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Abstract

We consider solutions to the incompressible Navier–Stokes equations on the periodic domain Ω = [0,2π ]3 with potential body
forces. Let R ⊆ H 1(Ω)3 denote the set of all initial data that lead to regular solutions. Our main result is to construct a suitable
Banach space S�

A
such that the normalization map W : R → S�

A
is continuous, and such that the normal form of the Navier–Stokes

equations is a well-posed system in all of S�
A

. We also show that S�
A

may be seen as a subset of a larger Banach space V � and that
the extended Navier–Stokes equations, which are known to have global solutions, are well-posed in V �.
Published by Elsevier Masson SAS.
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1. Introduction

The Navier–Stokes equations describe the dynamics of incompressible, viscous fluid flows. These equations con-
tinue to pose great challenges in mathematics. In particular, the problem of the long time existence of regular solutions
is still open. One of the main difficulties in studying the three dimensional Navier–Stokes equations is the analysis
of the role of the nonlinear terms in the equations. It is therefore appropriate to consider the simplest case when that
role is minimal. One such case occurs when the solutions are periodic in the space variables and the body forces are
potential.

The asymptotic behavior of the regular solution u(t) = S(t)u0 of the Navier–Stokes equations in the periodic
domain with potential forces where u0 is the initial data was studied in a series of papers [5–7]. It was shown that the
regular solution u(t) possesses an asymptotic expansion, namely,
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Fig. 1. Commutative diagram.

u(t) ∼
∞∑

n=1

Wn(t, u
0)e−nt , as t → ∞, (1.1)

where Wn(t, u
0) is a polynomial in t whose values are divergence-free trigonometric polynomials. For more details,

see (2.10) and the explanations afterward.
Associated to such an asymptotic expansion are the normalization map W(u0) and the normal form for the Navier–

Stokes equations, which is an infinite system of finite dimensional ordinary differential equations. The polynomials
Wn(t, u

0) in (1.1) may be explicitly computed from W(u0) using a recursive formula deduced from the nonlinear terms
of the Navier–Stokes equations. The image of the normalization map and the solutions Snormal(t)ξ̄ of the normal form,
where ξ̄ is the initial data, were originally studied in a Frechet space SA. Briefly, SA = ⊕∞

n=1 RnH where RnH is
the eigenspace of the Stokes operator corresponding to the eigenvalue n or, if n is not an eigenvalue, the trivial linear
space {0}. Since the topology of component-wise convergence associated to the Frechet space SA is very weak, more
precise analysis may be obtained by studying the normalization map and the normal form in a subspace S∗

A of SA

endowed with a stronger norm-induced topology.
In our previous paper [3], among other things, we constructed a suitable Banach space S�

A, a subspace of SA, on
which the normal form is a well-posed system near the origin. The norm ‖ū‖� of ū = (un)

∞
n=1 ∈ S�

A is of the form

‖ū‖� =
∞∑

n=1

ρn‖∇un‖L2(Ω), (1.2)

where Ω = (0,2π)3 is the domain of periodicity and (ρn)
∞
n=1 is a sequence of positive weights. In that study, we

also defined a system of the extended Navier–Stokes equations which is appropriate to the study of the asymptotic
expansion of S(t)u0 as well as the solution Snormal(t)ξ̄ of the normal form. In addition, we proved that the semigroup
Sext(t) generated by the extended Navier–Stokes equations leaves invariant a Banach space V �, which is defined
similarly to S�

A. A missing piece of our study in [3] is an affirmative answer to the question whether W(u0) belongs
to S�

A. Also the properties and relations of W,S(t), Snormal(t) and Sext(t) in the above star spaces had only begun to
be addressed and studied.

The current paper is a continuation of [3]. Our main result is to obtain a choice of weights ρn such that the norm
given by (1.2) yields a Banach space S�

A ⊂ SA which contains the image of the normalization map. Moreover, we
establish the everywhere continuity properties of Snormal(t), Sext(t) and W with respect to this norm. We summarize
our results in the commutative diagram (Fig. 1), where all mappings are continuous. The precise definitions of the
maps and spaces in the diagram are given in Section 2.

Our results imply that for each regular solution u(t) the series
∞∑

n=1

ρne
−nt

∥∥Wn

(
t, u(0)

)∥∥ < ∞.

However, the weights ρn decrease very rapidly and the main question of whether the asymptotic expansion∑∞
n=1 e−ntWn(t, u(0)) actually converges in V to the solution u(t) is still open.
This paper is organized as follows. Section 2 recalls the definitions and properties of the asymptotic expansions,

the normalization map and the normal form. In Section 3, we study the extended Navier–Stokes equations and show
the conditions on the weights ρn given in [3] restated here as Definition 2.1 ensure that Sext(t) :V � → V � is con-
tinuous. The estimates obtained in this section will be used later in the study of the normalization map and the
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normal form. Section 4 contains our study of the normal form. In particular, we show that Snormal(t) :S�
A → S�

A and
Q(0, ·) :S�

A → V � are also continuous with respect to any of the norms given by Definition 2.1. In Section 5, we study
the normalization map, construct a new norm and prove our main results. Namely, we construct norms satisfying
Definition 2.1 of the type specified in Definition 5.2 for which the normalization map W : R → S∗

A is continuous.
Appendix A provides a number of lemmas on numeric series needed for our norm estimates as well as a useful global
estimate for the difference of two regular solutions of the Navier–Stokes equations.

2. Preliminaries

2.1. Mathematical setting

The initial value problem for the incompressible Navier–Stokes equations in the three-dimensional space R3 with
a potential body force is⎧⎪⎪⎨

⎪⎪⎩
∂u
∂t

+ (u · ∇)u − ν	u = −∇p − ∇φ,

div u = 0,

u(x,0) = u0(x),

(2.1)

where ν > 0 is the kinematic viscosity, u = u(x, t) is the unknown velocity field, p is the unknown pressure, (−∇φ) is
the body force specified by a given function φ and u0(x) is the known initial velocity field. We consider only solutions
u(x, t) such that for any t � 0, u(x) = u(x, t) satisfies

u(x + Lej ) = u(x) for all x ∈ R
3, j = 1,2,3, (2.2)

and ∫
Ω

u(x) dx = 0, (2.3)

where L > 0 is fixed and Ω = (−L/2,L/2)3. We call the functions satisfying (2.2) L-periodic functions. Throughout
this paper we take L = 2π and ν = 1. The general case is easily recovered by a change of scale.

Let V be the set of all L-periodic trigonometric polynomials on Ω with values in R
3 which are divergence-free as

well as satisfy the condition (2.3). We define{
H = closure of V in L2(Ω)3,

V = closure of V in H 1(Ω)3,

where Hl(Ω) with l = 0,1,2, . . . denotes the Sobolev space of functions ϕ ∈ L2(Ω) such that for every multi-index
α with |α| � l the distributional derivative Dαϕ ∈ L2(Ω).

For a = (a1, a2, a3) and b = (b1, b2, b3) in R
3, define a · b = a1b1 + a2b2 + a3b3 and |a| = √

a · a. Let 〈·, ·〉 and
| · | denote the scalar product and norm in L2(Ω)3 given by

〈u,v〉 =
∫
Ω

u(x) · v(x) dx, |u| = 〈u,u〉1/2, u = u(·), v = v(·) ∈ L2(Ω)3.

Note that we use | · | for the length of vectors in R
3 as well as the L2-norm of vector fields in L2(Ω)3. In each case

the context clarifies the precise meaning of this notation.
Let PL denote the orthogonal projection in L2(Ω)3 onto H . On V we consider the inner product 〈〈·, ·〉〉 and the

norm ‖·‖ defined by

〈〈u,v〉〉 =
3∑

j,k=1

∫
Ω

∂uj (x)

∂xk

∂vj (x)

∂xk

dx and ‖u‖ = 〈〈u,u〉〉1/2,

for u = u(·) = (u1, u2, u3) and v = v(·) = (v1, v2, v3) in V .
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Define the Stokes operator A with domain DA = V ∩ H 2(Ω)3 by

Au = −	u for all u ∈ DA. (2.4)

The inner product of u,v ∈ DA and the norm of w ∈ DA are defined by 〈Au,Av〉 and |Aw|, respectively. Note for
w ∈ DA that (2.3) implies the norm |Aw| is equivalent to the usual Sobolev norm of H 2(Ω)3. We also define the
bilinear mapping associated with the nonlinear term in the Navier–Stokes equations by

B(u, v) = PL(u · ∇v) for all u,v ∈ DA. (2.5)

A classical result tracing back to Leray’s pioneering works on the Navier–Stokes equations in the 1930’s (see, e.g.,
[11–13]) is that for any initial data u0(x) in H there exists a weak solution u(x, t) defined for all x ∈ R

3 and t > 0
which eventually becomes analytic in space and time and ‖u(·, t)‖H 1(Ω)3 converges exponentially to zero as t → ∞
(see also [1,9,4]). Thus there is t0 � 0 such that the solution u(t) = u(·, t) is continuous from [t0,∞) into V and
satisfies the following functional form of the Navier–Stokes equations

du(t)

dt
+ Au(t) + B

(
u(t), u(t)

) = 0, t > t0,

where the equation holds in H . We say that u(t), t � t0, is a regular solution to the Navier–Stokes equations on
[t0,∞). We denote R the set of all initial value u0 ∈ V such that there is a (unique) solution u(t), t > 0, satisfying

du(t)

dt
+ Au(t) + B

(
u(t), u(t)

) = 0, t > 0, (2.6)

with the initial data

u(0) = u0 ∈ V, (2.7)

where the equation holds in H , and u(t) is continuous from [0,∞) into V . In other words, R is the set of all initial
data u0 ∈ V such that the solution u(t) of the Navier–Stokes equations (2.6) is regular (hence also unique) on [0,∞).

We recall that the spectrum σ(A) of the Stokes operator A consists of the eigenvalues λ1 < λ2 < λ3 < · · · of the
form λj = |k|2 for some k ∈ Z

3 \{0} where j = 1,2,3, . . . . Note that λ1 = 1 = |e1|2 and hence the additive semigroup
generated by σ(A) coincides with the set N = {1,2,3, . . . } of all natural numbers. For n ∈ N we denote by Rn the
orthogonal projection of H onto the eigenspace of A associated to n. Thus,

RnH = {u ∈ H : Au = nu}.
If n is an eigenvalue of A, then RnH is generated by functions of the form(

a1
k + ia2

k

)
ei(k·x) + (

a1
k − ia2

k

)
e−i(k·x), k ∈ Z

3, |k|2 = n,

where

a1
k, a2

k ∈ R
3 and a1

k · k = a2
k · k = 0.

Otherwise Rn = 0. For example, R7 = 0, R15 = 0, R23 = 0, . . . . Define

Pn = R1 + R2 + · · · + Rn and Qn = I − Pn. (2.8)

2.2. The asymptotic behavior of solutions

Let us recall some known results on the asymptotic expansions and the normal form of the regular solutions to the
Navier–Stokes equations (see [5–7,10] for more details). First, for any u0 ∈ R there is an eigenvalue n0 of A such that

lim
t→∞

‖u(t)‖2

|u(t)|2 = n0 and lim
t→∞u(t)en0t = wn0(u

0) ∈ Rn0H \ {0}. (2.9)

Furthermore, u(t) has the asymptotic expansion

u(t) ∼ q1(t)e
−t + q2(t)e

−2t + q3(t)e
−3t + · · · , (2.10)



C. Foias et al. / Ann. I. H. Poincaré – AN 26 (2009) 1635–1673 1639
where qj (t), also denoted by Wj(t, u
0), is a polynomial in t of degree at most j − 1 with values trigonometric

polynomials in H . This means that for any N ∈ N the correction term ũN+1(t) = u(t) −∑N
j=1 qj (t)e

−j t satisfies∣∣ũN+1(t)
∣∣ = O

(
e−(N+ε)t

)
as t → ∞ for some ε = εN > 0. (2.11)

In fact, ũN+1(t) belongs to C1([0,∞),V ) ∩ C∞((0,∞),C∞(R3)), and for each m ∈ N∥∥ũN+1(t)
∥∥

Hm(Ω)
= O

(
e−(N+ε)t

)
as t → ∞ for some ε = εN,m > 0. (2.12)

Define the normalization map W by W(u0) = W1(u
0) ⊕ W2(u

0) ⊕ · · · , where Wj(u
0) = Rjqj (0) for j ∈ N.

Then W is an one-to-one analytic mapping from R to the Frechet space SA = R1H ⊕ R2H ⊕ · · · endowed with the
component-wise topology.

The case (2.9) holds if and only if W1(u
0) = W2(u

0) = · · · = Wn0−1(u
0) = 0 and Wn0(u

0) �= 0. In this case

q1 = q2 = · · · = qn0−1 = 0 and qn0 = wn0(u
0) = Wn0(u

0).

If u0 ∈ R then the polynomials qj (t) are the unique polynomial solutions to the following equations

q ′
j (t) + (A − j)qj (t) + βj (t) = 0, t ∈ R, (2.13)

with

Rjqj (0) = Wj(u
0), (2.14)

where the terms βj (t) are defined by

β1(t) = 0 and βj (t) =
∑

k+l=j

B
(
qk(t), ql(t)

)
for j > 1. (2.15)

Given arbitrary ξ̄ = (ξn)
∞
n=1 ∈ SA, the polynomial solutions qj (t, ξ̄ ) of (2.13) satisfying the initial condition

Rjqj (0) = ξj , are explicitly given by the recursive formula

qj (t, ξ̄ ) = ξj −
t∫

0

Rjβj (τ ) dτ +
∑
n�0

(−1)n+1[(A − j)(I − Rj )
]−n−1 dn

dtn
(I − Rj )βj , (2.16)

for j ∈ N. Here [(A − j)(I − Rj )]−n−1 is defined by

[
(A − j)(I − Rj )

]−n−1
u =

∑
|k|2 �=j

ak

(|k|2 − j)n+1
eik·x

for u = ∑
|k|2 �=j akeik·x ∈ V . Above I denotes the identity map on H .

Note that, with our notation, for u0 ∈ R, we have Wj(t, u
0) = qj (t,W(u0)) for all j ∈ N and t ∈ R.

Finally, the SA-valued function ξ̄ (t) = (ξn(t))
∞
n=1 = (Wn(u(t)))∞n=1 = W(u(t)) satisfies the following system of

differential equations⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dξ1(t)

dt
+ Aξ1(t) = 0,

dξn(t)

dt
+ Aξn(t) +

∑
k+j=n

RnB
(
qk

(
0, ξ̄ (t)

)
, qj

(
0, ξ̄ (t)

)) = 0, n > 1.
(2.17)

This system is the normal form of the Navier–Stokes equations (2.6) associated with the asymptotic expansion (2.10).
It is easy to check that the solution of (2.17) with initial data ξ̄0 = (ξ0

n )∞n=1 ∈ SA is precisely (Rnqn(t, ξ̄
0)e−nt )∞n=1.

Thus, formula (2.16) yields the normal form and its solutions.
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2.3. Complexification of the Navier–Stokes equations

We introduce the Navier–Stokes equations with complex times and their analytic solutions (see [1,8]). Let X be a
real Hilbert space with scalar product (·,·)X . Define the complexification of X as

XC = {u + iv: u,v ∈ X}
with the addition and scalar product defined by

(u1 + iu2) + (v1 + iv2) = (u1 + v1) + i(u2 + v2)

and

(ζ1 + iζ2)(u1 + iu2) = ζ1u1 − ζ2u2 + i(ζ2u1 + ζ1u2)

for u1, u2, v1, v2 ∈ X and ζ1, ζ2 ∈ R. The complexified space XC is a Hilbert space with respect to the inner product

(u + iv, u′ + iv′)XC
= (u,u′)X + (v, v′)X + i

[
(v,u′)X − (u, v′)X

]
,

where u,v,u′, v′ ∈ X. When X = H or X = V , we obtain the complexified spaces HC and VC. We keep the same
notation for their corresponding inner products and norms.

The Stokes operator may be extended to DAC
= (DA)C as

A(u + iv) = Au + iAv, u, v ∈ DA.

Similarly, B(·, ·) can be extended to a bounded bilinear map from VC × DAC
to HC by

B(u + iv, u′ + iv′) = B(u,u′) − B(v, v′) + i
[
B(u, v′) + B(v,u′)

]
for u,v ∈ V, u′, v′ ∈ DA. Note that unlike the real case we have〈

B(u, v), v
〉 �≡ 0, for u,v ∈ DAC

.

The Navier–Stokes equations with complex times is defined as

du(ζ )

dζ
+ B

(
u(ζ ),u(ζ )

) + Au(ζ ) = 0, (2.18)

with the initial condition

u(ζ0) = u�, (2.19)

where ζ0 ∈ C and u� ∈ VC are given. Here d/dζ denotes the complex derivative of HC-valued functions.

2.4. The extended Navier–Stokes equations

The un(t) = Wn(t, u
0)e−nt must satisfy the following system of equations

dun(t)

dt
+ Aun(t) + Bn(t) = 0, t > 0, (2.20)

un(0) = u0
n, (2.21)

where

B1(t) = 0 and Bn(t) =
∑

j+k=n

B
(
uj (t), uk(t)

)
for n > 1. (2.22)

One can extend un(t) for t > 0 to un(ζ ) for ζ ∈ C with Re ζ > Re ζ0. Then

dun(ζ )

dζ
+ Aun(ζ ) + Bn(ζ ) = 0, ζ ∈ C, Re ζ > Re ζ0, (2.23)

un(ζ0) = u�
n, (2.24)

where ζ0 ∈ C, u�
n ∈ VC and

B1(ζ ) = 0 and Bn(ζ ) =
∑

j+k=n

B
(
uj (ζ ), uk(ζ )

)
for n > 1.

Above, Re ζ denotes the real part of the complex number ζ .



C. Foias et al. / Ann. I. H. Poincaré – AN 26 (2009) 1635–1673 1641
2.5. Prerequisites

The following spaces are introduced in the previous studies [3,5–7] of the normalization map and the normal form
of the Navier–Stokes equations. Let VC and (RnH)C, for n ∈ N, be the complexifications of V and RnH , respectively
as in Section 2.3. Define the complex linear Frechet space

V ∞
C

= {
ū = (un)

∞
n=1: un ∈ VC

}
,

its subspace

(SA)C = {
ū = (un)

∞
n=1: un ∈ (RnH)C

} ⊂ V ∞
C

and recall that the real linear space V ∞ is V ⊕ V ⊕ V ⊕ · · ·.
Let S(t, t0) : R → R be the semigroup generated by the Navier–Stokes equations (2.6) with initial time t0. We

denote S(t) = S(t,0).
Let Sext(ζ, ζ0) :V ∞

C
→ V ∞

C
be the semigroup generated by the extended Navier–Stokes equations (2.23) with initial

complexified time ζ0. Also denote Sext(ζ ) = Sext(ζ,0).
Let Snormal(t) : SA → SA be the semigroup generated by the normal form of Navier–Stokes equations (2.17).
Recall W :u ∈ R �→ W(u) ∈ SA. Define the following maps

W(t, ·) :u ∈ R �→ (
Wn(t, u)e−nt

)∞
n=1 ∈ V ∞,

Q(t, ·) : ξ̄ ∈ SA �→ (
qn(t, ξ̄ )e−nt

)∞
n=1 ∈ V ∞.

The studies of W and Snormal(t) in the above Frechet spaces can be made more precise by strengthening the
topology. To this end we introduce the normed subspaces V �

C
, V � and S�

A as

V �
C

= {
ū ∈ V ∞

C
: ‖ū‖� < ∞}

, V � = V ∞ ∩ V �
C
, S�

A = SA ∩ V �,

where then norm ‖ū‖� has already been defined in (1.2) depending on a sequence of positive weights ρn.
Clearly V �

C
,V � and S�

A are Banach spaces.
Concerning the choice of ρn in defining the weighted norm in (1.2), we recall as Definition 2.1 the particular

sequence (ρn)
∞
n=1 constructed in [3].

Let C1 be the positive constant introduced in Appendix A and define

ε0 = 1

24C1
. (2.25)

Note that ε0 and C1 are essentially the same constant. We write ε0 when we are focusing on something being small
and C1 otherwise.

Definition 2.1. Let (αn)
∞
n=1 be a sequence of numbers satisfying

α1 � 0, αn > 0 for n > 1 and
∞∑

n=1

αn � 1/2. (2.26)

Construct the sequence (ρn)
∞
n=1 as follows: let ρ1 = 1 and for n > 1 define

σn = min{ρkρj : k + j = n and k, j ∈ N}. (2.27)

Then let

0 < ρn = σn min

{
1,

αn

16ε0 max{1,L3,n,C1n3/2}
}
, n > 1, (2.28)

where

L3,n = 2C1e
2a0(C2/2)n−2n2(n − 2)![(n − 2)3/4 + n3/2], (2.29)

and the positive numbers a0 and C2 are defined in Lemma A.2.

We summarize some results from [3]. Let ρn be as in Definition 2.1 and the norm ‖·‖� be defined by (1.2). We have
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Fact 2.2. Sext(t) leaves V � invariant for all t � 0.

Fact 2.3. There is a neighborhood O of the origin in S�
A such that Q(0, ·) : O → V � and Snormal(t) : O → S�

A for t � 0
are well-defined and Lipschitz continuous.

3. The extended Navier–Stokes equations

In the first part of this section (ρn)
∞
n=1 is a sequence of positive numbers satisfying

ρn = κn min{ρkρj : k + j = n}, κn ∈ (0,1], n � 2. (3.1)

Note that the particular choice of ρn used as the weights given in Definition 2.1 satisfy condition (3.1). After de-
riving some basic estimates which will be used throughout this paper, we show how they quickly lead to the Lipschitz
continuity of each Sext(t) near the origin in V �. We finish by showing for κn satisfying the additional condition (3.39)
that Sext(t) is continuous in the whole space V �, that is, the extended Navier–Stokes equations are well-posed in V �.

First, we have the following version of Proposition 3.1 in [3]. The proof of the estimates with weights ρn is the
same as in Lemma 3.3 below in which we only use the fact that

ρn � min{ρkρj : k + j = n}, n � 2. (3.2)

Proposition 3.1. Let ζ0 ∈ C and ū� = (u�
n)

∞
n=1 ∈ V ∞

C
. Let ū(ζ ) = Sext(ζ, ζ0)ū

�. For s ∈ (0,∞), θ ∈ (−π/2,π/2) and
n ∈ N, we have

ρn

∥∥un(ζ0 + seiθ )
∥∥ � γne

−s cos θ , (3.3)
s∫

0

|ρnAun(ζ0 + ρeiθ )|2
‖ρnun(ζ0 + ρeiθ )‖ dρ � γn

cos θ
, (3.4)

where

γ1 = ρ1‖u�
1‖, γn = ρn‖u�

n‖ + C1

cos θ

∑
k+j=n

γkγj . (3.5)

However, taking into account the factor κn in (3.1), we derive the following refined version of Proposition 3.1.

Corollary 3.2. The conclusions (3.3)–(3.4) in Proposition 3.1 hold true for γn defined by

γ1 = ρ1‖u�
1‖, γn = ρn‖u�

n‖ + C1κn

cos θ

∑
k+j=n

γkγj . (3.6)

Proof. Define

γ
(1)
1 = ‖u�

1‖, γ (1)
n = ‖u�

n‖ + C1

cos θ

∑
k+j=n

γ
(1)
k γ

(1)
j . (3.7)

Proposition 3.1 applied with (3.7) in place of (3.5) and ρn = 1 for all n ∈ N implies∥∥un(ζ0 + seiθ )
∥∥ � γ (1)

n e−s cos θ .

Moreover ρ1γ
(1)
1 = γ1 and

ρnγ
(1)
n � ρn‖u�

n‖ + C1κn

cos θ

∑
k+j=n

ρkγ
(1)
k ρj γ

(1)
j

implies by induction that ρnγ
(1)
n � γn for all n ∈ N. Therefore

ρn

∥∥un(ζ0 + seiθ )
∥∥ � ρnγ

(1)
n e−s cos θ � γne

−s cos θ .

Similar arguments obtain (3.4) with γn defined by (3.6). �



C. Foias et al. / Ann. I. H. Poincaré – AN 26 (2009) 1635–1673 1643
The difference of two solutions of the extended Navier–Stokes equations also satisfy estimates similar to those in
Proposition 3.1 and Corollary 3.2.

Lemma 3.3. Let ζ0 ∈ C and ū� = (u�
n)

∞
n=1, v̄

� = (v�
n)

∞
n=1 ∈ V ∞

C
. Let ū(ζ ) = Sext(ζ, ζ0)ū

�, v̄(ζ ) = Sext(ζ, ζ0)v̄
�. Let

w̄� = ū� − v̄� = (w�
n)

∞
n=1 and w̄ = ū − v̄ = (wn)

∞
n=1. For s ∈ (0,∞), θ ∈ (−π/2,π/2) and n ∈ N, we have

ρn

∥∥wn(ζ0 + seiθ )
∥∥ � μne

−s cos θ (3.8)

and
s∫

0

|ρnAwn(ζ0 + ρeiθ )|2
‖ρnwn(ζ0 + ρeiθ )‖ dρ � μn

cos θ
, (3.9)

where

μ1 = ρ1‖w�
1‖, μn = ρn‖w�

n‖ + C1

cos θ

∑
k+j=n

μk(γj,u + γj,v), (3.10)

where γn,u, γn,v are defined as in Proposition 3.1, namely

γ1,u = ρ1‖u�
1‖, γn,u = ρn‖u�

n‖ + C1

cos θ

∑
k+j=n

γk,uγj,u, (3.11)

γ1,v = ρ1‖v�
1‖, γn,v = ρn‖v�

n‖ + C1

cos θ

∑
k+j=n

γk,vγj,v. (3.12)

Proof. We will prove (3.8) and (3.9) by induction. First, when n = 1,

dw1

dζ
+ Aw1 = 0, w1(ζ0) = w�

1.

Hence w1(ζ0 + ζ ) = e−ζAw�
1 for Re ζ > 0. It follows that∥∥w1(ζ0 + ζ )

∥∥ � e−Re ζ ‖w�
1‖, Re ζ > 0. (3.13)

Also, d‖w1‖/ds + cos θ |Aw1|2/‖w1‖ = 0, thus (3.9) holds for n = 1.
Now, let N > 1 and assume for induction that (3.8) and (3.9) hold for n = 1,2, . . . ,N − 1. We have

dwN

dζ
+ AwN +

∑
k+j=N

(
B(wk,uj ) + B(vk,wj )

) = 0.

Hence, with ζ = ζ0 + seiθ we obtain

dwN

ds
+ eiθAwN + eiθ

∑
k+j=N

(
B(wk,uj ) + B(vk,wj )

) = 0.

It follows that

1

2

d‖wN‖2

ds
+ cos θ |AwN |2 � C1‖wN‖

∑
k+j=N

[‖wk‖1/2|Awk|1/2|Auj | + ‖vk‖1/2|Avk|1/2|Awj |
]
.

For k ∈ N and s > 0 denote

ûk(s) = ρnuk(ζ0 + seiθ ), v̂k(s) = ρkvk(ζ0 + seiθ ), ŵk(s) = ρkwk(ζ0 + seiθ ).

Using the fact that ρN � ρkρj for k + j = N , we obtain

1

2

d‖ŵN‖2

ds
+ cos θ |AŵN |2 � C1‖ŵN‖

∑ [‖ŵk‖1/2|Aŵk|1/2|Aûj | + ‖v̂k‖1/2|Av̂k|1/2|Aŵj |
]
. (3.14)
k+j=N
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Then we have

d‖ŵN‖
ds

+ cos θ
|AŵN |2
‖ŵN‖

� C1

∑
k+j=N

[ |Aŵk|1/2

‖ŵk‖1/4
‖ûj‖1/4

][ |Aûj |
‖ûj‖1/2

‖ŵk‖1/2
][‖ŵk‖1/4‖ûj‖1/4]

+ C1

∑
k+j=N

[ |Av̂k|1/2

‖v̂k‖1/4
‖ŵj‖1/4

][ |Aŵj |
‖ŵj‖1/2

‖v̂k‖1/2
][‖v̂k‖1/4‖ŵj‖1/4]

� C1

( ∑
k+j=N

|Aŵk|2
‖ŵk‖ ‖ûj‖

)1/4( ∑
k+j=N

|Aûj |2
‖ûj‖ ‖ŵk‖

)1/2( ∑
k+j=N

‖ŵk‖‖ûj‖
)1/4

+ C1

( ∑
k+j=N

|Av̂k|2
‖v̂k‖ ‖ŵj‖

)1/4( ∑
k+j=N

|Aŵj |2
‖ŵj‖ ‖v̂k‖

)1/2( ∑
k+j=N

‖v̂k‖‖ŵj‖
)1/4

.

Using Proposition 3.1 along with the induction hypothesis

d‖ŵN‖
ds

+ cos θ
|AŵN |2
‖ŵN‖

� C1e
− 5

4 s cos θ

( ∑
k+j=N

|Aŵk|2
‖ŵk‖ γj,u

)1/4( ∑
k+j=N

|Aûj |2
‖ûj‖ μk

)1/2( ∑
k+j=N

μkγj,u

)1/4

+ C1e
− 5

4 s cos θ

( ∑
k+j=N

|Av̂k|2
‖v̂k‖ μj

)1/4( ∑
k+j=N

|Aŵj |2
‖ŵj‖ γk,v

)1/2( ∑
k+j=N

γk,vμj

)1/4

.

We have

∥∥ŵN(s)
∥∥ � e−s cos θ‖w�

N‖ + e−s cos θC1

( ∑
k+j=N

μkγj,u

)1/4
[ s∫

0

∑
k+j=N

|Aŵk(ρ)|2
‖ŵk(ρ)‖ γj,u dρ

]1/4

×
[ s∫

0

∑
k+j=N

|Aûj (ρ)|2
‖ûj (ρ)‖ μk dρ

]1/2[ s∫
0

e−ρ cos θ dρ

]1/4

+ e−s cos θC1

( ∑
k+j=N

μjγk,u

)1/4
[ s∫

0

∑
k+j=N

|Av̂k(ρ)|2
‖v̂k(ρ)‖ μj dρ

]1/4

×
[ s∫

0

∑
k+j=N

|Aŵj (ρ)|2
‖ŵj (ρ)‖ γk,v dρ

]1/2[ s∫
0

e−ρ cos θ dρ

]1/4

.

Hence∥∥ŵN(s)
∥∥ � e−s cos θ‖ŵ�

N‖ + e−s cos θ C1

cos θ

∑
k+j=N

μkγj,u + e−s cos θ C1

cos θ

∑
k+j=N

μjγk,v

� e−s cos θ

{
‖ŵ�

N‖ + C1

cos θ

∑
k+j=N

μk(γj,u + γj,v)

}
= e−s cos θμN .

Integrating (3.14), we obtain (3.9) for n = N by similar estimates, thus completing the induction. �
Similar to Corollary 3.2, we derive the following version of Lemma 3.3 in which the estimates depend on κn

explicitly.
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Corollary 3.4. The statements in Lemma 3.3 hold true for

μ1 = ρ1‖w�
1‖, μn = ρn‖w�

n‖ + C1κn

cos θ

∑
k+j=n

μk(γj,u + γj,v), (3.15)

where γn,u, γn,v are defined as in Corollary 3.2, namely

γ1,u = ρ1‖u�
1‖, γn,u = ρn‖u�

n‖ + C1κn

cos θ

∑
k+j=n

γk,uγj,u, (3.16)

γ1,v = ρ1‖v�
1‖, γn,v = ρn‖v�

n‖ + C1κn

cos θ

∑
k+j=n

γk,vγj,v. (3.17)

Proof. The proof is almost identical to the proof of Corollary 3.2. �
The estimates in Lemma 3.3 are adequate for establishing the Lipschitz continuity of the Sext(t)ū

0, when ū0 is
close to the origin. We recall as Lemma 3.5 some basic estimates from Proposition 3.9 of [3].

Lemma 3.5. (See [3].) Given N ∈ N and u0
n ∈ V , n = 1, . . . ,N . Let un(ζ ), n = 1, . . . ,N , Re ζ > 0, be the solutions

to the extended Navier–Stokes equations (2.23) with ζ0 = 0 satisfying un(0) = u0
n. Denote

Sn(ζ ) =
n∑

j=1

ρj

∥∥uj (ζ )
∥∥, Sn = Sn(0), n = 1, . . . ,N, Re ζ > 0.

Suppose SN < ε0. Let

γ1 = ρ1‖u0
1‖, γn = ρn‖u0

n‖ + 6C1

∑
k+j=n

γkγj , 1 < n � N, (3.18)

γ̃1 = γ1, γ̃n = γn + 3C1

∑
k+j=n

γ̃kγ̃j , 1 < n � N. (3.19)

Then

ρn

∥∥un(t)
∥∥ � γne

−t , t > 0, 1 � n � N, (3.20)

ρn

∥∥un(ζ )
∥∥ � γ̃ne

−Re ζ , ζ ∈ E, 1 � n � N, (3.21)

where the domain E is defined in (A.5), and

n∑
k=1

γ̃j � 2
n∑

k=1

γj � 4Sn, 1 � n � N. (3.22)

In particular,

Sn(t) � 2Sne
−t , t � 0, 1 � n � N, (3.23)

and

Sn(ζ ) � 4Sne
−Re ζ , ζ ∈ E, 1 � n � N. (3.24)

Theorem 3.6. Let BV �(ε0/2) be the open ball in V � of radius ε0/2 centered at the origin. Then the map
Sext(ζ ) :BV �(ε0/2) → V � is Lipschitz continuous for all ζ ∈ E. More precisely,∥∥Sext(t)ū

0 − Sext(t)v̄
0
∥∥

�
� 2e−t‖ū0 − v̄0‖�, t > 0, (3.25)∥∥Sext(ζ )ū0 − Sext(ζ )v̄0

∥∥
�
� 4e−Re ζ ‖ū0 − v̄0‖�, ζ ∈ E. (3.26)

for any ū0, v̄0 ∈ V � such that ‖ū0‖� < ε0/2 and ‖v̄0‖� < ε0/2.
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Proof. Let ū(ζ ) = Sext(ζ )ū0, v̄(ζ ) = Sext(ζ )v̄0. Let w̄0 = ū0 − v̄0 = (w0
n)

∞
n=1 and w̄ = ū − v̄ = (wn)

∞
n=1. Let

μ1 = ρ1‖w0
1‖, μn = ρn‖w0

n‖ + C1

∑
k+j=n

μk(γj,u + γj,v), n > 1, (3.27)

and

μ̃1 = μ1, μ̃n = μn + 3C1

∑
k+j=n

μ̃k(γ̃j,u + γ̃j,v), n > 1, (3.28)

where γj,u, γ̃j,u (respectively γj,v, γ̃j,v) are defined as in Lemma 3.5 for ū0 (respectively v̄0).

Claims.

ρn

∥∥wn(t)
∥∥ � μne

−t , t > 0, n � 1, (3.29)

ρn

∥∥wn(ζ )
∥∥ � μ̃ne

−Re ζ , ζ ∈ E, n � 1, (3.30)
∞∑

n=1

μ̃n � 2
∞∑

n=1

μn � 4‖w̄0‖�. (3.31)

After proving these claims, then inequality (3.25) (respectively inequality (3.26)) follows from (3.29) (respectively
(3.30)) and (3.31).

Proof of the claims. Let ū = (un)
∞
n=1, ū0 = (u0

n)
∞
n=1, v̄ = (vn)

∞
n=1 and v̄0 = (v0

n)
∞
n=1. Let

Sn,u =
n∑

j=1

ρj‖u0
j‖, Sn,v =

n∑
j=1

ρj‖v0
j‖, Sn,w =

n∑
j=1

ρj‖w0
j‖.

Since Sn,u, Sn,v < ε0/2 for all n ∈ N, Lemma 3.5 implies
∞∑

n=1

γn,u � ε0,

∞∑
n=1

γn,v � ε0,

∞∑
n=1

γ̃n,u � 2ε0 and
∞∑

n=1

γ̃n,v � 2ε0.

We also have
n∑

j=1

μj � Sn,w + C1

(
n−1∑
j=1

μj

)
n−1∑
j=1

(γj,u + γj,v) � Sn,w + C1

(
n∑

j=1

μj

)
(2ε0) = Sn,w + 1

12

n∑
j=1

μj ,

thus
∑n

j=1 μj � 2Sn,w . Letting n → ∞ gives the second inequality of (3.31). Now, summing up (3.28),

n∑
j=1

μ̃j �
n∑

j=1

μj + 3C1

(
n−1∑
j=1

μ̃j

)
n−1∑
j=1

(γ̃j,u + γ̃j,v) �
n∑

j=1

μj + 3C1

(
n∑

j=1

μ̃j

)
(4ε0) =

n∑
j=1

μj + 1

2

n∑
j=1

μ̃j .

Hence
∑n

j=1 μ̃j � 2
∑n

j=1 μj � 4Sn,w . Letting n → ∞ yields the first inequality in (3.31).
Applying Lemma 3.3 with ζ0 = 0, s = t and θ = 0, we have

ρn‖wn(t)‖ � μ0
ne

−t , t > 0, n � 1, (3.32)

where

μ0
1 = ρ1‖w0

1‖, μ0
n = ρn‖w0

n‖ + C1

∑
k+j=n

μ0
k(γ

0
j,u + γ 0

j,v), n > 1, (3.33)

γ 0
1,u = ρ1‖u0

1‖, γ 0
n,u = ρn‖u0

n‖ + C1

∑
k+j=n

γ 0
k,uγ

0
j,u, (3.34)

γ 0
1,v = ρ1‖v0

1‖, γ 0
n,v = ρn‖v0

n‖ + C1

∑
γ 0
k,vγ

0
j,v. (3.35)
k+j=n
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Note that the above γ 0
n,u, γ 0

n,v given in Proposition 3.1 and used in Lemma 3.3 are not the same as γn,u, γn,v given in
Lemma 3.5 and used in the current theorem. However, based on their formulas, we have γ 0

n,u � γn,u and γ 0
n,v � γn,v.

Hence μ0
n � μn, and therefore (3.29) follows from (3.32).

Let ζ = t0 + seiθ ∈ E, then cos θ > 1/(3et0). Applying Lemma 3.3 with ζ0 = t0, we have

ρn

∥∥wn(t0 + seiθ )
∥∥ � μ̃n(t0)e

−s cos θ , (3.36)

where μ̃1(t0) = ρ1‖w1(t0)‖;

μ̃n(t0) = ρn

∥∥wn(t0)
∥∥+ 3C1e

t0
∑

k+j=n

μ̃k(t0)
(
γ̃j,u(t0) + γ̃j,v(t0)

)
, n > 1, (3.37)

where γ̃1,u(t0) = ρ1‖u1(t0)‖;
γ̃n,u(t0) = ρn

∥∥un(t0)
∥∥+ 3C1e

t0
∑

k+j=n

γ̃k,u(t0)γ̃j,u(t0), n > 1, (3.38)

and γ̃j,v(t0) are defined similarly using vn(t0).
It is known that (cf. proof of Theorem 3.7 in [3])

γ̃j,u(t0) � γ̃j,ue
−t0 and γ̃j,v(t0) � γ̃j,ve

−t0 .

Hence by (3.29) and by induction, one can show μ̃1(t0) � μ1e
−t0 = μ̃1e

−t0 ,

μ̃n(t0) � μne
−t0 + 3C1e

t0
∑

k+j=n

μke
−t0(γ̃j,ue

−t0 + γ̃j,ve
−t0) = μ̃ne

−t0, n > 1.

Therefore (3.30) follows from (3.36). The proof is complete. �
Our next goal is to study the extended Navier–Stokes equations in the whole space V � rather than only near the

origin. For that purpose we require that the positive numbers κn in (3.1) satisfy

lim
n→∞κ

1/n
n = 0. (3.39)

Note that (3.39) holds true for the weights defining V � given in Definition 2.1 because of the rapid growth of L3,n.
First recall Theorem 4.3 in [3], the existence theorem in V � for the extended Navier–Stokes equations. Note that

the constant M0 appearing here results from using Lemma A.3 in place of Lemma 4.2 in [3].

Theorem 3.7. (See [3].) Let ū0 ∈ V �. Then Sext(t)ū
0 ∈ V � for all t > 0. More precisely,∥∥Sext(t)ū

0
∥∥

�
� Me−t , t > 0, (3.40)

where

M = ‖ū0‖� + C1

∞∑
n=2

κn(n − 1)Mn
0 , (3.41)

M0 = max
{
1,2C1κn(n − 1)

}
max

{
1,2‖ū0‖�

}
. (3.42)

We establish the well-posedness of the extended Navier–Stokes equations now.

Theorem 3.8. Sext(t) is continuous from V � to V �, for t ∈ [0,∞). More precisely, for any ū0 ∈ V � and ε > 0, there is
δ > 0 such that∥∥Sext(t)v̄

0 − Sext(t)ū
0
∥∥

�
< εe−t ,

for all v̄0 ∈ V � satisfying ‖v̄0 − ū0‖� < δ and for all t � 0.
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Proof. Given ū0 ∈ V �. Let v̄0 ∈ V � such that ‖ū0 − v̄0‖� < 1. Let ū(t) = Sext(t)ū
0, v̄(t) = Sext(t)v̄

0 and w̄ = ū− v̄ =
(wn)

∞
n=1. Let γn,u, γn,v and μn be defined by

γ1,u = ρ1‖u0
1‖, γn,u = ρn‖u0

n‖ + C1κn

∑
k+j=n

γk,uγj,u, n > 1, (3.43)

γ1,v = ρ1‖v0
1‖, γn,v = ρn‖v0

n‖ + C1κn

∑
k+j=n

γk,vγj,v, n > 1, (3.44)

and

μ1 = ρ1‖w0
1‖, μn = ρn‖w0

n‖ + C1κn

∑
k+j=n

μk(γj,u + γj,v). (3.45)

Taking ζ0 = 0, s = t and θ = 0 in Corollaries 3.2 and 3.4 we obtain

ρn

∥∥un(t)
∥∥ � γn,ue

−t , ρn

∥∥vn(t)
∥∥ � γn,ve

−t , t � 0, (3.46)

and

ρn

∥∥wn(t)
∥∥ � μne

−t , t � 0. (3.47)

Let

h1 = ρ1
(‖u0

1‖ + ‖v0
1‖), hn = ρn

(‖u0
n‖ + ‖v0

n‖
)+ C1κn

∑
k+j=n

hkhj , n > 1. (3.48)

Noting that μ1 � γ1,u + γ1,v = h1 and γk,uγj,u + γk,vγj,v � (γk,u + γk,v)(γj,u + γj,v), one can prove by induction
that

γn,u + γn,v � hn and then μn � hn, n ∈ N.

By Lemma A.3, we have
∞∑

n=1

hn � ‖ū0‖� + ‖v̄0‖� + C1

∞∑
n=1

κn(n − 1)M0
n,

where M0 = K max{1,2(‖ū0‖� + ‖v̄0‖�)} and K = max{1,2C1κn(n − 1): n > 1}. Hence ‖v̄0‖� � ‖ū0‖� + 1 implies
∞∑

n=1

hn � M
def= 2‖ū0‖� + 1 + C1

∞∑
n=1

κn(n − 1)
[
2K

(
2‖ū0‖� + 1

)]n
,

which is finite and independent of v̄0. For N > 0, considering
∑

n>N μn, we have∑
n>N

μn �
∑
n>N

ρn‖w0
n‖ + C1

∑
n>N

κn

∑
k+j=n

μk(γj,u + γj,v)

�
∞∑

n=1

ρn‖w0
n‖ + C1

∑
n>N

κn

( ∑
k+j=n

hkhj

)

� ‖w0
n‖� + M2C1

∑
n>N

κn.

Given ε > 0. Let N = N(‖ū0‖�) be sufficiently large such that

C1M
2
∑
n>N

κn <
ε

2
.

By virtue of (3.45), μ1 � ‖w̄0‖� and μn � ‖w̄0‖� + M̃
∑n−1

j=1 μj ,n > 1, where M̃ = C1M(supn�2 κn) > 0. Therefore

μn � θn‖w̄0‖�, for all n ∈ N, where θn are positive numbers defined recursively by

θ1 = 1, θn = 1 + M̃

n−1∑
θj , n > 1.
j=1
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Take δ = ε/[2(1 + ∑N
n=1 θn)]. For ‖w̄0‖� = ‖ū0 − v̄0‖� < δ, we have

∞∑
n=1

μn =
N∑

n=1

μn +
∑
n>N

μn � ‖w̄0‖�

(
1 +

N∑
n=1

θn

)
+ C1M

2
∑
n>N

κn < ε/2 + ε/2 = ε.

Therefore, inequality (3.47) implies ‖w̄(t)‖� � e−t
∑∞

n=1 μn < εe−t for all t � 0. �
For the complexified extended Navier–Stokes equations the following estimates are important for our study of

the normal form of the Navier–Stokes equations and the normalization map in subsequent sections. Combining the
estimates in Proposition 3.6 and the proof of Theorem 3.7 in [3] we obtain

Proposition 3.9. Let (un(ζ ))∞n=1 for Re ζ > 0 be the solution to the extended Navier–Stokes equations (2.23) with
ζ0 = 0 and initial condition un(0) = u0

n ∈ VC for n ∈ N. Then

ρn

∥∥un(t)
∥∥ � γne

−t , t � 0, (3.49)

ρn

∥∥un(ζ )
∥∥ � γ̃ne

−Re ζ , ζ ∈ E, (3.50)

where

γ1 = ρ1‖u0
1‖, γn = ρn‖u0

n‖ + C1κn

∑
k+j=n

γkγj , (3.51)

γ̃1 = γ1, γ̃n = γn + 3C1κn

∑
k+j=n

γ̃kγ̃j , (3.52)

Proof. Inequality (3.49) was obtained in Corollary 3.2. Given ζ = t + seiθ ∈ E, let

γ̃1(t) = ρ1
∥∥u1(t)

∥∥, γ̃n(t) = ρn

∥∥un(t)
∥∥+ C1κn

cos θ

∑
k+j=n

γ̃k(t)γ̃j (t). (3.53)

It follows from Corollary 3.2 that

ρn

∥∥un(t + seiθ )
∥∥ � γ̃n(t)e

−s cos θ . (3.54)

Claim.

γ̃n(t) � γ̃ne
−t . (3.55)

Clearly γ̃1(t) = ρ1‖u1(t)‖ � γ1e
−t = γ̃1e

−t . For induction, assume γ̃k(t) � γ̃ke
−t for all k < n. Since ζ = t +

seiθ ∈ E, we have e−t / cos θ < 3. Therefore

γ̃n(t) � e−t

{
γn + C1κne

−t

cos θ

∑
k+j=n

γ̃kγ̃j

}
� γ̃ne

−t . (3.56)

Combining (3.54) and (3.55) yields (3.50) for all n ∈ N. �
Similar arguments using Corollary 3.4 yield

Proposition 3.10. Let ū0, v̄0 ∈ V ∞
C

and w̄(ζ ) = (wn)
∞
n=1 = Sext(ζ )ū0 − Sext(ζ )v̄0. Then we have

ρn

∥∥wn(t)
∥∥ � μne

−t , t � 0, (3.57)

ρn

∥∥wn(ζ )
∥∥ � μ̃ne

−Re ζ , ζ ∈ E, (3.58)

where
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μ1 = ρ1‖w0
1‖, μn = ρn‖w0

n‖ + C1κn

∑
k+j=n

μk(γj,u + γj,v), (3.59)

μ̃1 = μ1, μ̃n = μn + 3C1κn

∑
k+j=n

μ̃k(γ̃j,u + γ̃j,v), (3.60)

and γj,u and γ̃j,u (respectively γj,v and γ̃j,v) are defined as in Proposition 3.9 for ū0 (respectively v̄0).

The complex version of Theorem 3.8 then easily follows.

Theorem 3.11. For any ζ ∈ E, Sext(ζ ) maps V �
C

to V �
C

and is continuous.

As a consequence of the study of the extended Navier–Stokes equations in this section, we show the explicit
continuous dependence on the initial data of the regular solutions S(ζ )u0 with small norm ‖u0‖. Our explicit estimates
will be used in proving the continuity of the normalization map in Section 4.

Corollary 3.12. Suppose u0, v0 ∈ VC satisfy ‖u0‖ < ε0/2 and ‖v0‖ < ε0/2. Let w(ζ ) = S(ζ )u0 − S(ζ )v0 for ζ ∈ E.
Then ∥∥w(t)

∥∥ � 2‖w0‖e−t , t > 0, (3.61)∥∥w(ζ )
∥∥ � 4‖w0‖e−Re ζ , ζ ∈ E. (3.62)

Proof. Let ū0 = (u0,0,0, . . .), v̄0 = (v0,0,0, . . .), w̄0 = ū0 − v̄0 and let ρn = 1 for all n ∈ N. Let ū(ζ ) =
(un(ζ ))∞n=1 = Sext(ζ )ū0 and v̄(ζ ) = (vn(ζ ))∞n=1 = Sext(ζ )v̄0. It is known from [3] that S(ζ )u0 = ∑∞

n=1 un(ζ ) and
S(ζ )v0 = ∑∞

n=1 vn(ζ ). Let S0
n = ∑n

k=1 ‖w0
k‖, Sn = ∑n

k=1 μk and S̃n = ∑n
k=1 μ̃k . By Proposition 3.10

n∑
k=1

μk �
n∑

k=1

‖w0
k‖ + C1

(
n−1∑
k=1

μk

)(
n−1∑
j=1

γj,u + γj,v

)
. (3.63)

By Lemma 3.5, we have
n∑

j=1

γj,u0 � 2‖u0‖ < ε0,

n∑
j=1

γ̃j,u0 � 4‖u0‖ < 2ε0, (3.64)

and similarly,
n∑

j=1

γj,v0 < ε0,

n∑
j=1

γ̃j,v0 < 2ε0. (3.65)

Therefore

Sn � S0
n + 2ε0C1Sn−1 � S0

n + (1/2)Sn−1

since 2ε0C1 = 1/12. By induction, we obtain Sn � 2S0
n . Letting n → ∞ we obtain (3.61).

Similarly, using the formula of μ̃n,

S̃n � Sn + 12ε0C1S̃n−1 = Sn + (1/2)S̃n−1.

By induction, one can prove S̃n � 2Sn � 4S0
n . Letting n → ∞ gives (3.62). �

4. Solutions to the normal form

In [3] we proved that there are positive numbers ρn, n ∈ N, such that the solution Snormal(t)ξ̄ of the normal
form (2.17) is in S�

A for all t > 0 when ‖ξ̄‖� is small. The numbers ρn,n > 1, are of the form (3.1), namely,

ρ1 = 1, ρn = κn min{ρkρj : k + j = n}, n � 2,

for some particular numbers κn ∈ (0,1].
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In this section, we find a condition on κn under which Snormal(t)ξ̄ belongs to S�
A for all t � 0, whenever ξ̄ ∈ S�

A.
This says that the semigroup Snormal(t), t > 0, generated by the solutions of the normal form of the Navier–Stokes
equations leaves invariant the whole space S�

A. Furthermore, we establish the continuity (but not necessarily Lipschitz
continuity) of each Snormal(t) as a map form S�

A to S�
A, which means that the normal form is a well-posed system.

We take κn ∈ (0,1] satisfying

lim
n→∞nκ

1/n
n = 0. (4.1)

Note that condition (4.1) is more stringent than (3.39). Moreover, the weights explicitly defined in Definition 2.1 also
satisfy this more stringent condition.

Theorem 4.1. Let ξ̄ = (ξn)
∞
n=1 ∈ S�

A. Then Snormal(t)ξ̄ ∈ S�
A for all t � 0. Moreover,∥∥Snormal(t)ξ̄

∥∥
�
� Me−t , t > 0, (4.2)

where M is a positive number depending on ‖ξ̄‖� and the sequence (ρn)
∞
n=1.

Proof. Let

x1 = η1 = γ1 = γ̃1 = ρ1‖ξ1‖
and n > 1, we recursively define

xn = ρn‖ξn‖, (4.3)

ηn = xn + κnDn

∑
k+j=n

γ̃kγ̃j , (4.4)

γn = ηn + C1κn

∑
k+j=n

γkγj , (4.5)

γ̃n = γn + 3C1κn

∑
k+j=n

γ̃kγ̃j , (4.6)

Dn = C1e
2a0n3/2Cn−2

2 2−nn!, (4.7)

where the constants a0 and C2 are defined in Lemma A.2.

Claims.

ρn

∥∥qn(0, ξ̄ )
∥∥ � ηn, n ∈ N, (4.8)

ρn

∥∥un(t)
∥∥ = ρn‖d‖qn(t, ξ̄ )e−nt � γne

−t , n ∈ N, t > 0, (4.9)

ρn

∥∥un(ζ )
∥∥ = ρn

∥∥qn(t, ξ̄ )e−nζ
∥∥ � γ̃ne

−Re ζ , n ∈ N, ζ ∈ E. (4.10)

Indeed, following the proof of Lemma 6.2 in [3], we obtain

ρn

∥∥qn(0, ξ̄ )
∥∥ � xn + κn(D1,n + D2,n)

∑
k+j=n

γ̃kγ̃j ,

where

D1,n = C1(n − 2)3/4 n2

4
Cn−2

2

∞∫
0

e−2τ (τ + a0)
n−2 dτ,

D2,n = C1n
3/2 n2

4
Cn−2

2

0∫
e2τ

(|τ | + a0
)n−2

dτ.
−∞
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Elementary calculation shows D1,n + D2,n � Dn and hence (4.8) follows. Then (4.9) and (4.10) follow by the virtue
of Proposition 3.9 with u0

n = qn(0, ξ̄ ).
Note that

xn � ηn � γn � γ̃n.

For each n, summing up (4.4)–(4.6) gives

γ̃n � xn + κn(Dn + 4C1)
∑

k+j=n

γ̃kγ̃j .

From (4.1),

lim
n→∞

{
κn(Dn + 4C1)

}1/n = 0. (4.11)

By Lemma A.3 and (4.11), we have
∑∞

n=1 γ̃n = M < ∞. Then it follows from (4.9) that

∥∥Snormal(t)ξ̄
∥∥

�
�

∞∑
n=1

∥∥e−ntqn(t, ξ̄ )
∥∥ � e−t

∞∑
n=1

γn � Me−t ,

for all t > 0. �
Theorem 4.2. The map Snormal(t)ξ̄ is continuous in ξ̄ for each t � 0.

Proof. Let ξ̄ = (ξn)n∈N and χ̄ = (χn)n∈N be in S�
A. Let

y1 = ν1 = μ1 = μ̃1 = ρ1‖ξ1 − χ1‖. (4.12)

For n > 1, let

yn = ρn‖ξn − χn‖, (4.13)

νn = yn + κnDn

∑
k+j=n

μ̃k(γ̃j,ξ + γ̃j,χ ), (4.14)

μn = νn + C1κn

∑
k+j=n

μk(γj,ξ + γj,χ ), (4.15)

μ̃n = μn + 3C1κn

∑
k+j=n

μ̃k(γ̃j,ξ + γ̃j,χ ), (4.16)

where γj,ξ and γ̃j,ξ (respectively γj,χ and γ̃j,χ ) are defined by (4.5) and (4.6) for ξ̄ (respectively χ̄ ). Let un(ζ ) =
qn(ζ, ξ̄ )e−nζ and vn(ζ ) = qn(ζ, χ̄)e−nζ , n ∈ N. Following the proof of Lemma 7.3 in [3], we obtain

ρn

∥∥un(0) − vn(0)
∥∥ � νn. (4.17)

Then by Proposition 3.10

ρn

∥∥un(t) − vn(t)
∥∥ � μne

−t , t > 0, (4.18)

ρn

∥∥un(ζ ) − vn(ζ )
∥∥ � μ̃ne

−Re ζ , ζ ∈ E. (4.19)

Since γj,ξ � γ̃j,ξ , γj,χ � γ̃j,χ and yn � νn � μn � μ̃n, it follows from (4.13)–(4.16) that

μ̃n � yn + κ̃n

∑
k+j=n

μ̃k(γ̃j,ξ + γ̃j,χ ), (4.20)

where

κ̃n = κn(Dn + 4C1). (4.21)

The proof now proceeds as in Theorem 3.8. �
We close this section by remarking that the proofs of Theorems 4.1 and 4.2 also show

Proposition 4.3. The map Q(0, ·) :S�
A → V � is well-defined and continuous.
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5. The normalization map

In [3], we did not know whether W(u0) belongs to some S�
A with appropriate ρn for even small ‖u0‖. In this section

we show provided the weights ρn satisfy the additional conditions in Definition 5.2 below for n ∈ N that W(u0) ∈ S�
A.

The continuity of W as a map from R to such a space S�
A is also established.

5.1. The range of the normalization map

Let u0 ∈ R and let u(t) = S(t)u0 be the regular solution to the Navier–Stokes equations with the initial data u0.
Let un(t) = Wn(t, u

0)e−nt for n ∈ N and t � 0. Then the asymptotic expansion of u(t) is

u(t) ∼
∑

un(t) =
∑

Wn(t, u
0)e−nt as t → ∞. (5.1)

For n � 2, denote

ũn(t) = u(t) −
n−1∑
k=1

uk(t) = S(t)u0 −
n−1∑
k=1

Wk(t, u
0)e−kt .

Let βn(t) be defined as in (2.15) with qn(t) = qn(t,W(u0)) = Wn(t, u
0). Explicitly, β1(t) = 0 and for n > 1

βn(t) =
∑

k+j=n

B
(
Wk(t, u

0),Wj (t, u
0)
) = ent

∑
k+j=n

B
(
uk(t), uj (t)

)
. (5.2)

Let u0
n = Wn(0, u0) for n ∈ N and ū0 = (u0

n)
∞
n=1. Since Wn(t, u

0) = qn(t,W(u0)) for n ∈ N we obtain

ū0 = Q
(
0,W(u0)

)
and

(
un(t)

)∞
n=1 = Sext(t)ū

0, t � 0. (5.3)

Similarly, for complex times ζ ∈ E we write un(ζ ) = Wn(ζ,u0)e−nζ for n ∈ N so that (un(ζ ))∞n=1 = Sext(ζ )ū0. Recall
that the set E is defined in (A.5).

We start with a recursive formula of Wn(u
0).

Lemma 5.1. Let u0 ∈ R and u(t) = S(t)u0. Then

W1(u
0) = lim

t→∞ etu(t) = lim
t→∞ etR1u(t), (5.4)

where the limits are taken in the V norm.
For n ∈ σ(A) and n � 2 we have

Wn(u
0) = Rnũn(0) −

∞∫
0

enτ
∑

k,j�n−1
k+j�n+1

RnB(uk,uj ) dτ

−
∞∫

0

enτRn

[
B(u, ũn) + B(ũn, u) − B(ũn, ũn)

]
dτ. (5.5)

Proof. Eq. (5.4) follows from the asymptotic expansion of the solution u(t). In particular, from (2.12) we obtain
‖ũ2(t)‖ = O(e−(1+ε)t ) and from (2.16) we obtain W1(u

0) = R1W1(u
0,0) = W1(u

0, t) for all t � 0. Therefore∥∥W1(u
0) − etR1u(t)

∥∥ = ∥∥R1W1(0, u0) − etR1u(t)
∥∥

�
∥∥W1(0, u0) − etu(t)

∥∥
�

∥∥W1(0, u0) − W1(t, u
0)
∥∥+ ∥∥et ũ2(t)

∥∥
� 0 + O(e−εt ) → 0 as t → ∞.

Similarly ‖W1(u
0) − etu(t)‖ → 0 as t → ∞.
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Let n � 2 and n ∈ σ(A). We know from (5.1) given ε ∈ (0,1) that ũn(t) = Wn(t, u
0)e−nt +O(e−(n+ε)t ) as t → ∞.

By (2.16),

Wn(u
0) = RnWn(t, u

0) +
t∫

0

Rnβn(τ) dτ = entRnũn(t) + O(e−εt ) +
t∫

0

Rnβn(τ) dτ.

Letting t → ∞ gives

Wn(u
0) = lim

t→∞

[
entRnũn(t) +

t∫
0

Rnβn(τ) dτ

]
. (5.6)

Recall from (2.20) and (2.6) that

du

dt
+ Au + B(u,u) = 0,

dum

dt
+ Aum +

∑
k+j=m

B(uk,uj ) = 0, m = 1,2, . . . , n − 1.

It follows that the remainder ũn(t) = u(t) − ∑n−1
k=1 uk(t) satisfies

dũn

dt
+ Aũn + B(u, ũn) + B(ũn, u) − B(ũn, ũn) +

∑
k,j�n−1
k+j�n

B(uk,uj ) = 0. (5.7)

Then RnA = nRn on DA implies

d

dt
(entRnũn) + ent

∑
k+j=n

RnB(uk,uj ) + ent
∑

k,j�n−1
k+j�n+1

RnB(uk,uj )

+ entRn

[
B(u, ũn) + B(ũn, u) − B(ũn, ũn)

] = 0

after applying the projection Rn to (5.7) and multiplying it by ent . Integrating yields

entRnũn(t) +
t∫

0

Rnβn(τ) dτ

= Rnũn(0) −
t∫

0

enτ
∑

k,j�n−1
k+j�n+1

RnB(uk,uj ) dτ −
t∫

0

enτRn

[
B(u, ũn) + B(ũn, u) − B(ũn, ũn)

]
dτ. (5.8)

Since un = Wn(t, u
0)e−nt where Wn(t, u0) is a polynomial in t then (A.2) implies

e−nt
∑

k,j�n−1
k+j�n+1

∥∥RnB(uk,uj )
∥∥ �

∑
k,j�n−1
k+j�n+1

C1e
−ntn3/4‖uk‖‖uj‖ � q(t)e−t ,

where q(t) is a polynomial in t . Thus, the limit
∞∫

0

enτ
∑

k,j�n−1
k+j�n+1

RnB(uk,uj ) dτ

converges. The argument that the last integral in (5.8) converges as t → ∞ follows from the estimates (5.36)–(5.38).
In fact, explicit bounds for each of the terms appearing on the right-hand side of (5.8) will be given in the proof of
Lemma 5.6. Now, letting t → ∞ in (5.8) and using (5.6) we obtain (5.5). �
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To estimate the integrals on the right-hand side of (5.5), we not only need to have good estimates of the integrands
for large τ , but for small τ as well. Therefore the energy inequality for regular solutions to the Navier–Stokes equations
will play a crucial role in our estimates.

We recall from [3] that if ‖u0‖ < ε0 then u0 ∈ R and∥∥u(t)
∥∥ � 2‖u0‖e−t , t > 0, (5.9)∥∥u(ζ )
∥∥ � 4‖u0‖e−Re ζ , ζ ∈ E. (5.10)

For general u0 ∈ R, the energy estimate is

∣∣u(t ′)
∣∣2 + 2

t ′∫
t

∥∥u(τ)
∥∥2

dτ �
∣∣u(t)

∣∣2, t ′ > t � 0. (5.11)

By Poincaré’s and Gronwall’s inequalities∣∣u(t)
∣∣2 � e−2t |u0|2, t � 0, (5.12)

hence

2

t ′∫
t

∥∥u(τ)
∥∥2

dτ �
∣∣u(t)

∣∣2 � e−2t |u0|2, t ′ � t � 0. (5.13)

In particular,

2

∞∫
0

∥∥u(τ)
∥∥2

dτ � |u0|2. (5.14)

Denote log+ α = log(max{1, α}) and let

t0 = t0(u
0) = log+(

2|u0|/ε0
)+ 1. (5.15)

Take t = t0 −1, t ′ = t0 in (5.13). It follows that there is a t1 ∈ (t0 −1, t0) such that ‖u(t1)‖ < |u(t0 −1)| � e−t0+1|u0| �
ε0/2. Then by (5.9),∥∥u(t0)

∥∥ � 2
∥∥u(t1)

∥∥ < ε0. (5.16)

Hence it follows from (5.9) and (5.10) that∥∥u(t0 + τ)
∥∥ � 2ε0e

−τ , τ > 0. (5.17)∥∥u(t0 + ζ )
∥∥ � 4ε0e

−Re ζ , ζ ∈ E. (5.18)

If ‖u0‖ < ε0, we simply take t0 = 0. Note that

et0 � g0 = g0(u
0)

def= max
{
e,2e‖u0‖/ε0

}
. (5.19)

Definition 5.2. Let (κ ′
n)

∞
n=2 be a fixed sequence of real numbers in the interval (0,1] satisfying

lim
n→∞(κ ′

n)
1/2n = 0. (5.20)

We define the sequence of positive weights (ρn)
∞
n=1 by

ρ1 = 1, ρn = κ ′
nρ

2
n−1

max{L̃n, L̃′
n}

, n > 1, (5.21)

where (L̃n)
∞
n=2 and (L̃′

n)
∞
n=2 are defined by (5.56) and (5.90), respectively, and depend only on the constants C1, C2

and a0.
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Note that L̃n � 3 and L̃′
n � 1 for all n � 2. Therefore the sequence (ρn)

∞
n=1 is decreasing and ρn � κ ′

n for n > 1.
Define

κn = ρn

min{ρkρj : k + j = n} , n � 2.

Then κn � ρnρ
−2
n−1 � κ ′

nL̃
−1
n � κ ′

n � 1. Thus (3.1) holds as in Sections 3 and 4. Moreover,

lim
n→∞κ

1/2n

n = 0 and subsequently lim
n→∞nκ

1/n
n = 0. (5.22)

Therefore ρn and κn satisfy (3.1), (3.39) and (4.1) for any choices of sequences (L̃n)
∞
n=2 and (L̃′

n)
∞
n=2 such that L̃n � 3

and L̃′
n � 1, in particular, for the choices given by (5.56) and (5.90). Note also that

∞∑
n=1

κn and
∞∑

n=1

ρn are finite. (5.23)

Moreover,

D
1/2n

n � (const · nn)1/2n → 1 as n → ∞
implies that

∞∑
n=1

κ ′
nDn < ∞. (5.24)

Definition 5.3. We denote for each u0 ∈ R,

ηn = ρn

∥∥Wn(0, u0)
∥∥, n ∈ N, (5.25)

γ1 = η1, γn = ηn + C1κn

∑
k+j=n

γkγj , n > 1, (5.26)

γ̃1 = γ1, γ̃n = γn + 3C1κn

∑
k+j=n

γ̃kγ̃j , n > 1. (5.27)

It follows from Proposition 3.9 that

ρn

∥∥un(t)
∥∥ = ρn

∥∥Wn(t, u
0)e−nt

∥∥ � γne
−t , t > 0, (5.28)

ρn

∥∥un(ζ )
∥∥ = ρn

∥∥Wn(ζ,u0)e−nζ
∥∥ � γ̃ne

−Re ζ , ζ ∈ E. (5.29)

Consequently, by Lemma A.2,

ρn

∥∥un(t)
∥∥ � nγ̃ne

−nt
[
C2(t + a0)

]n−1
, t > 0. (5.30)

Definition 5.4. For u0 ∈ R and n > 1, denote

Mn(u
0) = ‖u0‖ + 1

ρn−1

n−1∑
k=1

ηk, (5.31)

M ′
n(u

0) =
{

|u0|2 + 1

ρ2
n−1

(
n−1∑
k=1

γk

)2}1/2

, (5.32)

M̃n(u
0) = 4ε0 + e−t0

ρn−1

n−1∑
k=1

γ̃k. (5.33)

We need the following recursive inequalities for estimating the right-hand side of (5.5).
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Lemma 5.5. Let u0 ∈ R and N > 1. Then∥∥ũN (0)
∥∥ � MN(u0), (5.34)

∥∥ũN (t0 + τ)
∥∥ � M̃N(u0)e−Nτ

∣∣∣∣1 + τ

2

∣∣∣∣2N

, τ > 0, (5.35)

t0∫
0

∥∥ũN (t)
∥∥2

dt � |u0|2 + 1

ρ2
N−1

(
N−1∑
k=1

γk

)2

= M ′2
N (u0), (5.36)

∞∫
t0

eNt
∥∥u(t)

∥∥∥∥ũN (t)
∥∥dt � 2eNt0LN

∥∥u(t0)
∥∥M̃N(u0), (5.37)

∞∫
t0

eNt
∥∥ũN (t)

∥∥2
dt � eNt0L′

NM̃2
N(u0), (5.38)

where

Ln = e2(2n)!
22n

, L′
n = e2n(4n)!

24nn4n+1
, n ∈ N. (5.39)

Proof. First, note that

‖ũN (t)‖ �
∥∥u(t)

∥∥+
N−1∑
k=1

∥∥uk(t)
∥∥ �

∥∥u(t)
∥∥+ 1

ρN−1

N−1∑
k=1

ρk

∥∥uk(t)
∥∥, (5.40)

since ρn is decreasing. Taking t = 0 in (5.40) yields (5.34).
Second, since ζ ∈ E implies t0 + ζ ∈ E, then by (5.18) and (5.29) for n = 1,2, . . . ,N − 1, we have

∥∥ũN (t0 + ζ )
∥∥ �

∥∥u(t0 + ζ )
∥∥+

N−1∑
k=1

∥∥uk(t0 + ζ )
∥∥ � e−Re ζ

(
4ε0 + e−t0

ρN−1

N−1∑
k=1

γ̃k

)

for ζ ∈ E. Given any ε > 0 then∥∥ũN (t0 + τ)
∥∥ �

∥∥ũN+1(t0 + τ)
∥∥+ ∥∥uN(t0 + τ)

∥∥
� O(e−Nτ ) + ρ−1

n Nγ̃Ne−N(t0+τ)
[
C2(t0 + τ + a0)

]N−1

= O(e−(N−ε)τ )

as τ → ∞. Now Lemma A.1 implies

∥∥ũN (t0 + τ)
∥∥ �

(
4ε0 + e−t0

ρN−1

N−1∑
k=1

γ̃k

)
e−(N−ε)τ

∣∣∣∣1 + τ

2

∣∣∣∣2(N−ε)

(5.41)

and taking ε → 0 yields (5.35).
Third, squaring (5.40) and integrating yields

t0∫
0

∥∥ũN (t)
∥∥2

dt �
t0∫

0

{
2
∥∥u(t)

∥∥2 + 2

[
e−t

ρN−1

N−1∑
k=1

γk

]2}
dt.

Then (5.36) follows from the energy inequality (5.14).
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Fourth, from (5.9) and (5.35) we obtain

∞∫
t0

eNt
∥∥u(t)

∥∥∥∥ũN (t)
∥∥dt = eNt0

∞∫
0

eNτ
∥∥u(t0 + τ)

∥∥∥∥ũN (t0 + τ)
∥∥dτ

� eNt0

∞∫
0

eNτ
(
2
∥∥u(t0)

∥∥e−τ
)(

M̃N(u0)e−Nτ

∣∣∣∣1 + τ

2

∣∣∣∣2N)
dτ

� 2eNt0LN

∥∥u(t0)
∥∥M̃N(u0),

since

∞∫
0

e−τ

∣∣∣∣1 + τ

2

∣∣∣∣2n

dτ �
∞∫

0

(τ ′/2)2ne−τ ′+2 dτ ′ = e2

22n
Γ (2n + 1) = Ln.

Fifth,

∞∫
t0

eNt
∥∥ũN (t)

∥∥2
dt � eNt0

∞∫
0

eNτ

{
M̃N(u0)e−Nτ

∣∣∣∣1 + τ

2

∣∣∣∣2N}2

dτ = eNt0L′
NM̃2

N(u0),

since

∞∫
0

e−nτ

∣∣∣∣1 + τ

2

∣∣∣∣4n

dτ � e2n

24n

Γ (4n + 1)

n4n+1
= L′

n.

The proof is complete. �
Our main recursive step is

Lemma 5.6. Let u0 ∈ R. For N > 1 let MN = MN(u0), M ′
N = M ′

n(u
0) and M̃N = M̃N(u0). We then have

∥∥WN(u0)
∥∥ � MN + L(0,N)

ρ2
N−1

(
N−1∑
k=1

γ̃k

)2

+ eNt0L(0,N)
{
1 + |u0|2 + M ′

N
2 + M̃2

N

}
, (5.42)

where L(0, n) defined by (5.43) below for n > 1 are positive constants independent of u0 and ρn.

Proof. If N /∈ σ(A), then WN(u0) = 0 and (5.42) holds. We now consider the case N ∈ σ(A). By (5.5),

∥∥WN(u0)
∥∥ �

∥∥ũN (0)
∥∥+

∞∫
0

eNτ
∑

k,j�N−1
k+j�N+1

∥∥RNB(uk,uj )
∥∥dτ

︸ ︷︷ ︸
J1

+
∞∫

0

eNτ
(∥∥RNB(u, ũN )

∥∥+ ∥∥RNB(ũN ,u)
∥∥)dτ

︸ ︷︷ ︸
J2

+
∞∫

0

eNτ
∥∥RNB(ũN , ũN )

∥∥dτ

︸ ︷︷ ︸
J3

= ∥∥ũN (0)
∥∥+ J1 + J2 + J3.

According to Lemma 5.5, we first have ‖ũN (0)‖ � MN(u0).
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Estimate of J 1. By using inequality (A.2), the fact ρ2
N−1 � min{ρkρj : k, j � N − 1}, and the estimates (5.30) of

‖uk(t)‖, we obtain

J1 � ρ−2
N−1C1N

3/4

∞∫
0

eNτ
∑

k,j�N−1
k+j�N+1

γ̃kγ̃j kj
[
C2(τ + a0)

]k+j−2
e−(k+j)τ dτ

� ρ−2
N−1C1N

3/4

∞∫
0

eNτ (N − 1)2
∑

k,j�N−1
k+j�N+1

γ̃kγ̃j

[
C2(τ + a0)

]2(N−1)−2
e−(k+j)τ dτ

� ρ−2
N−1C1N

3/4(N − 1)2

(
N−1∑
k=1

γ̃k

)2

C2N−4
2

∞∫
0

e−τ (τ + a0)
2N−4 dτ.

For n ∈ N,

C1n
3/4(n − 1)2C2n−4

2

∞∫
0

e−τ (τ + a0)
2n−4 dτ � C1C

2n−4
2 n3/4(n − 1)2

∞∫
0

e−τ ′+a0τ ′2n−4 dτ ′ = L(1, n),

where L(1, n) = ea0C1C
2n−4
2 n3/4(n − 1)2Γ (2n − 3). Hence

J1 � ρ−2
N−1L(1,N)

(
N−1∑
k=1

γ̃k

)2

.

Estimate of J 2. By (A.2),

J2 �
∞∫

0

2C1N
3/4eNt

∥∥u(t)
∥∥∥∥ũN (t)

∥∥dt

=
( t0∫

0

+
∞∫

t0

)
2C1N

3/4eNt
∥∥u(t)

∥∥∥∥ũN (t)
∥∥dt = J2,1 + J2,2.

For J2,1 we use (5.36) and (5.14)

J2,1 � 2C1N
3/4eNt0

( t0∫
0

∥∥u(t)
∥∥2

dt

)1/2( t0∫
0

∥∥ũN (t)
∥∥2

dt

)1/2

�
√

2C1N
3/4eNt0 |u0|M ′

N

� L(2,N)eNt0 |u0|M ′
N where L(2, n) = √

2C1n
3/4, n ∈ N.

For J2,2 we use (5.37) and (5.16)

J2,2 � 4C1N
3/4eNt0LNM̃N(u0)

∥∥u(t0)
∥∥

� 4C1ε0N
3/4eNt0M̃NLN

= L(3,N)eNt0M̃N where L(3, n) = 4C1ε0n
3/4Ln, n ∈ N.

Estimate of J 3. By (A.2)

J3 � C1N
3/4

( t0∫
+

∞∫ )
eNt

∥∥ũN (t)
∥∥2

dt = J3,1 + J3,2.
0 t0
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For J3,1, we use (5.36)

J3,1 � C1N
3/4eNt0M ′2

N = L(4,N)eNt0M ′2
N where L(4, n) = C1n

3/4, n ∈ N.

For J3,2, we use (5.38)

J3,2 � C1N
3/4eNt0M̃2

NL′
N = L(5,N)eNt0M̃2

N where L(5, n) = C1n
3/4L′

n, n ∈ N.

Combining the above estimates we obtain

∥∥WN(u0)
∥∥ � MN + L(1,N)

ρ2
N−1

(
N−1∑
k=1

γ̃k

)2

+ eNt0
{
L(2,N)|u0|M ′

N + L(3,N)M̃N + L(4,N)M ′2
N + L(5,N)M̃2

N

}
,

Inequality (5.42) easily follows with

L(0, n) = max

{
L(1, n),

1

2
L(2, n) + L(4, n),

1

2
L(3, n) + L(5, n)

}
(5.43)

for n > 1. �
Definition 5.7. Given u0 ∈ R. Let

x1 = η∗
1 = γ ∗

1 = γ̃ ∗
1 = ρ1‖u0‖. (5.44)

For n > 1, let

xn = ρn‖u0‖ + κ ′
n

(
n−1∑
k=1

γ̃ ∗
k

)
+ κ ′

n

(
n−1∑
k=1

γ̃ ∗
k

)2

+ κ ′
ng

n
0

{
1 + ‖u0‖2 +

(
n−1∑
k=1

γ̃ ∗
k

)2}
, (5.45)

η∗
n = xn + κ ′

nDn

∑
k+j=n

γ̃ ∗
k γ̃ ∗

j , (5.46)

γ ∗
n = η∗

n + C1κ
′
n

∑
k+j=n

γ ∗
k γ ∗

j , (5.47)

γ̃ ∗
n = γ ∗

n + 3C1κ
′
n

∑
k+j=n

γ̃ ∗
k γ̃ ∗

j , (5.48)

where Dn are defined as in (4.7) and g0 is given in (5.19).

Our next goal is to prove that ρn‖ξn‖ � xn for all n ∈ N. In fact, we have

Lemma 5.8. Let u0 ∈ R and let xn, η∗
n, γ ∗

n , γ̃ ∗
n be defined as in Definition 5.7. For all n ∈ N, we have

ρn

∥∥Wn(u
0)
∥∥ � xn, (5.49)

ρn

∥∥un(0)
∥∥ = ρn

∥∥Wn(0, u0)
∥∥ � η∗

n, (5.50)

ρn

∥∥un(t)
∥∥ = ρn

∥∥Wn(t, u
0)e−nt

∥∥ � γ ∗
n e−t , t > 0, (5.51)

ρn

∥∥un(ζ )
∥∥ = ρn

∥∥Wn(ζ,u0)e−nζ
∥∥ � γ̃ ∗

n e−Re ζ , ζ ∈ E. (5.52)

Proof. Let ξn = Wn(u
0), n ∈ N and W(u0) = ξ̄ = (ξn)

∞
n=1. Using the notation in Definition 5.3 and inequalities

(5.28)–(5.29), it suffices to prove that

ρn‖ξn‖ � xn, ηn � η∗
n, γn � γ ∗

n , γ̃n � γ̃ ∗
n , n ∈ N. (5.53)

For n = 1, we have by (2.16) that

u1(0) = W1(0, u0) = q1(0, ξ̄ ) = ξ1. (5.54)
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Therefore (2.23) implies

u1(t) = ξ1e
−t and u1(ζ ) = ξ1e

−ζ . (5.55)

From Lemma 5.1, ‖W1(u
0)‖ = |W1(u

0)| = limt→∞ et |u(t)| � |u0| � ‖u0‖. Therefore (5.53) holds for n = 1.
For induction, let N > 1 and assume (5.53) holds for n = 1, . . . ,N − 1. Let Tn = (

∑n
k=1 γ̃k)/ρn, n > 1. Then,

from Definitions 5.3 and 5.4 we immediately have

Mn � ‖u0‖ + Tn−1, M ′
n

2 � ‖u0‖2 + T 2
n−1, M̃n � 4ε0 + Tn−1, M̃2

n � 32ε2
0 + 2T 2

n−1.

It follows from Lemma 5.6 that

‖ξN‖ �
{‖u0‖ + TN−1

}+ {
L(0,N)T 2

N−1

}+ eNt0L(0,N)
{
1 + ‖u0‖2 + (‖u0‖2 + T 2

N−1

)+ (32ε2
0 + 2T 2

N−1)
}

� ‖u0‖ + TN−1 + L̃NT 2
N−1 + L̃NgN

0

{
1 + ‖u0‖2 + T 2

N−1

}
,

where

L̃n = max
{
1,L(0, n)

}
max{1 + 32ε2

0,3}, n > 1, (5.56)

are positive constants greater than or equal 3, independent of u0 and depending only on C1, C2 and a0. Multiplying
by ρN , we derive

ρN‖ξN‖ � ρN‖u0‖ + κ ′
N

(
N−1∑
k=1

γ̃k

)
+ κ ′

N

(
N−1∑
k=1

γ̃k

)2

+ κ ′
NgN

0

{
1 + ‖u0‖2 +

(
N−1∑
k=1

γ̃k

)2}

� ρN‖u0‖ + κ ′
N

(
N−1∑
k=1

γ̃ ∗
k

)
+ κ ′

N

(
N−1∑
k=1

γ̃ ∗
k

)2

+ κ ′
NgN

0

{
1 + ‖u0‖2 +

(
N−1∑
k=1

γ̃ ∗
k

)2}
,

by the induction hypothesis. Thus the first inequality of (5.53) holds for n = N . Applying the arguments used to obtain
(4.8) in the proof of Theorem 4.1 with equations (5.45)–(5.48) in place of (4.3)–(4.6) we obtain

ηn = ρn

∥∥Wn(0, u0)
∥∥ = ρn

∥∥qn(0, ξ̄ )
∥∥ � η∗

n,

the second inequality of (5.53) for n = N . Now the last two inequalities of (5.53) follow easily. The induction is hence
complete. �
Theorem 5.9. For any u0 ∈ R, W(u0) ∈ S�

A. In other words, the range of the normalization map is contained in the
Banach space S�

A.

Proof. It is clear from Definition 5.7 that xn � η∗
n � γ ∗

n � γ̃ ∗
n for all n ∈ N. For each n, summing up (5.45)–(5.48)

and noting that g0 � 1, κ ′
n � 1, we obtain:

γ̃ ∗
n � ρn‖u0‖ + κ ′

n

(
n−1∑
k=1

γ̃ ∗
k

)
+ κ ′

n

(
n−1∑
k=1

γ̃ ∗
k

)2

+ κ ′
ng

n
0

{
1 + ‖u0‖2 +

(
n−1∑
k=1

γ̃ ∗
k

)2}
+ κ ′

n(Dn + 4C1)

(
n−1∑
k=1

γ̃ ∗
k

)2

� ρn‖u0‖ + κ̃∗
ngn

0

{
1 + ‖u0‖2 +

(
n−1∑
k=1

γ̃ ∗
k

)2}
,

where κ̃∗
n = κ ′

n(Dn + 4C1 + 3) is independent of u0. Let an = ρn‖u0‖ and X = √
1 + ‖u0‖2. We then have

γ̃ ∗
n � an + κ̃∗

ngn
0

{
X2 +

(
n−1∑
k=1

γ̃ ∗
k

)2}
. (5.57)

Note that
∑∞

n=1 an is finite by (5.24) and (5.20) implies limn→∞(κ̃∗
n)1/2n = 0. Applying Lemma A.5 we obtain

that
∑∞

n=1 γ̃ ∗
n is finite. Thus (5.49) in Lemma 5.8 implies

∥∥W(u0)
∥∥

�
=

∞∑
n=1

ρn

∥∥Wn(u
0)
∥∥ �

∞∑
n=1

xn �
∞∑

n=1

γ̃ ∗
n < ∞.

Therefore W(u0) ∈ S� . �
A
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Regarding the commutative diagram in the Introduction, we also obtain

Corollary 5.10. For any u0 ∈ R then (Wn(0, u0))∞n=1 ∈ V �, i.e., W(0, R) ⊂ V �.

Proof. This follows from the proof of Theorem 5.9 since

∞∑
n=1

ρn

∥∥Wn(0, u0)
∥∥ =

∞∑
n=1

ηn �
∞∑

n=1

γ̃ ∗
n < ∞. �

Remark 5.11. Note that the results up to now, in particular, those of Theorem 5.9 and Corollary 5.10, are valid for
any choice of L̃′

n in Definition 5.2 such that L̃′
n is independent of u0.

In our study of the continuity of the normalization map below, it will be necessary to specify a bound K(u0)

on
∑

γ̃ ∗
n in terms of ‖u0‖ only. For this purpose, we introduce the following function K1(r, s) based on (5.57),

Lemmas A.4 and A.5.

Definition 5.12. Given r � 0 and s � 1. Let k′
n = κ ′

n(Dn + 4C1 + 3)sn. Let a′
1 = ρ1r and a′

n = ρnr + κ ′
n(Dn + 4C1 +

3) + k′
n(1 + r2) for n > 1. Define

K1(r, s) =
∞∑

n=1

a′
n + α2

∞∑
n=1

k′
nM

2(2n−1), (5.58)

where α = sup{a′
n: n ∈ N} and M = 3 sup{1, α, k′

nα: n > 1}.

Note that K1(r, s) is finite and is increasing in each variable r and s. In addition, if we let

d1 = a′
1 and dn = a′

n + k′
n

(
n−1∑
k=1

dk

)2

for n > 1, (5.59)

then
∑∞

n=1 dn � K1(r, s) by virtue of Lemma A.4.

Lemma 5.13. Given u0 ∈ R. Let t0 � 0 and g0 � 1 satisfy∥∥u(t0)
∥∥ < ε0 and et0 � g0. (5.60)

Then all the results in Section 5.1 hold true for these particular values of t0 and g0. Furthermore, using the notation
set in Definitions 5.3, 5.7 and 5.4, we have

∞∑
n=1

γ̃ ∗
n � K = K1

(‖u0‖, g0
)
. (5.61)

Consequently,

Mn(u
0),M ′

n(u
0) � ‖u0‖ + K

ρn−1
, M̃n(u

0) � 4ε0 + K

ρn−1
. (5.62)

Proof. Due to (5.57), Lemma A.5 and Definition 5.12,
∑∞

n=1 γ̃ ∗
n �

∑∞
n=1 dn � K, where the dn are defined by (5.59)

for r = ‖u0‖ and s = g0. Hence inequality (5.61) holds true. The other inequalities in (5.62) follow easily. �
Remark 5.14. A bound K(u0) for

∑
γ̃ ∗
n can be obtained from Lemma 5.13 by taking K(u0) = K1(‖u0‖, g0(u

0))

where g0(u
0) is given by (5.19).



C. Foias et al. / Ann. I. H. Poincaré – AN 26 (2009) 1635–1673 1663
5.2. The continuity of the normalization map

We now study the continuity of the normalization map W : R → S�
A. Let u0 ∈ R be fixed. We show that W is

continuous at u0. For the rest of this section we assume, unless otherwise stated, that

v0 ∈ R and ‖v0 − u0‖ < 1. (5.63)

Let

u(t) = S(t)u0, uj (t) = Wj(t, u
0)e−j t , ũn(t) = u(t) −

n−1∑
j=1

uj (t),

v(t) = S(t)v0, vj (t) = Wj(t, v
0)e−j t , ṽn(t) = v(t) −

n−1∑
j=1

vj (t).

We have for any ε > 0 that∥∥ũn(t)
∥∥ = O(e−(n−ε)t ) and

∥∥ṽn(t)
∥∥ = O(e−(n−ε)t ), t → ∞.

Let

u0
n = un(0), v0

n = vn(0), ū0 = (u0
n)

∞
n=1, v̄0 = (v0

n)
∞
n=1, (5.64)

w = u − v, wn = un − vn, w̃n = ũn − ṽn, (5.65)

w0 = u0 − v0, w0
n = wn(0) = u0

n − v0
n. (5.66)

Note that ū0 = Q(0,W(u0)), v̄0 = Q(0,W(v0)) and (un(t))
∞
n=1 = Sext(t)ū

0, (vn(t))
∞
n=1 = Sext(t)v̄

0. Corollary 5.10
implies that ū0, v̄0 ∈ V �.

To estimate ‖W(u0) − W(v0)‖� we begin with a recursive formula for the difference Wn(u
0) − Wn(v

0) similar
to (5.5).

Lemma 5.15. Let u0, v0 ∈ R and n ∈ σ(A) with n > 1. Then we have

Wn(u
0) − Wn(v

0)

= Rnw̃n(0) −
∞∫

0

enτ
∑

k,j�n−1
k+j�n+1

Rn

[
B(wk,uj ) + B(vk,wj )

]
dτ −

∞∫
0

enτRn

[
B(w, ũn) + B(ũn,w)

]
dτ

−
∞∫

0

enτRn

[
B(v, w̃n) + B(w̃n, v)

]
dτ +

∞∫
0

enτRn

[
B(w̃n, ũn) + B(ṽn, w̃n)

]
dτ. (5.67)

Proof. We have from (5.6),

Wn(u
0) − Wn(v

0) = lim
t→∞

{
entRnw̃n(t) +

t∫
0

Rn

[
βn,u0(τ ) − βn,v0(τ )

]
dτ

}
, (5.68)

where βn,u0(τ ) and βn,v0(τ ) are defined by (5.2) for u0 and v0 respectively.
Recall from (5.7) that for n � 2,

dũn

dt
+ Aũn +

∑
k,j�n−1
k+j�n

B(uk,uj ) + B(u, ũn) + B(ũn, u) − B(ũn, ũn) = 0,

dṽn

dt
+ Aṽn +

∑
k,j�n−1

B(vk, vj ) + B(v, ṽn) + B(ṽn, v) − B(ṽn, ṽn) = 0.
k+j�n
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Then w̃n satisfies the equation

dw̃n

dt
+ Aw̃n +

∑
k,j�n−1
k+j�n

[
B(uk,uj ) − B(vk, vj )

]

+ B(w, ũn) + B(v, w̃n) + B(ũn,w) + B(w̃n, v) − [
B(w̃n, ũn) + B(ṽn, w̃n)

] = 0.

Hence

entRnw̃n(t) +
t∫

0

Rn

[
βn,u0(τ ) − βn,v0(τ )

]
dτ

= Rnw̃n(0) −
t∫

0

enτ
∑

k,j�n−1
k+j�n+1

Rn

[
B(wk,uj ) + B(vk,wj )

]
dτ −

t∫
0

enτRn

[
B(v, w̃n) + B(w̃n, v)

]
dτ

−
t∫

0

enτRn

[
B(w, ũn) + B(ũn,w)

]
dτ +

t∫
0

enτRn

[
B(w̃n, ũn) + B(ṽn, w̃n)

]
dτ.

Letting t → ∞ and using (5.68) give (5.67). �
In estimating the integrands on the right-hand side of (5.67), we use the estimates obtained in Section 5.1 applied to

both u0 and v0. However, t0(v0) and g0(v
0) given by formulas (5.15) and (5.19) respectively, may vary for different v0.

For our convenience, we fix for the rest of this section

t0 = log+ (
8
(‖u0‖ + 1

)
/ε0

)+ 1 > 0, (5.69)

g0 = max
{
e,8e

(‖u0‖ + 1
)
/ε0

}
. (5.70)

Similar to (5.16), we have∥∥u(t0)
∥∥,

∥∥v(t0)
∥∥ < ε0/2. (5.71)

Since et0 � g0 and by (5.71), the condition (5.60) in Lemma 5.13 is satisfied for both u0 and v0. Therefore any results
in Section 5.1 applied to u0 or v0 are understood with t0 and g0 taking the values in (5.69) and (5.70) respectively.

By (5.71) and Corollary 3.12,∥∥w(t0 + τ)
∥∥ � 2

∥∥w(t0)
∥∥e−τ , τ > 0, (5.72)∥∥w(t0 + ζ )

∥∥ � 4
∥∥w(t0)

∥∥e−Re ζ , ζ ∈ E. (5.73)

Definition 5.16. Define γj,u, γ̃j,u and γj,v , γ̃j,v as in Definition 5.3 for u0 and v0 respectively. Let

νn = ρn‖w0
n‖ = ρn

∥∥Wn(0, u0) − Wn(0, v0)
∥∥, n ∈ N, (5.74)

μ1 = ν1, μn = νn + C1κn

∑
k+j=n

μk(γj,u + γj,v), n > 1, (5.75)

μ̃1 = μ1, μ̃n = μn + 3C1κn

∑
k+j=n

μ̃k(γ̃j,u + γ̃j,v), n > 1. (5.76)

Applying Proposition 3.10 with ū0 and v̄0 given by (5.64), we have

ρn

∥∥wn(t)
∥∥ � μne

−t , t > 0, (5.77)

ρn

∥∥wn(ζ )
∥∥ � μ̃ne

−Re ζ , ζ ∈ E. (5.78)
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Consequently, by Lemma A.2,

ρn

∥∥wn(t)
∥∥ � nμ̃ne

−nt
[
C2(t + a0)

]n−1
, t > 0. (5.79)

The following are some estimates similar to those in Lemma 5.5.

Lemma 5.17. Let n > 1, we have∥∥w̃n(0)
∥∥ � Kn, (5.80)

∥∥w̃n(t0 + τ)
∥∥ � K̃ne

−nτ

(
1 + τ

2

)2n

, τ > 0, (5.81)

t0∫
0

∥∥w̃n(t)
∥∥2

dt � K ′2
n, (5.82)

where

Kn = ∥∥w(0)
∥∥+ 1

ρn−1

n−1∑
k=1

νk, (5.83)

K̃n = 4
∥∥w(t0)

∥∥+ e−t0

ρn−1

n−1∑
k=1

μ̃k, (5.84)

K ′
n =

{
2N2

∣∣w(0)
∣∣2 + 1

ρ2
n−1

(
n−1∑
k=1

μk

)2}1/2

, (5.85)

where the positive number N2 = N2(u
0) is defined in Lemma A.8.

Proof. The derivations of inequalities (5.80) and (5.81) are almost exactly like (5.34) and (5.35). Inequality (5.82)
follows from Lemma A.8 using similar techniques. �

The analogue of Lemma 5.6 is

Lemma 5.18. Given u0 ∈ R. Let v0 ∈ R such that ‖u0 − v0‖ < 1. Then there is M = M(u0) > 1 such that for each
n > 1,

ρn

∥∥Wn(u
0) − Wn(v

0)
∥∥ � ρn‖w0‖ + κ ′

nM
n

{
|w0| + ∥∥w(t0)

∥∥+ 3
n−1∑
k=1

μ̃k

}
. (5.86)

Proof. We derive from (5.67)

∥∥Wn(u
0) − Wn(v

0)
∥∥ �

∥∥Rnw̃n(0)
∥∥+

∞∫
0

ent
∑

k,j�n−1
k+j�n+1

∥∥RnB(wk,uj ) + RnB(vk,wj )
∥∥dt

︸ ︷︷ ︸
J1

+
∞∫

0

ent
∥∥RnB(w, ũn) + RnB(ũn,w)

∥∥dt

︸ ︷︷ ︸
+

∞∫
0

ent
∥∥RnB(v, w̃n) + RnB(w̃n, v)

∥∥dt

︸ ︷︷ ︸

J2 J3
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+
∞∫

0

ent
∥∥RnB(w̃n, ũn) + RnB(ṽn, w̃n)

∥∥dt

︸ ︷︷ ︸
J4

= ∥∥Rnw̃n(0)
∥∥+ J1 + J2 + J3 + J4.

First, ‖Rnw̃(0)‖ � Kn, by (5.80).

Estimate of J 1. Using inequalities (A.2), (5.30) and (5.79), we obtain

J1 � L(6, n)

ρ2
n−1

∑
k,j<n,k+j>n

μ̃k(γ̃j,u + γ̃j,v) � L(6, n)

ρ2
n−1

(
K(u0) + K(v0)

) n−1∑
k=1

μ̃k

where L(6, n) = L(1, n).

Estimate of J 2. Using (A.2), we have

J2 �
( t0∫

0

+
∞∫

t0

)
2C1n

3/4ent
∥∥w(t)

∥∥∥∥ũn(t)
∥∥dt = J2,1 + J2,2.

For J2,1, use (A.21) and (5.36)

J2,1 � 2C1n
3/4ent0

{ t0∫
0

∥∥w(t)
∥∥2

dt

}1/2{ t0∫
0

∥∥ũn(t)
∥∥2

dt

}1/2

� 2C1n
3/4ent0

√
N2

∣∣w(0)
∣∣M ′

n(u
0) = L(7, n)ent0

√
N2

∣∣w(0)
∣∣M ′

n(u
0),

where N2 = N2(u
0) is defined in Lemma A.8. For J2,2, use (5.72) and (5.35)

J2,2 � 2C1n
3/4

∞∫
0

ent0enτ
(
2
∥∥w(t0)

∥∥e−τ
){

M̃n(u
0)e−nτ

(
1 + τ

2

)2n}
dτ

� 4C1n
3/4ent0

∥∥w(t0)
∥∥∥∥M̃n(u

0)Ln = L(8, n)ent0
∥∥w(t0)

∥∥M̃n(u
0).

Estimate of J 3. By inequality (A.2),

J3 � 2C1n
3/4

( t0∫
0

+
∞∫

t0

)
ent

∥∥v(t)
∥∥∥∥w̃n(t)

∥∥dt = J3,1 + J3,2.

For J3,1, use (5.14) and (5.82)

J3,1 � 2C1n
3/4ent0

{ t0∫
0

∥∥v(t)
∥∥2

dt

}1/2{ t0∫
0

∥∥w̃n(t)
∥∥2

dt

}1/2

�
√

2C1n
3/4ent0 |v0|K ′

n = L(9, n)ent0 |v0|K ′
n.

For J3,2, use (5.9) and (5.81)

J3,2 � 2C1n
3/4ent0

∞∫
0

enτ
{
2
∥∥v(t0)

∥∥e−τ
}{

K̃ne
−nτ

(
1 + τ

2

)2n}
dτ

� 2C1n
3/4ent0

∥∥v(t0)
∥∥LnK̃n = L(10, n)ent0

∥∥v(t0)
∥∥K̃n.
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Estimate of J 4. By inequality (A.2),

J4 � C1n
3/4

( t0∫
0

+
∞∫

t0

)
ent

(∥∥ũn(t)
∥∥+ ∥∥ṽn(t)

∥∥)∥∥w̃n(t)
∥∥dt = J4,1 + J4,2.

For J4,1, use (5.36) and (5.82)

J4,1 � C1n
3/4ent0

{ t0∫
0

2
∥∥ũn(t)

∥∥2 + 2
∥∥ṽn(t)

∥∥2
dt

}1/2{ t0∫
0

∥∥w̃n(t)
∥∥2

dt

}1/2

�
√

2C1n
3/4ent0

(
M ′

n(u
0) + M ′

n(v
0)
)
K ′

n

= L(11, n)ent0
(
M ′

n(u
0) + M ′

n(v
0)
)
K ′

n.

For J4,2, use (5.35) and (5.81),

J4,2 � C1n
3/4ent0

∞∫
0

e−nτ
(
M̃n(u

0) + M̃n(v
0)
)
K̃n

∣∣∣∣1 + τ

2

∣∣∣∣4n

dτ

= L(12, n)ent0
(
M̃n(u

0) + M̃n(v
0)
)
K̃n.

Combining the inequalities above, we obtain

∥∥Wn(u
0) − Wn(v

0)
∥∥ � Kn + L(6, n)

ρ2
n−1

(
K(u0) + K(v0)

) n−1∑
k=1

μ̃k

+ L(13, n)ent0
{√

N2|w0|M ′
n(u

0) + ∥∥w(t0)
∥∥M̃n(u

0) + |v0|K ′
n

+ ∥∥v(t0)
∥∥K̃n + K ′

n

(
M ′

n(u
0) + M ′

n(v
0)
) + K̃n

(
M̃n(u

0) + M̃n(v
0)
)}

. (5.87)

Note that all constants which depend on v0 depend on it through the norms |v0| or
∥∥v0‖. Since ‖u0 − v0‖ < 1, these

constants may all be estimated in terms of |u0| + 1 and ‖u0‖ + 1. More specifically, let M1 = K1(‖u0‖ + 1, g0), then
Lemma 5.13 yields K(u0),K(v0) � M1 and

Mn(u
0),M ′

n(u
0),Mn(v

0),M ′
n(v

0) � ‖u0‖ + 1 + M1

ρn−1
� M2

ρn−1
, (5.88)

M̃n(u
0), M̃n(v

0) � 4ε0 + M1

ρn−1
� M2

ρn−1
, (5.89)

where M2 = M1 + ‖u0‖ + 1 + 4ε0. Therefore, there are positive numbers M0 = g0(u
0), M1 and M2 depending only

on u0 so that inequality (5.87) gives

∥∥Wn(u
0) − Wn(v

0)
∥∥ � Kn + L(6, n)(2M1)

ρ2
n−1

n−1∑
k=1

μ̃k

+ L(13, n)Mn
0

{√
N2|w0| M2

ρn−1
+ ∥∥w(t0)

∥∥ M2

ρn−1
+ ε0K̃n

2
+ K ′

n

3M2

ρn−1
+ K̃n

2M2

ρn−1

}
.

Hence there is M = M(u0) > 1 such that

∥∥Wn(u
0) − Wn(v

0)
∥∥ � ‖w0‖ + L(6, n)M

ρ2
n−1

n−1∑
k=1

μ̃k

+ L(13, n)Mn

{
|w0| + ‖w(t0)‖

ρn−1
+ 1

ρ2
n−1

(
n−1∑
k=1

νk +
n−1∑
k=1

μk +
n−1∑
k=1

μ̃k

)}

� ‖w0‖ + L̃′
nM

n

ρ2

{
|w0| + ∥∥w(t0)

∥∥+ 3
n−1∑

μ̃k

}
,

n−1 k=1
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where

L̃′
n = max

{
1,L(6, n) + L(13, n)

}
(5.90)

does not depend on u0, v0 or ρn. After multiplying by ρn and using (5.21) we obtain inequality (5.86). �
Remark 5.19. Unlike inequality (5.42) in Lemma 5.6, estimate (5.86) in Lemma 5.18 involves the term ‖w(t0)‖
where t0 may well be nonzero. Hence ‖w(t0)‖, in general, does not depend on ‖w0‖ explicitly and neither does
‖W(u0) − W(v0)‖�. However, for the continuity of W , we only need∥∥w(t0)

∥∥ → 0 as v0 → u0 in V. (5.91)

Note that t0 is fixed for all v0 satisfying (5.63) and the regular solutions of the Navier–Stokes equations in our context
depend continuously on the initial data (cf. [14]). Therefore (5.91) holds true.

Lemma 5.20. Let γ ∗
j,u, γ̃

∗
j,u (respectively γ ∗

j,v, γ̃
∗
j,v) be defined by (5.44)–(5.48) for u0 (respectively v0). Note again

that g0 is given by (5.70) instead of (5.15). Let

y1 = ν∗
1 = μ∗

1 = μ̃∗
1 = ρ1‖w0‖ + N3ρ1|w0|1/2, (5.92)

where N3 = N3(u
0) is defined in Lemma A.8. For n > 1 let

yn = ρn‖w0‖ + κ ′
nM

n

{
|w0| + ∥∥w(t0)

∥∥+ 3
n−1∑
k=1

μ̃∗
k

}
, (5.93)

ν∗
n = yn + κ ′

nDn

∑
k+j=n

μ̃∗
k(γ̃

∗
j,u + γ̃ ∗

j,v), (5.94)

μ∗
n = ν∗

n + C1κ
′
n

∑
k+j=n

μ∗
k(γ

∗
j,u + γ ∗

j,v), (5.95)

μ̃∗
n = μ∗

n + 3C1κ
′
n

∑
k+j=n

μ̃∗
k(γ̃

∗
j,u + γ̃ ∗

j,v), (5.96)

where M = M(u0) > 0 be given in Lemma 5.18. Then

ρn

∥∥Wn(u
0) − Wn(v

0)
∥∥ � yn, νn � ν∗

n, μn � μ∗
n, μ̃n � μ̃∗

n, n ∈ N. (5.97)

Proof. By induction. Case n = 1, similar to (5.54) and (5.55) in Lemma 5.8 we have w1(ζ ) = (W1(u
0)−W1(v

0))e−ζ

for Re ζ > 0. Thus it suffices to prove∥∥W1(u
0) − W1(v

0)
∥∥ = ∣∣W1(u

0) − W1(v
0)
∣∣ � ‖w0‖ + N3|w0|1/2.

This indeed follows from |W1(u
0)−W1(v

0)| = limt→∞ et |R1w(t)|, by (5.4), and inequality (A.22). For the induction
step with n > 1, the key estimate is

ρn

∥∥Wn(u
0) − Wn(v

0)
∥∥ � yn. (5.98)

This follows from Lemma 5.18 and the induction hypothesis μ̃k � μ̃∗
k , for k < n. By (4.17) in Theorem 4.2, we have

νn � ρn

∥∥Wn(u
0) − Wn(v

0)
∥∥+ κnDn

∑
k+j=n

μ̃k(γ̃j,u + γ̃j,v)

which is less than or equal to ν∗
n by (5.98), the induction hypothesis, the relations κn � κ ′

n and γ̃n,u � γ̃ ∗
n,u, γ̃n,v � γ̃ ∗

n,v

where the latter two are analogues of (5.53). The last two inequalities of (5.97) follow easily. �
Theorem 5.21. The normalization map W : R → S� is continuous.
A



C. Foias et al. / Ann. I. H. Poincaré – AN 26 (2009) 1635–1673 1669
Proof. Given u0 ∈ R, let v0 ∈ R satisfying ‖u0 − v0‖ < 1. We set the notation as in Lemma 5.20. Then by
Lemma 5.13 the sums

∑∞
n=1 γ̃ ∗

n,u and
∑∞

n=1 γ̃ ∗
n,v are bounded by a positive constant depending only on ‖u0‖, namely,

K1(‖u0‖ + 1, g0) (see Definition 5.12). Summing up (5.93)–(5.96), we have

μ̃∗
n � ρn‖w0‖ + κ̃∗

nM̃n

{
|w0| + ∥∥w(t0)

∥∥+
n−1∑
k=1

μ̃∗
k

}
, (5.99)

where M̃ = M̃(u0) > 1 and κ̃∗
n = κ ′

n(3 + Dn + 4C1). Note that |w0|,‖w0‖ � 2‖u0‖ + 1 and ‖w(t0)‖ � ε0. By (5.20)
limn→∞(κ̃∗

n)1/2n = 0; hence, Lemma A.7 implies
∑∞

n=1 μ̃∗
n < M∗ = M∗(u0) < ∞.

Now, by using Remark 5.19, an induction argument shows that μ̃∗
n → 0 as ‖u0 − v0‖ → 0 for each n. The same

arguments as in Theorem 3.8 show that for any ε > 0, there is δ > 0 such that if ‖u0 − v0‖ < δ then
∑∞

n=1 μ̃∗
n < ε.

Consequently ‖W(u0) − W(v0)‖� < ε. Therefore the normalization map W is continuous at u0. �
Since W(0, ·) = Q(0, ·) ◦ W , Theorem 5.21 and Proposition 4.3 imply

Proposition 5.22. The map W(0, ·) : R → S�
A is continuous.

Remark 5.23. Combining the estimates obtained in this section with the techniques used in Theorem 7.4 of [3] one
can impose stricter conditions on the ρn than given in Definition 5.2 and also show that the normalization map is
Lipschitz continuous near the origin of V . We leave the subject of this and finer properties of the normalization map
for our future research.
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Appendix A

First, we recall some inequalities involving the nonlinear terms in the Navier–Stokes equations (see e.g. [3] for
their proofs). There is an absolute constant C1 > 0 such that∣∣PnB(u, v)

∣∣ � C1n
1/4‖u‖‖v‖, u, v ∈ VC, (A.1)∥∥PnB(u, v)

∥∥ � C1n
3/4‖u‖‖v‖, u, v ∈ VC, (A.2)∣∣B(u, v)

∣∣ � C1‖u‖1/2|Au|1/2‖v‖, u ∈ (DA)C, v ∈ V, (A.3)∥∥B(u, v)
∥∥ � C1‖u‖1/2|Au|1/2|Av|, u, v ∈ (DA)C. (A.4)

The following region in the complex plane is used in [2,3] to describe the domains of analyticity of the solutions
of the complexified extended Navier–Stokes equations:

E = {
t + seiθ : cos θ > 1/(3et ), t > 0, s � 0, |θ | < π/2

}
. (A.5)

The next two lemmas are some Phragmen–Linderlöf type estimates obtained in [3]. The first is Corollary B.3 of [3].

Lemma A.1. Suppose u(ζ ) is analytic in E,∣∣u(ζ )
∣∣ � M, ζ ∈ E, and

∣∣u(t)
∣∣ � Ce−nt , t > 0, (A.6)

for some positive numbers M , C and n. Then

∣∣u(t)
∣∣ � Me−nt

∣∣∣∣1 + t

2

∣∣∣∣2n

, t > 0. (A.7)

Combining Corollary B.6 and Lemma 5.1 of [3] we have
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Lemma A.2. Let n ∈ N. Suppose q(ζ ), ζ ∈ C, is a polynomial of degree less than or equal to (n − 1) and∣∣e−nζ q(ζ )
∣∣ � Me−Re ζ , ζ ∈ E, (A.8)

where M is a positive number. Then∣∣q(ζ )
∣∣ � MnCn−1

2

(|ζ | + a0
)n−1

, ζ ∈ C, (A.9)

where C2 and a0 are fixed positive constants.

Estimates on a0 and C2 given in Lemma 5.1 and Lemma B.4 of [3] indicate that

a0 = τ + 1

2
g(τ)2 and C2 � (4 + 2τ + g(τ)2 + g(τ)

√
4 + g(τ)2)2

8g(τ)
√

4 + g(τ)2
,

where g(τ) = √
3eτ/2 and τ > 2 + 2

√
2. Thus, we may take a0 = 192 and C2 = 196.

Lemma 4.2 of [3] is used repeatedly in this paper. We recall this result with a simplified proof which can be easily
adapted for the subsequent lemmas.

Lemma A.3. (See [3].) Let an � 0, n ∈ N, and let (kn)
∞
n=2 be a sequence of positive numbers satisfying

lim
n→∞ k

1/n
n = 0. (A.10)

Let d1 = a1 and dn = an + kn

∑
k+j=n dkdj , n > 1. If

∑∞
n=1 an is finite, then

∞∑
n=1

dn �
∞∑

n=1

an +
∞∑

n=2

kn(n − 1)Mn
0 < ∞, (A.11)

where M0 = max{1,2κn(n − 1): n � 2}max{1,2
∑∞

n=1 an}.

Proof. We claim that

dn � Mn/K, n ∈ N, (A.12)

∞∑
n=1

dn �
∞∑

n=1

an + 1

K2

∞∑
n=2

kn(n − 1)Mn < ∞, (A.13)

where K and M are positive numbers satisfying

K � 2 max
{
(n − 1)kn: n � 2

}
, M � max

{
(2Kan)

1/n: n � 1
}
.

We prove (A.12) by induction. Clearly, the inequality holds when n = 1. Let n > 1 and assume that (A.12) holds for
k = 1,2, . . . , n − 1. Then

dn � an + kn

∑
k+j=n

Mk

K

Mj

K
= Mn

K

{
Kan

Mn
+ kn(n − 1)

K

}
� Mn

K
.

Therefore (A.12) holds for all n ∈ N. Then (A.13) follows immediately. To prove (A.11), take K = max{1,2κn(n−1):
n � 2} and M = K max{1,2

∑∞
n=1 an}. Note that K � 1 and M � 1, hence Mn � M � 2Kan, for all n ∈ N. Thus

(A.11) follows from (A.13) and (A.10). �
The following lemmas generalize Lemma A.3 to other numeric series.

Lemma A.4. Let (an)
∞
n=1 and (kn)

∞
n=2 be two sequences of positive numbers. Let d1 = a1 and dn = an+kn(

∑n−1
k=1 dk)

2,
for n > 1. Suppose

lim k
1/2n

n = 0. (A.14)

n→∞



C. Foias et al. / Ann. I. H. Poincaré – AN 26 (2009) 1635–1673 1671
If
∑∞

n=1 an is finite, so is
∑∞

n=1 dn. More precisely,

∞∑
n=1

dn �
∞∑

n=1

an + α2
∞∑

n=1

knM
2(2n−1) < ∞, (A.15)

where α = sup{an: n ∈ N} and M = 3 sup{1, α, knα: n > 1}.

Proof. Let Sn = ∑n
k=1 dk . Note that S1 = a1 and

Sn = an + Sn−1 + knS
2
n−1, n > 1. (A.16)

We prove by induction that

Sn � αM2n−1, n ∈ N. (A.17)

One can see that (A.17) holds when n = 1. Let N > 1 and assume (A.17) holds for all n < N . Using the induction
hypothesis and the fact that 2N−1 � 2N − 1, αN � α, M � 3 and kNα/M � 1/3, we then have

SN � aN + αM2N−1−1 + kNα2M2N−2

= αM2N−1
(

aN

αM2N−1
+ 1

M
+ kNα

M

)

� αM2N−1
(

1

3
+ 1

3
+ 1

3

)
= αM2N−1.

Thus (A.17) is true. Using (A.17), we obtain

∞∑
n=1

dn �
∞∑

n=1

an +
∞∑

n=2

knα
2M2n+1−2.

The last sum is finite due to (A.14), hence (A.15) follows. �
For the numeric sequences appearing in the study of the range of the normalization map, we have

Lemma A.5. Let X,Y > 0, (an)
∞
n=1 and (kn)

∞
n=2 be two sequences of positive numbers. Let d1 = a1 and

dn = an + knY
n

{
X2 +

(
n−1∑
k=1

dk

)2}

for n > 1. Suppose limn→∞ k
1/2n

n = 0. If
∑∞

n=1 an is finite, so is
∑∞

n=1 dn.

Proof. Assume
∑∞

n=1 an < ∞. Take a′
1 = a1 and a′

n = an + knY
nX2, n > 1. Also take k′

n = knY
n, n > 1. Note that

we still have
∑∞

n=1 a′
n is finite and (k′

n)
1/2n → 0. By the preceding lemma,

∑∞
n=1 dn < ∞. �

The following are similar results to Lemmas A.4 and A.5 applied to different types of sequences arising from the
study the continuity of the normalization map.

Lemma A.6. Let (an)
∞
n=1 and (kn)

∞
n=2 be two sequences of positive numbers. Let d1 = a1 and dn = an + kn

∑n−1
k=1 dk

for n > 1. Suppose limn→∞ k
1/n
n = 0. If

∑∞
n=1 an is finite, so is

∑∞
n=1 dn. More precisely,

dn � Mn, n ∈ N, (A.18)
∞∑

n=1

dn �
∞∑

n=1

an +
∞∑

n=2

kn(n − 1)Mn−1 < ∞, (A.19)

where M � max{1,2kn(n − 1): n > 1} and M � max{(2an)
1/n: n ∈ N}.
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Proof. We see that (A.18) holds for n = 1. Let N > 1 and assume (A.18) holds for n � N − 1. We have

dN � aN + kn(n − 1)Mn−1 � Mn

2
+ kn(n − 1)

M
MN � MN.

Hence (A.18) is true and (A.19) follows obviously. �
Lemma A.7. Let X > 0, (an)

∞
n=1 and (kn)

∞
n=2 be two sequences of positive numbers. Let d1 = a1 and

dn = an + kn

(
X +

n−1∑
k=1

dk

)

for n > 1. Suppose limn→∞ k
1/n
n = 0. If

∑∞
n=1 an is finite, so is

∑∞
n=1 dn.

Proof. Let a′
1 = a1 and a′

n = an + knX, n > 1. We have
∑∞

n=1 a′
n < ∞. Then apply Lemma A.6. �

Finally, for the sake of the completeness of this paper, we recall with a proof some commonly known facts about
the regular solutions of the Navier–Stokes equations.

Lemma A.8. Given u0 ∈ R. Let v0 ∈ R such that ‖u0 − v0‖ < 1. Let w(t) = S(t)u0 −S(t)v0. Then there are positive
numbers N1 = N1(u

0), N2 = N2(u
0) and N3 = N3(u

0) independent of v0 such that∣∣w(t)
∣∣ � N1

∣∣w(0)
∣∣e−t/2, t > 0, (A.20)

∞∫
0

∥∥w(τ)
∥∥2

dτ � N2
∣∣w(0)

∣∣2, (A.21)

∣∣R1w(t)
∣∣ � e−t

(∣∣R1w(0)
∣∣+ N3

∣∣w(0)
∣∣1/2)

, t > 0. (A.22)

Proof. The positive constant C in this proof is generic and is independent of u0 and v0. First we know that
∞∫

0

∣∣Au(τ)
∣∣2 dτ � C‖u0‖2

(
1 + max

t�0

∥∥u(t)
∥∥4

)
= N0(u

0) < ∞. (A.23)

The equation for w is

dw

dt
+ Aw + B(w,u) + B(v,w) = 0. (A.24)

From (A.24) we have
d

dt
|w|2 + 2‖w‖2 � C|w|3/2‖w‖1/2|Au| � C‖w‖|w||Au|. (A.25)

Hence
d

dt
|w|2 + ‖w‖2 � C|w|2|Au|2. (A.26)

By Poincare’s inequality and then Gronwall’s inequality∣∣w(t)
∣∣2 �

∣∣w(0)
∣∣2e−t+C

∫ t
0 |Au(τ)|2 dτ �

∣∣w(0)
∣∣2e−t eCN0 = N2

1

∣∣w(0)
∣∣2e−t .

Thus, we obtain inequality (A.20).
Integrating (A.26) and using estimate (A.20), we have

t∫
0

∥∥w(τ)
∥∥2

dτ �
∣∣w(0)

∣∣2 + C

t∫
0

N2
1

∣∣w(0)
∣∣2∣∣Au(τ)

∣∣2 dτ

�
∣∣w(0)

∣∣2(1 + CN2
1 N0) = N2

∣∣w(0)
∣∣2.

Letting t → ∞ yields inequality (A.21).
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From (A.24), we derive d
dt

R1w + R1w + R1B(w,u) + R1B(u,w) = 0, which yields

1

2

d

dt
|R1w|2 + |R1w|2 �

∣∣〈B(w,u) + B(u,w),R1w
〉∣∣. (A.27)

Since R1H is finite dimensional, all the norms in R1H are equivalent. Therefore∣∣〈B(u,w),R1w
〉+ 〈

B(w,u),R1w
〉∣∣ �

∣∣〈B(u,R1w),w
〉∣∣+ ∣∣〈B(w,R1w),u

〉∣∣
� C|w||u|∥∥∇(R1w)

∥∥
L∞(Ω)

� C|w||u|∥∥∇(R1w)
∥∥

L2(Ω)

� C|R1w||w||u|.
By (5.12), et |u(t)| � |u0| and et |R1w(t)| � |u0| + |v0|. We now have from (A.27)

e2t
∣∣R1w(t)

∣∣2 − ∣∣R1w(0)
∣∣2 � C

t∫
0

e2τ
∣∣R1w(τ)

∣∣∣∣u(τ)
∣∣∣∣w(τ)

∣∣dτ

� C

t∫
0

(|u0| + |v0|)|u0|{N1|w0|e−τ/2}dτ

� CN1|u0|(2|u0| + 1
)|w0| = N2

3 |w0|.
Hence e2t |R1w(t)|2 � |R1w(0)|2 + N2

3 |w(0)|, we obtain (A.22). �
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