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Abstract

We prove the global well-posedness and scattering for the defocusing H
1
2 -subcritical (that is, 2 < γ < 3) Hartree equation with

low regularity data in Rd , d � 3. Precisely, we show that a unique and global solution exists for initial data in the Sobolev space
Hs(Rd) with s > 4(γ − 2)/(3γ − 4), which also scatters in both time directions. This improves the result in [M. Chae, S. Hong,
J. Kim, C.W. Yang, Scattering theory below energy for a class of Hartree type equations, Comm. Partial Differential Equations 33
(2008) 321–348], where the global well-posedness was established for any s > max(1/2,4(γ − 2)/(3γ − 4)). The new ingredients
in our proof are that we make use of an interaction Morawetz estimate for the smoothed out solution Iu, instead of an interaction
Morawetz estimate for the solution u, and that we make careful analysis of the monotonicity property of the multiplier m(ξ) · 〈ξ〉p .
As a byproduct of our proof, we obtain that the Hs norm of the solution obeys the uniform-in-time bounds.

MSC: 35Q40; 35Q55; 47J35
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1. Introduction

In this paper, we study the global well-posedness of the following initial value problem (IVP) for the defocusing

H
1
2 -subcritical (that is, 2 < γ < 3) Hartree equation.{

iut + �u = (|x|−γ ∗ |u|2)u, d � 3,

u(0) = u0(x) ∈ Hs(Rd),
(1.1)

where Hs denotes the usual inhomogeneous Sobolev space of order s. It is a classical model introduced in [26].
We adopt the following standard notion of local well-posedness, that is, we say that the IVP (1.1) is locally well-

posed in Hs if for any u0 ∈ Hs , there exists a positive time T = T (‖u0‖s) depending only on the norm of the initial
data, such that a solution to the IVP exists on the time interval [0, T ], is unique in a certain Banach space of functional
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Fig. 1. The curve “ABC” is described by “s = 4(γ−2)
3γ−4 ”.

X ⊂ C([0, T ],H s), and the solution map from Hs
x to C([0, T ],H s) depends continuously. If T can be taken arbitrarily

large, we say that the IVP (1.1) is globally well-posed.
Local well-posedness for the IVP (1.1) in Hs for any s >

γ
2 −1 was established in [18]. A local solution also exists

for H
γ
2 −1 initial data, but the time of existence depends not only on the H

γ
2 −1 norm of u0, but also on the profile

of u0. For more details on local well-posedness see [18].
L2 solutions of (1.1) enjoy mass conservation∥∥u(t, ·)∥∥

L2(Rd )
= ∥∥u0(·)

∥∥
L2(Rd )

.

Moreover, H 1 solutions enjoy energy conservation

E(u)(t) = 1

2

∥∥∇u(t)
∥∥2

L2(Rd )
+ 1

4

∫ ∫
Rd×Rd

1

|x − y|γ
∣∣u(t, x)

∣∣2∣∣u(t, y)
∣∣2

dx dy = E(u)(0),

which together with mass conservation and the local theory immediately yields global well-posedness for (1.1) with
initial data in H 1. A large amount of work has been devoted to global well-posedness and scattering for the Hartree
equation, see [7–11,13,15,17–23].

Existence of global solutions in R3 to (1.1) corresponding to initial data below the energy threshold was recently
obtained in [5] by using the method of “almost conservation laws” or “I-method” (for a detailed description of this
method, see [25] or Section 3 below) and the interaction Morawetz estimate for the solution u, where global well-
posedness was obtained in Hs(R3) with s > max(1/2,4(γ − 2)/(3γ − 4)) (see Fig. 1). Since authors in [5] used the
interaction Morawetz estimate, which involves Ḣ 1/2 norm of the solution, the restriction condition s � 1

2 is prerequi-
site. In order to resolve IVP (1.1) in Hs , s < 1

2 by still using the interaction Morawetz estimate, we need return to the
interaction Morawetz estimate for the smoothed out version Iu of the solution, which is used simultaneously in [2]
and [6].

In this paper, we consider the case d � 3 and we prove the following result:

Theorem 1.1. Let 2 < γ < 3 � d , the initial value problem (1.1) is globally well-posedness in Hs(Rd) for any
s >

4(γ−2)
3γ−4 . Moreover the solution satisfies

sup
t∈[0,∞)

∥∥u(t)
∥∥

Hs(Rd )
� C

(‖u0‖Hs

)
,

and there is scattering for these solutions, that is, the wave operators exist and there is asymptotic completeness on
all of Hs(Rd).
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Remark 1.1. As for the case 3 � γ < 4 � d , local well-posedness for the IVP (1.1) in Hs holds for any s >
γ
2 − 1.

Note that in this case, we have

γ

2
− 1 � 1

2
,

which satisfies the need of the regularity of the interaction Morawetz estimate. Hence for the case 3 � γ < 4 � d , we
only need to combine “I-method” with the interaction Morawetz estimate for the solution, instead of the interaction
Morawetz estimate for the smoothed out version Iu of the solution, to obtain the low regularity global solution of the
IVP (1.1), just as in [3] .

Our method follows closely the recent developments in [2,4] and [6], where the main two ingredients are the
“I-method” and an almost Morawetz type estimate following the work of Lin and Strauss [16]. In order to obtain the
low regularity global solution of the IVP (1.1), we combine I-method with an interaction Morawetz estimate for the
smoothed out version Iu of the solution. By comparison with the interaction Morawetz estimate for the solution in [5],
such a Morawetz estimate for an almost solution is the main novelty of this paper, which helps us to lower the need
on the regularity of the initial data. In addition, we do not use the monotonicity property of the multiplier m(ξ) · 〈ξ 〉p
in the proof of the almost conservation law.

Last, we organize this paper as following: In Section 2, we introduce some notation and state some important
propositions that we will used throughout this paper. In Section 3, we review the I-method, prove the local well-
posedness theory for Iu and obtain an upper bound on the increment of the modified energy. In Section 4, we prove
the “almost interaction Morawetz estimate” for the smoothed out version Iu of the solution. Finally in Section 5, we
give the details of the proof of the global well-posedness stated in Theorem 1.1.

2. Notation and preliminaries

2.1. Notation

In what follows, we use A � B to denote an estimate of the form A � CB for some constant C. If A � B and
B � A, we say that A ≈ B . We write A � B to denote an estimate of the form A � cB for some small constant c > 0.
In addition 〈a〉 := 1 + |a| and a± := a ± ε with 0 < ε � 1. The reader also has to be alert that we sometimes do not
explicitly write down constants that depend on the L2 norm of the solution. This is justified by the conservation of the
L2 norm.

2.2. Definition of spaces

We use Lr
x(R

d) to denote the Lebesgue space of functions f : Rd → C whose norm

‖f ‖Lr
x
:=

( ∫
Rd

∣∣f (x)
∣∣r dx

) 1
r

is finite, with the usual modification in the case r = ∞. We also use the space–time Lebesgue spaces L
q
t Lr

x which are
equipped with the norm

‖u‖L
q
t Lr

x
:=

( ∫
J

∥∥u(t, x)
∥∥q

Lr
x
dt

) 1
q

for any space–time slab J ×R, with the usual modification when either q or r are infinity. When q = r , we abbreviate
L

q
t Lr

x by L
q
t,x .

As usual, we define the Fourier transform of f (x) ∈ L1
x by

f̂ (ξ) = (2π)−
d
2

∫
d

e−ixξ f (x) dx.
R
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We define the fractional differentiation operator |∇x |α for any real α by

|̂∇|αu(ξ) := |ξ |αû(ξ),

and analogously

〈̂∇〉αu(ξ) := 〈ξ 〉αû(ξ).

The (in)homogeneous Sobolev space Ḣ s(Rd) (Hs(Rd)) is given via

‖u‖Ḣ s := ∥∥|∇|su∥∥
L2(Rd )

, ‖u‖Hs := ∥∥〈∇〉su∥∥
L2(Rd )

,

and more general (in)homogeneous Sobolev spaces are given via

‖u‖Ḣ s,p := ∥∥|∇|su∥∥
Lp(Rd )

, ‖u‖Hs,p := ∥∥〈∇〉su∥∥
Lp(Rd )

.

Let S(t) denote the solution operator to the linear Schrödinger equation

iut + �u = 0, x ∈ Rd .

We denote by Xs,b(R × Rd) the completion of S(R × Rd) with respect to the following norm

‖u‖Xs,b = ∥∥S(−t)u
∥∥

Hs
x Hb

t
= ∥∥〈

τ + |ξ |2〉b〈ξ〉s ũ(τ, ξ)
∥∥

L2
τ L2

ξ (R×Rd )
,

where ũ is the space–time Fourier transform

ũ(τ, ξ) = (2π)−
d+1

2

∫ ∫
R×Rd

e−i(x·ξ+tτ )u(t, x) dt dx.

Furthermore for a given time interval J , we define

‖u‖Xs,b(J ) = inf
{‖v‖Xs,b ; v = u on J

}
.

2.3. Some known estimates

Now we recall a few known estimates that we shall need. First we state the following Strichartz estimate [1,14].
Let d � 3, we recall that a pair of exponents (q, r) is called admissible if

2

q
= d

(
1

2
− 1

r

)
� δ(r), 2 � q, r � ∞.

Proposition 2.1. Let d � 3, (q, r) and (q̃, r̃) be any two admissible pairs. Suppose that u is a solution to

iut + �u = F(t, x), t ∈ J, x ∈ Rd,

u(0) = u0(x).

Then we have the estimate

‖u‖L
q
t Lr

x(J×Rd ) � ‖u0‖L2(Rd ) + ‖F‖
L

q̃′
t Lr̃′

x (J×Rd )
,

where the prime exponents denote Hölder dual exponents.

From the above Strichartz estimate and Lemma 2.1 in [12], we have

‖u‖L
q
t Lr

x
� ‖u‖

X
0, 1

2 +

for any admissible (q, r). Then by Sobolev embedding theorem, we have
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Proposition 2.2. Let d � 3. For r < ∞, 0 � 2
q

� min(δ(r),1), we have

‖u‖L
q
t Lr

x
� ‖u‖

X
δ(r)− 2

q , 1
2 + .

While for 2 � q � ∞, r = ∞, we have

‖u‖L
q
t L∞

x
� ‖u‖

X
d
2 − 2

q +, 1
2 + .

We will also need the Littlewood–Paley projection operators. Specifically, let ϕ(ξ) be a smooth bump function
adapted to the ball |ξ | � 2 which equals 1 on the ball |ξ | � 1. For each dyadic number N ∈ 2Z, we define the
Littlewood–Paley operators

P̂�Nf (ξ) := ϕ

(
ξ

N

)
f̂ (ξ), P̂>Nf (ξ) :=

(
1 − ϕ

(
ξ

N

))
f̂ (ξ),

P̂Nf (ξ) :=
(

ϕ

(
ξ

N

)
− ϕ

(
2ξ

N

))
f̂ (ξ).

Similarly we can define P<N , P�N , and PM<·�N = P�N − P�M , whenever M and N are dyadic numbers. We will
frequently write f�N for P�Nf and similarly for the other operators.

The Littlewood–Paley operators commute with derivative operators, the free propagator, and the conjugation op-
eration. They are self-adjoint and bounded on every L

p
x and Ḣ s

x space for 1 � p � ∞ and s � 0. They also obey the
following Sobolev and Bernstein estimates

‖P�Nf ‖Lp � N−s
∥∥|∇|sP�Nf

∥∥
Lp ,∥∥|∇|sP�Nf

∥∥
Lq � N

s+ n
p
− n

q ‖P�Nf ‖Lp ,∥∥|∇|±sPNf
∥∥

Lq � N
±s+ n

p
− n

q ‖PNf ‖Lp ,

whenever s � 0 and 1 � p � q � ∞.

3. The I-method and the modified local well-posedness

3.1. The I-operator and the hierarchy of energies

Let us define the operator I . For s < 1 and a parameter N � 1, let m(ξ) be the following smooth monotone
multiplier:

m(ξ) :=
{

1, if |ξ | < N,

( N
|ξ | )

1−s , if |ξ | > 2N.

We define the multiplier operator I :Hs → H 1 by

Î u(ξ) = m(ξ)û(ξ).

The operator I is smoothing of order 1 − s and we have from Bernstein’s estimates that

‖u‖Hs0 � ‖Iu‖Hs0+1−s � N1−s‖u‖Hs0 ,

‖u‖Xs0,b0 � ‖Iu‖Xs0+1−s,b0 � N1−s‖u‖Xs0,b0

for any s0, b0 ∈ R.
We set

Ẽ(u) = E(Iu), (3.1)

where

E(u)(t) = 1∥∥∇u(t)
∥∥2

L2 + 1
∫ ∫

1
γ

∣∣u(t, x)
∣∣2∣∣u(t, y)

∣∣2
dx dy.
2 4 |x − y|
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We call Ẽ(u) the modified energy. Since we will focus on the analysis of the modified energy, we collect some facts
concerning the calculus of multilinear forms used to define the modified energy.

If k � 2 is an even integer, we define a spatial multiplier of order k to be the function Mk(ξ1, ξ2, . . . , ξk) on

Γk =
{

(ξ1, ξ2, . . . , ξk) ∈ (
Rd

)k:
k∑

j=1

ξj = 0

}
,

which we endow with the standard measure δ(ξ1 + ξ2 + · · · + ξk). If Mk is a multiplier of order k, 1 � j � k is an
index and l � 1 is an even integer, the elongation Xl

j (Mk) of Mk is defined to be the multiplier of order k + l given by

Xl
j (Mk)(ξ1, ξ2, . . . , ξk+l ) = Mk(ξ1, . . . , ξj−1, ξj + · · · + ξj+l , ξj+l+1, . . . , ξk+l).

Also if Mk is a multiplier of order k and u1, u2, . . . , uk are functions on Rd , we define the k-linear functional

Λk(Mk;u1, u2, . . . , uk) = Re
∫
Γk

Mk(ξ1, ξ2, . . . , ξk)

k∏
j=1

ûj (ξj )

and we adopt the notation Λk(Mk;u) = Λk(Mk;u, ū, . . . , u, ū). We observe that the quantity Λk(Mk;u) is invariant

(1) if one permutes the even arguments ξ2, ξ4, . . . , ξk of Mk ;
(2) if one permutes the odd arguments ξ1, ξ3, . . . , ξk−1 of Mk ;
(3) if one makes the change of

Mk(ξ1, ξ2, . . . , ξk−1, ξk) �→ Mk(−ξ2,−ξ1, . . . ,−ξk,−ξk−1).

If u is a solution of (1.1), the following differentiation law holds for the multiplier forms Λk(Mk;u)

∂tΛk(Mk;u) = Λk

(
iMk

k∑
j=1

(−1)j |ξj |2;u
)

+ Λk+2

(
i

k∑
j=1

(−1)j |ξj+1,j+2|−(d−γ )X2
j (Mk);u

)
(3.2)

where we used the notational convention ξa,b = ξa + ξb , ξa,b,c = ξa + ξb + ξc, etc. Indeed, note that

i∂tuj + �uj = (|x|−γ ∗ |uj |2
)
uj , for 0 � j � k,

we take Fourier transformation in spatial variable and deduce

∂t ûj (ξj ) = −i|ξj |2ûj (ξj ) − i

∫
ξj =ξ̃j,j+1,j+2

|ξ̃j+1,j+2|−(d−γ )ûj (ξ̃j ) ˆ̄uj (ξ̃j+1)ûj (ξ̃j+2) dξ̃j+1 dξ̃j+2,

∂t
ˆ̄uj (ξj ) = +i|ξj |2 ˆ̄uj (ξj ) + i

∫
ξj =ξ̃j,j+1,j+2

|ξ̃j+1,j+2|−(d−γ ) ˆ̄uj (ξ̃j )ûj (ξ̃j+1) ˆ̄uj (ξ̃j+2) dξ̃j+1 dξ̃j+2.

From the above identities, we can obtain (3.2).
Using the above notation, the modified energy (3.1) can be written as follows:

Ẽ(u) = Λ2

(
−1

2
ξ1m1 · ξ2m2;u

)
+ Λ4

(
1

4
|ξ2,3|−(d−γ )m1m2m3m4;u

)
where we abbreviate m(ξj ) as mj .

Together with the differentiation rules (3.2) and the symmetry properties of k-linear functional Λk(Mk;u), we
obtain

∂tΛ2

(
−1

2
ξ1m1 · ξ2m2;u

)
= Λ2

(
− i

2
ξ1m1 · ξ2m2

2∑
(−1)j |ξj |2;u

)

j=1
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+ Λ4

(
− i

2

2∑
j=1

(−1)j |ξj+1,j+2|−(d−γ )X2
j (ξ1m1 · ξ2m2);u

)
= Λ4

(
i|ξ2,3|−(d−γ )m2

1|ξ1|2;u
)
,

where we used the fact that
∑2

j=1(−1)j |ξj |2 = 0 on the hyperplane Γ2. At the same time, we have

∂tΛ4

(
1

4
|ξ2,3|−(d−γ )m1m2m3m4;u

)
= Λ4

(
i

4
|ξ2,3|−(d−γ )m1m2m3m4

4∑
j=1

(−1)j |ξj |2;u
)

+ Λ6

(
i

4

4∑
j=1

(−1)j |ξj+1,j+2|−(d−γ )X2
j

(|ξ2,3|−(d−γ )m1m2m3m4
);u)

= −Λ4
(
i|ξ2,3|−(d−γ )|ξ1|2m1m2m3m4;u

) − Λ6
(
i|ξ2,3|−(d−γ )|ξ4,5|−(d−γ )m1,2,3m4m5m6;u

)
= −Λ4

(
i|ξ2,3|−(d−γ )|ξ1|2m1m2m3m4;u

) + Λ6
(
i|ξ2,3|−(d−γ )|ξ4,5|−(d−γ )m1,2,3(m1,2,3 − m4m5m6);u

)
.

The fundamental theorem of calculus together with these estimates implies the following proposition, which will
be used to prove that Ẽ is almost conserved.

Proposition 3.1. Let u be an H 1 solution to (1.1). Then for any T ∈ R and δ > 0, we have

Ẽ(u)(T + δ) − Ẽ(u)(T ) =
T +δ∫
T

Λ4(M4;u)dt +
T +δ∫
T

Λ6(M6;u)dt

with

M4 = i|ξ2,3|−(d−γ )|ξ1|2m1(m1 − m2m3m4);
M6 = i|ξ2,3|−(d−γ )|ξ4,5|−(d−γ )m1,2,3(m1,2,3 − m4m5m6).

Furthermore if |ξj | � N for all j , then the multipliers M4 and M6 vanish on Γ4 and Γ6, respectively.

3.2. Modified local well-posedness

In this subsection, we shall prove a local well-posedness result for the modified solution Iu and some a priori
estimates for it.

Let J = [t0, t1] be an interval of time. We denote by ZI (J ) the following space:

ZI (J ) = SI (J ) ∩ X
1, 1

2 +
I (J )

where

SI (J ) =
{
u; sup

(q,r) admissible

∥∥〈∇〉Iu
∥∥

L
q
t Lr

x(J×Rd )
< ∞

}
,

X
1,b
I (J ) = {

u; ‖Iu‖
X

1, 1
2 +

(J×Rd )
< ∞}

.

Proposition 3.2. Let 2 < γ < 3 � d , s >
γ
2 − 1, and consider the IVP

iIut + �Iu = I
(|x|−γ ∗ |u|2u)

, x ∈ Rd , t ∈ R,

Iu(t0, x) = Iu0(x) ∈ H 1(Rd
)
. (3.3)

Then for any u0 ∈ Hs , there exists a time interval J = [t0, t0 +δ], δ = δ(‖Iu0‖H 1) and there exists a unique u ∈ ZI (J )

solution to (3.3). Moreover it is continuity with respect to the initial data.
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Proof. The proof of this proposition proceeds by the usual fixed point method on the space ZI (J ). Since the estimates
are very similar to the ones we provide in the proof of Proposition 3.3 below, in particular (3.9) and (3.10) , we omit
the details. �
Proposition 3.3. Let 2 < γ < 3 � d and s >

γ
2 − 1. If u is a solution to the IVP (3.3) on the interval J = [t0, t1],

which satisfies the following a priori bound

‖Iu‖4

L4
t Ḣ

− d−3
4 ,4

x (J×Rd )

< μ,

where μ is a small universal constant, then

‖u‖ZI (J ) � ‖Iu0‖H 1 .

Proof. We start by obtaining a control of the Strichartz norms. Applying 〈∇〉 to (3.3) and using the Strichartz estimate
in Proposition 2.1. For any pair of admissible exponents (q, r), we obtain∥∥〈∇〉Iu

∥∥
L

q
t Lr

x
� ‖Iu0‖H 1 + ∥∥〈∇〉I((|x|−γ ∗ |u|2)u)∥∥

L
3
2
t L

6d
3d+4
x

. (3.4)

Now we notice that the multiplier 〈∇〉I has symbol which is increasing as a function of |ξ | for any s � γ
2 − 1. Using

this fact one can modify the proof of the Leibnitz rule for fractional derivatives and prove its validity for 〈∇〉I . See
also Principle A.5 in the appendix of [25]. This remark combined with (3.4) implies that∥∥〈∇〉Iu

∥∥
L

q
t Lr

x
� ‖Iu0‖H 1 + ∥∥〈∇〉I((|x|−γ ∗ |u|2)u)∥∥

L
3
2
t L

6d
3d+4
x

� ‖Iu0‖H 1 + ∥∥|x|−γ ∗ 〈∇〉I(|u|2)∥∥
L2

t L

2d
γ

x

‖u‖
L6

t L

6d
3d+4−3γ
x

+ ∥∥|x|−γ ∗ |u|2∥∥
L3

t L
3d
4

x

∥∥〈∇〉Iu
∥∥

L3
t L

6d
3d−4
x

� ‖Iu0‖H 1 + ∥∥〈∇〉Iu
∥∥

L3
t L

6d
3d−4
x

‖u‖2

L6
t L

6d
3d+4−3γ
x

(3.5)

where we used Hölder’s inequality and Hardy–Littlewood–Sobolev’s inequality.
In order to obtain an upper bound on ‖u‖

L6
t L

6d
3d+4−3γ
x

, we perform a Littlewood–Paley decomposition along the

following lines. We note that a similar approach was used in [3]. We write

u = uN0 +
∞∑

j=1

uNj
, (3.6)

where uN0 has spatial frequency support for 〈ξ〉 � N , while uNj
is such that its spatial Fourier support transform is

supported for 〈ξ〉 ≈ Nj = 2hj with hj � logN and j = 1,2, . . . . By the triangle inequality and Hölder’s inequality,
we have

‖u‖
L6

t L

6d
3d+4−3γ
x

� ‖uN0‖
L6

t L

6d
3d+4−3γ
x

+
∞∑

j=1

‖uNj
‖
L6

t L

6d
3d+4−3γ
x

� ‖uN0‖
L6

t L

6d
3d+4−3γ
x

+
∞∑

j=1

‖uNj
‖2− γ

2

L6
t L

6d
3d−2
x

‖uNj
‖

γ
2 −1

L6
t L

6d
3d−8
x

. (3.7)

On the other hand, by using the definition of the operator I , the definition of the uNj
’s and the Marcinkiewicz multi-

plier theorem, we observe that for some 0 < θi < 1, i = 1, . . . ,4,
∑4

j=1 θi = 1

‖uN0‖
L6

t L

6d
3d+4−3γ
x

� ‖uN0‖θ1

L4
t Ḣ

− d−3
4 ,4

x

‖uN0‖θ2

L6
t L

6d
3d−8
x

‖uN0‖θ3

L6
t L

6d
3d−2
x

‖uN0‖θ4
L∞

t L2
x

� ‖IuN0‖θ1

4 ˙ − d−3
4 ,4

‖uN0‖1−θ1
ZI (J )

,

Lt Hx
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∥∥〈∇〉IuNj

∥∥
L6

t L

6d
3d−2
x

≈ Nj

(
N

Nj

)1−s

‖uNj
‖
L6

t L

6d
3d−2
x

, j = 1,2, . . . ,

‖IuNj
‖
L6

t L

6d
3d−8
x

≈
(

N

Nj

)1−s

‖uNj
‖
L6

t L

6d
3d−8
x

, j = 1,2, . . . .

Now we use these estimates to obtain the following upper bound on (3.7)

‖u‖
L6

t L

6d
3d+4−3γ
x

� ‖IuN0‖θ1

L4
t Ḣ

− d−3
4 ,4

x

‖uN0‖1−θ1
ZI (J )

+
∞∑

j=1

(
1

Nj

(
Nj

N

)1−s

‖uNj
‖ZI (J )

)2− γ
2
((

Nj

N

)1−s

‖uNj
‖ZI (J )

) γ
2 −1

� μ
θ1
4 ‖u‖1−θ1

ZI (J )
+ N−(2− γ

2 )‖u‖ZI (J ), (3.8)

which together with (3.5) implies that∥∥〈∇〉Iu
∥∥

L
q
t Lr

x
� ‖Iu0‖H 1 + μ

θ1
2 ‖u‖3−2θ1

ZI (J )
+ N−(4−γ )‖u‖3

ZI (J ). (3.9)

Now we shall obtain a control of the Xs,b norm. We use Duhamel’s formula and the theory of Xs,b spaces [12,25]
to obtain

‖Iu‖
X

1, 1
2 + � ‖Iu0‖H 1 + ∥∥〈∇〉I((|x|−γ ∗ |u|2)u)∥∥

X
0,− 1

2 +

� ‖Iu0‖H 1 + ∥∥〈∇〉I((|x|−γ ∗ |u|2)u)∥∥
L

3
2 +
t L

6d
3d+4 +
x

� ‖Iu0‖H 1 + ∥∥〈∇〉Iu
∥∥

L3
t L

6d
3d−4
x

‖u‖
L6

t L

6d
3d+4−3γ
x

‖u‖
L6+

t L

6d
3d+4−3γ

+
x

. (3.10)

An upper bound on ‖u‖
L6

t L

6d
3d+4−3γ
x

is given by (3.8). In order to obtain an upper bound on ‖u‖
L6+

t L

6d
3d+4−3γ

+
x

, we

proceed as follows. First we perform a dyadic decomposition and write u as in (3.6). The triangle inequality applied
on (3.6) gives for any 0 < δ <

γ
2 − 1

‖u‖
L6+

t L

6d
3d+4−3γ

+
x

� ‖uN0‖
L6+

t L

6d
3d+4−3γ

+
x

+
∞∑

j=1

‖uNj
‖
L6+

t L

6d
3d+4−3γ

+
x

= ‖IuN0‖
L6+

t L

6d
3d+4−3γ

+
x

+
∞∑

j=1

Nδ−s
j Ns−1

∥∥〈∇〉1−δIuNj

∥∥
L6+

t L

6d
3d+4−3γ

+
x

� ‖Iu‖
L6+

t L

6d
3d+4−3γ

+
x

+ ∥∥〈∇〉1−δIu
∥∥

L6+
t L

6d
3d+4−3γ

+
x

� ‖Iu‖
X

1, 1
2 +, (3.11)

where we used Proposition 2.2. By applying the inequalities (3.8) and (3.11) to bound the right-hand side of (3.10),
we obtain

‖Iu‖
X

1, 1
2 + � ‖Iu0‖H 1 + μ

θ1
4 ‖u‖3−θ1

ZI (J ) + N−(2− γ
2 )‖u‖3

ZI (J ). (3.12)

The desired bound follows from (3.9) and (3.12) by choosing N sufficiently large. �
3.3. An upper bound on the increment of Ẽ(u)

Decomposition remark. Our approach to prove a decay for the increment of the modified energy is based on
obtaining certain multilinear estimates in appropriate functional spaces which are L2-based (more details, see [24]).
Hence, whenever we perform a Littlewood–Paley decomposition of a function we shall assume that the Fourier trans-
forms of the Littlewood–Paley pieces are positive. Moreover, we will ignore the presence of conjugates. At the end
we will always keep a decay factor C(N1,N2, . . .) in order to perform the summations.
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Now we proceed to prove the almost conservation law of the modified energy. In Proposition 3.1, we prove that an
increment of the modified energy can be expressed as

Ẽ(u)(T + δ) − Ẽ(u)(T ) =
T +δ∫
T

Λ4(M4;u)dt +
T +δ∫
T

Λ6(M6;u)dt

with

M4 = i|ξ2,3|−(d−γ )|ξ1|2m1(m1 − m2m3m4);
M6 = i|ξ2,3|−(d−γ )|ξ4,5|−(d−γ )m1,2,3(m1,2,3 − m4m5m6).

Hence in order to control the increment of the modified energy, we shall find an upper bound on the Λ4(M4;u) and
Λ6(M6;u) forms, which we do in the following propositions. First we give the quadrilinear estimate.

Proposition 3.4. For any Schwartz function u, and any δ ≈ 1 just as in Proposition 3.2, we have that∣∣∣∣∣
T +δ∫
T

Λ4(M4;u)dt

∣∣∣∣∣ � N−1+‖Iu‖4

X
1, 1

2 +, (3.13)

for s >
γ
2 − 1.

Proof. By Plancherel’s theorem, we aim to prove that∣∣∣∣∣
T +δ∫
T

∫
Γ4

|ξ2,3|−(d−γ )|ξ1|2m1(m1 − m2m3m4)û1(t, ξ1) ˆ̄u2(t, ξ2)û3(t, ξ3) ˆ̄u4(t, ξ4)

∣∣∣∣∣
� N−1+C(N1,N2,N3,N4)

4∏
j=1

‖Iuj‖
X

1, 1
2 + , (3.14)

where C(N1,N2,N3,N4) is a decay just as the remark above, and it allows us to sum over all dyadic shells. The
analysis which follows will not rely on the complex conjugate structure in Λ4(M4;u). Thus, by symmetry, we may
assume that N2 � N3 � N4.

Case 1. N � N2. According to the definition of m(ξ), the multiplier

|ξ2,3|−(d−γ )m1(m1 − m2m3m4)

is identically 0, the bound (3.13) holds trivially.

Case 2. N2 � N � N3 � N4. Since
∑4

j=1 ξj = 0, we have N1 ≈ N2. We aim for (3.14) with a decay factor

C(N1,N2,N3,N4) = N0−
2 .

By the mean value theorem, we have the following pointwise bound∣∣m1(m1 − m2m3m4)
∣∣ = ∣∣m1(m2,3,4 − m2m3m4)

∣∣
� m1

∣∣∇m(ξ) · (ξ3 + ξ4)
∣∣ where |ξ | ≈ |ξ2|

� m1m2
N3

N2
.

Hence by Hölder’s inequality and Hardy–Littlewood–Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate,
we obtain
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LHS of (3.14) � N2
1 m1m2

N3

N2

∣∣∣∣∣
T +δ∫
T

∫
Γ4

|ξ2,3|−(d−γ )û1(t, ξ1) ˆ̄u2(t, ξ2)û3(t, ξ3) ˆ̄u4(t, ξ4)

∣∣∣∣∣
� N2

1 m1m2
N3

N2
‖u1‖

L3
t L

6d
3d−4
x

‖u2‖
L3

t L

6d
3d−4
x

‖u3‖
L6

t L

6d
3d−2
x

‖u4‖
L6

t L

6d
3d+10−6γ
x

� N2
1 m1m2

N3

N2
N

γ−2
4

4∏
j=1

‖uj‖
X

0, 1
2 +,

where we used the fact that

1

3
+ 1

3
+ 1

6
+ 1

6
= 1,

3d − 4

6d
+ 3d − 4

6d
+ 3d − 2

6d
+ 3d + 10 − 6γ

6d
+ γ

d
= 2,

δ

(
6d

3d − 4

)
− 2

3
= 0, δ

(
6d

3d − 2

)
− 2

6
= 0, δ

(
6d

3d + 10 − 6γ

)
− 2

6
= γ − 2.

It suffices to show that

N2
1 m1m2

N3

N2
N

γ−2
4 � N−1+N0−

2 m1N1m2N2〈N3〉〈N4〉.
We reduce to show that

N1−N0+
2 � N2 〈N3〉N−1

3 〈N4〉N2−γ

4 .

This is true since

N2 � N1−N0+
2 ; 〈N3〉N−1

3 � 1; 〈N4〉N2−γ

4 � 1.

Case 3. N2 � N3 � N . In this case, we use the trivial pointwise bound∣∣m1(m1 − m2m3m4)
∣∣ � m2

1.

The frequency interactions fall into two subcategories, depending on which frequency is comparable to N2.

Case 3a. N1 ≈ N2 � N3 � N . In this case, we prove the decay factor

C(N1,N2,N3,N4) = N0−
3

in (3.14). This allows us to directly sum in N3 and N4, and sum in N1 and N2 after applying Cauchy–Schwarz to
those factors.

By Hölder’s inequality, Hardy–Littlewood–Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we ob-
tain

LHS of (3.14) � N2
1 m2

1

∣∣∣∣∣
T +δ∫
T

∫
Γ4

|ξ2,3|−(d−γ )û1(t, ξ1) ˆ̄u2(t, ξ2)û3(t, ξ3) ˆ̄u4(t, ξ4)

∣∣∣∣∣
� N2

1 m2
1‖u1‖

L3
t L

6d
3d−4
x

‖u2‖
L3

t L

6d
3d−4
x

‖u3‖
L6

t L

6d
3d−2
x

‖u4‖
L6

t L

6d
3d+10−6γ
x

� N2
1 m2

1N
γ−2
4

4∏
j=1

‖uj‖
X

0, 1
2 + .

It suffices to show that

N2
1 m2

1N
γ−2
4 � N−1+N0−

3 m1N1m2N2m3N3〈N4〉.
We reduce to show that
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N1−N0+
3 � m3N3m4〈N4〉N2−γ

4 .

This is true since for s � γ − 2, we have

m3N3m4〈N4〉N2−γ

4 � m3N3m4〈N4〉3−γ � m3N3 � N1−N0+
3 ,

where we used the fact that m(ξ)〈ξ 〉p is monotone non-decreasing if s + p � 1. While for γ
2 − 1 < s < γ − 2, we

have

m3N3m4〈N4〉N2−γ

4 � m3N3m3N
3−γ

3 � N4−γ−N0+
3 � N1−N0+

3 ,

where we used the fact that m(ξ)〈ξ 〉p is monotone non-increasing if s + p < 1.

Case 3b. N2 ≈ N3 � N,N2 � N1. In this case, we prove the decay factor

C(N1,N2,N3,N4) = N0−
2

in (3.14). This will allow us to directly sum in all the Ni .
By Hölder’s inequality, Hardy–Littlewood–Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate once

again, we obtain

LHS of (3.14) � N2
1 m2

1

∣∣∣∣∣
T +δ∫
T

∫
Γ4

|ξ2,3|−(d−γ )û1(t, ξ1) ˆ̄u2(t, ξ2)û3(t, ξ3) ˆ̄u4(t, ξ4)

∣∣∣∣∣
� N2

1 m2
1‖u1‖

L3
t L

6d
3d−4
x

‖u2‖
L3

t L

6d
3d−4
x

‖u3‖
L6

t L

6d
3d−2
x

‖u4‖
L6

t L

6d
3d+10−6γ
x

� N2
1 m2

1N
γ−2
4

4∏
j=1

‖uj‖
X

0, 1
2 + .

It suffices to show that

N2
1 m2

1N
γ−2
4 � N−1+N0−

2 m1N1m2N2m3N3〈N4〉.
Note that

N2
1 m2

1 � m1N1m2N2.

We reduce to show that

N1−N0+
2 � m3N3m4〈N4〉N2−γ

4 .

This is true since for s � γ − 2, we have

m3N3m4〈N4〉N2−γ

4 � m3N3m4〈N4〉3−γ � m3N3 ≈ m2N2 � N1−N0+
2 ,

where we used the fact that m(ξ)〈ξ 〉p is monotone non-decreasing if s + p � 1. While for γ
2 − 1 < s < γ − 2, we

have

m3N3m4〈N4〉N2−γ

4 � m3N3m3N
3−γ

3 ≈ m2
2N

4−γ

2 � N4−γ−N0+
3 � N1−N0+

3 ,

where we used the fact that m(ξ)〈ξ 〉p is monotone non-increasing if s + p < 1. This completes the proof. �
In order to make use of quadrilinear estimate (Proposition 3.4) to obtain sextilinear estimate, we first give a lemma

Lemma 3.1. Assume u, δ are as in Proposition 3.2, and PN1,2,3 the Littlewood–Paley projection onto the N1,2,3
frequency shell. Then∥∥PN1,2,3

(
I
(
u|∇|−(d−γ )|u|2))∥∥

L3
t L

6d
3d−4
x

� N1,2,3‖Iu‖3

X
1, 1

2 + .
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Proof. We write u = uL + uH where

supp ûl(t, ξ) ⊆ {|ξ | < 2
}
,

supp ûH (t, ξ) ⊆ {|ξ | > 1
}
.

Hence,∥∥PN1,2,3

(
I
(
u|∇|−(d−γ )|u|2))∥∥

L3
t L

6d
3d−4
x

�
∥∥PN1,2,3

(
I
(
uL|∇|−(d−γ )|uL|2))∥∥

L3
t L

6d
3d−4
x

+ ∥∥PN1,2,3

(
I
(
uH |∇|−(d−γ )|uH |2))∥∥

L3
t L

6d
3d−4
x

+ ∥∥PN1,2,3

(
I
(
uL|∇|−(d−γ )|uH |2))∥∥

L3
t L

6d
3d−4
x

+ ∥∥PN1,2,3

(
I
(
uH |∇|−(d−γ )|uL|2))∥∥

L3
t L

6d
3d−4
x

+ ∥∥PN1,2,3

(
I
(
uL|∇|−(d−γ )ūLuH

))∥∥
L3

t L

6d
3d−4
x

+ ∥∥PN1,2,3

(
I
(
uL|∇|−(d−γ )uLūH

))∥∥
L3

t L

6d
3d−4
x

+ ∥∥PN1,2,3

(
I
(
uH |∇|−(d−γ )ūLuH

))∥∥
L3

t L

6d
3d−4
x

+ ∥∥PN1,2,3

(
I
(
uH |∇|−(d−γ )uLūH

))∥∥
L3

t L

6d
3d−4
x

.

Consider the first term. By Hölder’s inequality, Hardy–Littlewood–Sobolev’s inequality and Proposition 2.2, we
have ∥∥PN1,2,3

(
I
(
uL|∇|−(d−γ )|uL|2))∥∥

L3
t L

6d
3d−4
x

�
∥∥uL|∇|−(d−γ )|uL|2∥∥

L3
t L

6d
3d−4
x

� ‖uL‖3

L9
t L

18d
9d−6γ−4
x

= ‖IuL‖3

L9
t L

18d
9d−6γ−4
x

� ‖IuL‖3

X
1, 1

2 + � N1,2,3‖Iu‖3

X
1, 1

2 +,

since

N1,2,3 � 1, and 0 � d ×
(

1

2
− 9d − 6γ − 4

18d

)
− 2

9
= γ

3
� 1.

We estimate the second term. By Sobolev’s inequality and using the Leibniz rule for the operator |∇|2− γ
2 I (Princi-

ple A.5 in [25]) and Proposition 2.2, we have∥∥∥∥ 1

N1,2,3
PN1,2,3

(
I
(
uH |∇|−(d−γ )|uH |2))∥∥∥∥

L3
t L

6d
3d−4
x

�
∥∥|∇|−1PN1,2,3

(
I
(
uH |∇|−(d−γ )|uH |2))∥∥

L3
t L

6d
3d−4
x

�
∥∥|∇|2− γ

2 I
(
uH |∇|−(d−γ )|uH |2)∥∥

L3
t L

6d
3d−3γ+14
x

�
∥∥|∇|2− γ

2 IuH

∥∥
L9

t L

18d
9d−9γ+14
x

‖uH ‖2

L9
t L

18d
9d−9γ+14
x

�
∥∥|∇|2− γ

2 IuH

∥∥3

L9
t L

18d
9d−9γ+14
x

� ‖|∇|IuH ‖3

L9
t L

18d
9d−4
x

� ‖Iu‖3

X
1, 1

2 + .

As for the third term. By Sobolev’s inequality and using the Leibniz rule for the operator |∇|2− γ
2 I and Proposi-

tion 2.2 again, we have∥∥∥∥ 1

N1,2,3
PN1,2,3

(
I
(
uL|∇|−(d−γ )|uH |2))∥∥∥∥

L3
t L

6d
3d−4
x

�
∥∥|∇|−1PN1,2,3

(
I
(
uL|∇|−(d−γ )|uH |2))∥∥

L3
t L

6d
3d−4
x

�
∥∥|∇|2− γ

2 I
(
uL|∇|−(d−γ )|uH |2)∥∥

3
6d

3d−3γ+14

Lt Lx
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�
∥∥|∇|2− γ

2 IuH

∥∥
L9

t L

18d
9d−9γ+14
x

‖uH ‖
L9

t L

18d
9d−4
x

‖uL‖
L9

t L

18d
9d−18γ+32
x

+ ‖uH ‖2

L9
t L

18d
9d−9γ+14
x

∥∥|∇|2− γ
2 IuL

∥∥
L9

t L

18d
9d−9γ+14
x

�
∥∥|∇|IuH

∥∥
L9

t L

18d
9d−4
x

∥∥|∇|IuH

∥∥
L9

t L

18d
9d−4
x

∥∥|∇|γ−2IuL

∥∥
L9

t L

18d
9d−4
x

+ ∥∥|∇|IuH

∥∥2

L9
t L

18d
9d−4
x

∥∥|∇|IuL

∥∥
L9

t L

18d
9d−4
x

� ‖Iu‖3

X
1, 1

2 + .

Now we estimate the fourth term. By Sobolev’s inequality and Hölder’s inequality, we obtain∥∥∥∥ 1

N1,2,3
PN1,2,3

(
I
(
uH |∇|−(d−γ )|uL|2))∥∥∥∥

L3
t L

6d
3d−4
x

�
∥∥|∇|−1PN1,2,3

(
I
(
uH |∇|−(d−γ )|uL|2))∥∥

L3
t L

6d
3d−4
x

�
∥∥uH |∇|−(d−γ )|uL|2∥∥

L3
t L

6d
3d+2
x

� ‖uH ‖
L9

t L

18d
9d−4
x

‖uL‖2

L9
t L

18d
9d−9γ+5
x

� ‖Iu‖3

X
1, 1

2 + .

The remainder terms are similar to the third and fourth terms because we can ignore the complex conjugates. This
completes the proof. �

Now we proceed to prove the sextilinear estimate. Indeed, after performing the Littlewood–Paley decomposition
of a function, we know that the factor PN1,2,3(I (u|∇|−(d−γ )|u|2)) in Λ6 takes the same role as the factor �Iu1 in Λ4.

At the same time, we always take the �Iu1 factor in L3
t L

6d/(3d−4)
x in the proof of Proposition 3.4, and estimate this

by N1‖Iu1‖
X

1, 1
2 + . Combining with Lemma 3.1, we can obtain the following estimate.

Proposition 3.5. For any Schwartz function u, and any δ ≈ 1 as in Proposition 3.2, we have that∣∣∣∣∣
T +δ∫
T

Λ6(M6;u)dt

∣∣∣∣∣ � N−1+‖Iu‖6

X
1, 1

2 +

for s >
γ
2 − 1.

4. Almost interaction Morawetz estimate

In this section, we aim to prove the interaction Morawetz estimate for the smoothed out solution Iu, that is, “almost
Morawetz estimate”. For this, we consider a(x1, x2) = |x1 − x2| : Rd × Rd → R, a convex and locally integrable
function of polynomial growth. In all of our arguments, we will work with the Schwartz solutions. This will simplify
the calculations and will enable us to justify the steps in the subsequent proofs, since we can approximate the Hs

solutions by the Schwartz solutions.

Theorem 4.1. Let u be a Schwarz solution to

iut + �u = Ñ (u), (x, t) ∈ Rd × [0, T ],
where Ñ (u) = (|x|−γ ∗ |u|2)u. Let Iu be a solution to

iIut + �Iu = I
(

Ñ (u)
)
, (x, t) ∈ Rd × [0, T ]. (4.1)

Then

∥∥|∇|− d−3
4 Iu

∥∥4
L4

T L4
x
� ‖Iu‖L∞

T Ḣ 1
x
‖Iu‖3

L∞
T L2

x
+

T∫
0

∫
Rd×Rd

∇a · {Ñbad, Iu(t, x1)Iu(t, x2)
}
p

dx1 dx2 dt (4.2)

with {·,·}p is the momentum bracket defined by

{f,g}p = Re(f ∇ḡ − g∇f̄ ),
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and

Ñbad =
2∑

i=1

(
I Ñi (ui) − Ñi (Iui)

) 2∏
j=1, j �=i

Iuj ,

where ui is a solution to

iut + �u = Ñ (u), (xi, t) ∈ Rd × R, d � 3, (4.3)

here xi ∈ Rd , not a coordinate. In particular, on a time interval Jk where the local well-posedness Proposition 3.2
holds, we have that∫

Jk

∫
Rd×Rd

∇a · {Ñbad, Iu(t, x1)Iu(t, x2)
}
p

dx1 dx2 dt � 1

N1− ‖u‖6
ZI (Jk)

.

Toward this goal, we recall the idea of the proof of the interaction Morawetz estimate for the defocusing non-
linear cubic Schrödinger equation in three space dimensions [3]. We present the result using a tensor of Schrödinger
solutions that emerged in [2,6]. We first recall the generalized Virial identity [2,16].

Proposition 4.1. Let a : Rd → R be convex and u be a smooth solution to the solution

iut + �u = Ñ (u), (t, x) ∈ [0, T ] × Rd . (4.4)

Then the following inequality holds

T∫
0

∫
Rd

(−��a)
∣∣u(t, x)

∣∣2
dx dt + 2

T∫
0

∫
Rd

∇a · {Ñ , u}p dx dt �
∣∣Ma(T ) − Ma(0)

∣∣
where Ma(t) is the Morawetz action corresponding to u and is given by

Ma(t) = 2
∫
Rd

∇a(x) · Im
(
ū(x)∇u(x)

)
dx.

Proof of Theorem 4.1. Now we rewrite Eq. (4.1) as

iIut + �Iu = Ñ (Iu) + (
I
(

Ñ (u)
) − Ñ (Iu)

)
.

By Proposition 4.1, we have

T∫
0

∫
(−��a)

∣∣Iu(t, x)
∣∣2

dx dt −
T∫

0

∫ ∫ ∣∣Iu(t, y)
∣∣2 x − y

|x − y|
(∇|∇|−(n−4)|Iu|2|Iu|2)(t, x) dx dy dt

� sup
t∈[0,T ]

∣∣∣∣ ∫ ∇a(x) · Im
(
Iu(x)∇Iu(x)

)
dx

∣∣∣∣ +
∣∣∣∣∣

T∫
0

∫
∇a · {I Ñ (u) − Ñ (Iu), Iu

}
p

dx dt

∣∣∣∣∣,
where the second term on the left-hand side

−
T∫

0

∫ ∫ ∣∣Iu(t, y)
∣∣2 x − y

|x − y|
(∇|∇|−(n−4)|Iu|2|Iu|2)(t, x) dx dy dt (4.5)

is created by the term Ñ (Iu) and the commutator I (Ñ (u)) − Ñ (Iu) creates the second term on the right-hand side∣∣∣∣∣
T∫ ∫

∇a · {I Ñ (u) − Ñ (Iu), Iu
}
p

dx dt

∣∣∣∣∣. (4.6)
0
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By symmetry, we know that the term (4.5) is a positive term that we can ignore, which is analogue to the case in
[19,20]. Next we turn to the estimate of the error term (4.6). In addition, the conjugation will play no crucial role in
the forthcoming argument.

Now define the tensor product u := (u1 ⊗ u2)(t, x) for x in

Rd+d = {
x = (x1, x2): x1 ∈ Rd, x2 ∈ Rd

}
by the formula

(u1 ⊗ u2)(t, x) = u1(t, x1)u2(t, x2),

let us set

IU(t, x) =
2∏

j=1

Iu(t, xj ).

If u solves (4.4) for d dimensions, then IU solves (4.4) for 2d dimensions, with right-hand side ÑI given by

ÑI =
2∑

i=1

(
I
(

Ñi (ui)
) 2∏

j=1,j �=i

Iuj

)
.

Now let us decompose

ÑI = Ñgood + Ñbad

�
2∑

i=1

(
Ñi (Iui)

2∏
j=1, j �=i

Iuj

)
+

2∑
i=1

((
I
(

Ñi (ui)
) − Ñi (Iui)

) 2∏
j=1,j �=i

Iuj

)
.

The first term summand creates a positive term that we can ignore again. The term we call Ñbad produces the error
term. Now we pick a(x) = a(x1, x2) = |x1 − x2| where (x1, x2) ∈ Rd × Rd . Hence we have

∥∥|∇|− d−3
4 Iu

∥∥4
L4

T L4
x
� ‖Iu‖L∞

T Ḣ 1
x
‖Iu‖3

L∞
T L2

x
+

∣∣∣∣∣
T∫

0

∫
Rd×Rd

∇a · {Ñbad, Iu(t, x1)Iu(t, x2)
}
p

dx1 dx2 dt

∣∣∣∣∣.
Note that the second term of the right-hand side comes from the momentum bracket term in the proof of Proposi-
tion 4.1. Following with the same calculations in [2], we deduce that

E :=
∣∣∣∣∣

T∫
0

∫
Rd×Rd

∇a · {Ñbad, Iu(t, x1)Iu(t, x2)
}
p

dx1 dx2 dt

∣∣∣∣∣
�

(∥∥I
(

Ñ (u)
) − Ñ (Iu)

∥∥
L1

t L
2
x
+ ∥∥∇x

(
I
(

Ñ (u)
) − Ñ (Iu)

)∥∥
L1

t L
2
x

)‖u‖3
ZI (J ). (4.7)

Now we proceed to estimate ‖∇x(I (Ñ (u)) − Ñ (Iu))‖L1
t L

2
x
, which is the harder term. The term ‖I (Ñ (u)) −

Ñ (Iu)‖L1
t L

2
x

can be estimated in the same way. Note that

Ñ (u) = (|x|−γ ∗ |u|2)u,

we have

Fx

(∇x

(
I
(

Ñ (u)
) − Ñ (Iu)

))
(ξ)

=
∫

ξ=∑3
j=1 ξj

iξ |ξ2,3|−(d−γ )
(
m(ξ) − m(ξ1)m(ξ2)m(ξ3)

)
û(ξ1) ˆ̄u(ξ2)û(ξ3) dξ1 dξ2 dξ3.

We decompose u into a sum of dyadic pieces uj localized around Nj , then
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∥∥∇x

(
I
(

Ñ (u)
) − Ñ (Iu)

)∥∥
L1

t L
2
x

= ∥∥Fx

(∇x

(
I
(

Ñ (u)
) − Ñ (Iu)

))
(ξ)

∥∥
L1

t L
2
ξ

�
∑

N1,N2,N3

∥∥∥∥ ∫
|ξj |≈Nj ,

ξ=∑3
j=1 ξj

|ξ ||ξ2,3|−(d−γ )
∣∣m(ξ) − m(ξ1)m(ξ2)m(ξ3)

∣∣û(ξ1) ˆ̄u(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

.

Since the conjugation plays no crucial role here, without loss of generality, we assume that

N1 � N2 � N3.

Set

σ(ξ1, ξ2, ξ3) = |ξ1 + ξ2 + ξ3|
∣∣m(ξ1 + ξ2 + ξ3) − m(ξ1)m(ξ2)m(ξ3)

∣∣,
then

σ(ξ1, ξ2, ξ3) =
4∑

j=1

χj (ξ1, ξ2, ξ3)σ (ξ1, ξ2, ξ3) :=
4∑

j=1

σj (ξ1, ξ2, ξ3),

where χj (ξ1, ξ2, ξ3) is a smooth characteristic function of the set Ωj defined as follows:

• Ω1 = {|ξi | ≈ Ni, i = 1,2,3; N � N1};
• Ω2 = {|ξi | ≈ Ni, i = 1,2,3; N1 � N � N2};
• Ω3 = {|ξi | ≈ Ni, i = 1,2,3; N1 � N2 � N � N3};
• Ω4 = {|ξi | ≈ Ni, i = 1,2,3; N1 � N2 � N3 � N}.

Hence, we have∥∥∇x

(
I
(

Ñ (u)
) − Ñ (Iu)

)∥∥
L1

t L
2
x

�
∑

N1,N2,N3

4∑
j=1

∥∥∥∥ ∫
|ξj |≈Nj ,

ξ=∑3
j=1 ξj

|ξ2,3|−(d−γ )σj (ξ1, ξ2, ξ3)û(ξ1) ˆ̄u(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

:=
∑

N1,N2,N3

4∑
j=1

Lj .

Contribution of L1. Since σ1 is identically zero when N � 4N1, L1 gives no contribution to the sum above.

Contribution of L2. By the mean value theorem, we have the pointwise bound

σ2(ξ1, ξ2, ξ3) � N1 · m1
N2

N1
= m1N2.

Hence, by Hölder’s inequality, Hardy–Littlewood–Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we
obtain

L2 =
∥∥∥∥ ∫

|ξj |≈Nj ,

ξ=∑3
j=1 ξj

|ξ2,3|−(d−γ )σ2(ξ1, ξ2, ξ3)û(ξ1)û(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

� m1N2

∥∥∥∥ ∫
|ξj |≈Nj ,

ξ=∑3
ξj

|ξ2,3|−(d−γ )û(ξ1)û(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

j=1
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� m1N2‖u1‖
L3

t L

6d
3d−4
x

‖u2‖
L3

t L

6d
3d−4
x

‖u3‖
L3

t L

6d
3d−6γ+8
x

� m1N2N
γ−2
3

3∏
J=1

‖uj‖
X

0, 1
2 +,

where we used the fact that

1

3
+ 1

3
+ 1

3
= 1,

3d − 4

6d
+ 3d − 4

6d
+ 3d − 6γ + 8

6d
+ γ

d
= 1

2
+ 1,

δ

(
6d

3d − 4

)
− 2

3
= 0, δ

(
6d

3d − 6γ + 8

)
− 2

3
= γ − 2.

It suffices to show that

m1N2N
γ−2
3 � N−1+N0−

1 m1N1〈N2〉〈N3〉.
We reduce to show that

N1−N0+
1 � N1〈N2〉N−1

2 〈N3〉N2−γ

3 .

This is true since

N1 � N1−N0+
1 ; 〈N2〉N−1

2 � 1; 〈N3〉N2−γ

3 � 1.

Contribution of L3. Note that

σ3(ξ1, ξ2, ξ3) � N1m1 + N1m1m2 � N1m1.

Hence, by Hölder’s inequality, Hardy–Littlewood–Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we
have

L3 =
∥∥∥∥ ∫

|ξj |≈Nj ,

ξ=∑3
j=1 ξj

|ξ2,3|−(d−γ )σ3(ξ1, ξ2, ξ3)û(ξ1)û(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

� m1N1

∥∥∥∥ ∫
|ξj |≈Nj ,

ξ=∑3
j=1 ξj

|ξ2,3|−(d−γ )û(ξ1)û(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

� m1N1‖u1‖
L3

t L

6d
3d−4
x

‖u2‖
L3

t L

6d
3d−4
x

‖u3‖
L3

t L

6d
3d−6γ+8
x

� m1N1N
γ−2
3

3∏
J=1

‖uj‖
X

0, 1
2 + .

It suffices to show that

m1N1N
γ−2
3 � N−1+N0−

2 m1N1m2N2〈N3〉.
We reduce to show that

N1−N0+
2 � m2N2〈N3〉N2−γ

3 .

This is true since

m2N2 � N1−N0+
2 ; 〈N3〉N2−γ

3 � 1.
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Contribution of L4. Note that

σ4(ξ1, ξ2, ξ3) � N1m1 + N1m1m2 � N1m1.

Hence, by Hölder’s inequality, Hardy–Littlewood–Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we
obtain

L4 =
∥∥∥∥ ∫

|ξj |≈Nj ,

ξ=∑3
j=1 ξj

|ξ2,3|−(d−γ )σ4(ξ1, ξ2, ξ3)û(ξ1)û(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

� m1N1

∥∥∥∥ ∫
|ξj |≈Nj ,

ξ=∑3
j=1 ξj

|ξ2,3|−(d−γ )û(ξ1)û(ξ2)û(ξ3) dξ1 dξ2 dξ3

∥∥∥∥
L1

t L
2
ξ

� m1N1‖u1‖
L3

t L

6d
3d−4
x

‖u2‖
L3

t L

6d
3d−4
x

‖u3‖
L3

t L

6d
3d−6γ+8
x

� m1N1N
γ−2
3

3∏
J=1

‖uj‖
X

0, 1
2 + .

It suffices to show that

m1N1N
γ−2
3 � N−1+N0−

2 m1N1m2N2m3N3.

We reduce to show that

N1−N0+
2 � m2N2m3N3N

2−γ

3 .

This is true since for s � γ − 2, we have

m2N2m3N
3−γ

3 � m2N2 � N1−N0+
2

where we used the fact that m(ξ)〈ξ 〉p is monotone non-decreasing if s + p � 1. While for γ
2 − 1 < s < γ − 2, we

have

m2N2m3N
3−γ

3 � m2N2m2N
3−γ

2 � N4−γ−N0+
2 � N1−N0+

2

where we used the fact that m(ξ)〈ξ 〉p is monotone non-increasing if s + p < 1. �
5. Proof of Theorem 1.1

We first scale the solution. Suppose that u(t, x) is a global in time solution to (1.1) with initial data u0 ∈ C∞
0 (Rd).

Setting

uλ(t, x) = λ− n+2−γ
2 u

(
t

λ2
,
x

λ

)
,

we choose a parameter λ so that ‖Iuλ
0‖H 1 = O(1), that is

λ ≈ N
1−s

s−γ /2+1 . (5.1)

Next, let us define

S := {
0 � t < ∞:

∥∥Iuλ
∥∥

L4Ḣ
− d−3

4 ,4
([0,t]×Rd )

� Kλ
3
4 (

γ
2 −1)

}
,

with K a constant to be chosen later. We claim that S is the whole interval [0,∞). Indeed, assume by contradiction
that it is not so, then since∥∥Iuλ

∥∥
4 ˙ − d−3 ,4 d
L H 4 ([0,t]×R )
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is a continuous function of time, there exists a time T ∈ [0,∞) such that∥∥Iuλ
∥∥

L4Ḣ
− d−3

4 ,4
([0,T ]×Rd )

> Kλ
3
4 (

γ
2 −1), (5.2)∥∥Iuλ

∥∥
L4Ḣ

− d−3
4 ,4

([0,T ]×Rd )
� 2Kλ

3
4 (

γ
2 −1). (5.3)

We now split the interval [0, T ] into subintervals Jk, k = 1, . . . ,L, in such a way that∥∥Iuλ
∥∥4

L4Ḣ
− d−3

4 ,4
(Jk×Rd )

� μ,

with μ as in Proposition 3.3. This is possible because of (5.3). Then, the number L of possible subintervals must
satisfy

L ≈ (2Kλ
3
4 (

γ
2 −1))4

μ
≈ (2K)4λ3(

γ
2 −1)

μ
. (5.4)

From Propositions 3.2 and 3.3, we know that

sup
t∈[0,T ]

E
(
Iuλ(t)

)
� E(Iuλ

0) + L

N1−

and by our choice (5.1) of λ, E(Iuλ
0) � 1. Hence, in order to guarantee that

E
(
Iuλ(t)

)
� 1

holds for all t ∈ [0, T ], we need to require that

L � N1−.

According to (5.4), this is fulfilled as long as

(2K)4λ3(
γ
2 −1)

μ
� N1−. (5.5)

From our choice of λ, the expression (5.5) implies that

(2K)4

μ
� N

1− 1−s
s−γ /2+1 3(

γ
2 −1)−

.

Thus this is possible for s >
4(γ−2)
3γ−4 and a large number N .

Now recall the a priori estimate (4.2)

∥∥|∇|− d−3
4 Iuλ

∥∥4
L4

T L4
x
�

∥∥Iuλ
∥∥

L∞
T Ḣ 1

x

∥∥Iuλ
∥∥3

L∞
T L2

x
+

T∫
0

∫
Rd×Rd

∇a · {Ñbad, Iuλ(t, x1)Iuλ(t, x2)
}
p

dx1 dx2 dt.

Set

Error(t) :=
∫

Rd×Rd

∇a · {Ñbad, Iuλ(t, x1)Iuλ(t, x2)
}
p

dx1 dx2.

By Theorem 4.1 and Proposition 3.3 on each interval Jk , we have that∣∣∣∣ ∫
Jk

Error(t) dt

∣∣∣∣ � 1

N1−
∥∥uλ

∥∥6
ZI (Jk)

� 1

N1− .

Summing all the Jk’s, we have that∣∣∣∣∣
T∫

Error(t) dt

∣∣∣∣∣ � L

N1− � N0+.
0
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Therefore, by our choice (5.1) of λ, we obtain∥∥|∇|− d−3
4 Iuλ

∥∥4
L4

T L4
x
�

∥∥Iuλ
∥∥

L∞
T Ḣ 1

x

∥∥Iuλ
∥∥3

L∞
T L2

x
+ N0+ � Cλ3(

γ
2 −1).

This estimate contradicts (5.2) for an appropriate choice of K . Hence S = [0,∞). In addition, let T0 be chosen

arbitrarily, we have also proved that for s >
4(γ−2)
3γ−4 ,∥∥Iuλ

(
λ2T0

)∥∥
H 1

x
= O(1).

Then ∥∥u(T0)
∥∥

Hs = ∥∥u(T0)
∥∥

L2 + ∥∥u(T0)
∥∥

Ḣ s

= ‖u0‖L2 + λs− γ
2 +1

∥∥uλ
(
λ2T0

)∥∥
Ḣ s

� λs− γ
2 +1

∥∥Iuλ
(
λ2T0

)∥∥
H 1 � λs− γ

2 +1 ≈ N1−s .

Since T0 is arbitrarily large, the a priori bound on the Hs norm concludes the global well-posedness of the Cauchy
problem (1.1).

Note that we have obtained that

‖Iu‖
L4Ḣ

− d−3
4 ,4

([0,+∞)×Rd )
� C

(‖u0‖Hs

)
,

this together with Propositions 2.2, 3.3 and the property of the operator I imply that

sup
(q,r) admissible

∥∥〈∇〉su∥∥
LqLr ([0,+∞)×Rd )

� ‖u‖ZI ([0,+∞)) � C
(‖Iu0‖H 1

)
� C

(‖u0‖Hs

)
.

The scattering result can be obtained from the well-known standard argument [1,3]. This completes the proof.
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