 0 0 0

6(x + w) 0 0 6(x + w)

⎞
⎟⎠ .

In addition, for

A =
⎛
⎜⎝

a

b

c

d

⎞
⎟⎠

and

D =

⎛
⎜⎜⎝

0 0 0 1
2

0 0 − 1
2 0

0 − 1
2 0 0

1
2 0 0 0

⎞
⎟⎟⎠ ,

the first-order necessary conditions will be the parametric system of polynomial equations⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
6x + 6w − 12α(x + w)2 − β

)
a + (

6x + 6w − α
(
12(x + w)2 + 2

))
d = 0,

−2αb + βc = 0,

βb − 2αc = 0,(
6x + 6w − α

(
12(x + w)2 + 2

))
a + (

6x + 6w − 12α(x + w)2 − β
)
d = 0,(

a
(
12(x + w)2 + 2

) + 12d(x + w)2
)
a + 2b2 + 2c2 + (

12a(x + w)2 + d
(
12(x + w)2 + 2

))
d = 1,

ad − bc = 0
which give us the real solutions

α = 0, α = 3(x + w)

6(x + w)2 + 1
,

which by its turn provide the range of the constant c to be

c ∈
[
−2

√
6

3
,

2
√

6

3

]
.

For convexity, we have

c ∈
[
−2

√
3

3
,

2
√

3

3

]
.

Example 5. An example for 2 × 3 matrices

ϕ : M
2×3 → R,

given by

ϕ(ξ) = |ξ |4 − c|ξ |2(ξ1
2×2 + ξ2

2×2 + ξ3
2×2

)
,

where ξ
j

2×2, j = 1,2,3, represents the 2 × 2 minor that is obtained from ξ , by removing the j column. If A ∈ M
2×3

with |A| = 1 we set

A =
(

a c e

b d f

)
.
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We have

M1(A)

2
=

⎛
⎜⎜⎜⎜⎜⎝

4a2 + 2 4ba 4ca 4da 4ea 4f a

4ba 4b2 + 2 4cb 4db 4eb 4f b

4ca 4cb 4c2 + 2 4dc 4ec 4f c

4da 4db 4dc 4d2 + 2 4ed 4f d

4ea 4eb 4ec 4ed 4e2 + 2 4f e

4f a 4f b 4f c 4f d 4f e 4f 2 + 2

⎞
⎟⎟⎟⎟⎟⎠

and

M2(A)

2
=

⎛
⎜⎜⎜⎜⎜⎜⎝

3ad + 3af − bc − be + cf − de −ca − ea + db + f b

−ca − ea + db + f b ad + af − 3bc − 3be + cf − de

−ba + af + dc + cf − 1
2 − b2 + f b − c2 − ec

a2 − ea + d2 + f d + 1
2 ba − be − dc − de

−ba − ad + de + f e − 1
2 − b2 − db − ec − e2

a2 + ca + f d + f 2 + 1
2 ba + bc − cf − f e

−ba + af + dc + cf a2 − ea + d2 + f d + 1
2− 1

2 − b2 + f b − c2 − ec ba − be − dc − de

ad + af − 3bc − be + 3cf − de ca − db − ec + f d

ca − db − ec + f d 3ad + af − bc − be + cf − 3de

−bc − be − dc + f e − 1
2 + ea − db − d2 − e2

1
2 + ca − f b + c2 + f 2 ad + af + dc − f e

−ba − ad + de + f e a2 + ca + f d + f 2 + 1
2− 1

2 − b2 − db − ec − e2 ba + bc − cf − f e

−bc − be − dc + f e 1
2 + ca − f b + c2 + f 2

− 1
2 + ea − db − d2 − e2 ad + af + dc − f e

ad + af − bc − 3be + cf − 3de ea − f b + ec − f d

ea − f b + ec − f d ad + 3af − bc − be + 3cf − de

⎞
⎟⎟⎟⎟⎟⎟⎠

.

For

A = (cos θ1, sin θ1) ⊗ (cos θ2 sin θ3, sin θ2 sin θ3, cos θ3),

θ1, θ2 ∈ [0,2π ], θ3 ∈ [0,π], we have

α2(21 + 12 sin θ2 cos θ2 − 160α2 + 256α4 + 64α2 sin θ2 cos θ2
3 cos θ2 − 64α2 sin θ2 sin θ3 cos θ3

+ 12 sin θ2 sin θ3 cos θ3 − 12 sin θ2 cos θ2
3 cos θ2 − 64α2 sin θ2 cos θ2

+ 64α2 sin θ3 cos θ3 cos θ2 − 12 sin θ3 cos θ3 cos θ2
) = 0.

The roots α are

α = ±
√

7 tan2 θ3 + 7 + 4 sin θ2 tan θ3 − 4 cos θ2 tan θ3 + 4 sin θ2 tan2 θ3 cos θ2

16(tan2 θ3 + 1)
,

α = 0, α = ±
√

3

4
,

and consequently the maximum and minimum values for α are α = 3
4 and α = − 3

4 respectively (obtained from
maximizing and minimizing, respectively, the above quotients in θ2, θ3) so, in this case we have ϕ rank-one convex if
and only if

c ∈
[
−4

3
,

4

3

]
.
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Remark 3.

1. In this case it is harder to compute the constants for convexity than for rank-one convexity, following this ap-
proach. In fact, we were not able to recover those constants.

2. As rank-one convexity is invariant under transposition, that is, f : M
m×n → R is rank-one convex if and only if

f T : M
n×m → R given by

f T (ξ) = f
(
ξT

)
is rank-one convex, one can trivially compute the constants for the 3 × 2 example implicitly given by Example 5.

4. Main proof

This section is devoted to the proof of Theorem 2.
We will use the characterization of rank-one convexity through Jensen’s inequality for laminates [8] so that we are

interested in determining the exact range for the constant c so that Jensen’s inequality holds for every laminate and ϕ

in (1). The key point is that we can control the slope of the secants that pass through the image of the barycenter by
the slope of its tangents through zero. In this terminology, secants are related, somehow, to quasiconvexity whereas
tangents at the origin reflect rank-one convexity.

We divide the proof in several steps.
Step 1. If μ is a laminate, then by definition [8], there exists a sequence of sets of pairs {(λk

i ,A
k
i )}1�i�k , verifying

the (Hk) condition [3] such that

μk =
∑

i

λk
i δAk

i

∗
⇀ μ

weakly in the sense of measures. So if

ϕ

(∫
ξ dμk(ξ)

)
�

∫
ϕ(ξ) dμk(ξ),

holds for all k and for some value of c, then by taking weak-∗ limits on both sides of the above inequality (ϕ is, in
particular, continuous), we have

ϕ

(∫
ξ dμ(ξ)

)
�

∫
ϕ(ξ) dμ(ξ), ∀μ ∈ Λ

for the same value of c.
Step 2. We will now prove that it suffices to use first-order laminates to determine the range of c. We argue, in

particular, that building finite-order laminates recursively from first-order laminates does not reduce the range of the
constant c.

Our hypothesis is that c is such that

ϕ

(∫
ξ dμ(ξ)

)
�

∫
ϕ(ξ) dμ(ξ) (2)

for every

μ = λδA1 + (1 − λ)δA2 with rank(A1 − A2) � 1;
and we want to prove that, for the same value of c, we have

ϕ

(∫
ξ dμN(ξ)

)
�

∫
ϕ(ξ) dμN(ξ), (3)

for every finite-order laminate

μN =
N∑

λiδAi
.

i=1
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We proceed by induction (keep in mind that the value c is fixed but arbitrary). For N = 2, (3) is just (2). Suppose now
that (3) holds for every probability measure associated with (HN−1) conditions. Then, if {(λN

i ,AN
i )}1�i�N satisfies

the (HN) condition, we can assume, without loss of generality, that rank(A1 − A2) � 1 (we drop the superindex for
simplicity), and by the induction hypothesis, we have∫

ϕ(ξ) dμ(ξ) =
N∑

i=1

λiϕ(Ai)

= (λ1 + λ2)

(
λ1

λ1 + λ2
ϕ(A1) + λ2

λ1 + λ2
ϕ(A2)

)
+

N∑
i=3

λiϕ(Ai)

� (λ1 + λ2)ϕ

(
λ1

λ1 + λ2
A1 + λ2

λ1 + λ2
A2

)
+

N∑
i=3

λiϕ(Ai)

� ϕ

(
N∑

i=1

λiAi

)
= ϕ

(∫
ξ dμ(ξ)

)
.

In fact, notice that we can further simplify the situation (since ϕ is continuous), because (2) holds for a value c if and
only if

ϕ

(∫
ξ dμ(ξ)

)
�

∫
ϕ(ξ) dμ(ξ) (4)

for every

μ = 1

2
δA1 + 1

2
δA2 with rank(A1 − A2) � 1,

holds for the same value of c.
After a change of variables, we can write down this measure as

μ = 1

2
δξ0+A + 1

2
δξ0−A,

where rank(A) � 1. For s ∈ [0,1], we can take

μ = μs = 1

2
δξ0+sA + 1

2
δξ0−sA

with rank(A) = 1 and |A| � 1 (for |A| > 1 just use the fact that ξ ∈ M is arbitrary and that ϕ is continuous). By
dealing with this class of measures (which will play the role of “generators”), we can determine the exact range for
the constant c that we are interested in.

Step 3. For s ∈ [0,1], consider

μs = 1

2
δξ0+sA + 1

2
δξ0−sA,

and the corresponding plane curve

σ (A,ξ0)(s) = T (μs)

with end-points(
ϕ1(ξ0), ϕ2(ξ0)

)
and (

1

2
ϕ1(ξ0 + A) + 1

2
ϕ1(ξ0 − A),

1

2
ϕ2(ξ0 + A) + 1

2
ϕ2(ξ0 − A)

)
.

If σ and μs are defined as above, then finding all c’s such that∫
ϕ(ξ) dμs(ξ) � ϕ

(∫
ξ dμs(ξ)

)
,
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is equivalent to finding all c’s for which we have

σ
(A,ξ0)
1 (s) − σ

(A,ξ0)
1 (0) � c

(
σ

(A,ξ0)
2 (s) − σ

(A,ξ0)
2 (0)

)
,

for every ξ0 ∈ M, A ∈ A with |A| � 1, s ∈ [0,1]; or, if we consider c > 0 (the other case is similar), that

1

c
�

σ
(A,ξ0)
2 (s) − σ

(A,ξ0)
2 (0)

σ
(A,ξ0)
1 (s) − σ

(A,ξ0)
1 (0)

for every ξ0 ∈ M, A ∈ A with |A| � 1, s ∈ (0,1]. If

σ
(A,ξ0)
2 (s) − σ

(A,ξ0)
2 (0) � 0,

then c > 0, and we do not have any additional constraint. Otherwise, we can set

sup
A,ξ0,s∈(0,1]

σ
(A,ξ0)
2 (s) − σ

(A,ξ0)
2 (0)

σ
(A,ξ0)
1 (s) − σ

(A,ξ0)
1 (0)

= 1

c+
� 1

c
.

Since

σi(s) = 1

2
ϕi(ξ0 + sA) + 1

2
ϕi(ξ0 − sA),

it follows

σ̇i (0) = 0,

thus it is obvious that

sup
A,ξ0,s∈(0,1]

σ
(A,ξ0)
2 (s) − σ

(A,ξ0)
2 (0)

σ
(A,ξ0)
1 (s) − σ

(A,ξ0)
1 (0)

� sup
A,ξ0

σ̈2
(A,ξ0)(0)

σ̈1
(A,ξ0)(0)

. (5)

Step 4. To finish the proof, we have to show that the equality holds. First we will suppose that the supremum on
the left side of (5) (and where we can suppose s � r > 0, otherwise there is nothing to prove) is indeed a maximum
and that a strict inequality holds

1

c+
= max

A,ξ0,s∈(0,1]
σ

(A,ξ0)
2 (s) − σ

(A,ξ0)
2 (0)

σ
(A,ξ0)
1 (s) − σ

(A,ξ0)
1 (0)

= σ
(A∗,ξ∗

0 )

2 (s∗) − σ
(A∗,ξ∗

0 )

2 (0)

σ
(A∗,ξ∗

0 )

1 (s∗) − σ
(A∗,ξ∗

0 )

1 (0)
> sup

A,ξ0

σ̈2
(A,ξ0)(0)

σ̈1
(A,ξ0)(0)

.

Then there has to be a point s0 ∈ (0, s∗) such that

σ
(A∗,ξ∗

0 )

2 (s∗) − σ
(A∗,ξ∗

0 )

2 (s0)

σ
(A∗,ξ∗

0 )

1 (s∗) − σ
(A∗,ξ∗

0 )

1 (s0)

=
1
2 (ϕ2(ξ

∗
0 − s∗A∗) + ϕ2(ξ

∗
0 + s∗A∗)) − 1

2 (ϕ2(ξ
∗
0 − s0A

∗) + ϕ2(ξ
∗
0 + s0A

∗))
1
2 (ϕ1(ξ

∗
0 − s∗A∗) + ϕ1(ξ

∗
0 + s∗A∗)) − 1

2 (ϕ1(ξ
∗
0 − s0A∗) + ϕ1(ξ

∗
0 + s0A∗))

>
1

c+
.

But because ξ∗
0 − s0A

∗ and ξ∗
0 + s0A

∗ can be regarded as new barycenters of first-order laminates, it is clear, by

definition of 1
c+ , that

s∗+s0
2s∗ ϕ2((ξ

∗
0 − s0A

∗) − (s∗ − s0)A
∗) + s∗−s0

2s∗ ϕ2((ξ
∗
0 − s0A

∗) + (s∗ + s0)A
∗) − ϕ2(ξ

∗
0 − s0A

∗)
s∗+s0

2s∗ ϕ1((ξ
∗
0 − s0A∗) − (s∗ − s0)A∗) + s∗−s0

2s∗ ϕ1((ξ
∗
0 − s0A∗) + (s∗ + s0)A∗) − ϕ1(ξ

∗
0 − s0A∗)

� 1

c+

and
s∗−s0

2s∗ ϕ2((ξ
∗
0 + s0A

∗) − (s∗ + s0)A
∗) + s∗+s0

2s∗ ϕ2((ξ
∗
0 + s0A

∗) + (s∗ − s0)A
∗) − ϕ2(ξ

∗
0 + s0A

∗)
s∗−s0 ϕ ((ξ∗ + s A∗) − (s∗ + s )A∗) + s∗+s0 ϕ ((ξ∗ + s A∗) + (s∗ − s )A∗) − ϕ (ξ∗ + s A∗)

� 1

c+
.

2s∗ 1 0 0 0 2s∗ 1 0 0 0 1 0 0
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From here and because ϕ1 is strictly convex (and so, in the above fractions both denominators are strictly positive), it
is trivial to obtain

σ
(A∗,ξ∗

0 )

2 (s∗) − σ
(A∗,ξ∗

0 )

2 (s0)

σ
(A∗,ξ∗

0 )

1 (s∗) − σ
(A∗,ξ∗

0 )

1 (s0)
� 1

c+
,

which contradicts the above strict inequality, leading to the desired conclusion, that is

max
A,ξ0,s∈(0,1]

σ
(A,ξ0)
2 (s) − σ

(A,ξ0)
2 (0)

σ
(A,ξ0)
1 (s) − σ

(A,ξ0)
1 (0)

= sup
A,ξ0

σ̈2
(A,ξ0)(0)

σ̈1
(A,ξ0)(0)

= 1

c+
.

Now it remains to prove the case where we have a genuine supremum on the left side of (5). This can only happens if
the supremum is obtained by taking |ξ | → ∞. Suppose

1

c+
= sup

A,ξ,s∈(0,1]
σ

(A,ξ)
2 (s) − σ

(A,ξ)
2 (0)

σ
(A,ξ)
1 (s) − σ

(A,ξ)
1 (0)

= lim|ξ |→∞ max
A,s∈(0,1]

σ
(A,ξ)
2 (s) − σ

(A,ξ)
2 (0)

σ
(A,ξ)
1 (s) − σ

(A,ξ)
1 (0)

> sup
A,ξ

σ̈2
(A,ξ)(0)

σ̈1
(A,ξ)(0)

= lim
s→0

sup
A,ξ

σ
(A,ξ)
2 (s) − σ

(A,ξ)
2 (0)

σ
(A,ξ)
1 (s) − σ

(A,ξ)
1 (0)

.

Then there exists δ > 0 such that

sup
A,ξ

σ̈2
(A,ξ)(0)

σ̈1
(A,ξ)(0)

= 1

c+
− 3δ.

We also have that for each ε > 0, there exists k = k(ε) ∈ R
+ such that for |ξ | � k(ε),

max
A,s∈(0,1]

σ
(A,ξ)
2 (s) − σ

(A,ξ)
2 (0)

σ
(A,ξ)
1 (s) − σ

(A,ξ)
1 (0)

>
1

c+
− ε.

We take ε = δ, and for ξ such that |ξ | > k(δ) one has

max
A,s∈(0,1]

σ
(A,ξ)
2 (s) − σ

(A,ξ)
2 (0)

σ
(A,ξ)
1 (s) − σ

(A,ξ)
1 (0)

>
1

c+
− δ > sup

A,ξ

σ̈2
(A,ξ)(0)

σ̈1
(A,ξ)(0)

= 1

c+
− 3δ.

As for such ξ

sup
A

σ̈2
(A,ξ)(0)

σ̈1
(A,ξ)(0)

� 1

c+
− 3δ,

then for each A there must exist a point s0 ∈ (0,1) for which

lim
s→s0

σ
(A,ξ)
2 (s) − σ

(A,ξ)
2 (s0)

σ
(A,ξ)
1 (s) − σ

(A,ξ)
1 (s0)

>
1

c+
− δ.

Using again the fact that ξ − s0A and ξ + s0A can be regarded as new barycenters of first-order laminates, one has

lim
s→s0

s+s0
2s

ϕ2((ξ − s0A) − (s − s0)A) + s−s0
2s

ϕ2((ξ − s0A) + (s + s0)A) − ϕ2(ξ − s0A)

s+s0
2s

ϕ1((ξ − s0A) − (s − s0)A) + s−s0
2s

ϕ1((ξ − s0A) + (s + s0)A) − ϕ1(ξ − s0A)
� 1

c+
− 3δ

and

lim
s→s0

s−s0
2s

ϕ2((ξ + s0A) − (s + s0)A) + s+s0
2s

ϕ2((ξ + s0A) + (s − s0)A) − ϕ2(ξ + s0A)

s−s0
2s

ϕ1((ξ + s0A) − (s + s0)A) + s+s0
2s

ϕ1((ξ + s0A) + (s − s0)A) − ϕ1(ξ + s0A)
� 1

c+
− 3δ.

Consequently, there exists r1 > 0 such that for each s ∈ B(s0, r1)

s+s0
2s

ϕ2((ξ − s0A) − (s − s0)A) + s−s0
2s

ϕ2((ξ − s0A) + (s + s0)A) − ϕ2(ξ − s0A)

s+s0 ϕ ((ξ − s A) − (s − s )A) + s−s0 ϕ ((ξ − s A) + (s + s )A) − ϕ (ξ − s A)
� 1

c+
− 2δ
2s 1 0 0 2s 1 0 0 1 0
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and a r2 > 0 such that for each s ∈ B(s0, r2)

s−s0
2s

ϕ2((ξ + s0A) − (s + s0)A) + s+s0
2s

ϕ2((ξ + s0A) + (s − s0)A) − ϕ2(ξ + s0A)

s−s0
2s

ϕ1((ξ + s0A) − (s + s0)A) + s+s0
2s

ϕ1((ξ + s0A) + (s − s0)A) − ϕ1(ξ + s0A)
� 1

c+
− 2δ.

For each s ∈ B(s0, r), where r = min{r1, r2} and noticing that ϕ1 is strictly convex, one can get

σ
(A,ξ)
2 (s) − σ

(A,ξ)
2 (s0)

σ
(A,ξ)
1 (s) − σ

(A,ξ)
1 (s0)

� 1

c+
− 2δ,

which is absurd.
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