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Abstract

We show the propagation of regularity, uniformly in time, for the scaled solutions of the inelastic Maxwell model for small
inelasticity. This result together with the weak convergence towards the homogeneous cooling state present in the literature implies
the strong convergence in Sobolev norms and in the L1 norm towards it depending on the regularity of the initial data. The strategy
of the proof is based on a precise control of the growth of the Fisher information for the inelastic Boltzmann equation. Moreover,
as an application we obtain a bound in the L1 distance between the homogeneous cooling state and the corresponding Maxwellian
distribution vanishing as the inelasticity goes to zero.
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1. Introduction

This paper concerns the regularity properties of solutions of the spatially homogeneous Boltzmann equation for
Maxwellian molecules in R3 with inelastic collisions, introduced in [5]. This equation describes the evolution of the
distribution of the velocities in a collection of particles as they interact through inelastic binary collisions. Let f (v, t)

be the probability density for the velocity of a particle chosen randomly from the collection at time t . Let ϕ be any
bounded and continuous function on R3. Then the equation under investigation is given, in weak form, by

d

dt
〈f,ϕ〉 = 〈

Qe(f,f ),ϕ
〉

(1.1)
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where 〈f,ϕ〉 denotes
∫

R3 f (v, t)ϕ(v)dv, and where

〈
Qe(f,f ),ϕ

〉 = 1

4π

∫
R3

∫
R3

∫
S2

B̃

(
n · v − w

|v − w|
)

f (v)f (w)
[
ϕ(v′) − ϕ(v)

]
dndv dw (1.2)

where n is a unit vector in S2, dn is the uniform measure on S2 with total mass 4π , with v′ the post collisional velocity
given by

v′ = v − 1 + e

2

(
(v − w) · n)

n, (1.3)

with 0 � e � 1, and where B̃ is a positive, integrable even function on [−1,1]. Because of the integrability of B̃ , we
can separate the collision operator in the gain and loss terms, Qe(f,f ) := Q+

e (f, f ) − Q−
e (f, f ) with

Q−
e (f, f ) :=

(∫
S2

B̃

(
n · v − w

|v − w|
)

dn

)
f =

(
1

2

1∫
−1

B̃(s)ds

)
f.

The function B̃ gives the rate at which the various kinematically possible collisions happen, and the tilde is present
because later on we shall also consider another rate function B corresponding to another parameterization of the
kinematically possible collisions.

The parameter e is the restitution coefficient. For e < 1, the collisions are inelastic, and energy is dissipated in each
collision. In this case, the collisions are not reversible. This is a crucial difference with the elastic theory in which
there is a complete time reversal symmetry between the pre and post collisional velocities. It is for this reason that
we have written (1.1) in weak form, and not because of any difficulty in constructing strong solutions: It is just that to
write the equation down in strong form, we need a parameterization of the possible pairs of precollisional velocities
(v∗,w∗) that can result in the pair of post collisional velocities (v,w). We have detailed the strong formulation in the
different parameterizations in Appendix A, see [5,19] for particular cases, but for the purposes of the introduction,
the weak form specifies the equation under consideration well enough for us to proceed with the description of the
particular issues with which we are concerned, and the results we obtain.

The reason we require B̃ to be even is that the post collisional velocity v′ defined in (1.3) depends on n quadrati-
cally, and thus is unchanged under the substitution n → −n. For this reason, we may freely assume B̃ to be even, and
we do so in what follows.

The first thing to notice about the equation is that the first moment of f is conserved. Indeed, for any a ∈ R3, let
ϕ(v) = a · v. Then we have from (1.1) and (1.3) that

d

dt
〈f,ϕ〉 = −1 + e

8π

∫
R3

∫
R3

∫
S2

B̃

(
n · v − w

|v − w|
)

f (v)f (w)
[(

(v − w) · n)
(a · n)

]
dv dw dn

= −1 + e

4

[ 1∫
−1

s2B̃(s)ds

]∫
R3

∫
R3

f (v)f (w)a · (v − w)dv dw = 0.

Indeed, as detailed in Appendix A, the companion formula to (1.3), giving the other post collisional velocity w′, is

w′ = w + 1 + e

2

(
(v − w) · n)

n.

Thus, in each individual collision (v,w) → (v′,w′), the total momentum v+w is conserved, and this certainly ensures
that the first moment of f is conserved. In any case, on account of the computation just made, we may as well assume
that our initial data f0 satisfies∫

3

vf0(v)dv = 0.
R



E.A. Carlen et al. / Ann. I. H. Poincaré – AN 26 (2009) 1675–1700 1677
Then of course we shall have∫
R3

vf (v, t)dv = 0 (1.4)

for all t � 0. While momentum is conserved, energy is dissipated, as we have indicated above. We now calculate the
rate of this dissipation: Take ϕ(v) = |v|2 and then note that from (1.3)

ϕ(v′) = |v|2 − (1 + e)
(
(v − w) · n)

(v · n) + (1 + e)2

4

(
(v − w) · n)2

.

In this case, using the abbreviated notation u = v − w, we have

d

dt
〈f,ϕ〉 = 1

4π

∫
R3

∫
R3

∫
S2

B̃

(
n · u

|u|
)

f (v)f (w)

[
(1 + e)2

4
(u · n)2 − (1 + e)(u · n)(v · n)

]
dv dw dn

=
[

1

2

1∫
−1

s2B̃(s)ds

]∫
R3

∫
R3

f (v)f (w)

(
(1 + e)2

4
|u|2 − (1 + e)u · v

)
dv dw

= −
[

1

2

1∫
−1

s2B̃(s)ds

]
1 − e2

2
〈f,ϕ〉.

That is, with the positive constant E defined by

E =
[

1

2

1∫
−1

s2B̃(s)ds

]
1 − e2

4
, (1.5)

we have every solution of (1.1) with initial data f0 satisfying (1.3) satisfies

d

dt

∫
R3

|v|2f (v, t)dv = −2E

∫
R3

|v|2f (v, t)dv. (1.6)

This implies that f (v, t)dv tends to a point mass at v = 0 as t tends to infinity. It is natural to enquire into precise
nature of this collapse to a point mass. In previous works [6,9,2,7,8,10], it has been shown that if one rescales f (v, t)

to keep the variance (i.e., temperature) constant, then the rescaled density tends to a particular equilibrium state,
known as the homogeneous cooling state. That is, if we define the probability density g(v, t) by

g(v, t) = e−3Etf
(
e−Etv, t

)
,∫

R3

|v|2g(v, t)dv =
∫
R3

|v|2g(v,0)dv =
∫
R3

|v|2f0(v)dv (1.7)

for all t , and there is a density g∞ such that

lim
t→∞g(v, t) = g∞(v). (1.8)

The convergence in (1.8), part of the so-called Ernst–Brito conjecture [17,18,6,9], has so far been shown in certain
weak norms that we shall introduce shortly, see [13] for a review and [9,2] for the proofs. Our goal in this paper is to
prove that g(v, t) is regular in v, uniformly in t . This is reasonable to expect since it is was proved by Bobylev and
Cercignani that g∞(v) itself is quite regular [6, Theorem 7.1]. However, it is clear from the fact that f (v, t)dv tends
to a point mass that the norm of f (·, t) must diverge with t in every norm that would imply smoothness of f (·, t).
While the rescaling may well lower such norms, one needs very precise estimates on the loss of regularity to avoid
having them overwhelm whatever one gains from the rescaling. Notice in particular that the rescaling does nothing to
improve regularity.
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To investigate the long time behavior of g(v, t), we write down its evolution equation, which of course is obtained
from (1.1) through (1.7). In working out the equation, we make use of the dilation invariance of the collision integral
Qe(f,f ): For any density f , test function ϕ and any λ > 0, define

f (λ)(v) = λ3f (λv) and ϕ(λ)(v) = ϕ(v/λ). (1.9)

Then one easily sees from (1.2) that〈
Qe

(
f (λ), f (λ)

)
, ϕ

〉 = 〈
Qe(f,f ),ϕ(λ)

〉
. (1.10)

Then, for any test function ϕ,

d

dt
〈g,ϕ〉 = d

dt

〈
f,ϕ(exp(−Et))

〉
= −Ee−Et

〈
f, v · (∇ϕ)(exp(−Et))

〉 + 〈
Q(f,f ),ϕ(exp(−Et))

〉
= −E

〈
g, (v · ∇ϕ)

〉 + 〈
Q(f,f ),ϕ(exp(−Et))

〉
= −E

〈
g, (v · ∇ϕ)

〉 + 〈
Q(g,g),ϕ

〉
where we have used (1.10) in the last line. Thus, our evolution equation for g is, in weak form,

d

dt
〈g,ϕ〉 = −E

〈
g, (v · ∇ϕ)

〉 + 〈
Q(g,g),ϕ

〉
. (1.11)

There are other ways, physically and mathematically different, to control the temperature/variance: If the particles
are in contact with an appropriate heat bath, this will add a thermal regularization to the evolution equation for f . This
thermal bath can be modelled by stochastic heating, i.e.,

∂f

∂t
= Qe(f,f ) + Δvf

or by a thermalized bath of particles, adding a linear Boltzmann type operator. In these two cases, global regularity
estimates for solutions have been obtained, see [1,13,30]. However, as the first order anti-drift term in (1.11) does not
induce a priori any regularization, the problem of proving global regularity estimate for solutions of (1.11) is more
challenging.

The Fisher information plays a crucial role in our investigation of regularity. For any probability density f on R3,
the Fisher information, I (f ), is defined by

I (f ) = 4
∫
R3

∣∣∇√
f (v)

∣∣2 dv =
∫
R3

∣∣∇ lnf (v)
∣∣2

f (v)dv

whenever the distributional gradient of
√

f is square integrable, and it is defined to be infinite otherwise. It has been
shown by Villani that in case e = 1; i.e., for elastic collisions, the Fisher information is non-increasing in time. This
is a basic propagation of regularity result that is the starting point of our investigation of the inelastic case.

For solutions of (1.11), the Fisher information will not be bounded uniformly in time. Indeed, the Fisher informa-
tion has simple scaling properties: If f (λ) is defined in terms of f and λ as in (1.9), one easily computes

I
(
f (λ)

) = λ2I (f ). (1.12)

Therefore, with g(v, t) defined in terms of f (v, t) through the scaling relation (1.7), we have

I
(
g(·, t)) = e−2EtI

(
f (·, t)). (1.13)

The exponentially decreasing factor e−2Et is good, but notice from (1.5) that it depends only on B̃ and the restitution
coefficient e, and not on the initial data. For some initial data, I (f (·, t)) will grow faster than this rate, and thus
I (g(·, t)) will grow exponentially. Nonetheless, we shall be able to prove that its growth is not too bad, at least for e

not too far from 1.

Theorem 1.1. For any solution g(v, t) of (1.11), we have a bound on the Fisher information

I
(
g(·, t)) � e[(1−e)(2+e+15e2)/(8e3)−2E]t I

(
g(·,0)

)
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where E is the constant defined in (1.5). While the exponent is always positive, no matter how B̃ is chosen, it does
always vanish in the limit e → 1.

Theorem 1.1 is proved in Section 2. Our main goal in the next part of the paper is to obtain a tiny uniform-in-time
propagation of regularity result of the type:

Theorem 1.2. For any 0 < δ < 1, there is a computable positive constant C, such that for any solution g of (1.11)
corresponding to the initial value f0 with unit mass, zero mean velocity, |v|2+αf0 ∈ L1(R3) with 0 < α < 1 and
I (f0) < ∞, then∥∥|η|δĝ(η)

∥∥
L∞(R3)

� C, (1.14)

for all t > 0, being e close enough to 1.

This strategy precisely coincides with the open problem left in [13] for strong convergence to homogeneous cooling
states and applied in the case of the thermalized bath of particles, adding a linear Boltzmann type operator, see
[13, Section 7.2.4].

To prove the convergence in strong norms towards the homogeneous cooling state, we will need more; we will
need the propagation of regularity in Sobolev spaces of high degree:

‖g‖2
Ḣ r (R3)

=
∫
R3

|η|2r
∣∣ĝ(η)

∣∣2 dη (1.15)

with r > 0. However, there is a well-developed machinery [12,13] for showing that whenever the equation propagates
a tiny degree of regularity, this implies the equation propagates regularity of any degree. Therefore, the main problem
to be solved is to prove (1.14), uniformly in time for which there are no standard arguments.

Then, using the regularity in high Sobolev spaces, we can parley the weak convergence in (1.8) into convergence
in all Sobolev norms, Theorem 3.9, and strong L1 convergence at an explicit exponential rate for a certain class of
initial data. This is the objective of Section 3 and the main result is summarized as:

Theorem 1.3. Given the solution g of (1.11) corresponding to the initial probability distribution function f0 ∈
Ḣ r (R3), with r > 0, of zero mean velocity such that |v|4f0 ∈ L1(R3) and I (f0) < ∞. Then, for e close to 1, the
solution g(t, v) of (1.11) converges strongly in L1 with an exponential rate towards the homogeneous cooling state,
i.e., there exist positive constants C and γ ′ explicitly computable such that∥∥g(t) − g∞

∥∥
L1(R3)

� C e−γ ′t

for all t > 0.

Finally, we can study the small inelasticity limit of the sequence of homogeneous cooling states showing an L1

convergence towards the Maxwellian distribution with zero mean velocity and temperature fixed by the initial data
as e → 1 with an explicit speed in terms of the inelasticity parameter. Section 4 is devoted to this small inelasticity
limit in strong norms. Least but not last, as announced above, Appendix A is aimed at a detailed description of the
relations between the different parameterizations of the collision mechanism that we have written for non necessarily
Maxwellian type collision kernels.

Let us finish the introduction by comparing our results to recent developments for the hard-spheres case. We should
start by pointing out that many of the results presented in this paper, namely: propagation of uniform regularity bounds,
strong asymptotic convergence towards the homogeneous cooling state in the small inelasticity regime and quantitative
convergence of homogeneous cooling state towards the Maxwellian in the elastic limit, have been addressed in the
hard-spheres case in a series of papers [23–25], see also [26] for a related problem. Their techniques are based on a
perturbation analysis around the elastic problem for which the deep knowledge of the linearized operator around the
Maxwellian plays an important role. Therefore, in their techniques the small inelasticity is essential from the beginning
to establish existence, uniqueness and stability of the homogeneous cooling state by a variation of the implicit function
theorem. Although it is plausible that similar techniques can be applied to the inelastic Maxwell models, the situation
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for inelastic Maxwell models is much better known since the existence, uniqueness and stability in weak norms of the
homogeneous cooling states was established independently of the inelasticity parameter.

In our work, the small inelasticity assumption is needed to compensate the increasing in time bounds for tiny regular
norms by the exponential convergence towards the homogeneous cooling state in weak norms (Fourier metrics) that
does not degenerate for small inelasticity. Nevertheless, it would be interesting to investigate the new information that
a perturbative analysis could give in the inelastic Maxwell case. We should also mention that a similar strategy to ours,
although totally different from the technical point of view, was used in [16] for showing uniform-in-time regularity
bounds for homogeneous elastic Boltzmann equations by “interpolating” between “slowly-increasing apriori bounds”
of regular norms and the estimates on the convergence towards the Maxwellian equilibria.

2. Fisher information bounds

Villani [28] has proved that for Maxwellian molecules and elastic collisions, the Fisher information does not
increase. A special case of this, namely with B̃ constant, had been treated earlier by Carlen and Carvalho using the
reflection parameterization [11]. Villani’s analysis is based on the σ representation, and has the advantage it allows
an arbitrary rate function B . All of these results use the strong formulation of the collision operator, the passage from
the weak form to the strong form is merely a complicated change of variables that we detail in Appendix A. The main
formulas we will use in this section are related to the strong formulation in the σ -representation,

Q+
e (f, f )(v) = 1

4π

∫
R3

∫
S2

f (v∗)f (w∗)B+
e (k · σ)dσ dw

with u = v − w, k = u/|u|,

B+
e (s) = B

(
(1 + e2)s − (1 − e2)

(1 + e2) − (1 − e2)s

) √
2√

(1 + e2) − (1 − e2)s

1

e
, B(s) = B̃(

√
(1 − s)/2)

2
√

(1 − s)/2

and the precollisional velocities are given by⎧⎪⎨⎪⎩
v∗ = v + w

2
− 1 − e

4e
(v − w) + 1 + e

4e
|v − w|σ,

w∗ = v + w

2
+ 1 − e

4e
(v − w) − 1 + e

4e
|v − w|σ.

The reader can understand now why we have avoided the strong formulation as long as we could. We emphasize
that this operator coincides with the one defined in weak form below (1.2). Full details of the passage from one
representation to the other are given in Appendix A.

We now start to adapt Villani’s analysis to the inelastic case, and derive bounds on the growth of the Fisher infor-
mation in terms of the restitution coefficient e. The crucial feature of these bounds on the growth is that they vanish
as e tends towards 1. The main result of this section is:

Theorem 2.1. For all probability densities f on R3,

I
(
Q+

e (f, f )
)
�

[
1 + (1 − e)

(
2 + e + 15e2

8e3

)]
I (f ), (2.1)

with the consequence that if f (v, t) is a solution of (1.1), we have

I
(
f (·, t)) � e[(1−e)(2+e+15e2)/(8e3)]t I

(
f (·,0)

)
. (2.2)

As an immediate consequence of this, we obtain the proof of Theorem 1.1:

Proof of Theorem 1.1. Consider any rescaled solution g(v, t); i.e., any solution of (1.11). By (1.13), any solution
g(v, t) of (1.11) satisfies

I
(
g(·, t)) � e[(1−e)(2+e+15e2)/(8e3)−2E]t I

(
g(·,0)

)
, (2.3)
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where E is given by (1.5). Notice that while E depends on the particular choice of B̃ , for any choice we have

E � (1 − e)
1 + e

4
<

1 − e

2
.

Therefore, for any B̃ , the exponent in (2.3) is at least

(1 − e)

(
2 + e + 15e2

8e3
− 1

)
> 0,

for all 0 � e < 1. �
While the exponent in Theorem 1.1 is always positive, it does vanish in the elastic limit, and that is what we shall

need in the next sections. We begin by recalling several results:

Lemma 2.2. (See [28, Lemma 1].) Let Pk denote the orthogonal projection onto the span of k, and let P ⊥
k denote its

orthogonal complement. Then for any differentiable rate function B ,

∇v

[
B(k · σ)

] = 1

|u|B
′(k · σ)P ⊥

k σ,

where B ′ is the derivative of B .

The proof of this lemma is an elementary computation. Applying it with B = B+
e , and defining F(v,w,σ ) =

f (v∗)f (w∗) we have

∇vQ
+
e (f, f ) = 1

4π

∫
S2

∫
R3

[
1

|u| (B
+
e )′(k · σ)P ⊥

k σF (v,w,σ ) + B+
e (k · σ)∇vF (v,w,σ )

]
dw dσ. (2.4)

The proof of the next lemma is not so elementary, as done in [28], it is an ingenious integration by parts on the sphere.
Later on, we will give a different proof of the formula resulting from this lemma in a more direct way.

Lemma 2.3. (See [28, Lemma 2].) Using the notation of the previous lemma and also defining the linear transforma-
tion Mσ,k on R3 by

Mσ,k(x) = (k · σ)x − (k · x)σ,

we have that for any smooth function F(σ) on S2,∫
S2

B ′(k · σ)P ⊥
k σF (σ )dσ =

∫
S2

B(σ · k)Mσ,k

[∇σ F (σ )
]

dσ.

Using this lemma on (2.4) we obtain

∇vQ
+
e (f, f ) = 1

4π

∫
S2

∫
R3

[
1

|u|B
+
e (σ · k)Mσ,k

[∇σ F (v,w,σ )
] + B+

e (k · σ)∇vF (v,w,σ )

]
dw dσ. (2.5)

Next, using (A.36) to evaluate the Jacobians,

∇v

[
f (v∗)

] =
(

∂v∗

∂v

)
(∇vf )(v∗) = 3e − 1

4e
(∇vf )(v∗) + 1 + e

4e
(σ · ∇vf )(v∗)k

and

∇v

[
f (w∗)

] =
(

∂w∗

∂v

)
(∇vf )(w∗) = e + 1

4e
(∇vf )(w∗) − 1 + e

4e
(σ · ∇vf )(w∗)k .

Also from (A.36),

∇σ F (v,w,σ ) = 1 + e |u|[(∇vf )(v∗)f (w∗) − f (v∗)(∇vf )(w∗)
]
.

4e
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Therefore, if we define the linear transformation Pσ,k on R3 by Pσ,k(x) = (σ · x)k + Mσ,k(x), we can rewrite (2.5) as

∇vQ
+
e (f, f ) = 1

4π

∫
S2

∫
R3

B+
e (σ · k)G(v,w,σ )dσ dw (2.6)

where

G(v,w,σ ) = f (w∗)
(

3e − 1

4e
+ 1 + e

4e
Pσ,k

)[
(∇vf )(v∗)

] + f (v∗)
(

1 + e

4e
− 1 + e

4e
Pσ,k

)[
(∇vf )(w∗)

]
. (2.7)

Before proceeding further, let us give a simple, direct proof of formula (2.7) making use of the Fourier transform
instead of Lemma 2.3.

Proof of (2.6)–(2.7). We start by recalling the formula of the Fourier representation of Q+
e (f, f ) obtained in [5], see

previous works [3,4] and [15,13] for a review. It holds

̂Q+
e (f, f )(η) = 1

4π

∫
S2

B(η̃ · σ)f̂ (t, η−)f̂ (t, η+)dσ (2.8)

with η̃ = η/|η| and

η− = 1 + e

4

(
η − |η|σ )

,

η+ = 3 − e

4
η + 1 + e

4
|η|σ = η − η−. (2.9)

Now, let us point out the following identity, left for the reader to check,

Z(η+, η−) := 3e − 1

4e
η+ + 1 + e

4e
Pσ,η̃(η+) + 1 + e

4e
η− − 1 + e

4e
Pσ,η̃(η−) = η + 1 − e2

4e

(
(η · σ)η̃ − |η|σ )

.

Now, multiplying both sides by 1
4π

B(η̃ · σ)f̂ (t, η−)f̂ (t, η+) and integrating over the sphere, we get

1

4π

∫
S2

B(η̃ · σ)f̂ (t, η−)f̂ (t, η+)Z(η+, η−)dσ = η ̂Q+
e (f, f )(η) = ̂[∇vQ

+
e (f, f )

]
(η) (2.10)

since the integral of the last term is zero. In fact, since we are free to choose our coordinate system in the sphere, it is
easy to see that∫

S2

(η · σ)η̃J (η,σ )dσ =
∫
S2

|η|σJ (η,σ )dσ

for any function J (η,σ ). The desired formula (2.6)–(2.7) is just the inverse Fourier transform formula corresponding
to (2.10). �

Now, starting from (2.7), we can define H(v,w,σ ) by

H(v,w,σ ) = 2
√

f (w∗)
(

3e − 1

4e
+ 1 + e

4e
Pσ,k

)[
(∇v

√
f )(v∗)

]
+ 2

√
f (v∗)

(
1 + e

4e
− 1 + e

4e
Pσ,k

)[
(∇v

√
f )(w∗)

]
=

[
3e − 1

2e

√
f (w∗)(∇v

√
f )(v∗) + 1 + e

2e

√
f (v∗)(∇v

√
f )(w∗)

]
+ Pσ,k

(
1 + e

2e

)[√
f (w∗)(∇v

√
f )(v∗) − √

f (v∗)(∇v

√
f )(w∗)

]
= H1(v,w,σ ) + Pσ,kH2(v,w,σ ), (2.11)



E.A. Carlen et al. / Ann. I. H. Poincaré – AN 26 (2009) 1675–1700 1683
where the last line defines H1(v,w,σ ) and H2(v,w,σ ), and G(v,w,σ ) = √
f (v∗)f (w∗)H(v,w,σ ). Thus, we get

∇vQ
+
e (f, f ) = 1

4π

∫
S2

∫
R3

B+
e (σ · k)

√
f (v∗)f (w∗)H(v,w,σ )dσ dw. (2.12)

Therefore, by the Schwarz inequality∣∣∇vQ
+
e (f, f )(v)

∣∣ �
(
Q+

e (f, f )(v)
)1/2

(
1

4π

∫
S2

∫
R3

B+
e (σ · k)H 2(v,w,σ )dσ dw

)1/2

. (2.13)

From here we obtain a bound of I (Q+
e (f, f )): Squaring both sides, and integrating in v we obtain

I
(
Q+

e (f, f )
)
� 1

4π

∫
R3

∫
R3

∫
S2

B+
e (σ · k)

∣∣H(v,w,σ )
∣∣2 dσ dw dv. (2.14)

It remains to estimate the integral on the right in terms of I (f ). This consists of the sum of three terms:

S1 = 1

4π

∫
R3

∫
R3

∫
S2

B+
e (σ · k)

∣∣H1(v,w,σ )
∣∣2 dσ dw dv,

S2 = 1

4π

∫
R3

∫
R3

∫
S2

B+
e (σ · k)

∣∣Pσ,kH2(v,w,σ )
∣∣2 dσ dw dv,

S3 = 1

4π

∫
R3

∫
R3

∫
S2

B+
e (σ · k)(H1 · Pσ,kH2)(v,w,σ )dσ dw dv. (2.15)

Summarizing the discussion so far, we have: For any probability density f on R3, we have

I
(
Q+

e (f, f )
)
� S1 + S2 + 2S3,

where the quantities on the right-hand side are specified in (2.15). Our next lemma simplifies these expressions by a
change of variables:

Lemma 2.4. For any probability density f on R3, we have

S1 = 1

4π

∫
R3

∫
R3

∫
S2

B(σ · k)
∣∣F1(v,w)

∣∣2 dσ dw dv,

S2 = 1

4π

∫
R3

∫
R3

∫
S2

B(σ · k)
∣∣Pσ ′,k′F2(v,w)

∣∣2 dσ dw dv,

S3 = 1

4π

∫
R3

∫
R3

∫
S2

B(σ · k)
(
F1(v,w) · Pσ ′,k′F2

)
(v,w)dσ dw dv, (2.16)

where

k′ = (1 − e)k + (1 + e)σ√
2(1 + e2) + 2(1 − e2)k · σ , σ ′ = (1 + e)k + (1 − e)σ√

2(1 + e2) + 2(1 − e2)k · σ , (2.17)

F1(v,w) =
(

3e − 1

2e

√
f (w)(∇√

f )(v) + 1 + e

2e

√
f (v)(∇√

f )(w)

)
(2.18)

and

F2(v,w) =
(

1 + e

2e

)(√
f (w)(∇√

f )(v) − √
f (v)(∇√

f )(w)
)
. (2.19)
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Proof. In the expressions in (2.15), we are integrating over post collisional variables. We use the change of variables
Theorem A.1, which concerns the transformation Cs,e(v,w,σ ) → (v∗,w∗, σ ∗) from post to pre collisional variables
under the “swapping map”; i.e., for the sigma representation. Consulting Theorem A.1 and the definition of H1 and
H2 in (2.11), we see that each of the integrands above can be written out in the longer form appearing in Theorem A.1,
e.g., ∣∣H1(v,w,σ )

∣∣2 = K
[
(v∗,w∗, σ ∗), (v,w,σ )

] = K
[
C−1

s,e (v,w,σ ), (v,w,σ )
]
.

Theorem A.1 allows us to write this as an integral over

K
[
(v,w,σ ),Cs,e(v,w,σ )

] = K
[
(v,w,σ ), (v′,w′, σ ′)

]
.

Doing this for each of the three integrals in (2.15), we obtain the stated formulas. �
Define the matrix Aσ,k by

Aσ,k = Pσ ′,k′ − Pk,σ .

We shall now prove:

Lemma 2.5. For all σ , k and z in R3 such that |σ | = |k| = 1,∣∣Aσ,k(z)
∣∣ � 2

1 − e

e
|z|.

In proving this lemma, as well as for estimating S2, we shall make use of the following lemma of Villani:

Lemma 2.6. (See [28, Lemma 4].) For all σ , k and z in R3 such that |σ | = |k| = 1,∣∣Pσ,k(z)
∣∣ � |z|

with equality if and only if σ , k and z belong to the same plane.

Proof of Lemma 2.5. Considering the formulas for k′ and σ ′ given in (A.25) and (A.26) respectively, notice that as
e → 1, we have k′ → σ and σ ′ → k, as we should, since in the elastic case, this is what the swapping map does.
Therefore, using (A.25) and (A.26) we compute

k′ − σ = (1 − e)k + (e + 1 − √
2(1 + e2) + 2(1 − e2)k · σ)σ√

2(1 + e2) + 2(1 − e2)k · σ ,

and

σ ′ − k = (1 − e)σ + (e + 1 − √
2(1 + e2) + 2(1 − e2)k · σ)k√

2(1 + e2) + 2(1 − e2)k · σ .

Using the elementary estimates

2e �
√

2
(
1 + e2

) + 2
(
1 − e2

)
k · σ � 2,

we easily find that

|k′ − σ | � 1 − e

e
and |σ ′ − k| � 1 − e

e
.

Now, notice that Pσ ′,k′ = Pk,σ + Pσ ′−k,k′ + Pk,k′−σ . This means that Aσ,k = Pσ ′−k,k′ + Pk,k′−σ , and now the result
follows from Lemma 2.6 and the triangle inequality. �

Now we are ready to estimate S1, S2, and S3 in terms of I (f ), and prove the main result of this section.

Proof of Theorem 2.1. First of all, notice that by Lemma 2.6,

S2 � S̃2 (2.20)
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where

S̃2 = 1

4π

∫
R3

∫
R3

∫
S2

B(σ · k)
∣∣F2(v,w)

∣∣2 dσ dw dv. (2.21)

Next, we have

S3 = 1

4π

∫
R3

∫
R3

∫
S2

B(σ · k)(F1 · Pk,σ F2)(v,w,σ )dσ dw dv

+ 1

4π

∫
R3

∫
R3

∫
S2

B(σ · k)(F1 · Aσ,kF2)(v,w,σ )dσ dw dv. (2.22)

Since B is even in σ , Pk,σ is odd in σ , the first integral is zero. Then, by Lemma 2.5 and the Schwarz inequality,

S3 � 2
1 − e

e

√
S1S̃2 � 1 − e

e
(S1 + S̃2). (2.23)

Notice that this vanishes in the elastic limit; this is the key point discovered by Villani in the elastic case. Finally, we
need to estimate S1 and S̃2. For this, notice that∣∣F1(v,w)

∣∣2 =
(

3e − 1

2e

)2

f (w)
∣∣∇√

f (v)
∣∣2 +

(
1 + e

2e

)2

f (v)
∣∣∇√

f (w)
∣∣2

+ 2

(
3e2 + 2e − 1

4e2

)√
f (v)f (w)∇√

f (v) · ∇√
f (v),

and ∣∣F2(v,w)
∣∣2 =

(
1 + e

2e

)2[
f (w)

∣∣∇√
f (v)

∣∣2 + f (v)
∣∣∇√

f (w)
∣∣2 − 2

√
f (v)f (w)∇√

f (v) · ∇√
f (v)

]
.

Thus, ∣∣F1(v,w)
∣∣2 + ∣∣F2(v,w)

∣∣2 =
(

5e2 − 2e + 1

2e2

)
f (w)

∣∣∇√
f (v)

∣∣2 +
(

e2 + 2e + 1

2e2

)
f (v)

∣∣∇√
f (w)

∣∣2

+
(

e2 − 1

e2

)√
f (v)f (w)∇√

f (v) · ∇√
f (v).

Now using the fact that, with our chosen normalization,
∫
S2 B(k · σ)dσ = 4π , together with the Schwarz inequality

and the definition of I (f ), we have

S1 + S̃2 � 7e2 + 1

8e2
I (f ).

Combining this with (2.23), we obtain,

S1 + S2 + 2S3 �
(

1 + 2
1 − e

e

)
7e2 + 1

8e2
I (f ) =

(
1 + (1 − e)

(
2 + e + 15e2

8e2

))
I (f ).

This proves Theorem 2.1. �
3. Propagation of regularity

The next lemma relates the Fisher information bound to an L∞-Fourier bound, similar arguments were used in
[22,13]. Nevertheless, we include its idea for completeness.

Lemma 3.1. For any probability density g on R3, there is a constant C such that∥∥|η|ĝ(η)
∥∥

L∞(R3)
� CI (g)1/2.
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Proof. Let h = √
g. Then, the Fourier transform of g can be written as the convolution of h with itself, ĝ(η) =

(ĥ ∗ ĥ)(η). Now, the boundedness of the Fisher information of g implies that h = √
g ∈ H 1(R3), and thus

|η|∣∣ĝ(η)
∣∣ = |η|

∣∣∣∣ ∫
R3

ĥ(η − η∗)ĥ(η∗)dη∗
∣∣∣∣ �

∫
R3

(|η − η∗| + |η∗|
)∣∣ĥ(η − η∗)

∣∣∣∣ĥ(η∗)
∣∣dη∗

� 2

( ∫
R3

|η|2∣∣ĥ(η)
∣∣2 dη

)1/2( ∫
R3

∣∣ĥ(η)
∣∣2 dη

)1/2

giving the desired result. �
From now on, we will restrict our attention to the most relevant case in the literature in which B is constant and

due to normalization B = 1 or equivalently B̃(s) = 2|s|, see Appendix A and (A.19). In this case, we remind from
(1.5) that E = (1 − e2)/8. We shall combine Theorem 1.1 with the following result, due to Bobylev, Cercignani and
Toscani [9] and Bisi, Carrillo and Toscani [2] in this form, see also previous results [6], which gives the uniform weak
norm control. We need some notation, for any 0 < α < 1, let us consider

A1(α, e) = 2

4 + α

[(
1 + e

2

)2+α

+ 1 − ( 1−e
2 )4+α

1 − ( 1−e
2 )2

]
and A2(α, e) = 1 − A1(α, e) − E(2 + α).

Theorem 3.2. (See [2, Theorem 4.6, Remark 4.7].) For any solution g(v, t) of (1.11) with constant collision frequency
B = 1, corresponding to the initial value f0 with unit mass, zero mean velocity such that |v|2+αf0 ∈ L1(R3) with
0 < α < 1, there exist positive constants C(f0) and γ (α, e) such that

d2
(
g(t), g∞

) := sup
|η|�=0

|ĝ(η, t) − ĝ∞(η)|
|η|2 � Ce−γ t

for all t � 0 with

γ (α, e) = min

(
2

2 + α
A2(α, e),

(3 − e)(1 + e)

8

)
.

Let us remark that

γ (α, e) → γ ∗ := min

(
2α

(2 + α)(4 + α)
,

1

2

)
↗ 2

15
(3.1)

as e → 1 and α → 1 respectively. Combining Theorems 1.1 and 3.2 and Lemma 3.1, we shall prove one of our main
results, Theorem 1.2, whose statement we now make more precise.

Theorem 3.3. For any 0 < δ < 1, there are computable positive constants C, γ ′, such that for any solution g of
(1.11) corresponding to the initial value f0 with unit mass, zero mean velocity, |v|2+αf0 ∈ L1(R3) with 0 < α < 1
and I (f0) < ∞, then

sup
η∈R3

|η|δ∣∣ĝ(η, t)
∣∣ � Ce−γ ′t + sup

η∈R3
|η|δ∣∣ĝ∞(η, t)

∣∣ = Ce−γ ′t + C∞

for all t > 0, being e close enough to 1.

Proof. Pick some R > 0. By Lemma 3.1, for all η with |η| � R, and all δ < 1,

|η|δ∣∣ĝ(η)
∣∣ � Rδ−1|η|∣∣ĝ(η)

∣∣ � Rδ−1CI (g)1/2 � Rδ−1Cec1(e)t ,

where we used Theorem 1.1 and

c1(e) = (1 − e)(2 + e + 15e2)

3
− E.
16e
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On the other hand, for |η| � R, we have

|η|δ∣∣ĝ(η)
∣∣ � |η|δ∣∣ĝ(η) − ĝ∞(η)

∣∣ + |η|δ∣∣ĝ∞(η)
∣∣

= |η|δ+2 |ĝ(η) − ĝ∞(η)|
|η|2 + |η|δ∣∣ĝ∞(η)

∣∣
� Rδ+2 |ĝ(η) − ĝ∞(η)|

|η|2 + |η|δ∣∣ĝ∞(η)
∣∣

� Rδ+2Ce−γ (α,e)t + |η|δ∣∣ĝ∞(η)
∣∣.

Combining estimates, we have that for all η,

|η|δ∣∣ĝ(η)
∣∣ � Rδ−1Cetc1(e) + Rδ+2Ce−γ (α,e)t + |η|δ∣∣ĝ∞(η)

∣∣.
We now minimize in R. Up to a constant multiple, the optimal choice is R = et (c1(e)+γ (α,e))/3. This results in

|η|δ∣∣ĝ(η)
∣∣ � C exp

(
c1(e)(δ + 2) + (δ − 1)γ (α, e)

3
t

)
+ |η|δ∣∣ĝ∞(η)

∣∣.
Choosing δ < 1 we see that for e sufficiently close to 1, so that c1(e) is sufficiently close to 0 and γ (α, e) � γ ∗ > 0,
see (3.1), the exponent is negative. Finally, taking into account the regularity obtained by Bobylev and Cercignani for
the homogeneous cooling state g∞ in [6, Theorem 5.3], we deduce

exp
{−|η|2} �

∣∣ĝ∞
(|η|)∣∣ � exp

{−|η|}(1 + |η|),
from which C∞ < ∞. �

Now, let us proceed to write the evolution of Sobolev-type norms for our model. Since moments in Fourier space
will have simpler relations, we shall use the homogeneous Sobolev quantities, with r � 0, defined in (1.15). Its
evolution for solutions of (1.11) is given by

d

dt

∫
R3

|η|2r
∣∣ĝ(η)

∣∣2 dη = 2
∫
R3

∫
S2

|η|2r ĝ(η−)ĝ(η+)ĝc(η)dσ dη − 2
∫
R3

|η|2r
∣∣ĝ(η)

∣∣2 dη

− 2(2r + 3)

∫
R3

|η|2r
∣∣ĝ(η)

∣∣2 dη, (3.2)

where zc is the complex conjugate of z. Let us start by estimating the contribution of the first term. We need to estimate
the regularity contribution of Q+

e (g, g) and for this, we make use of the estimate of∥∥|η|δĝ(t, η)
∥∥

L∞(R3)

obtained in Lemma 3.1. In fact the situation is quite similar to [13, Section 7.2.4] and [13, Lemma 7.13] in the case
of thermalization by a bath of particles, adding a linear Boltzmann type operator. We will make use of the following
lemma of Carrillo and Toscani.

Lemma 3.4. (See [13, Lemma 7.13, Proposition 7.30].) Let g ∈ Ḣ r (R3) and a probability density, then if∥∥|η|δĝ(η)
∥∥

L∞(R3)
< ∞

holds with 0 < δ < 1 and r � δ
2 , then∣∣∣∣ ∫

R3

∫
S2

|η|2r ĝ(η−)ĝ(η+)ĝc(η)dσ dη

∣∣∣∣ � C(r, e)
∥∥|η|δĝ(η)

∥∥
L∞(R3)

‖g‖2
Ḣ r−δ/2(R3)

.

Here, the constant C degenerates as e → 1 as C(r, e) � ( 1−e )− r
2 − 1

4 + δ
4 .
2
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Taking into account Lemma 3.1, Theorems 3.3 and 3.4, we deduce from the evolution of Sobolev-type norms in
(3.2) that

d

dt
‖g‖2

Ḣ r (R3)
� D1‖g‖2

Ḣ r−δ/2(R3)
− 4(r + 2)‖g‖2

Ḣ r (R3)
(3.3)

with

D1 := C(r, e) sup
t�0

∥∥|η|δĝ(t, η)
∥∥

L∞(R3)
< ∞.

We finally use standard Nash-type inequalities, see for instance [13, Lemma 7.14].

Lemma 3.5. Let g ∈ Ḣ r (R3) and a probability density with r � δ
2 , 0 < δ < 1, then g ∈ Ḣ r−δ/2(R3) and

‖g‖Ḣ r (R3) � cr,δ

(‖g‖Ḣ r−δ/2(R3)

)(2r+3)/(2r+3−δ) (3.4)

with

cr,δ =
(

1

2π

)2/(2r+3−δ)(2r + 3 − δ

2r + 3

)(2r+3)/(2r+3−δ)

.

The previous lemma allows us to obtain the inequality

d

dt
‖g‖2

Ḣ r (R3)
� D2

[‖g‖2
Ḣ r (R3)

]θ − 4(r + 2)‖g‖2
Ḣ r (R3)

(3.5)

with D2 easily obtained from above and θ = (2r + 3 − δ)/(2r + 3) < 1. As a consequence, we achieve one of the
main theorems of our work.

Theorem 3.6. Given the solution g of (1.11) corresponding to the initial value f0 ∈ Ḣ r (R3), with r > 0, of unit
mass, zero mean velocity such that |v|2+αf0 ∈ L1(R3) with 0 < α < 1 and I (f0) < ∞. Then, for e close to 1, the
solution g(t, v) of (1.11) is bounded in Ḣ r (R3), and there is a universal constant A so that, for all t > 0,∥∥g(t)

∥∥
Ḣ r (R3)

� max
{‖f0‖Ḣ r (R3),A

}
.

In particular, the stationary solution or homogeneous cooling profile g∞ to (1.11) belongs to H∞(R3).

Remark 3.7. Let f0 ∈ Ḣ r (R3), with r > 0 of unit mass, zero mean velocity such that |v|2+αf0 ∈ L1(R3) with
0 < α < 1 and I (f0) < ∞, be any initial datum for Eq. (1.11). Previous theorem together with the Nash inequal-
ity in Lemma 3.5 implies that, for e close to 1, the solution g(t, v) of (1.11) is bounded in L2(R3), and there is a
universal constant C2 so that, for all t > 0,∥∥g(t)

∥∥
L2(R3)

� max
{‖f0‖3/(3+2r)

Ḣ r (R3)
,C2

}
.

Let us point out that the previous propagation of smoothness results are true for any value of e for which a uniform
in time estimate of ‖|η|δĝ(t, η)‖L∞(R3) is available, which in our case is given by the values of e for which the estimate
in Theorem 1.1 is satisfied with γ ′ � 0.

Finally, using the strategy already introduced in [12] and used in inelastic models in [1,13], see also [29], we can
obtain the convergence in L1. The first ingredient is an interpolation inequality that allows to control distances in
arbitrary Sobolev norms and in L2 by using the propagation of smoothness and the convergence result in Theorem 3.2
in [2, Theorem 4.6, Remark 4.7].

Proposition 3.8. (See [12, Theorem 4.1].) Let s � 0, and β1 > 0, 0 < β2 < 1 be given. Then

‖f − g‖Ḣ s (R3) � C(β1, β2)d2(f, g)(1−β2) min
(‖f − g‖Ḣ r1 (R3),‖f − g‖Ḣ r2 (R3)

)β2 ,

with
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r1 = s + 2(1 − β2)

β2
, r2 = 2s + (7 + β1)(1 − β2)

2β2
,

C(β1, β2) =
(

4π

3
(1 + 3/β1)

)1−β2

,

and

d2(f, g) = sup
|η|�=0

|f̂ (η) − ĝ(η)|
|η|2 .

The previous result implies immediately convergence in strong norms:

Theorem 3.9. Let g be the solution of (1.11) corresponding to the initial probability distribution function f0 ∈
Ḣ r+ε(R3), with r > 0 and ε > 0, of zero mean velocity such that I (f0) < ∞. Then, for e close to 1, the solu-
tion g(t, v) of (1.11) converges strongly in Ḣ r with an exponential rate towards the homogeneous cooling state, i.e.,
there exist positive constants C and γ̃ explicitly computable such that∥∥g(t) − g∞

∥∥
Ḣ r (R3)

� Ce−γ̃ t

for all t > 0.

Let us point out that the exponential rate γ̃ can be computed as γ̃ = (1−β2)γ for any choice of β1 > 0, 0 < β2 < 1
such that max(r1, r2) < r + ε. Moreover, the uniform control of moments for the probability measure yields control
of the distance in L1.

Lemma 3.10. (See [12, Theorem 4.2].) Let f ∈ L1 ∩ L2(R3) with |v|2pf ∈ L1(R3), then, for all p > 0,∫
R3

∣∣f (v)
∣∣dv � C(p)

(∫
R3

∣∣f (v)
∣∣2 dv

)2p/(3+4p)(∫
R3

|v|2p
∣∣f (v)

∣∣dv

)3/(3+4p)

with

C(p) =
[(

3

4p

)4p/(3+4p)

+
(

4p

3

)3/(3+4p)](
4π

3

)2p/(3+4p)

.

Let us recall what is known about tails of the homogeneous cooling state. One very interesting property is that not
all moments of g∞ are bounded and the threshold moment depends on the restitution coefficient e. This was proved
by [6], see [7,8] for generalizations. In particular, the fourth moment of g∞ is bounded for all restitution coefficients.

The next ingredient we need to pass from L2 to L1 convergence is the uniform-in-time propagation of the fourth
moment for solutions for any value of the restitution coefficient as obtained in [10, Appendix] from which the main
Theorem 1.3 immediately follows.

The exact value of the constant γ ′ depends on the value of r in the hypotheses of Theorem 1.3. In fact, by taking
s = 0 in Proposition 3.8, we get that the decay in L2 will be given by a constant γ̃ = γ (1 − β2) for any choice of
β1 > 0, 0 < β2 < 1 such that

max

(
2(1 − β2)

β2
,
(7 + β1)(1 − β2)

2β2

)
< r.

Once, we have this decay of the L2 norm, the previous lemma finally gives the value γ ′ = 8
11 γ̃ .

4. Small inelasticity limit of HCS

As a further application of the results proven in the previous sections, we study the small inelasticity limit of
the homogeneous cooling states and prove, as one might expect, that as e → 1 then the homogeneous cooling state
converges towards the corresponding Maxwellian in strong norms. Previous results in this direction were done in the
asymptotic expansion in Fourier for the self-similar solution, see [5, Section 6.1].
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Let us fix for any small ε = 1−e
2 , the corresponding unique smooth gε∞ ∈ H∞(R3) stationary state to (1.11) with

zero mean velocity and temperature fixed by the initial data. Then, we can show the following result:

Theorem 4.1. Given M the Maxwellian with zero mean velocity and temperature given by the initial temperature of
f0, then there exist a positive constant C such that∥∥gε∞ − M

∥∥
L1(R3)

� Cε1/2[1 + | log ε|1/2],
for any ε > 0 small enough.

Proof. Let gε(t) be the solution to (1.11) with initial data M , then∥∥gε∞ − M
∥∥

L1(R3)
�

∥∥gε(t) − gε∞
∥∥

L1(R3)
+ ∥∥gε(t) − M

∥∥
L1(R3)

.

Now, we are going to control each term separately. Since M ∈ H∞(R3), then gε(t) will satisfy due to Theorem 1.3
that ∥∥gε(t) − gε∞

∥∥
L1(R3)

� C ε−r e−γ ′t

for all t > 0. Here, we have made explicit the dependence on the restitution coefficient of the constants in the previous
section. Actually, revising the discussion on the value of the constants in the previous section, one gets that γ ′ can
be made as close to 8

11γ as we want since our solution gε(t) lies in H∞(R3) due to Theorem 3.6, see last paragraph
of the previous section. Moreover, we can fix ε small enough and α close enough to 1 in such a way that γ is as
close as we want to 2/15 in (3.1). For example, by choosing 1/11, then for α � 1 and for small enough ε we have
1/11 < γ ′ < 16/165 = 2/15 · 8/11, where 1/11 is an arbitrary number.

Concerning the behavior of the constants in front of the exponential in time function as ε → 0, it is not difficult,
but tedious, to check that it does not degenerate to 0 and is uniformly bounded as ε → 0 in the case of the constants
for the d2 distance in Theorem 3.2 and in Theorem 3.3. However, the dependence on the restitution coefficient of the
estimates in [13, Lemma 7.13, Proposition 7.30] leading to Lemma 3.4 degenerates as ε → 0 as ε−r with an exponent
r related to the regularity needed in the interpolation Proposition 3.8. One can estimate this degeneracy exponent r

exactly depending on the regularity needed for having 1/11 < γ ′, but it is not important its exact value as we shall see
below.

On the other hand, we can use the Csiszar–Kullback inequality [14,21] together with the Logarithmic Sobolev
inequality [20,27] to get:

I
(
gε(t)

) − I (M) �
∫
R3

gε(t, v) ln
gε(t, v)

M(v)
dv � 1

2

∥∥gε(t) − M
∥∥2

L1(R3)
.

Using Theorem 1.1, we deduce∥∥gε(t) − M
∥∥

L1(R3)
�

[
2
(
eεωt − 1

)
I (M)

]1/2

with

ω = 2 + e + 15e2

4e3
− 1 + e

2
� 7

2
as e → 1.

Finally, for suitable choice of α and for ε small enough, we conclude∥∥gε∞ − M
∥∥

L1(R3)
�

[
2
(
e

7
2 εt − 1

)
I (M)

]1/2 + Cε−re− 1
11 t

for all t � 0, and thus by Taylor’s theorem, we get∥∥gε∞ − M
∥∥

L1(R3)
�

[
7εte

7
2 εt I (M)

]1/2 + C ε−re− 1
11 t

for all t � 0. By choosing t = 11(1/2 + r)| log ε|, we obtain∥∥gε∞ − M
∥∥

L1(R3)
�

[
77(1/2 + r)ε| log ε|e 77

2 (1/2+r)ε| log ε|I (M)
]1/2 + C ε1/2

from which the announced result follows. �
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Appendix A. The kinematics of inelastic collisions

Here, we will review in detail the collision mechanism for inelastic collisions and the weak and strong formulation
in two useful representations of the inelastic gain collision operator. We will perform in detail the relations between
the collision frequencies in the different representations and for general interactions being of Maxwell type or not.
Basically, these results make a summary of already known relations in particular cases written in [5,19] but we believe
this summary sets up the more general case once and for all.

A.1. The kinematics of elastic collisions

We begin by reviewing two ways of parameterizing the set of all elastic collisions in R3. The presentation has some
unusual features that will be useful to our investigation of inelastic collisions. If particles with like masses and with
velocities v and w collide elastically, so that both energy and momentum are conserved, then

v + w

2
and |v − w|

are both conserved. The conservation of the first quantity directly expresses the conservation of momentum (since
the masses are the same), and then the conservation of the second follows from the conservation of energy and the
parallelogram law:

|v|2 + |w|2
2

=
∣∣∣∣v + w

2

∣∣∣∣2

+
∣∣∣∣v − w

2

∣∣∣∣2

.

Therefore, let us introduce

z = v + w

2
, u = v − w and k = u

|u| . (A.1)

Note that

v = z + |u|
2

k and w = z − |u|
2

k. (A.2)

Now consider an elastic collision (v,w) → (v′,w′) where v′ and w′ are the post collisions velocities of the two
particles. We define z′, u′ and k′ in terms of the post collisions velocities v′ and w′ just as we defined z, u and k in
terms of v and w in (A.1). By the conservation of z and |u| and (A.2), we have that

v′ = z + |u|
2

k′ and w′ = z − |u|
2

k′. (A.3)

That is, by the conservation laws, only k changes, and the outcome of the collision is entirely specified by giving
the change in the unit vector k → k′, together with the initial velocities v and w. Hence the space of kinematically
possible collisions is the set Ξ = R3 × R3 × S2 with generic point (v,w,ω). The vector ω is called the collision
vector, and it is the additional parameter, beyond v and w, needed to specify the post collisional velocities v′ and w′.
This specification is then described by a bijective map C from Ξ onto itself with C(v,w,ω) = (v′,w′,ω′), where v′
and w′ are the post collisional velocities of the two particles, and ω and ω′ are the collision vectors that are needed to
determine k′ from v and w, or in reverse, to determine k from v′ and w′.

The map C is called the collision map. There are two collision maps that are particularly useful for our purposes:
the swapping map and the reflection map. The first has many mathematical advantages, due to its simplicity, but the
latter has a closer connection with the physics of the collision process, and we shall need them both.
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Fig. 1. Profile of the plane of reflection, with some normal lines indicated, along which the pre and post collisional velocities line up.

A.1.1. Reflection map
Consider a collision of two identical hard spheres in the center of momentum frame, so that z = 0. Let n be the

unit vector pointing from the center of one particle to the center of the other at the moment of collision. (It does not
matter from which to which; our expressions will be quadratic in n.) The result of the collision is exactly as if each
particle undergoes specular reflection upon striking the plane through the point of contact that has unit normal n. As
a result, the velocities of both particles are reflected about this plane, as shown in Fig. 1. Clearly, the relative velocity
u = v − w of the two particles is also reflected about this plane, so that we have u′ = u − 2(u · n)n. This remains
true if we translate out of the center of momentum frame. Also, since reflection is an isometry, k′ = k − 2(k · n)n. We
therefore let n stand in the role of ω, and we have

k′ = k − 2(k · n)n and n′ = n. (A.4)

From this and (A.3) we obtain the full collision map:⎧⎨⎩v′ = v − (
(v − w) · n)

n,

w′ = w + (
(v − w) · n)

n,

n′ = n.

(A.5)

Let us use Cr to denote the collision map Cr(v,w,n) = (v′,w′, n′) based on (A.5). Of course, n and −n lead to
the same reflection, so that if we hold v and w fixed and vary n, we get a double cover of the set of possible post
collisional velocities (v′,w′) resulting from (v,w). However, as is clear from the third line, as a transformation from
Ξ onto itself, Cr is a bijection.

The next thing to observe is that Cr is a measure preserving transformation on Ξ . Indeed, since the measure
dv dw dn on Ξ is also the measure dz dudn, going to polar coordinates in u, we have dv dw dn = dz d|u|dk dn.
Here dn and dk are both the uniform measures on S2 with total mass 4π , which is consistent with our use of polar
coordinates. Since it is clear from Fubini’s Theorem that dk dn = dk′ dn′, we have that dv′ dw′ dn′ = dv dw dn. This
gives us the collision kernel in the reflection representation〈

Q(f,f ),ϕ
〉 = 1

4π

∫
R3

∫
R3

∫
S2

f (v)f (w)
[
ϕ(v′) − ϕ(v)

]
Φ̃

(|u|)B̃(k · n)dndv dw. (A.6)

Here, Φ̃ and B̃ takes into account the difference rates of collisions and its dependence with respect to the strength of
the relative velocity and the collision angle respectively and ϕ is any test function.

Finally, since reflections are their own inverses, one sees that Cr is its own inverse. Therefore, we may regard
(v′,w′) as pre collisional velocities that may result in the pair (v,w) of post collisional velocities. Thus, in the “gain
term” part of the integral for Q(f,f ), one can change variables∫

3

∫
3

∫
2

f (v)f (w)ϕ(v′)B̃(k · n)dndv dw =
∫

3

∫
3

∫
2

f (v′)f (w′)ϕ(v)Φ̃
(|u′|)B̃(k′ · n′)dn′ dv′ dw′.
R R S R R S
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Now, recall that B̃ is even, and note that k′ ·n′ = −k ·n and |u′| = |u|. Using this and the measure preserving property,
we obtain∫

R3

∫
R3

∫
S2

f (v′)f (w′)ϕ(v)Φ̃
(|u′|)B̃(k′ · n′)dn′ dv′ dw′ =

∫
R3

∫
R3

∫
S2

f (v′)f (w′)ϕ(v)Φ̃
(|u|)B̃(k · n)dndv dw.

Thus, we have〈
Q(f,f ),ϕ

〉 = 1

4π

∫
R3

∫
R3

∫
S2

[
f (v′)f (w′) − f (v)f (w)

]
ϕ(v)Φ̃

(|u|)B̃(k · n)dndv dw,

which allows us to write the collision kernel in the strong form:

Q(f,f )(v) = 1

4π

∫
R3

∫
S2

[
f (v′)f (w′) − f (v)f (w)

]
Φ̃

(|u|)B̃(k · n)dndw. (A.7)

Note that to specify everything needed to compute Q(f,f ), one needs only the first two lines of (A.5), and this is all
that is usually written down in discussions of elastic collisions. However, in the inelastic case, the collisions are not
reversible, since they dissipate energy, and so there is not such a simple relation between the pre and post collisional
velocities. Thus, more care is required in the passage from the weak form of the collision kernel to the strong form,
and it will be helpful to keep all three lines in (A.5), and remember that Cs is a measure preserving bijection of Ξ

onto itself. Indeed, note that for fixed n, the map (v,w) → (v′,w′) is a two to one, so dropping the third line, we
would not have a bijection.

A.1.2. Swapping map
As we have mentioned, there is another collision map which leads to a different way of writing down the collision

kernel. This other way is less directly connected with the physics of hard sphere collisions, but it does have consider-
able mathematical advantages due to its simplicity, which is based on a simple swapping of ω and k. In this context,
it is traditional to write σ in place of ω, and the very simple rule for computing k′ and σ ′ in terms of v, w and σ is
simply

k′ = σ and σ ′ = k. (A.8)

As with (A.4), we use this and (A.3) to obtain the corresponding collision map:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
v′ = v + w

2
+ |v − w|

2
σ,

w′ = v + w

2
− |v − w|

2
σ,

σ ′ = k = v − w

|v − w| .

(A.9)

Let us use Cs to denote the swapping map Cs(v,w,σ ) = (v′,w′, σ ′). Like Cr , Cs is a measure preserving transfor-
mation on Ξ . As before, we note that the measure dv dw dσ on Ξ is also the measure dz dudσ , and going to polar
coordinates in u, we have dv dw dσ = dz d|u|dk dσ . In this form it is clear that the collision map for swapping is a
measure preserving map, dv′ dw′ dσ ′ = dv dw dσ . This gives us the collision kernel in the swapping representation:〈

Q(f,f ),ϕ
〉 = 1

4π

∫
R3

∫
R3

∫
S2

f (v)f (w)
[
ϕ(v′) − ϕ(v)

]
Φ

(|u|)B(k · σ)dσ dv dw (A.10)

where ϕ is any test function, and as above k denotes the unit vector in the direction of v − w, and Φ and B gives the
relative rates of the various kinematically possible collisions with respect to the strength of the relative velocity and
the collision angle, and dσ is the uniform measure on S2 with total mass 4π .
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Note that like Cr , Cs is its own inverse, simply because the map in (A.8) is its own inverse. Thus, we may once
more regard (v′,w′) as a pair of pre collisional velocities. Changing variables, and using k′ · σ ′ = k · σ , and the
measure preserving property, we obtain the strong form

Q(f,f )(v) = 1

4π

∫
R3

∫
S2

[
f (v′)f (w′) − f (v)f (w)

]
B(k · σ)dσ dw. (A.11)

Note that only the first two lines of (A.9) are required to compute Q(f,f ), and this is all that is usually written
down in discussions of elastic collisions. However, it is worth noting explicitly that if one holds σ fixed, and then just
considers the transformation (v,w) → (v′,w′) described by the first two lines, this transformation is not onto and not
injective: While the direction of u is arbitrary, the direction of u′ is always that of σ . In the inelastic case, everything
will be clear if we always keep in mind that the collision map is a bijection from Ξ onto itself, and keep all three lines
needed to specify this map.

There is one more important point to notice: The integral in (A.10) is unchanged if we swap v and w; i.e., make the
change of variables (v,w,σ ) → (w,v,σ ). This transformation does not affect v′ but it reverses the sign on k, and so
we may replace B(k · σ) in (A.10) with B(−k · σ) without affecting 〈Q+(f,f ),ϕ〉. That is, only the symmetric part
of B contributes to the collision kernel, and we may freely require, by symmetrizing if need be, that B is a symmetric
function on [−1,1]. We shall always impose this symmetry requirement on our rate functions B .

A.1.3. Relations between representations
Our final business in this section is to relate these two representation of the gain term, and to determine in particular

the relation between Φ , B and Φ̃ , B̃ in (A.10) and (A.6). The crucial fact is that both maps (v,w,n) → (v′,w′, n′)
and (v,w,σ ) → (v′,w′, σ ′) yield the same pair (v′,w′) if σ and n are related through σ = k − 2(k · n)n; i.e., if σ is
the reflection of k about the plane normal to n. Indeed, since, for example,

v + w

2
+ v − w

2
− (

(v − w) · n)
n = v − (

(v − w) · n)
n, (A.12)

the first lines of (A.9) and (A.5) coincide if we relate n and σ through

u

2
− (u · n)n = |u|

2
σ or, equivalently k − 2(k · n)n = σ. (A.13)

Since σ is the reflection of k about the plane orthogonal to n, we recover n (up to a sign) in terms of σ and k through:

n = u − |u|σ
|u − |u|σ | or, equivalently n = k − σ

|k − σ | . (A.14)

The fact that we only recover n up to a sign does not matter; it is not n itself, but only the plane normal to n that
matters in all computations we shall make. Finally, from (A.13) doing the k· operation over the formula for k, we have

|k · n| =
√

1 − k · σ
2

. (A.15)

These formulas will be very useful in relating the n representation and the σ representation for inelastic collisions.
To work out the relation between Φ , B and Φ̃ , B̃ , we need just one more identity [3,4]: For any test functions ϕ

on R3,∫
S2

ϕ

(
u − |u|σ

2

)
dσ =

∫
S2

2|u · n|
|u| ϕ

(
(u · n)n

)
dn. (A.16)

To see this, observe that if we define θ = cos−1(k · σ) and χ = cos−1(k · n), then from the reflection relation between
k, n and σ in (A.13), we see that for 0 � χ � π/2, θ = π − 2χ , so that

sin(θ)dθ = 2 sin(2χ)dχ = 4 cos(χ) sin(χ)dχ = 4|k · n| sin(χ)dχ.

Thus, using (A.15),

dσ = 4|k · n|dn and dn = 1
√

2
dσ. (A.17)
4 1 − k · σ
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Finally, by taking into account that with k fixed, n → σ is a two to one cover of S2, and since (u − |u|σ)/2 = (u · n)n

as noted in (A.13), we obtain the identity (A.16).
Now since v′ can be expressed either in terms of (u−|u|)σ/2 or (u ·n)n, by equating the right-hand sides of (A.10)

and (A.6) which requires Φ = Φ̃ and B(k · σ)dσ = 2B̃(k · n)dn since n → σ is a two to one cover of S2 and B̃ is
symmetric, we obtain from (A.17) that

B(k · σ) = B̃(k · n)

2|k · n| . (A.18)

Then since from (A.13) we have k · σ = 1 − 2(k · n)2, we obtain

B(s) = B̃(
√

(1 − s)/2)

2
√

(1 − s)/2
and B̃(t) = 2|t |B(

1 − 2t2), (A.19)

where −1 � s � 1 and −1 � t � 1.

A.2. The kinematics of inelastic collisions

The kinematics of inelastic collisions is easiest to describe starting from the n representation. As in the elastic case,
viewed in the center of momentum frame, the collision behaves like a collision with a wall running normal to the
direction vector n pointing from the center of one ball to the center of the other ball at the point of contact. However,
in the case of an inelastic collision with a wall, the component of the reflected velocity normal to the wall is reduced,
while the component parallel to the wall is unchanged, as shown in Fig. 2. Thus the rule for updating the relative
velocity after the collision is this: Let Pn denote the orthogonal projection onto the span of n. Then

Pn(v
′ − w′) = −ePn(v − w) and P ⊥

n (v′ − w′) = P ⊥
n (v − w).

Thus, our rule for updating the relative velocity after the collision is a sort of reduced reflection

v′ − w′ = (v − w) − (1 + e)
(
(v − w) · n)

n,

where the restitution coefficient e satisfies 0 � e � 1. If e = 1, then this is a reflection about the plane normal to n. If
e = 0, this simply cancels out the component of v − w along n, which corresponds to a perfectly inelastic collision.
This gives us the inelastic reflection map with restitution coefficient e, denoted Cr,e: Cr,e(v,w,n) = (v′,w′, n′) where⎧⎪⎪⎪⎨⎪⎪⎪⎩

v′ = v − 1 + e

2

(
(v − w) · n)

n,

w′ = w + 1 + e

2

(
(v − w) · n)

n,

n′ = n.

(A.20)

Note that with u′ = v′ − w′, we have

|u′|2 = |u|2 + (
e2 − 1

)
(u · n)2. (A.21)

Fig. 2. Profile of the plane of reflection, with some normal lines indicated, along which the pre and post collisional velocities line up in the inelastic
case.
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and

k′ = k − (1 + e)(k · n)n√
1 + (e2 − 1)(k · n)2

. (A.22)

We now have what we need to write down the gain term in the collision kernel in weak form using the inelastic
reflection map:〈

Q+
e (f, f ),ϕ

〉 = 1

4π

∫
R3

∫
R3

∫
S2

f (v)f (w)ϕ(v′)Φ̃
(|u|)B̃(k · n)dndv dw (A.23)

where ϕ and k are as before, and again, Φ̃ and B̃ gives the relative rates of the various kinematically possible collisions,
and dn is the uniform measure on S2 with total mass 4π .

All formulas involving the Fourier transform, of which we shall make extensive use, are simplest in the σ -
parameterization, and so we must translate the above inelastic parameterization into terms of σ . This is easy to do
using (A.13) and (A.14). For example, the first line of (A.20) can be written as

v′ = v + w

2
+ u

2
− 1 + e

2
(u · n)n = v + w

2
+ 1 − e

4
u + 1 + e

4
|u|σ,

where (A.13) was used to eliminate n in favor of σ . In the same way, we translate the second line, and find w′ =
v+w

2 − 1−e
4 u − 1+e

4 |u|σ , and it follows that u′ = 1−e
2 u + 1+e

2 |u|σ , so that

|u′|2 = |u|2
(

1 + e2

2
+ 1 − e2

2
k · σ

)
, (A.24)

and

k′ = (1 − e)k + (1 + e)σ√
2(1 + e2) + 2(1 − e2)k · σ . (A.25)

Finally, from (A.20) we have (n · u′)n = −e(n · u)n. Then from (A.13) we have

u′ − |u′|σ ′ = 2(u′ · n)n = −2e(u · n)n = −e
(
u − |u|σ )

solving for σ ′ we find

σ ′ = k′ + e
|u|
|u′| (k − σ).

Using the expressions just derived for |u′| and k′, we find

σ ′ = (1 + e)k + (1 − e)σ√
2(1 + e2) + 2(1 − e2)k · σ . (A.26)

This gives us the inelastic swapping map with restitution coefficient e, denoted Cs,e: Cs,e(v,w,σ ) = (v′,w′, σ ′)
where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v′ = v + w

2
+ 1 − e

4
(v − w) − 1 + e

4
|v − w|σ,

w′ = v + w

2
− 1 − e

4
(v − w) + 1 + e

4
|v − w|σ,

σ ′ = (1 + e)k + (1 − e)σ√
2(1 + e2) + 2(1 − e2)k · σ .

(A.27)

We now have what we need to write down the gain term in the collision kernel in weak form for inelastic collision
in the σ representation: The basic expression that defines the gain term is〈

Q+
e , ϕ

〉 = 1

4π

∫
3

∫
3

∫
2

f (v)f (w)ϕ(v′)Φ
(|u|)B(k · σ)dσ dv dw (A.28)
R R S
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where ϕ is any test function, and as above k denotes the unit vector in the direction of v − w, and Φ and B gives
the relative rates of the various kinematically possible collisions, and dσ is the uniform measure on S2 with total
mass 4π . Let us remark that being the n-representation more physically meaningful, the σ -representation is a nice
mathematical device to derive estimates in both the weak and the strong formulation.

A.3. Strong form of the inelastic collision kernel

Finally, we want to derive the strong form of the gain term, and for this we need the precollisional velocities
v∗ and w∗. That is, given a collision map C, we define (v∗,w∗,ω∗) = C−1(v,w,ω). It is very easy to invert the
transformation (v,w,n) → (v′,w′, n′) in the reflection parameterization (A.20): Simply use a restitution coefficient
of 1/e. This gives us C−1

r,e (v,w,n) = (v∗,w∗, n∗) where⎧⎪⎪⎪⎨⎪⎪⎪⎩
v∗ = v − 1 + e

2e

(
(v − w) · n)

n,

w∗ = w + 1 + e

2e

(
(v − w) · n)

n,

n∗ = n.

(A.29)

Note that with u∗ = v∗ − w∗, we have

|u∗|2 = |u|2 +
(

1

e2
− 1

)
(u · n)2 = |u|2

(
1 +

(
1

e2
− 1

)
(k · n)2

)
(A.30)

and u∗ · n = − 1
e
u · n. Combining these we have

k∗ · n = − k · n√
e2 + (1 − e2)(k · n)2

. (A.31)

Now, the determinant of the Jacobian matrix for the transformation in (A.20) is easily seen to be(
1 − e

2

)2

−
(

1 + e

2

)2

= −e,

independent of n, so that the Jacobian itself is e. Thus, the determinant of the Jacobian matrix of the inverse transfor-
mation is −1/e, also independent of n, so the Jacobian itself is 1/e. We thus can rewrite (A.23) as

〈
Q+

e , ϕ
〉 = 1

4π

∫
R3

∫
R3

∫
S2

f (v∗)f (w∗)ϕ(v)Φ̃
(|u∗|) B̃(k∗ · n)

e
dndv dw (A.32)

where ϕ and B̃ are as before, and k∗ = v∗ − w∗. Taking into account (A.30) and (A.31) and the fact that B̃ is even,

Q+
e (f, f )(v) = 1

4π

∫
R3

∫
S2

f (v∗)f (w∗)Φ̃+
e

(|u|, k · n)
B̃+

e (k · n)dndw, (A.33)

where B̃+
e

B̃+
e (s) = B̃

(
s√

e2 + (1 − e2)s2

)
1

e
, (A.34)

and

Φ̃+
e (r, s) = Φ̃

(
r
√

e2 + (
1 − e2

)
s2

)
. (A.35)
e
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Then, using the identities in (A.13) once more, we may translate (A.29) into the σ parameterization, and obtain
C−1

s,e (v,w,σ ) = (v∗,w∗, σ ∗) where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

v∗ = v + w

2
− 1 − e

4e
(v − w) + 1 + e

4e
|v − w|σ,

w∗ = v + w

2
+ 1 − e

4e
(v − w) − 1 + e

4e
|v − w|σ,

σ ∗ = (1 + e)k − (1 − e)σ√
2(1 + e2) − 2(1 − e2)k · σ .

(A.36)

Along the way, we find, using (A.13) and (A.14) as before,

|u∗|2 = |u|2
2e2

((
1 + e2) − (

1 − e2)(k · σ)
)

(A.37)

and

k∗ = (1 + e)σ − (1 − e)k√
2(1 + e2) − 2(1 − e2)k · σ . (A.38)

Combining these we have

|k∗ · n| =
√

1 − k · σ
(1 + e2) − (1 − e2)k · σ . (A.39)

Now, we use (A.17) and (A.37) to translate B̃(k∗ · n)dn into terms of σ . We find, remembering that B̃ is even:

B̃(k∗ · n)dn = 1

4
B̃

(√
1 − k · σ

(1 + e2) − (1 − e2)k · σ
)√

2

1 − k · σ dσ.

Next, we use (A.19) to express this in terms of B in place of B̃: We obtain

B̃(k∗ · n)dn = B

(
(1 + e2)k · σ − (1 − e2)

(1 + e2) − (1 − e2)k · σ
) √

2√
(1 + e2) − (1 − e2)k · σ dσ.

Moreover, using (A.31), we have

Φ̃
(|u∗|) = Φ

(|u∗|) = Φ

( |u|√
2e

√(
1 + e2

) − (
1 − e2

)
(k · σ)

)
.

Therefore, defining the function B+
e by

B+
e (s) = B

(
(1 + e2)s − (1 − e2)

(1 + e2) − (1 − e2)s

) √
2√

(1 + e2) − (1 − e2)s

1

e

and the function

Φ+
e (r, s) = Φ

(
r√
2e

√(
1 + e2

) − (
1 − e2

)
s

)
,

we have

Q+
e (f, f )(v) = 1

4π

∫
R3

∫
S2

f (v∗)f (w∗)Φ+
e

(|u|, k · σ )
B+

e (k · σ)dσ dw. (A.40)

The change of variable formulas that we have deduced in this section, suffice not only to allow us to write down
the strong form of the collision kernel, but also to prove the following somewhat more general result:

Theorem A.1. Let K be any continuous real valued function on Ξ × Ξ . Then
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1

4π

∫
R3

∫
R3

∫
S2

K
[
C−1

s,e (v,w,σ ), (v,w,σ )
]
Φ+

e

(|u|, k · σ )
B+

e (k · σ)dσ dw dv

= 1

4π

∫
R3

∫
R3

∫
S2

K
[
(v,w,σ ),Cs,e(v,w,σ )

]
Φ

(|u|)B(k · σ)dσ dw dv (A.41)

and

1

4π

∫
R3

∫
R3

∫
S2

K
[
C−1

r,e (v,w,n), (v,w,n)
]
Φ̃+

e

(|u|, k · n)
B̃+

e (k · n)dndw dv

= 1

4π

∫
R3

∫
R3

∫
S2

K
[
(v,w,n),Cr,e(v,w,n)

]
Φ̃

(|u|)B̃(k · n)dndw dv, (A.42)

where Φ = Φ̃ and B and B̃ are related by (A.19).

References

[1] M. Bisi, J.A. Carrillo, G. Toscani, Contractive Metrics for a Boltzmann equation for granular gases: Diffusive equilibria, J. Statist. Phys. 118
(2005) 301–331.

[2] M. Bisi, J.A. Carrillo, G. Toscani, Decay rates in probability metrics towards homogeneous cooling states for the inelastic Maxwell model,
J. Statist. Phys. 124 (2006) 625–653.

[3] A.V. Bobylev, Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules, Dokl. Akad. Nauk USSR 225
(1975) 1041–1044.

[4] A.V. Bobylev, The theory of the nonlinear spatially uniform Boltzmann equation for Maxwell molecules, Sov. Sci. Rev. C. Math. Phys. 7
(1988) 111–233.

[5] A.V. Bobylev, J.A. Carrillo, I. Gamba, On some properties of kinetic and hydrodynamic equations for inelastic interactions, J. Statist. Phys. 98
(2000) 743–773, Erratum on: J. Statist. Phys. 103 (2001) 1137–1138.

[6] A.V. Bobylev, C. Cercignani, Self-similar asymptotics for the Boltzmann equation with inelastic and elastic interactions, J. Statist. Phys. 110
(2003) 333–375.

[7] A.V. Bobylev, C. Cercignani, I. Gamba, Generalized kinetic Maxwell models of granular gases, in: G. Capriz, P. Giovine, P.M. Mariano (Eds.),
Mathematical Models of Granular Matter, in: Lecture Notes in Mathematics, vol. 1937, Springer, 2008.

[8] A.V. Bobylev, C. Cercignani, I. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Comm. Math.
Phys., in press.

[9] A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular
materials, J. Statist. Phys. 111 (2003) 403–417.

[10] F. Bolley, J.A. Carrillo, Tanaka theorem for inelastic Maxwell models, Comm. Math. Phys. 276 (2007) 287–314.
[11] E.A. Carlen, M.C. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann

equation, J. Statist. Phys. 67 (1992) 575–608.
[12] E.A. Carlen, E. Gabetta, G. Toscani, Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homo-

geneous Maxwellian gas, Comm. Math. Phys. 305 (1999) 521–546.
[13] J.A. Carrillo, G. Toscani, Contractive probability metrics and asymptotic behavior of dissipative kinetic equations, Riv. Mat. Univ. Parma 6

(2007) 75–198.
[14] I. Csiszar, Information-type measures of difference of probability distributions and indirect observations, Stud. Sci. Math. Hung. 2 (1967)

299–318.
[15] L. Desvillettes, About the use of the Fourier transform for the Boltzmann equation, Riv. Mat. Univ. Parma 7 (2003) 1–99.
[16] L. Desvillettes, C. Mouhot, Large time behavior of the a priori bounds for the solutions to the spatially homogeneous Boltzmann equations

with soft potentials, Asymptotic Anal. 54 (2007) 235–245.
[17] M.H. Ernst, R. Brito, High energy tails for inelastic Maxwell models, Europhys. Lett. 58 (2002) 182–187.
[18] M.H. Ernst, R. Brito, Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails, J. Statist. Phys. 109 (2002)

407–432.
[19] I. Gamba, V. Panferov, C. Villani, On the Boltzmann equation for diffusively excited granular media, Comm. Math. Phys. 246 (2004) 503–541.
[20] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975) 1061–1083.
[21] S. Kullback, R.A. Leibler, On information and sufficiency, Ann. Math. Statist. 22 (1951) 79–86.
[22] P.L. Lions, G. Toscani, A strenghtened central limit theorem for smooth densities, J. Funct. Anal. 128 (1995) 148–167.
[23] S. Mischler, C. Mouhot, M. Rodríguez Ricard, Cooling process for inelastic Boltzmann equations for hard spheres, Part I: The Cauchy

problem, J. Statist. Phys. 124 (2006) 655–702.
[24] S. Mischler, C. Mouhot, Cooling process for inelastic Boltzmann equations for hard spheres, Part II: Self-similar solution and tail behavior,

J. Statist. Phys. 124 (2006) 655–702.



1700 E.A. Carlen et al. / Ann. I. H. Poincaré – AN 26 (2009) 1675–1700
[25] S. Mischler, C. Mouhot, Stability, convergence to self-similarity and elastic limit for the Boltzmann equation for inelastic hard spheres,
preprint, arXiv: math.AP/0701449.

[26] S. Mischler, C. Mouhot, Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited inelastic
hard spheres, preprint, arXiv: 0712.0124v1 [math.AP].

[27] G. Toscani, Sur l’inégalité logarithmique de Sobolev, C. R. Acad. Sci. Paris, Sér. 1 324 (1997) 689–694.
[28] C. Villani, Fisher information estimates for Boltzmann’s collision operator, J. Math. Pures Appl. 77 (1998) 821–837.
[29] C. Villani, Mathematics of granular materials, J. Statist. Phys. 124 (2006) 781–822.
[30] X. Zhang, Regularity and long time behavior of the Boltzmann equation for granular gases, J. Math. Anal. Appl. 324 (2006) 650–662.


	Strong convergence towards homogeneous cooling states  for dissipative Maxwell models
	Introduction
	Fisher information bounds
	Propagation of regularity
	Small inelasticity limit of HCS
	Acknowledgements
	The kinematics of inelastic collisions
	The kinematics of elastic collisions
	Reflection map
	Swapping map
	Relations between representations

	The kinematics of inelastic collisions
	Strong form of the inelastic collision kernel

	References


