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Abstract

We prove the global well-posedness and scattering for the defocusing H > -subcritical (that is, 2 < y < 3) Hartree equation with
low regularity data in RY, d > 3. Precisely, we show that a unique and global solution exists for initial data in the Sobolev space
HS (Rd) with s > 4(y — 2)/(3y — 4), which also scatters in both time directions. This improves the result in [M. Chae, S. Hong,
J. Kim, C.W. Yang, Scattering theory below energy for a class of Hartree type equations, Comm. Partial Differential Equations 33
(2008) 321-348], where the global well-posedness was established for any s > max(1/2,4(y —2)/(3y —4)). The new ingredients
in our proof are that we make use of an interaction Morawetz estimate for the smoothed out solution /u, instead of an interaction
Morawetz estimate for the solution «, and that we make careful analysis of the monotonicity property of the multiplier m (&) - ().
As a byproduct of our proof, we obtain that the HS norm of the solution obeys the uniform-in-time bounds.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study the global well-posedness of the following initial value problem (IVP) for the defocusing
H 2 -subcritical (thatis, 2 < y < 3) Hartree equation.

{iu,+Au=(|x|—V*|u|2)u, d>3, (L

u(0) = ug(x) € H*(RY),

where H® denotes the usual inhomogeneous Sobolev space of order s. It is a classical model introduced in [26].

We adopt the following standard notion of local well-posedness, that is, we say that the IVP (1.1) is locally well-
posed in H* if for any ug € H®, there exists a positive time T = T (|lug||s) depending only on the norm of the initial
data, such that a solution to the IVP exists on the time interval [0, T'], is unique in a certain Banach space of functional
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Fig. 1. The curve “ABC” is described by “s = 45;:3) .

X C C([0,T], H®), and the solution map from H; to C([0, T'], H*) depends continuously. If 7' can be taken arbitrarily
large, we say that the IVP (1.1) is globally well-posed.
Local well-posedness for the IVP (1.1) in H® for any s > % — 1 was established in [18]. A local solution also exists

for H2~! initial data, but the time of existence depends not only on the H 7= norm of ugp, but also on the profile
of ug. For more details on local well-posedness see [18].
L? solutions of (1.1) enjoy mass conservation

Ju, ')”LZ(Rd) = ||”0(')||L2(]Rd)'

Moreover, H! solutions enjoy energy conservation

1 2 1 1 2 2
E@(®) = 3| V0|2, + ff oy 0Pt [ dxdy = E@ o),
R4 xR4

which together with mass conservation and the local theory immediately yields global well-posedness for (1.1) with
initial data in H'!. A large amount of work has been devoted to global well-posedness and scattering for the Hartree
equation, see [7-11,13,15,17-23].

Existence of global solutions in R to (1.1) corresponding to initial data below the energy threshold was recently
obtained in [5] by using the method of “almost conservation laws” or “I-method” (for a detailed description of this
method, see [25] or Section 3 below) and the interaction Morawetz estimate for the solution u, where global well-
posedness was obtained in H* (R3?) with s > max(1/2,4(y —2)/(3y —4)) (see Fig. 1). Since authors in [5] used the
interaction Morawetz estimate, which involves H'Y2 norm of the solution, the restriction condition s > % is prerequi-
site. In order to resolve IVP (1.1) in H®, s < % by still using the interaction Morawetz estimate, we need return to the
interaction Morawetz estimate for the smoothed out version /u of the solution, which is used simultaneously in [2]
and [6].

In this paper, we consider the case d > 3 and we prove the following result:

Theorem 1.1. Let 2 < y < 3 < d, the initial value problem (1.1) is globally well-posedness in H*(R%) for any
4y—2)

§> 3,7

. Moreover the solution satisfies

sup [[u® s gay < € (luoll )
t€[0,00)

and there is scattering for these solutions, that is, the wave operators exist and there is asymptotic completeness on
all of H* (RY).
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Remark 1.1. As for the case 3 < y < 4 < d, local well-posedness for the IVP (1.1) in H* holds for any s > % — 1.
Note that in this case, we have

y 1

5 1> 5
which satisfies the need of the regularity of the interaction Morawetz estimate. Hence for the case 3 <y <4 <d, we
only need to combine “I-method” with the interaction Morawetz estimate for the solution, instead of the interaction
Morawetz estimate for the smoothed out version /u of the solution, to obtain the low regularity global solution of the
IVP (1.1), just as in [3] .

Our method follows closely the recent developments in [2,4] and [6], where the main two ingredients are the
“I-method” and an almost Morawetz type estimate following the work of Lin and Strauss [16]. In order to obtain the
low regularity global solution of the IVP (1.1), we combine [-method with an interaction Morawetz estimate for the
smoothed out version /u of the solution. By comparison with the interaction Morawetz estimate for the solution in [5],
such a Morawetz estimate for an almost solution is the main novelty of this paper, which helps us to lower the need
on the regularity of the initial data. In addition, we do not use the monotonicity property of the multiplier m (&) - (£)?
in the proof of the almost conservation law.

Last, we organize this paper as following: In Section 2, we introduce some notation and state some important
propositions that we will used throughout this paper. In Section 3, we review the I-method, prove the local well-
posedness theory for /u and obtain an upper bound on the increment of the modified energy. In Section 4, we prove
the “almost interaction Morawetz estimate” for the smoothed out version /u of the solution. Finally in Section 5, we
give the details of the proof of the global well-posedness stated in Theorem 1.1.

2. Notation and preliminaries
2.1. Notation

In what follows, we use A < B to denote an estimate of the form A < CB for some constant C. If A < B and
B < A, we say that A ~ B. We write A < B to denote an estimate of the form A < ¢B for some small constant ¢ > 0.
In addition (a) := 1+ |a| and a% := a + € with 0 < € < 1. The reader also has to be alert that we sometimes do not

explicitly write down constants that depend on the L norm of the solution. This is justified by the conservation of the
L? norm.

2.2. Definition of spaces

We use L, (R9) to denote the Lebesgue space of functions f :R¢ — C whose norm

1 fllg = ( /|f(x)|rdx>r
Rd

is finite, with the usual modification in the case r = co. We also use the space-time Lebesgue spaces L/ L’ which are
equipped with the norm
1
q q
Lr dt)

”u”L?L; :=</||u(t,x)|
J

for any space—time slab J x R, with the usual modification when either g or r are infinity. When g = r, we abbreviate
LiL by L],.
As usual, we define the Fourier transform of f(x) € L}C by

F©& =0t f =i £(x)dx.

R4
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We define the fractional differentiation operator |V, |* for any real « by

VIu(E) := |E[a),

and analogously

—

(V)*u(§) == (€)*u).
The (in)homogeneous Sobolev space HY(RY) (H*(RY)) is given via
leell s = 11V u] ppgays el o= [ (V) u] 1o gays
and more general (in)homogeneous Sobolev spaces are given via
”u”[:[&]) = ” |V|éu ||LP(Rd)’ llullgs.p = ” (V>Au ”LP(R‘I)'
Let S(z) denote the solution operator to the linear Schrodinger equation
iy +Au=0, x eRY.
We denote by X*?(R x R?) the completion of S(R x R?) with respect to the following norm
b -
lull oo = | S0l oo = I +15P) 16) 0z, 6| L212ExRA)
where u is the space—time Fourier transform
~ _dxl i
u(r, &) =Q2m)" 2 // e TEHTD (1 x) di dx.

RxR4

Furthermore for a given time interval J, we define

||u||x.s,h(J) = inf{||v||x.;,h; v =u on J}.
2.3. Some known estimates

Now we recall a few known estimates that we shall need. First we state the following Strichartz estimate [1,14].
Let d > 3, we recall that a pair of exponents (g, r) is called admissible if

2 1 1
—:d(———)éa(r), 2<q,r <oo.
q 2 r

Proposition 2.1. Let d > 3, (q,r) and (g, 7) be any two admissible pairs. Suppose that u is a solution to
ius+Au=F(t,x), tel, xeRd,
u(0) =ugp(x).

Then we have the estimate

Il 4 pr g xmay S Nuollp2gay + I
L ( )

LY LF (JxRd)’

where the prime exponents denote Holder dual exponents.
From the above Strichartz estimate and Lemma 2.1 in [12], we have
<
”u”L?L; ~ ||”||Xo,%+

for any admissible (g, 7). Then by Sobolev embedding theorem, we have
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Proposition 2.2. Let d > 3. Forr <00, 0 < %1 <min(6(r), 1), we have
Il g S Wl sr-2.3.
While for 2 < g < 00, r = 00, we have

iy Sl g 2.,

We will also need the Littlewood—Paley projection operators. Specifically, let ¢(£) be a smooth bump function
adapted to the ball |£| < 2 which equals 1 on the ball |£| < 1. For each dyadic number N € 2% we define the
Littlewood—Paley operators

Pen f(E) = w(%)f(é), Pon(E) = (1 - w(g ))f(sx

N
Py f(E) = (w(%) —w(%))ﬂs).

Similarly we can define Py, P>y, and Py ..y = P<y — P<y, whenever M and N are dyadic numbers. We will
frequently write f¢y for P¢y f and similarly for the other operators.

The Littlewood—Paley operators commute with derivative operators, the free propagator, and the conjugation op-
eration. They are self-adjoint and bounded on every LY and H;CV space for 1 < p < oo and s > 0. They also obey the
following Sobolev and Bernstein estimates

1PN flle SN [IVIEPon f] L,
V1 Pen f]l g SN2 01 P<n fllLos
VI Py £y SN2 70 Py fllLe,

whenever s >0 and 1 < p < g < 00.
3. The I-method and the modified local well-posedness
3.1. The I-operator and the hierarchy of energies

Let us define the operator /. For s < 1 and a parameter N > 1, let m(&) be the following smooth monotone
multiplier:

_ 1, if |§] < N,
mE = (Xl if 5] > 2N,
We define the multiplier operator I : HS — H! by

Tu(g) =m(E)i(®).

The operator I is smoothing of order 1 — s and we have from Bernstein’s estimates that

1—s
lull s S Null gsorr—s SN lull oo,
1—
||”||XS0~”0 S ”I””XSOH—N’O SN s”””xxoi’o

for any s, by € R.
We set

E(u) = E(Iu), (3.1)

where

1 2 1 !
E@)(t) = §||V“(’)”L2 + Z// lx —yl”

|u(t,x)|2|u(t, y)\zdx dy.
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We call E (u) the modified energy. Since we will focus on the analysis of the modified energy, we collect some facts
concerning the calculus of multilinear forms used to define the modified energy.
If £ > 2 is an even integer, we define a spatial multiplier of order & to be the function My (&1, &3, ..., &) on

k
j=1

which we endow with the standard measure §(&§1 + & + - - - + &). If M} is a multiplier of order k, 1 < j < k is an
index and / > 1 is an even integer, the elongation X 5 (My) of M is defined to be the multiplier of order k 4/ given by

X§(Mk)(§1»é§2»-«~v§k+l) =M1, 8j-1,8 + i1 S s Skt

Also if My is a multiplier of order k and u1, u», ..., ux are functions on RY, we define the k-linear functional

k
A(My; uy,uz, ..., ug) ZRG/Mk(&,Ez, s &) Hﬁ‘/(s;’)
=1

I
and we adopt the notation Ax(My; u) = Ax(My; u,u, ..., u,u). We observe that the quantity Ay (My; u) is invariant
(1) if one permutes the even arguments &, &4, ..., & of My;

(2) if one permutes the odd arguments &1, &3, ..., §k—1 of My;
(3) if one makes the change of

My, 82, ... 81, 60) > Mi (=62, =1, ..., =&k, —&k—1).

If u is a solution of (1.1), the following differentiation law holds for the multiplier forms Ay (Mj; u)

k k
0 Ar(My; u) = Ay (iMk Y=g u) + Akpa (,- D DIl T X (M) u) (3.2)

j=1 j=1
where we used the notational convention &, , = &, + &», £4.6.c = &4 + &b + &., etc. Indeed, note that
iduj+ Auj= (x| uj*)u;, for0< <Kk,
we take Fourier transformation in spatial variable and deduce
0t (§)) = —ilgj1P;(€)) — i f Ej1 2l ™0 E G G i) dE i dE .
£j=Ej 1142
it j(£)) = +ilEj i (5)) +i / i1, a2l ™ E it E )it (o) dEj i1 dE .
Sj=§j,j+1.j+z

From the above identities, we can obtain (3.2).
Using the above notation, the modified energy (3.1) can be written as follows:

~ 1 1 (d—
E(u) =A2<—§§1m1 'Ezmz;u> +A4<Z|%’2,3| @ V)M1M2m3M4;u>

where we abbreviate m(§;) asm .
Together with the differentiation rules (3.2) and the symmetry properties of k-linear functional Ay (My;u), we
obtain

. 2
1 .
0 A (-5517%1 -Eymy; u) =4 <_l§§lml -Eymy Z(—l)"|€j|2; u)

j=1



C. Miao et al. / Ann. I. H. Poincaré — AN 26 (2009) 1831-1852 1837

.2
1 . —(d—
+ Ay (—5 Z(—1)1|$j+1,j+2| @ y)X§(51m1 ~&am»); M)

j=1
= Ag(ile23" 7 milE % w),

where we used the fact that Z?:l (=1)/|g I |> =0 on the hyperplane I'>. At the same time, we have

1 —d—
3zA4<Z|$2,3| « y)mlmzmwu;u)

. 4
! —(d— e (2.
=A4(ZI$2,3| T mymamsma Yy " (—1)7 &) u)

j=1

. 4

l P —(d— —(d—

+A6<ZE (=D 1Ej41, 742177 X (152,517 V)M1m2m3m4);u>
j=1

= —A4(i|52,3|_(d_y)|5§1 PPmimomsama; u) — Ae(i162317 977 |E4,517 " my 5 3mamsme; u)
= —A4(i|$2,3|_(d_y) &1 Pmimamama; u) + Ae(i 1823179 g0 5179 my 5 3(my 0,3 — mamsme); u).
The fundamental theorem of calculus together with these estimates implies the following proposition, which will

be used to prove that E is almost conserved.

Proposition 3.1. Let u be an H' solution to (1.1). Then for any T € R and § > 0, we have

T+6 T+68
E)(T 4 8) — Eu)(T) = / Ag(My; u)dt + / A¢(Me; u)dt
T T

with
. —(d— 2 )
My =il 3197 1E1 Pmy (my — mamsmy);
. —(d— —(d—
Mo =i|&3" s 5179 my 2 50m1 2.5 — mamsme).

Furthermore if |§;| < N for all j, then the multipliers My and Mg vanish on I'y and I, respectively.
3.2. Modified local well-posedness

In this subsection, we shall prove a local well-posedness result for the modified solution /u# and some a priori
estimates for it.
Let J = [to, t1] be an interval of time. We denote by Z;(J) the following space:
L3+
Zi(H=S1(H)nx; = (J)

where

s = Il 10 <)
1 ! (q.r) :lllrgissible”< ) u”Li’LX(JXRd) <0
oo}.

1,b _ .
XPP =l Ml iy <
Proposition 3.2. Let2 <y <3<d, s > % — 1, and consider the IVP
ilug+ Alu=1(1xI"" % jul*u), xeR? reR,
Tu(ty, x) = Tug(x) € H' (RY). (3.3)

Then for any ug € H®, there exists a time interval J = [to, to+ 6], 8 = §(|[{uoll 1) and there exists a unique u € Zj(J)
solution to (3.3). Moreover it is continuity with respect to the initial data.
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Proof. The proof of this proposition proceeds by the usual fixed point method on the space Z;(J). Since the estimates
are very similar to the ones we provide in the proof of Proposition 3.3 below, in particular (3.9) and (3.10) , we omit
the details. O

Proposition 3.3. Let 2 <y <3 <d and s > 5 — 1. If u is a solution to the IVP (3.3) on the interval J = [tg, t1],
which satisfies the following a priori bound

4
([ 1ul d=3 4 <M,

LiH, ¥ T (UxRY)

where 1 is a small universal constant, then
Nullzy ) S M uoll g1

Proof. We start by obtaining a control of the Strichartz norms. Applying (V) to (3.3) and using the Strichartz estimate
in Proposition 2.1. For any pair of admissible exponents (g, r), we obtain

(V) 1] S M Twoll r+ (V)T ((1] 77 [u?)u) 3k (3.4)

Now we notice that the multiplier (V) has symbol which is increasing as a function of |£| for any s > % — 1. Using
this fact one can modify the proof of the Leibnitz rule for fractional derivatives and prove its validity for (V)I. See
also Principle A.5 in the appendix of [25]. This remark combined with (3.4) implies that

”(V”“”L"Lr S Mol g1+ (VI ((1x177 * |”|2)”)“
Shtuolp + [ (1)) ||u|| e
Ry BT s
S Muoll g + [(V IMH 64 [ (3.5)
Lx - L6L3d+4—3y
1
where we used Holder’s inequality and Hardy—Littlewood—Sobolev’s inequality.
In order to obtain an upper bound on |ju]| S We perform a Littlewood—Paley decomposition along the
LOLT Y

following lines. We note that a similar approach was used in [3]. We write
o
w=uy,+ » un;. (3.6)

where u y, has spatial frequency support for (§) < N, while uy; is such that its spatial Fourier support transform is
supported for (§) ~ N; = 2" with h j2logN and j =1,2,.... By the triangle inequality and Holder’s inequality,
we have

Il sty Shomall o st +Z||uN [J—
6 +4 LoL + LoL] +4-3y

t

2_Y —1
+Z||uN || "l E . (3.7)
L6038

S lluwg l 6d
L6135

On the other hand, by using the definition of the operator I, the definition of the uy;’s and the Marcinkiewicz multi-

plier theorem, we observe that for some 0 <6; < 1,i=1,...,4, Zj‘:] ;=1
6
lenoll g SUunol™ o gl o o™ o ol
Lf’L); + L H, 4 L6L3d—8 L L 3d-2
0
rg ”IMN()” ' d d-3 4||MN0”ZI(J)’

LH
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—2

N 1—s .
(V) Tun, ”m 6~ Nj (N]> HMN"”LsLﬁiZ’ i=12,...,

X

1—s
N .
[ Tun; |l 6d %<—> lun; | o , Jj=1,2,....
! 6 3d-8 Nj S 6 3d-8

=X =X

Now we use these estimates to obtain the following upper bound on (3.7)

1-6;

L. < ||1uN0||L1 otz
+Z< < )l Y”MN_,'”Z](J)>2_%((%)l_S”MN_,||Z;(J))%_l
Syl + N O D iz, 0, (3.8)
which together with (3.5) implies that
[V 2l g, S Wl g1+ % 3250+ NPl . (3.9)

Now we shall obtain a control of the X**” norm. We use Duhamel’s formula and the theory of X** spaces [12,25]
to obtain

Y
17l oy S ol + [V (2177 )| oy
< | u x|V x|u
1ol + €9V (1177 ¢ Ju ) )”L,%u;c%*
< |u + Yu Sa_lu 6d__|lu 6d 3.10
Mol + [ (V) 1u] |, g, L (3.10)
An upper bound on ||u]| 6 1s given by (3.8). In order to obtain an upper bound on |ju|| 4, WE
L3d+4—3y L6+L’§d+4 3y

proceed as follows. First we perform a dyadic decomposition and write u as in (3.6). The triangle 1nequahty applied
on (3.6) gives forany 0 <8 < £ — 1

el

LS L

u 3
it Sl D e
Jj=

= Tun)l e JFZN‘S SNV = Ty, |
L

3d+4=3y J iy
6+ a3yt 6+ +4-=3y
i Lx j=1 Li" Ly

< Mull s, + (V)0 0u o SIull 3.11)
Lt

6+ 3443y + L6+ JFH +

where we used Proposition 2.2. By applying the inequalities (3.8) and (3.11) to bound the right-hand side of (3.10),
we obtain

o 3—9 _(_Y
11l sy S ol + 1 lullz, Gy + N7 2l ) (3.12)

The desired bound follows from (3.9) and (3.12) by choosing N sufficiently large. O
3.3. An upper bound on the increment of E(u)

Decomposition remark. Our approach to prove a decay for the increment of the modified energy is based on
obtaining certain multilinear estimates in appropriate functional spaces which are L>-based (more details, see [24]).
Hence, whenever we perform a Littlewood—Paley decomposition of a function we shall assume that the Fourier trans-
forms of the Littlewood—Paley pieces are positive. Moreover, we will ignore the presence of conjugates. At the end
we will always keep a decay factor C (N1, N2, ...) in order to perform the summations.
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Now we proceed to prove the almost conservation law of the modified energy. In Proposition 3.1, we prove that an
increment of the modified energy can be expressed as

T+6 T+6§
E)(T +8) — Eu)(T) = / As(My; u)dt + f A¢(Me; u)dt
T T

with
- —(d— 2
My = i3 N Pmy (my — mam3ma);
. —(d— —(d—
Me=iE317 g4 5179 my 5 3(m1 2.5 — mamsme).

Hence in order to control the increment of the modified energy, we shall find an upper bound on the A4(My; u) and
Ag¢(Mg; u) forms, which we do in the following propositions. First we give the quadrilinear estimate.

Proposition 3.4. For any Schwartz function u, and any § ~ 1 just as in Proposition 3.2, we have that

T+6

/ Ag(My; u) dt

T

SNl (3.13)
X2

fors>%—1.

Proof. By Plancherel’s theorem, we aim to prove that

T+6
/ / 125317911 Py (my — mamama)iiy (1, €1)it2 (2, £2)i3 (1, £3)ia(t, &)
T Iy
4
-1
SNTHCWL Ny, N3 Ny T T s (3.14)

j=1
where C (N1, N2, N3, N4) is a decay just as the remark above, and it allows us to sum over all dyadic shells. The

analysis which follows will not rely on the complex conjugate structure in A4(My; u). Thus, by symmetry, we may
assume that No» > N3 > Ny.

Case 1. N > Nj. According to the definition of m (&), the multiplier
62,3179 my(my — mamzma)
is identically O, the bound (3.13) holds trivially.
Case 2. N = N > N3 > Ny. Since Zj‘:l &; =0, we have N1 &~ N>. We aim for (3.14) with a decay factor
C(N1, N2, N3, Ny) = N, .
By the mean value theorem, we have the following pointwise bound

|mi(my — mamzma)| = |mi(ma3.4 — momzmy)|
Smi|Vm(E) - (53 +&)|  where [§] ~ |&)]
3
Smymy—.
Smimags

Hence by Holder’s inequality and Hardy—Littlewood—Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate,
we obtain
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T+8
< N2mim, 3 ~d-n; 2 ; >
LHS Of(3-14)NN1m1M2F 1&2,31 iy (t, EDua(t, &2)us(t, E3)ua(t, &4)
>
T Iy
N3
2 3
SNimima—|lull e |lluzl] od flusll  _ea_|luall 6d
No ? ){374 ?L)?d—4 67 3d-2 (,L3d+10—6y

N 4

2 3a77—2 .

S Nimima1-N] 1"[1 1l o3
]:

where we used the fact that
1 1 1 1 3d—4+3d—4+3d—2+3d~|—10—6y
6d 6d 6d 6d

6d 2 6d 2 6d 2
s(——)-Z=0 §(—)-Z=0, (o )-Z=y-2
3d —4 3 3d -2 6 3d +10 — 6y 6

It suffices to show that

4
—:2,
+d

N3 2 _ _
lemlmzﬁzNZ <N 1+N£) miN1myNy(N3)(Ny).

We reduce to show that
NN SNy (N3) NS (N NS
This is true since

N2 ZNUNSE (NNT R (NN T 2
Case 3. N, > N3 2 N. In this case, we use the trivial pointwise bound

lmy(my —momzmy)| < mi.

The frequency interactions fall into two subcategories, depending on which frequency is comparable to N5.

Case 3a. N| &~ N > N3 2 N. In this case, we prove the decay factor

C(N1, N2, N3, Ng) = Ny~

in (3.14). This allows us to directly sum in N3 and N4, and sum in Ny and N> after applying Cauchy—Schwarz to

those factors.
By Holder’s inequality, Hardy—Littlewood—Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we ob-

tain
T+6

/ / &3]~ 9 (1, E1)ua(t, £2)i13 (1, E3)ita(t, 1)

T Iy

LHS of (3.14) < Nm?

< NEm?||u u u u
S Nimil 1||L3L3gg4 [ 2IIL3L3§g4 [ 3||L6L3deg2 [ 4||L6

3d 63 6
3d+10—
tLox tLx tbx Ly 4

t
4
2 2172
SNimING Tl oy
j=1
It suffices to show that
NImINY 72 S N NDTmy Numa Noms N3 (Na).

We reduce to show that
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NN < m3N3ma(NyN; 7
This is true since for s > y — 2, we have

m3Nsma(Na)N; 7 = m3N3ma(Na)> ™7 2 m3N3 2 N'= N,

where we used the fact that m(£)(£)? is monotone non-decreasing if s + p > 1. While for s—l<s<y—2,we

have

m3N3my(Ng)N; 7 2 m3Nsm3N; 7 > N4V~ NOF > N1 NOT

where we used the fact that m(£)(£)? is monotone non-increasing if s + p < 1.

Case 3b. N> =~ N3 = N, N> 2 Nj. In this case, we prove the decay factor
C(Ni1, N2, N3, Ny) = Ng_

in (3.14). This will allow us to directly sum in all the N;.

By Holder’s inequality, Hardy—Littlewood—Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate once

again, we obtain
T+6
LHS of (3.14) < Nlm1

T Iy

2.2
SNPmRurl | go el g sl g sl

/ / &3]~ 9700 (1, £1)ina (2, £2)3 (1, £3) ka2, £4)

s 0-67
L3+ —6y

thx thx thox tLx

4
AN
SNEmING [T sl oy
j=1
It suffices to show that

N2m3IN] 72 < N NSy Nyma Nams N3 (Ny).
Note that

Nlml <mi;NymyN>.
We reduce to show that

N'= NIt < m3Nama(Ng)N2 7.

This is true since for s > y — 2, we have

m3N3m4(N4)N4_V > m3N3ma(Ng)> ™ 2 m3N3~maN, 2 NN,

where we used the fact that m(£)(£)? is monotone non-decreasing if s + p >
have

m3N3mg(Ny)N; 7 > msNsm3N; 7 ~m3Ny 7 2 N*¥7= NI+ > N'-

1. Whllefor——l<s<y 2, we

0+
Ny,

where we used the fact that m(&)(£)? is monotone non-increasing if s + p < 1. This completes the proof. O

In order to make use of quadrilinear estimate (Proposition 3.4) to obtain sextilinear estimate, we first give a lemma

Lemma 3.1. Assume u, 8 are as in Proposition 3.2, and Py, , , the Littlewood—Paley projection onto the Ni 33

frequency shell. Then

[Pwias (V1T W) e S Miaaltul )

tx
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Proof. We write u = u; + uy where

suppi (1, ) € {1§] <2},
suppiip (t,§) S {1€] > 1}.

Hence,
[ B (VTP WP s

S P (T (ur V179" ”iuLl ))|| oty TP (H VT )]

+ | Pry sy (F (i V174 gy 2 ))H oty P (T 979 P )) 9

(
( L ”L;LSW
(
(

| P (F V1)) | a4 [ Pry oy (e V17O ugin)| e
L3L3d—4

L3+

+ ” Py, I(”H|V|_(d_y)ﬁL”H))” o + ” Py, 23(1(141-1|V| - y)”LuH)) ”

L LL%dA

Consider the first term. By Holder’s inequality, Hardy-Littlewood—Sobolev’s inequality and Proposition 2.2, we
have

| Py (F el VI )| e S JurlVIT9 P
13 3d-4

=X f

Sl P e = ITug)? 184
Lt9L<?d—6y—4 L9L9d 6y—4

< 3
< ||IML”X1,%+ < 1\71,2,3||114||Xl 1y

L%d —4

since
1 9d—-6y—4 2
Nip3>1, and 0<dx(-———2—2)_2=F ¢y
- 2 184 9 3
We estimate the second term. By Sobolev’s inequality and using the Leibniz rule for the operator |V |2_ 2 [ (Princi-
ple A.5 in [25]) and Proposition 2.2, we have
Py, (H(ug | V"9 uy SV Py, (V79 ug
I )] I T T ) e
5”|V|2_%I(“H|V|_(d_y)|uH|2)” o 6d
?Lgd—3y+l4
<SIVPP 2 1u upll?
~ ”| | HH ?L9d—198yd+|4 I H“L9L9d—198§1+14
SIVP 2 tun’ g SUVIugl
LoLor L34

3
<
<Hul,

As for the third term. By Sobolev’s inequality and using the Leibniz rule for the operator |V|2_ 2] and Proposi-

tion 2.2 again, we have

6d
L3

1 (d—
H Ni2s Py, s (1(”L|V| «“ y)|”H|2))

SV Py (T (V179 un ) |

SNV 21 (V19 ug?) |

6d
3d-3
L?Lxd y+14
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<V % 1u u u ug|)? V125 Iu
< v H!|L9L9d_198;1+14|| HIILQLQ%II Ll , %HI Hll T ||| 2 L

184
9, 9d—9y+14
rbx tx LiLy Lth LiLy

5|\|V|1uH||L?LE% |||V|IuH”L . v~ ZIuLH o +|IVITug | o 3 112 i

3
Sl
X2

Now we estimate the fourth term. By Sobolev’s inequality and Holder’s inequality, we obtain

1
—(d— 2 —1 —(d— 2
| P (V)| g SNV Py (a9 P
12,3 L33 LIL3
—(d— 2
SunVIm WP e
LI
3
Shunll s luel? o SHul?
L’Lfd 1% L9d 9y+3 X2

The remainder terms are similar to the third and fourth terms because we can ignore the complex conjugates. This
completes the proof. O

Now we proceed to prove the sextilinear estimate. Indeed, after performing the Littlewood—Paley decomposition

of a function, we know that the factor Py, , 5 (1 (u |VI~@=7)|4|2)) in Ag takes the same role as the factor Alu; in Ag.

At the same time, we always take the AJu; factor in L3 6d/ G449 in the proof of Proposition 3.4, and estimate this

by Ny|[{uy]| R Combining with Lemma 3.1, we can obtaln the following estimate.

Proposition 3.5. For any Schwartz function u, and any § =~ 1 as in Proposition 3.2, we have that
T+6
[ Aothtssar| <N,
i+
T

%
fors> 5 —1.
4. Almost interaction Morawetz estimate

In this section, we aim to prove the interaction Morawetz estimate for the smoothed out solution /u, that is, “almost
Morawetz estimate”. For this, we consider a(xy, x2) = |x; — x2| ‘R x RY — R, a convex and locally integrable
function of polynomial growth. In all of our arguments, we will work with the Schwartz solutions. This will simplify
the calculations and will enable us to justify the steps in the subsequent proofs, since we can approximate the H*
solutions by the Schwartz solutions.

Theorem 4.1. Let u be a Schwarz solution to
ius + Au =f\7(u), (x,t) e RY x [0,T],

where ./\N/'(u) =(x|77 % |u|2)u. Let Iu be a solution to

ilu, + Alu=1(N@), (x,1)eR!x[0,T]. 4.1
Then
T
_d=3 ~
9% s e S Wl it o+ [ [ Vo (R s tue s dxidmdr - @2)
0 RIxR4

with {-,-}, is the momentum bracket defined by

{f.g}p=Re(fVg—gVf),
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and
2

2
Noaa =Y (INi) = Nittup) [T 1uj,
i=1 j=1, j#i

where u; is a solution to

v+ Au=N@w), i,1)eR!xR, d>3, 4.3)
here x; € R, not a coordinate. In particular, on a time interval Ji where the local well-posedness Proposition 3.2
holds, we have that

~ 1
Va - {Noad, Iu(t,xl)lu(t,xz)}pdxl dxydt < F||u||§1(,k).
Jk R xR
Toward this goal, we recall the idea of the proof of the interaction Morawetz estimate for the defocusing non-

linear cubic Schrodinger equation in three space dimensions [3]. We present the result using a tensor of Schrodinger
solutions that emerged in [2,6]. We first recall the generalized Virial identity [2,16].

Proposition 4.1. Let a : R? — R be convex and u be a smooth solution to the solution
iu + Au=N@), (x) el0,T]xRe. (4.4)
Then the following inequality holds

T T
//(—AAa)|u(t,x)|2dxdt +2// Va - (N, u}dxdt < |Ma(T) — M (0)|
0 R4 0 R4
where M, (t) is the Morawetz action corresponding to u and is given by
My(1) = 2/ Va(x) - Im(it(x)Vu(x)) dx.
R4
Proof of Theorem 4.1. Now we rewrite Eq. (4.1) as
iluy + Alu=N(Tu) + (I(N W) — N (1w)).

By Proposition 4.1, we have

T T
//(—AAa)|Iu(t, x)|2dx dt — //f|1u(t, y)|2 |x — y| (VIVITOD 1w Tu)?) (¢, x) dx dy dt
x =y
0

0

+

S osup
1€[0,T]

/Va(x) Im(Tu(x)VIu(x))dx

T
//Va~{I./\N/(u)—./\N/(Iu),Iu}pdxdt ,
0

where the second term on the left-hand side

T
—///|Iu(t,y)|2|x _y| (VIVI=O=D 1u | Tul?) (2, x) dx dy dt (4.5)
x—y
0

is created by the term N (Iu) and the commutator / (./V (u)) — N (Iu) creates the second term on the right-hand side

T
// Va - {IN@) = N(u), Tu}  dxdi|. (4.6)
0
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By symmetry, we know that the term (4.5) is a positive term that we can ignore, which is analogue to the case in
[19,20]. Next we turn to the estimate of the error term (4.6). In addition, the conjugation will play no crucial role in
the forthcoming argument.

Now define the tensor product u := (1] ® us)(t, x) for x in

RA+d — {x =(x1,x2): X1 € Rd, Xy € ]Rd}
by the formula

(1 @ u2)(t, x) = ur(t, xuz(t, x2),

let us set

2
1U(t,x) = ]—[ Tu(t, x;).
j=1
If u solves (4.4) for d dimensions, then /U solves (4.4) for 2d dimensions, with right-hand side N ;1 given by

2
J’%:Z( (N i) ]’[ Iu]>
i=1 j=1,j#i

Now let us decompose

~ ~

N good + Nbdd

2 2 2
iZ(/\Nfi(m,-) I Iuj) Z( (I(Niwp) = Nittup) 1] Iuj>.
i=1

j=1, j#i J=Lj#i

The first term summand creates a positive term that we can ignore again. The term we call bead produces the error
term. Now we pick a(x) = a(x1, x2) = |x1 — x2| where (x1, x2) € RY x R, Hence we have

119175 1ul s 0 S Wl o 1T 2 +

// Va - /\/bad,lu(t x)Tu(z, xz)} dx1dxodt|.

0 Rd xRd

Note that the second term of the right-hand side comes from the momentum bracket term in the proof of Proposi-
tion 4.1. Following with the same calculations in [2], we deduce that

= / / Va - {./\N/bad, Iu(t,xl)lu(t,xz)}pdm dxp dt
0 Rd x R4

S (N @) = Naw| 1 + 19:(1(F ) = N aw) [ 12 11, - (4.7)
Now we proceed to estimate ||Vx(1(./v(u)) — /\N/'(Iu))||Lt1L§, which is the harder term. The term ||I(J\~/(u)) —

N ({u)|l 1,2 can be estimated in the same way. Note that
t=x

Ny = (1xI77 * |u*)u,
we have
Fa(Ve(I(N ) = N () &)
= f i£182,3 77 (m(E) — m@EDmE)m(E))AEDU(E)i(E) d&) dE, dEs.
E=Y 014

We decompose u into a sum of dyadic pieces u ; localized around N, then
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[9: (1 () = K1) | 2
— |7 (V1) = K1) ©)] 2
DY
NEN2ZN3 T e~
=Y

Since the conjugation plays no crucial role here, without loss of generality, we assume that

E1162,317 97| m (&) — mEDmMEIm(E)|iEDR(E)i(E3) dE d& dés

LIL}

N1 = Ny > Ns.
Set

o(£1,6,8) =61+ & + &l|mE + & + &) — mEDmE)m(E3)

’

then

4 4
o616, 8) =) xjE1. &, E)0ELE,8) =) 0, & &),

j=1 j=1

where x; (&1, &2, €3) is a smooth characteristic function of the set §2; defined as follows:

21 ={l&|~N;, i=1,2,3; N> Ni};

2, ={|§&1~N;, i=1,2,3; Ny 2 N> Noj;
23={l&|~N;, i=1,2,3; Ny >N, 2 N> N3}
24={l&I~N;, i=1,2,3; N\ > N2> N3 2N}

Hence, we have

[V (1 (N ) — N (1u))

4
<
S22
NN N T=1E 1 e,
E=20114)

= Z 24:L~,~.

N1,N2,N3 j=I

” L2

8231790 (&1, £2, £3)i1(E1)i(£2)ii(&3) dE) dEr dE3

LiL;

Contribution of L. Since o7 is identically zero when N > 4Ny, L gives no contribution to the sum above.
Contribution of Lj. By the mean value theorem, we have the pointwise bound

N
02(&1,86,8) SN 'fmﬁl =mN.

Hence, by Holder’s inequality, Hardy-Littlewood—Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we
obtain

e ” / £2317 (61, . £ ENIE)IE) dé drdss|
1€j1~Nj, LrLg
E=3 31k
SmiNy / &3]~ aEDAE)(E) dEr dE dEs -
LiL

|&;1~N;, §
5223:1 &j
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SmNa|lu u u
SmiNy|| IHL? 335 llu2l ; 3554 l 3||L;L§d—66dy+8

3
-2
SmiNaNY T [Tl

03+
J=1
where we used the fact that
1 1 1 3d—4 3d—4 3d—-6y+8 y 1
i 4o=1, Lo,
3 3 3 6d+6d+6d +d2+

6d 2 6d 2
(——)-2=0, §(——-)-Z=y-2.
3d—4) 3 3d—6y+8) 3

It suffices to show that

m1N2N3”72 SNTIND T Ny (N2) (N3).

We reduce to show that

NN < Ny (Vo) Ny (Vs NS

This is true since
NiZN'TNPT N 2 (NN 2
Contribution of L3. Note that

03(£1,82,8) S Nymy + Nymymy S Nymj.

Hence, by Holder’s inequality, Hardy-Littlewood—Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we
have

L3=H / 8231790581, £2, £3)i(E1)(ED A (E3) dE) dEp dEs L
L' L
&;1~N;, s
E=Y0 &)
SmiN / 82,3179 hED A (E)I(E) dE) dE dEs
LiL}
|§j1~Nj,
E=Y 01§
SmiNilluill  ea lluzll  _ea llusll 6
L? Lx3d—4 L? Lx3d—4 L? Lx3d—6y+8

3
y—2
SmNNTT T gl o
J=1
It suffices to show that
_2 _ _
miNINY ™2 S NN “my NimoNa(N3).
We reduce to show that
NN SmaNa(N3)NS 77
This is true since

maN2 2 N'"NY (NNTTT > L
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Contribution of L4. Note that

04(€1,£,8) SNimy + Nymymy S Nymj.

Hence, by Holder’s inequality, Hardy—Littlewood—Sobolev’s inequality, Proposition 2.2 and Bernstein’s estimate, we
obtain

L4=H / 2" oa(E1 b2, RN E di dErds|
|&;1~N;, bilg
5227:15./’

<miN / 2V e A(EDA(ES) dE) dEr dEs
L2
& 1~N;, e
E=Y0_ &)
SmiNilluill e lluall  _ea |lusl] 6d
L3 L3 L3p3d-ovs8

3
y—2
SmNNy T T Tl
J=1

It suffices to show that
miN| N3)/72 < N_H_Ngim]N]mzsz_gN_g.
We reduce to show that
NI_NS-’_ < m2N2m3N3N32_V.
This is true since for s > y — 2, we have
m2N2m3N;_y ZmyNy 2, Nl_N§+

where we used the fact that m(£)(£)? is monotone non-decreasing if s + p > 1. While for % —l<s<y—2,we
have

maNam3N; 7 > maNamyN; 7 > N¥7V =N+ > NI-NOH
where we used the fact that m(&)(£)? is monotone non-increasing if s + p <1. O

5. Proof of Theorem 1.1

We first scale the solution. Suppose that (¢, x) is a global in time solution to (1.1) with initial data ug € Cf)x’ (R9).
Setting

A _n+2—y I x
u™(t,x) =A 2 ul —,— |,
(t,) (5:5)

we choose a parameter A so that ||Iué||H1 = 0O(1), that is

1—s
A A Ns—v/23T 5.1
Next, let us define

S:={0< 1 <oo: | Iu*| < KaiGh),

._d=3
LAH™ 7 4([0,1]xRY)
with K a constant to be chosen later. We claim that S is the whole interval [0, co). Indeed, assume by contradiction
that it is not so, then since

Iu* -
1]y,

L4H™ [0,£1xRR9)
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is a continuous function of time, there exists a time 7 € [0, 0o0) such that

3y
Tu* e K}\'Z(j_l)’ 52
” " ”L4HJJATS’4([O,T]><R‘1) g 52)
3.y
Tu* _ <2KA3(Z7D, 53
” “ ||L41-'1_¥’4([0,T]><Rd) (5-3)
We now split the interval [0, T'] into subintervals J;, k =1,..., L, in such a way that
et |? < i,

L4H*dzt;3*4(1kad)
with p as in Proposition 3.3. This is possible because of (5.3). Then, the number L of possible subintervals must
satisfy
. QKMIGE-Dy  (og)43G-D
0 % '
From Propositions 3.2 and 3.3, we know that

54

L
sup E(Iu™(t)) S E(Iu§) + ——
t€l0,T] N

and by our choice (5.1) of A, E(/ ué) < 1. Hence, in order to guarantee that
E(Iu*()) 1

holds for all # € [0, T'], we need to require that
L<N'-.

According to (5.4), this is fulfilled as long as

443X -1
QK)* A2 <
N
From our choice of X, the expression (5.5) implies that

N'~. (5.5)

2K)* < N ARG

s—y/2+1
M

Thus this is possible for s > 43()’::2) and a large number N.

Now recall the a priori estimate (4.2)

T
[N 7 PSS D7 Y 7 e +/ / Va - (Noag, Tu* (6, x0) Tut (¢, x2) ) doxy dixa d.
0 R4 xR4
Set

Error(t) := / Va - {bead, Iu)‘(t, xl)luk(t, xz)}p dxydx;.
R4 x R4
By Theorem 4.1 and Proposition 3.3 on each interval Ji, we have that

1 6 !
fError(t)dt S FH”A ||Z1(Jk) S NI=
Jk

Summing all the Ji’s, we have that
T
L 0+

Error(t)dt| < —— <N ™.

0
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Therefore, by our choice (5.1) of A, we obtain
V175 1 S 10 ey L L+ N S 0O,

This estimate contradicts (5.2) for an appropriate choice of K. Hence S = [0, c0). In addition, let Ty be chosen

arbitrarily, we have also proved that for s > 43(; :i) s

|1 (21) ], = 000,

x

Then
|u(To) | o = |u(TO)] 12 + [ (TO)] .

= uoll 2 + 2~ |u (32T0)

ST 1 (32T)

[ s
HHI gAs—%+l ~ Nl—s.

Since Ty is arbitrarily large, the a priori bound on the H® norm concludes the global well-posedness of the Cauchy
problem (1.1).
Note that we have obtained that

([ Full < C(lluollas),

_d=3
L4H™ 7 *([0,400) xRY)

this together with Propositions 2.2, 3.3 and the property of the operator / imply that

sup (VY u] L qoso0r ety < Nl i 0, +00n S C(1Tuoll 1) S € (luollas)-
(gq,r) admissible

The scattering result can be obtained from the well-known standard argument [1,3]. This completes the proof.
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