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Abstract

A Lyapunov-based approach for the trajectory generation of an N -dimensional Schrödinger equation in whole R
N is proposed.

For the case of a quantum particle in an N -dimensional decaying potential the convergence is precisely analyzed. The free system
admitting a mixed spectrum, the dispersion through the absolutely continuous part is the main obstacle to ensure such a stabilization
result. Whenever, the system is completely initialized in the discrete part of the spectrum, a Lyapunov strategy encoding both the
distance with respect to the target state and the penalization of the passage through the continuous part of the spectrum, ensures the
approximate stabilization.
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1. Introduction

1.1. Main results

We consider a quantum particle in an N -dimensional space, with a potential V (x), and coupled to an external (laser)
field t �→ u(t) ∈ R through its dipole moment μ(x). Under appropriate change of scales, the system’s wavefunction
evolves following the Schrödinger equation

i
∂Ψ

∂t
(t, x) = −�Ψ (t, x) + (

V (x) + u(t)μ(x)
)
Ψ (t, x), x ∈ R

N, (1)

Ψ (0, x) = Ψ0(x). (2)

This is a bilinear control system, denoted by (Σ ), where

• the control is the external field u : R+ → R,
• the state is the wave function Ψ : R+ × R

N → C with Ψ (t) ∈ S for every t � 0, with S = {ϕ ∈ L2(RN ;C) |
‖ϕ‖L2 = 1}.
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We distinguish between four different situations: dimension N � 4; dimension N = 3; dimension N = 2; and dimen-
sion N = 1. For each of these cases, we will assume some appropriate decay assumptions for the potential V (x).
Indeed, through this paper, we will assume the following assumption:

Decay assumption (A). We assume for the potential V that zero is neither an eigenvalue nor a resonance of the
Hamiltonian H0 = −� + V . Furthermore, we assume one of the following assumptions (depending on the space
dimension N )

• N = 1: (1 + |x|)V ∈ L1(R) [22];
• N = 2: |V (x)| � C(1 + |x|)−3−ε [41];
• N = 3: V ∈ L

3
2 −ε(R3) ∩ L

3
2 +ε(R3) [21];

• N � 4: V̂ ∈ L1 and (1 + |x|2)γ /2V (x) is a bounded operator on the Sobolev space Hν for some ν > 0 and
γ > n + 4 [29].

A brief discussion on the origin of the above assumption on the potential V is provided in Section 1.3. As one will
see these decay assumptions are chosen to assure relevant dispersive estimates.

Furthermore, note that, under the decay assumption (A) on the potential V , the free Hamiltonian H0 = −�+V (x)

admits a mixed spectrum:

σ(H0) = σdisc(H0) ∪ σac(H0),

where the discrete spectrum σdisc(H0) contains a finite number of eigenvalues of finite multiplicities and the essential
spectrum is actually an absolutely continuous spectrum σac(H0) = [0,∞). Under the decay assumption (A), this
decomposition of the spectrum for the 1D case is a classical result of the earliest days of quantum mechanics (in fact
one only needs V ∈ L1(R), see e.g. [39], Section XIII.4). For the 2D case, one can find a proof in [43]. The 3D case
has been proven in [23]. Finally, the decomposition for the N -dimensional case, with N > 3, is a classical result as
the potential is a short range potential in the sense of Agmon [1].

Concerning the bound states, {φj }Mj=0, we know that φj ∈ H 2(RN,C). Moreover, the decay assumption (A) on the

potential implies that V ∈ L1
loc and V− ∈ Mloc the local Stummel class (see [2], page 8, for a definition). This ensures

the exponential decay of the eigenfunctions {φj }Mj=0 (see e.g. [2], p. 55, Corollary 4.2).
Let us recall the following classical existence and uniqueness result for the open-loop system (1)–(2). A proof of

this result is given in Appendix A.

Proposition 1. Let the potential V (x) satisfy the decay assumption (A) and consider μ ∈ L∞(RN,R). Let Ψ0 ∈ S,
T > 0 and u ∈ C

0([0, T ],R). There exists a unique weak solution of (1)–(2), i.e. a function Ψ ∈ C0([0, T ],S) ∩
C1([0, T ],H−2(RN,C)) such that

Ψ (t) = e−iH0tΨ0 − i

t∫
0

e−iH0(t−s)u(s)μ(x)Ψ (s) ds in L2(
R

N,C
)

for t ∈ [0, T ], (3)

and then (1) holds in H−2(RN,C).
If, moreover, Ψ0 ∈ H 2(RN,C) and multiplication by μ(x) defines a bounded operator over H 2(RN,R), then Ψ is

a strong solution, i.e. Ψ ∈ C0([0, T ],H 2(RN,C)) ∩C1([0, T ],L2(RN,C)), Eq. (1) holds in L2(RN,C) for t ∈ [0, T ]
and the initial condition (2) holds in H 2(RN,C).

The weak (resp. strong) solution is continuous with respect to the initial condition for the C0([0, T ],L2)-topology
(resp. C0([0, T ],H 2)-topology).

Assuming the potential V (x) such that the discrete spectrum σdisc(H0) is non-empty, we are interested here in
stabilizing one of the eigenfunctions in this discrete part. Fixing ε > 0 to be a small positive constant and considering
φ to be a normalized eigenfunction in this discrete part, we are interested in designing a feedback law uε(Ψ ) such
that, the solution Ψ (t, x) of (1)–(2) satisfies

lim inf
∣∣〈Ψ (t, x) | φ(x)

〉∣∣2
> 1 − ε. (4)
t→∞
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Here

〈ξ | ζ 〉 =
∫

RN

ξ(x)ζ̄ (x) dx,

denotes the Hermitian product of L2(RN,C). Note that, Ψ and φ living on the unit sphere S of L2(RN,C), the
limit (4) denotes the approximate stabilization of the eigenfunction φ(x).

Note that, even though the feedback stabilization of a quantum system necessitates more complicated models taking
into account the measurement back-action on the system (see e.g. [26,25,36]), the kind of strategy considered in this
paper can be helpful for the open-loop control of closed quantum systems. Indeed, one can apply the stabilization
techniques for the Schrödinger equation in simulation and retrieve the control signal that will be then applied in open-
loop on the real physical system. As it will be detailed below, in the bibliographic overview, such kind of strategy has
been widely used in the context of finite dimensional quantum systems.

The main result of this article is the following one.

Theorem 2. Consider the Schrödinger equation (1)–(2). We suppose the potential V (x) to satisfy the decay assump-
tion (A) and we take μ ∈ L(RN) ∩ L∞(RN). We assume the discrete spectrum σdisc of H0 = −� + V (x) to be
non-empty. We consider moreover the following assumptions:

A1 Ψ0 = ∑M
j=0 αjφj where {φj }Mj=0 are different normalized eigenfunctions in the discrete spectrum of H0.

A2 The coefficient α0 corresponding to the population of the eigenfunction φ0 in the initial condition Ψ0 is non-zero:
α0 �= 0.

A3 The Hamiltonian H0 admits non-degenerate transitions: λj1 − λk1 �= λj2 − λk2 for (j1, k1) �= (j2, k2) and where
{λj }Mj=0 are different eigenvalues of the Hamiltonian H0.

A4 The interaction Hamiltonian μ(x) ensures simple transitions between all eigenfunctions of H0:

〈μφj | φk〉 �= 0 ∀j �= k ∈ {0,1, . . . ,M}.

Then for any ε > 0, there exists a feedback law u(t) = uε(Ψ (t)) (that we will construct explicitly), such that the
closed-loop system admits a unique weak solution in C0([0,∞),S) ∩ C1([0,∞),H−2(RN,C)). Moreover the state
of the system ends up reaching a population more than (1 − ε) in the eigenfunction φ0 (approximate stabilization):

lim inf
t→∞

∣∣〈Ψ (t, x) | φ0(x)
〉∣∣2

> 1 − ε.

If, moreover multiplication by μ(x) defines a bounded operator over H 2(RN), then Ψ is a strong solution, i.e. Ψ ∈
C0([0,∞),H 2 (RN,C)) ∩ C1([0,∞),L2(RN,C)).

Remark 3. In this theorem L denotes
⋃

p�2 Lp(RN).

Remark 4. Note that, as the initial state is a linear combination of the bound states, we have in particular Ψ0 ∈ H 2

and decays exponentially.

Remark 5. Note that, here a finite dimensional approximation of the system by removing the continuous part of the
spectrum is not sufficient to treat the stabilization problem. In fact, even if the system is initialized in the discrete part
of the spectrum (as assumed in A1), the interaction Hamiltonian μ will make the solution leave this discrete part. The
state of the system will therefore leave this subspace just after the initial time.

The assumptions A1 through A4 can be relaxed significantly. However, as the final result with the relaxed assumptions
may seem too complicated, we will discuss this relaxations, separately, in Section 5.

1.2. A brief bibliography

The controllability of a finite dimensional quantum system, i d
dt

Ψ = (H0 + u(t)H1)Ψ where Ψ ∈ C
N and H0 and

H1 are N × N Hermitian matrices with coefficients in C has been completely explored [46,37,3,4,49]. However, this
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does not guarantee the simplicity of the trajectory generation. Very often the chemists formulate the task of the open-
loop control as a cost functional to be minimized. Optimal control techniques (see e.g., [42]) and iterative stochastic
techniques (e.g, genetic algorithms [32]) are then two classes of approaches which are most commonly used for this
task.

When some non-degeneracy assumptions concerning the linearized system are satisfied, [34] provides another
method based on Lyapunov techniques for generating trajectories. The relevance of such a method for the control
of chemical models has been studied in [35]. Since measurement and feedback in quantum systems lead to much
more complicated models and dynamics than the Schrödinger equation [26,36], the stabilization techniques presented
in [34] are only used for generating open-loop control laws. Simulating the closed-loop system, we obtain a control
signal which can be used in open-loop for the physical system. Such kind of strategy has already been applied widely
in this framework [13,45].

The situation is much more difficult when we consider an infinite dimensional configuration. Concerning the con-
trollability problem, very few results are available [48,8,10]. In [8,10] the controllability of a particle in a moving
one-dimensional quantum box has been studied. A local controllability result is therefore provided using the return
method [16]. In [12], applying some geometric control tools, the authors provide a quite general result concerning the
controllability of discrete-spectrum Schrödinger equation. Finally, in [47], the authors consider the controllability of
some particular Schrödinger equations with continuous spectra.

Concerning the trajectory generation problem for infinite dimensional systems still much less results are available.
The very few existing literature is mostly based on the use of the optimal control techniques [6,7]. The simplicity
of the feedback law found by the Lyapunov techniques in [34,9] suggests the use of the same approach for infinite
dimensional configurations. However, an extension of the convergence analysis to the PDE configuration is not at all
a trivial problem. Indeed, it requires the pre-compactness of the closed-loop trajectories, a property that is difficult to
prove in infinite dimension. This strategy is used, for example in [14].

Let us mention some strategies for proving the stabilization of infinite dimensional control systems. One can try to
build a feedback law for which one has a strict Lyapunov function. This strategy is used, for example, for hyperbolic
systems of conservation laws in [15], for the 2D incompressible Euler equation in a simply connected domain in
[17], see also [19] for the multi-connected case. For systems having a non-controllable linearized system around the
equilibrium considered, the return method often provides good results, see for example [16] for controllable systems
without drift and [20] for Camassa–Holm equation. In the end, we refer to [18] for a pedagogical presentation of
strategies for the proof of stabilization of PDE control systems.

In this paper, we propose a Lyapunov-based method to approximately stabilize a particle in an N -dimensional
decaying potential under some relevant assumptions. We assume that the system is initialized in the finite dimensional
discrete part of the spectrum. Then, the idea consists in proposing a Lyapunov function which encodes both the
distance with respect to the target state and the necessity of remaining in the discrete part of the spectrum. In this
way, we prevent the possibility of the “mass lost phenomenon” at infinity. Finally, applying some dispersive estimates
of Strichartz type, we ensure the approximate stabilization of an arbitrary eigenfunction in the discrete part of the
spectrum.

The ideas of this paper (a short and simplified version is already published as a communication [33]) have been
recently adapted to the case of a quantum particle in an infinite potential well [11]. In [11], as we are dealing with
a pure discrete spectrum, much less restrictive assumptions are needed to ensure the approximate stabilization of the
system.

As it can be remarked through the bibliography, except for a very few results [47], all the previous work on the
control of the infinite dimensional quantum systems deal with discrete-spectrum Schrödinger equations. It seems that
the techniques of this paper and the possibility of the relaxations, explained in Section 5, can open a new gateway to
investigate this class of quantum systems.

1.3. Free dynamics and dispersive estimates

Before treating the control problem, let us have a look at the behavior of the system in the absence of the control
field (u(t) = 0). We will denote by S(t) = exp(−itH0) the C0-semigroup on L2(RN,C) spanned by the infinitesimal
generator (−� + V (x))/i. Note in particular that, S(t) induces an isometry over L2(RN,C): ‖S(t)ψ‖L2 = ‖ψ‖L2 .
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Moreover, we denote by Pdisc the projection operator over the discrete subspace generated by the bound states and
defined on L2(RN,C). Finally, Pac denotes the projection over the orthogonal subspace: Pac = Id−Pdisc.

The discrete part of the freely evolving solution PdiscS(t)Ψ0 represents a quasi-periodic behavior:

Ψ0,disc = PdiscΨ0 =
M∑

j=0

αjφj (x) ⇒ PdiscS(t)Ψ0 =
M∑

j=0

αje
−iλj tφj (x).

The continuous part, however, represents a dispersive behavior. In this subsection, we provide a very brief overview
of the dispersive estimates and in particular the ones we use in this paper.

In heuristic terms, for the potential-free problem V ≡ 0, the explicit solution(
eit�ψ

)
(x) = CNt−N/2

∫
RN

ei
|x−y|2

4t ψ(y) dy,

implies the dispersive estimate [44]

sup
t>0

|t |N/2
∥∥eit�ψ

∥∥
L∞(RN)

� ‖ψ‖L1(RN), ∀ψ ∈ L1(
R

N
) ∩ L2(

R
N

)
.

For general V �= 0, no explicit solutions are available and therefore one needs to proceed differently. Consider the
perturbed Hamiltonian H0 = −� + V , we seek to prove similar estimates on the time evolution operator S(t)Pac =
e−itH0Pac. The projection onto the absolutely continuous spectrum of H0 is needed to eliminate bound states which
do not decay over any length of time. We, therefore, have the following dispersive estimate:

Theorem 6. Under the decay assumption (A) on the potential V , we have∥∥S(t)Pac
∥∥

1→∞ � |t |− N
2 . (5)

Such dispersive estimates have a long history. For exponentially decaying potentials, Rauch [38] proved dispersive
bounds in exponentially weighted L2-spaces. Jensen and Kato [27] replaced exponential with polynomial decay and
obtained asymptotic expansions of e−itH0 (in terms of powers of t ) in the usual weighted L2,σ spaces. The first authors
to address a dispersive estimate of the form (5) were Journée, Soffer, and Sogge [29]. They were able to prove the
dispersive estimate (5) under the fourth case of the decay assumption (A) for N � 3.

Concerning the case N = 3, following a large amount of results [51,40,22], finally Goldberg [21] proved the
dispersive estimate (5) under the third case of the decay assumption (A). In contrast, trying to adapt these results to
higher dimensions has lead Goldberg and Visan [24] to show that for N � 4, (5) fails unless V has some amount of
regularity, i.e., decay alone is insufficient for (5) to hold if N � 4.

The one-dimensional case was open until recently. Weder [50] proved a version of Theorem 6 under the stronger
assumption that

∫ ∞
−∞ |V (x)|(1 + |x|)3/2+ε dx < ∞. Finally, in a similar way to [50], Goldberg and Schlag [22] were

able to prove (5) under the first case of the decay assumption (A).
Finally, concerning the two-dimensional case, Yajima [52] and Jensen, Yajima [28] proved the Lp(R2) bounded-

ness of the wave operators under stronger decay assumptions on V (x) (than the decay assumption (A)), but only for
1 < p < ∞. Hence their result does not imply (5), but Lp → Lp′

estimates for 1 < p � 2. The first paper to provide
an L1 → L∞ dispersive estimate of the form (5) in two dimensions was that of Schlag [41] that proves (5) under the
second case of the decay assumption (A).

Note that, interpolating with the L2-bound ‖e−itH0Pacψ‖L2 � ‖ψ‖L2 , we have

Corollary 7. Under the decay assumption (A) on the potential V , we have

sup
t>0

|t |N( 1
2 − 1

p
)
∥∥S(t)Pacψ

∥∥
Lp′ � ‖ψ‖Lp for all ψ ∈ L1(

R
N

) ∩ L2(
R

N
)
, (6)

where 1 � p � 2 and 1
p

+ 1
p′ = 1.

Furthermore, through a T ∗T argument, (6) leads to the class of Strichartz estimates (see e.g. [31]):
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Theorem 8. Under the decay assumption (A) on the potential V , we have∥∥S(t)Pacψ
∥∥

L
q
t (L

p
x )

� C‖ψ‖L2, for all
2

q
+ N

p
= N

2
, 2 < q � ∞. (7)

1.4. Structure of the paper

The rest of the paper is organized as follows. In Section 2, we will provide the heuristic of the proof of Theorem 2.
In this aim, we will first announce a new Theorem 9 providing the same result as Theorem 2 but under some more
restrictive assumptions. After discussing heuristically the proof of this new theorem, we will give the elements to
extend the proof to that of Theorem 2.

Theorem 9, will be proved in Section 3. Through a rather simple change in the feedback law, we will be able to
extend this proof to that of Theorem 2. This will be addressed in Section 4.

As it can be seen, the assumptions of Theorem 2 may still seem too restrictive. However, through some argu-
ments based on the analytic perturbation of linear operators and the quantum adiabatic theory, we are able to relax
significantly these assumptions. This will be treated in Section 5.

2. Heuristic of the proof

From now on, we will assume that the system is initially prepared in a purely discrete state:

Ψ0 = Ψ0,disc ∈ Edisc,

where Edisc (resp. Eac) denotes Range(Pdisc) (resp. Range(Pac)). The control task is to steer the system’s state in the
eigenspace corresponding to an eigenfunction φ0 of the free Hamiltonian. Note that this eigenfunction φ0 can be any
eigenfunction in the discrete part of the spectrum and does not have to be the ground state. During the control process
the system might and will cross the continuum Eac.

Following the stabilization results for the finite dimensional systems [34,9], a first approach for this control problem
might be to consider the simple Lyapunov function

Ṽ (Ψ ) = 1 − ∣∣〈Ψ | φ0〉
∣∣2

.

The fact that Ψ and φ0 are both normalized, together with the Cauchy–Schwartz inequality, ensures that Ṽ (Ψ ) � 0.
The feedback law will be given by [9]:

ũ(Ψ ) = �(〈μΨ | φ0〉〈φ0 | Ψ 〉), (8)

where � denotes the imaginary part of a complex number. A deep analysis based on LaSalle type arguments shows
that with such a feedback strategy, one cannot avoid phenomenons like mass lost at infinity. The population of the state
φ0 will surely keep increasing during the evolution. But, in order to be able to apply the LaSalle invariance principle
for such infinite dimensional system, one needs to ensure the pre-compactness of the trajectories in L2(RN,C). In
the particular case, of the Schrödinger equation with the decaying potential, considered in this paper and with the
feedback law (8), one cannot even hope to have such a pre-compactness result. Indeed, as it has been said before,
while the population of the state φ0 keeps increasing through the application of the feedback law (8), during this same
period some of the population might go through the continuous part of the spectrum. This population has then the
possibility to disperse rapidly (cf. Section 1.3) and so we might have some un-controlled part of the L2-norm which
will be lost at infinity.

The approach of this paper consists in avoiding the population to go through the continuum while stabilizing the
state around the target state φ0. So, we consider a Lyapunov function Vε(Ψ ) which encodes these both tasks:

Vε(Ψ ) := 1 − (1 − ε)

M∑
j=0

∣∣〈Ψ | φj 〉
∣∣2 − ε

∣∣〈Ψ | φ0〉
∣∣2

, (9)

where 0 < ε � 1 is a small positive constant. Such a Lyapunov function clearly verifies:

0 � Vε(Ψ ) and Vε(Ψ ) = 0 ⇔ ∣∣〈Ψ | φ0〉
∣∣ = 1. (10)
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Here still, we have used the fact that Ψ and φj ’s are all normalized in L2(RN,C). Moreover, as the system is initially
prepared in the discrete part of the spectrum, and as |〈Ψ0 | φ0〉| > 0,

Vε(Ψ0) = 1 − (1 − ε) − ε
∣∣〈Ψ0 | φ0〉

∣∣2
< ε. (11)

This Lyapunov function clearly encodes two tasks: 1 – it prevents the L2-mass lost through the dispersion of the
absolutely continuous population; 2 – it privileges the increase of the population in the eigenfunction φ0.

By a simple computation we have,

d

dt
Vε(Ψ ) = −u(t)

[
(1 − ε)

M∑
j=0

�(〈μΨ | φj 〉〈φj | Ψ 〉) + ε�(〈μΨ | φ0〉〈φ0 | Ψ 〉)]. (12)

A natural choice is therefore to consider the feedback law:

u(Ψ ) = uε(Ψ ) := c

[
(1 − ε)

M∑
j=0

�(〈μΨ | φj 〉〈φj | Ψ 〉) + ε�(〈μΨ | φ0〉〈φ0 | Ψ 〉)], (13)

where c > 0 is a positive constant. Such a feedback law clearly ensures the decrease of the Lyapunov function Vε .
Looking at the structure of the Lyapunov function (9), the feedback law (13) penalizes strongly exiting from the dis-
crete part of the spectrum. Actually, as Vε(Ψ0) � ε, the decrease in this Lyapunov function ensures that the population
in the discrete part of the spectrum (the square of the L2-norm of the discrete part) will always remain more than
1 − ε. Therefore in the worst case, we will only have an ε L2-norm which will be lost by dispersing in the continuum.

At the same time, this feedback law (13) slightly encourages the increase in the population of the target state φ0. It
remains therefore to check whether this increase actually provides some kind of convergence toward this eigenfunction
or not. This will be addressed in Section 3, where we prove the following theorem:

Theorem 9. Consider the Schrödinger equation (1)–(2). Assume the space dimension N � 2. We suppose the potential
V (x) to satisfy the decay assumption (A) and we take μ ∈ L2N−(RN) ∩ L∞(RN). We assume the discrete spectrum
σdisc of H0 = −� + V (x) to be non-empty. We consider moreover the following assumptions:

A1 Ψ0 = ∑M
j=0 αjφj where {φj }Mj=0 are different normalized eigenfunctions in the discrete spectrum of H0.

A2 The coefficient α0 corresponding to the population of the eigenfunction φ0 in the initial condition Ψ0 is non-zero:
α0 �= 0.

A3 The Hamiltonian H0 admits non-degenerate transitions: λj1 − λk1 �= λj2 − λk2 for (j1, k1) �= (j2, k2) and where
{λj }Mj=0 are different eigenvalues of the Hamiltonian H0.

A4 The interaction Hamiltonian μ(x) ensures simple transitions between all eigenfunctions of H0:

〈μφj | φk〉 �= 0 ∀j �= k ∈ {0,1, . . . ,M}.

Then for any ε > 0, applying the feedback law u(t) = uε(Ψ (t)) given by (13), the closed-loop system admits a unique
weak solution in C0([0,∞),S) ∩ C1([0,∞),H−2(RN,C)). Moreover the state of the system ends up reaching a
population more than (1 − ε) in the eigenfunction φ0 (approximate stabilization):

lim inf
t→∞

∣∣〈Ψ (t, x) | φ0(x)
〉∣∣2

> 1 − ε.

If, moreover, the multiplication by μ(x) defines a bounded operator over H 2(RN), then Ψ is a strong solution, i.e.
Ψ ∈ C0([0,∞),H 2 (RN,C)) ∩ C1([0,∞),L2(RN,C)).

Remark 10. This theorem admits some more restrictive assumptions with respect to Theorem 2. In fact, we remove
the 1D case and we assume the interaction Hamiltonian μ to be in a smaller space L2N−(RN) ∩ L∞(RN), where

L2N−(
R

N
) =

⋃
2�p<2N

Lp,

and therefore, L2N−(RN) ⊂ L(RN).
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Theorem 9 will be proved by studying the L2-weak limit of Ψ (t) for t → ∞. Namely, let (tn)n∈N be an increasing
sequence of positive real numbers such that tn → ∞. Since ‖Ψ (tn)‖L2 = 1, there exists Ψ∞ ∈ L2(RN,C) such that, up
to a subsequence, Ψ (tn) ⇀ Ψ∞ weakly in L2(RN,C). Furthermore, through the dispersive estimates of Section 1.3,
we will provide a strong convergence result with respect to the semi-norm ‖ψ‖H = max(‖Pdiscψ‖L2,‖μψ‖L2).
Through such a strong convergence and the assumptions A3 and A4 of the theorem, we will prove that Ψ∞ = βφ0,
where β ∈ C and |β| � 1. Through some further investigations and applying assumption A1 we will be able to show
that |β|2 � 1 − ε and this will finish the proof of Theorem 9.

A deep study of the proof of Theorem 9, shows that the new restrictions (with respect to Theorem 2) may be
removed if we could ensure the belonging of the feedback law uε(Ψ (t)) to the space L1+δ

t for δ ∈ (0,1]. In fact, the
feedback law (13) only belongs to the space L2

t as dVε

dt
= − 1

c
u2

ε . However, we may improve this through the following
change of the feedback law:

uε,α(Ψ ) = cf (Ψ )
∣∣f (Ψ )

∣∣α, (14)

where

f (Ψ ) :=
[
(1 − ε)

M∑
j=0

�(〈μΨ | φj 〉〈φj | Ψ 〉) + ε�(〈μΨ | φ0〉〈φ0 | Ψ 〉)],

and α � 0 and c > 0. This choice of the feedback law implies

d

dt
Vε = −c1+α

c2+α
|uε,α| 2+α

1+α ,

and therefore uε,α ∈ L
2+α
1+α
t . As α → ∞ this ensures that the feedback law uε,α belongs to L1+δ

t for any δ ∈ (0,1].

3. Proof of Theorem 9

We proceed the proof of Theorem 9 in 3 steps: 1 – we prove the well-posedness of the closed-loop system; 2 – we
prove the existence of an asymptotic regime in some appropriate Hilbert space and we characterize the weak ω-limit
set, i.e. the set of the functions ψ∞ in L2(RN) such that there exists a sequence of times {tn}∞n=1 ↗ ∞ such that
Ψ (tn) ⇀ Ψ∞ weakly in L2; 3 – we finish the proof of the theorem through the application of the assumptions A1
through A4.

3.1. Solutions of the Cauchy problem

Proposition 11. Let ε > 0 and Ψ0 ∈ S. There exists a unique weak solution Ψ of (1)–(2) with the feedback law
u(t) = uε(Ψ (t)) given by (13), i.e. Ψ ∈ C0(R+,S) ∩C1(R+,H−2(RN,C)), (1) holds in H−2(RN,C) for every
t ∈ R

+ and the equality (2) holds in S.
If, moreover, Ψ0 ∈ H 2(RN,C) and multiplication by μ(x) defines a bounded operator over H 2(RN), then Ψ is a

strong solution, i.e. Ψ ∈ C0([0,∞),H 2 (RN,C)) ∩ C1([0,∞),L2(RN,C)).

Proof. Let M ∈ N
∗ be the number of bound states of H0 = −� + V (x) and T > 0 such that

2(M + 1)c‖μ‖2
L∞T e(M+1)c‖μ‖2

L∞ T < 1. (15)

In order to build solution on [0, T ], we apply the Banach fixed-point theorem to the following map

Θ :C0([0, T ],S
) → C0([0, T ],S

)
,

ξ �→ Ψ,

where Ψ is the solution of (1)–(2) with u(t) = uε(ξ(t)).
The map Θ is well defined and maps C0([0, T ],S) into itself. Indeed, when ξ ∈ C0([0, T ],S), u : t �→ uε(ξ(t)) is

continuous and thus Proposition 1 ensures the existence of a unique weak solution Ψ . Notice that the map Θ takes
values in C0([0, T ],S) ∩ C1([0, T ],H−2).
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Let us prove that Θ is a contraction of C0([0, T ],S). Let ξj ∈ C0([0, T ],S), uj := uε(ξj ), Ψj := Θ(ξj ), for
j = 1,2 and Δ := Ψ1 − Ψ2. We have

Δ(t) = −i

t∫
0

e−i(t−s)H0
[
u1μ(x)Δ(s) − (u1 − u2)μ(x)Ψ2(s)

]
ds.

Thanks to (13), we have ‖uj‖L∞(0,T ) � (M + 1)c‖μ‖L∞ for j = 1,2 and ‖u1 − u2‖L∞(0,T ) � 2(M + 1)c‖μ‖L∞ ×
‖ξ1 − ξ2‖C0([0,T ],L2). Thus

∥∥Δ(t)
∥∥

L2 �
t∫

0

(M + 1)c‖μ‖2
L∞

∥∥Δ(s)
∥∥

L2 + 2(M + 1)c‖μ‖2
L∞‖ξ1 − ξ2‖C0([0,T ],L2) ds. (16)

Therefore, the Gronwall Lemma implies∥∥Δ(t)
∥∥

C0([0,T ],L2)
� 2(M + 1)c‖μ‖2

L∞T e(M+1)c‖μ‖2
L∞T ‖ξ1 − ξ2‖C0([0,T ],L2),

and so (15) ensures that Θ is a contraction of the Banach space C0([0, T ],S). Therefore, there exists a fixed point
Ψ ∈ C0([0, T ],S) such that Θ(Ψ ) = Ψ . Since Θ takes values in C0([0, T ],S)∩C1([0, T ],H−2(RN,C)), necessarily
Ψ belongs to this space, thus, it is a weak solution of (1)–(2) on [0, T ].

If, moreover, Ψ0 ∈ H 2(RN,C) and multiplication by μ(x) defines a bounded operator over H 2(RN,R), then
applying Proposition 1, the map Θ takes values in C0([0, T ],H 2(RN,C)) ∩ C1([0, T ],L2(RN,C)) thus Ψ belongs
to this space and it is a strong solution.

Finally, we have introduced a time T > 0 and, for every Ψ0 ∈ S, we have built a weak solution Ψ ∈ C0([0, T ],S)

of (1)–(2) on [0, T ]. Thus, for a given initial condition Ψ0 ∈ S, we can apply this result on [0, T ], [T ,2T ], [2T ,3T ],
etc. This proves the existence and uniqueness of a global weak solution for the closed-loop system. �

Note that, by assumption A1, the initial state Ψ0 is spanned by the exponentially decaying bound states and
therefore Ψ0 ∈ S ∩ H 2(RN). This, together with Proposition 11, terminates the proof of the well-posedness part
of Theorem 9.

3.2. Weak ω-limit set

Before studying the weak ω-limit set of the closed-loop system, let us announce two simple and two rather com-
plicated lemmas that we will need to characterize this asymptotic regime.

Lemma 12. The feedback law u = uε(Ψ ) defined by (13) is a member of L2
t (R

+,R). In particular, for any γ > 0
there exists Tγ > 0 large enough such that:

∞∫
Tγ

∣∣uε

(
Ψ (s)

)∣∣2
ds � γ.

Proof. By definition, we have dVε

dt
= − 1

c
|uε(Ψ )|2. The Lyapunov function Vε(Ψ ) being a decreasing non-negative

function, there exists a positive constant ν such that Vε(Ψ (t)) ↘ ν � 0. Therefore, we have
∞∫

0

∣∣uε

(
Ψ (t)

)∣∣2
dt = −c

∞∫
0

dVε

dt
= c

(
Vε(Ψ0) − ν

)
< ∞. �

Lemma 13. Let Ψ (t) denote the weak (or strong) solution of the closed-loop system. There exists a sequence of times
(tn)

∞
n=1 ↗ ∞ and some function Ψ∞ ∈ L2(RN,C) (with ‖Ψ∞‖L2 � 1) such that:

Ψ (tn) ⇀ Ψ∞ weakly in L2(
R

N,C
)
, (17)

PdiscΨ (tn) → PdiscΨ∞ strongly in L2(
R

N,C
)
. (18)
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Proof. The solution Ψ belonging to C0(R+,S), we have ‖Ψ (t)‖L2 = 1 and therefore the existence of a subsequence
(tn)

∞
1 ↗ ∞ and Ψ∞ ∈ L2 such that (17) holds true is trivial. Moreover,

‖Ψ∞‖L2 � lim inf
n→∞

∥∥Ψ (tn)
∥∥

L2 = 1.

The key to the proof of (18), is in the fact that Edisc = Range(Pdisc) is finite dimensional. Indeed, the weak conver-
gence (17) implies〈

Ψ (tn) | φj

〉 → 〈Ψ∞ | φj 〉, j = 0,1, . . . ,M,

and therefore

PdiscΨ (tn) =
M∑

j=0

〈
Ψ (tn) | φj

〉
φj →

M∑
j=0

〈Ψ∞ | φj 〉φj = PdiscΨ∞ strongly in L2. �

Lemma 14. Let Ψ (t) denote the weak (or strong) solution of the closed-loop system. Consider a sequence of times
(tn)

∞
n=1 ↗ ∞ and some strictly positive time constant τ > 0. We have

S(τ)PacΨ (tn) → 0 strongly in L2
μ2

(
R

N,C
)
. (19)

Proof. We have the Duhamel’s formula:

S(τ)Ψ (tn) = S(tn + τ)Ψ0 + 1

i

tn∫
0

uε

(
Ψ (s)

)
S(tn + τ − s)μ(x)Ψ (s) ds

and therefore

∥∥μS(τ)PacΨ (tn)
∥∥

L2
x
�

∥∥μS(tn + τ)PacΨ0
∥∥

L2
x
+

tn∫
0

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds, (20)

where we have applied the fact that the semigroup operator S(t) of H0 commutes with the eigenprojection operator
Pac of the same Hamiltonian.

We know by the assumption of Theorem 9 on μ that μ ∈ Lp(RN) where p ∈ [2,2N). Applying the Hölder in-
equality, we have∥∥μ(x)S(t)Pacψ

∥∥
L2

x
� ‖μ‖L

p
x

∥∥S(t)Pacψ
∥∥

L
q
x
,

1

p
+ 1

q
= 1

2
, (21)

where ψ ∈ L2(RN).
Moreover, applying the dispersive estimate of Corollary 7, we have∥∥S(t)Pacψ

∥∥
L

q
x
� |t |− N

p ‖ψ‖
L

q′
x
,

1

q
+ 1

q ′ = 1, (22)

for ψ ∈ Lq ′ ∩ L2.
Let us apply these estimates (21) and (22) to the inequality (20). For the first term in (20), we have∥∥μ S(tn + τ)PacΨ0

∥∥
L2

x
� |tn + τ |− N

p ‖μ‖L
p
x
‖Ψ0‖

L
q′
x
, (23)

where we have used the fact that Ψ0 ∈ Lq ′
as it is a linear combination of the bound states and therefore decaying

exponentially [2]. For the second term, we have∥∥μS(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
� |tn + τ − s|− N

p ‖μ‖L
p
x

∥∥μΨ (s)
∥∥

L
q′
x

� |tn + τ − s|− N
p ‖μ‖2

L
p
x

∥∥Ψ (s)
∥∥

L2
x

= |tn + τ − s|− N
p ‖μ‖2

p . (24)

Lx
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Here, to obtain the second line from the first one, we have applied a Hölder inequality noting that 1
q ′ = 1

2 + 1
p

.
Furthermore, for any γ > 0 taking tn > Tγ (where Tγ is given by Lemma 12), we have

tn∫
0

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds

=
Tγ∫

0

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds

+
tn∫

Tγ

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds. (25)

Inserting the estimate (24) in the first integral of (25), we have

Tγ∫
0

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds

�
∥∥uε

(
Ψ (t)

)∥∥
L2

t
‖μ‖2

L
p
x

( Tγ∫
0

(tn + τ − s)
− 2N

p ds

)1/2

�
√

p√|2N − p|
∥∥uε

(
Ψ (t)

)∥∥
L2

t
‖μ‖2

L
p
x

(|tn + τ − Tγ |− 2N−p
p − |tn + τ |− 2N−p

p
)1/2

, (26)

where we have applied the Cauchy–Schwartz inequality. Note, in particular that, p being strictly less than 2N , 2N−p
p

is strictly positive, and therefore the above integral (26) tends to 0 as tn → ∞.
Applying once again the Cauchy–Schwartz inequality, this time for the second integral in (25), we have

tn∫
Tγ

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds

� ‖μ‖2
L

p
x

( ∞∫
Tγ

∣∣uε

(
Ψ (t)

)∣∣2
dt

)1/2( tn∫
Tγ

(tn + τ − s)
− 2N

p ds

)1/2

�
√

p√|2N − p|γ
1/2‖μ‖2

L
p
x

(|τ |− 2N−p
p − |tn + τ − Tγ |− 2N−p

p
)1/2

, (27)

where, we have used the fact that by definition of Tγ ,
∫ ∞
Tγ

|uε(Ψ (t))|2 dt < γ . In particular, this implies

lim sup
tn→∞

tn∫
Tγ

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds �

√
p√|2N − p|γ

1/2‖μ‖2
L

p
x
|τ |− 2N−p

2p . (28)

Gathering (26) and (28), we have shown

lim sup
tn→∞

tn∫ ∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds �

√
p√|2N − p|γ

1/2‖μ‖2
L

p
x
|τ |− 2N−p

2p . (29)
0
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Note, however, that we can choose the constant γ > 0 as small as we want and therefore we have:

lim
tn→∞

tn∫
0

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds = 0. (30)

This, together with (23), finishes the proof of Lemma 14 and we have

lim
tn→∞

∥∥μS(τ)PacΨ (tn)
∥∥

L2
x
= 0. � (31)

Applying the above lemmas, we have the following lemma, proving the continuity of the solution of the closed-loop
system with respect to its initial state in the L2

disc-topology.

Lemma 15. Let Ψ (t) denote the weak (or strong) solution of the closed-loop system. Consider the time sequence
{tn}∞n=1 ↗ ∞ and the weak limit Ψ∞ as in Lemma 13 and define Ψ∞,disc = PdiscΨ∞. Consider the two closed-loop
systems

i
d

dt
Ψn = −�Ψn + V (x)Ψn + uε(Ψn)μ(x)Ψn, Ψn|t=0 = Ψ (tn), (32)

i
d

dt
Ψ̃ = −�Ψ̃ + V (x)Ψ̃ + uε(Ψ̃ )μ(x)Ψ̃ , Ψ̃ |t=0 = Ψ̃0 = Ψ∞,disc. (33)

We have, for any τ > 0, that

PdiscΨn(τ) → PdiscΨ̃ (τ ) strongly in L2 as n → ∞. (34)

Proof. In this aim, we consider a stronger semi-norm than L2
disc defined by ‖ψ‖H = max(‖Pdiscψ‖L2,‖μψ‖L2).

Note however that this semi-norm is weaker than the L2(RN)-norm

‖Pdiscψ‖L2 � ‖ψ‖L2 and ‖μψ‖L2 � ‖μ‖L∞‖ψ‖L2,

and therefore

‖ψ‖H � κ‖ψ‖L2(RN), where κ = max
(
1,‖μ‖L∞

)
. (35)

It is clear that this is enough to prove∥∥Ψn(τ) − Ψ̃ (τ )
∥∥

H → 0 as n → ∞. (36)

We have by the Duhamel’s formula

Ψn(τ) = S(τ)Ψ (tn) + 1

i

τ∫
0

uε

(
Ψn(s)

)
S(τ − s)μ(x)Ψn(s, x) ds,

Ψ̃ (τ ) = S(τ)Ψ̃0 + 1

i

τ∫
0

uε

(
Ψ̃ (s)

)
S(τ − s)μ(x)Ψ̃ (s, x) ds.

Noting by δΨn(τ) = Ψn(τ) − Ψ̃ (τ ), we have

δΨn(τ) = S(τ)
(
Ψ (tn) − Ψ̃0

) + 1

i

τ∫
0

uε

(
Ψn(s)

)
S(τ − s)μ(x)δΨn(s) ds

+ 1

i

τ∫
0

[
uε

(
Ψn(s)

) − uε

(
Ψ̃ (s)

)]
S(τ − s)μ(x)Ψ̃ (s) ds.

This implies



M. Mirrahimi / Ann. I. H. Poincaré – AN 26 (2009) 1743–1765 1755
∥∥δΨn(τ)
∥∥

H �
∥∥S(τ)

(
Ψ (tn) − Ψ̃0

)∥∥
H + κ

τ∫
0

∣∣uε

(
Ψn(s)

)∣∣∥∥S(τ − s)μ(x)δΨn(s)
∥∥

L2(RN)
ds

+ κ

τ∫
0

∣∣uε

(
Ψn(s)

) − uε

(
Ψ̃ (s)

)∣∣∥∥S(τ − s)μ(x)Ψ̃ (s)
∥∥

L2(RN)
ds, (37)

where we have applied the inequality (35).
Furthermore, noting that S(t) induces an isometry over the space L2(RN,C), we have∥∥S(τ − s)μ(x)δΨn(s)

∥∥
L2(RN)

= ∥∥μ(x)δΨn(s)
∥∥

L2(RN)
�

∥∥δΨn(s)
∥∥

H,∥∥S(τ − s)μ(x)Ψ̃ (s)
∥∥

L2(RN)
= ∥∥μ(x)Ψ̃ (s)

∥∥
L2(RN)

� ‖μ‖L∞
∥∥Ψ̃ (s)

∥∥
L2 � ‖μ‖L∞,

where, for the second line, we have also applied∥∥Ψ̃ (s)
∥∥

L2 = ∥∥Ψ̃ (0)
∥∥

L2 � ‖Ψ∞‖L2 � 1.

Inserting the above inequalities in (37), we have

∥∥δΨn(τ)
∥∥

H �
∥∥S(τ)

(
Ψ (tn) − Ψ̃0

)∥∥
H + κ‖uε‖L∞

t

τ∫
0

∥∥δΨn(s)
∥∥

H ds

+ κ‖μ‖L∞

τ∫
0

∣∣uε

(
Ψn(s)

) − uε

(
Ψ̃ (s)

)∣∣ds. (38)

Note, in particular that, by the definition of the feedback law uε , ‖uε‖L∞
t

< c(M + 1)‖μ‖L∞ . Let us study the second
line of (38). We have

∣∣uε

(
Ψn(s)

) − uε

(
Ψ̃ (s)

)∣∣ � c(1 − ε)

M∑
j=0

∣∣〈μΨn(s) | φj

〉〈
φj | Ψn(s)

〉 − 〈
μΨ̃ (s) | φj

〉〈
φj | Ψ̃ (s)

〉∣∣
+ cε

∣∣〈μΨn(s) | φ0
〉〈
φ0 | Ψn(s)

〉 − 〈
μΨ̃ (s) | φ0

〉〈
φ0 | Ψ̃ (s)

〉∣∣,
and for all j ∈ {0,1, . . . ,M}∣∣〈μΨn(s) | φj

〉〈
φj | Ψn(s)

〉 − 〈
μΨ̃ (s) | φj

〉〈
φj | Ψ̃ (s)

〉∣∣
�

∣∣〈μδΨn(s) | φj

〉〈
φj | Ψn(s)

〉∣∣ + ∣∣〈μΨ̃ (s) | φj

〉〈
φj | δΨn(s)

〉∣∣
� ‖μδΨn‖L2(RN) + ‖μ‖L∞

∥∥PdiscδΨn(s)
∥∥

L2(RN)

�
(
1 + ‖μ‖L∞

)∥∥δΨn(s)
∥∥

H,

where, for the last inequality, we have applied the Cauchy–Schwartz inequality, the facts that ‖Ψn(s)‖L2 = 1 and
‖Ψ̃ (s)‖L2 � 1, and that |〈ψ | φj 〉| � ‖Pdiscψ‖L2 .

The above inequality, together with (38), implies

∥∥δΨn(τ)
∥∥

H �
∥∥S(τ)

(
Ψ (tn) − Ψ̃0

)∥∥
H + cκ(M + 2)‖μ‖L∞

(
1 + ‖μ‖L∞

) τ∫
0

∥∥δΨn(s)
∥∥

H ds. (39)

Applying the Gronwall Lemma to (39), one only needs to prove∥∥S(τ)
(
Ψ (tn) − Ψ̃0

)∥∥
H → 0 as n → ∞. (40)

As a first step, we clearly have∥∥PdiscS(τ)
(
Ψ (tn) − Ψ̃0

)∥∥
2 = ∥∥PdiscΨ (tn) − Ψ̃0

∥∥
2 → 0, (41)
L L
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where we have used the fact that the semigroup S(τ) induces an isometry on L2(RN), and that the projection operator
Pdisc commutes with the evolution operator S(τ).

Moreover applying the fact that, Pdisc + Pac = IdL2 , we have∥∥μS(τ)
(
Ψ (tn) − Ψ̃0

)∥∥
L2

x
� ‖μ‖L∞

∥∥S(τ)
(
PdiscΨ (tn) − Ψ̃0

)∥∥
L2 + ∥∥μS(τ)PacΨ (tn)

∥∥
L2 .

Applying (41), the first term, ‖S(τ)(PdiscΨ (tn) − Ψ̃0)‖L2 converges toward 0 whenever n → ∞. Moreover, applying
Lemma 14∥∥μS(τ)PacΨ (tn)

∥∥
L2 → 0 as n → ∞.

Therefore,∥∥μS(τ)
(
Ψ (tn) − Ψ̃0

)∥∥
L2 → 0 as n → ∞. (42)

The two limits (41) and (42) imply the limit (40) and therefore finish the proof of Lemma 15. �
We are now ready to characterize the weak ω-limit set.

Proposition 16. Let Ψ (t) denote the weak (or strong) solution of the closed-loop system. Assume for a sequence
(tn)

∞
n=1 ↗ ∞ of times that Ψ (tn) ⇀ Ψ∞ ∈ L2(RN,C) weakly in L2(RN,C) (with ‖Ψ∞‖L2 � 1). Define Ψ∞,disc =

PdiscΨ∞. One necessarily has

uε(Ψ∞,disc) = c

[
(1 − ε)

M∑
j=0

�(〈μΨ∞,disc | φj 〉〈φj | Ψ∞,disc〉
) + ε�(〈μΨ∞,disc | φ0〉〈φ0 | Ψ∞,disc〉

)] = 0.

Proof. Consider the Lyapunov function Vε(Ψ ) defined in (9). As it is shown in (12), the choice (13) of uε(Ψ ) ensures
that the Lyapunov function Vε(Ψ (t)) is a decreasing function of time. The Lyapunov function Vε being a positive
function (10), we have

lim
t→∞ Vε

(
Ψ (t)

) = η, (43)

where η � 0 is a positive constant.
Consider now, the sequence {tn}∞n=1 ↗ ∞ of times. The Lyapunov function Vε(ψ) is trivially continuous with

respect to ψ for the L2-weak topology. Therefore, as Ψ∞ is the weak limit of Ψ (tn), we have

Vε(Ψ∞) = lim
n→∞ Vε

(
Ψ (tn)

) = η.

Furthermore, noting that the Lyapunov function Vε only deals with the population of the bound states, we have

Vε(ψ) = Vε(Pdiscψ),

and therefore

Vε(Ψ∞,disc) = η. (44)

As in Lemma 15, let us consider the closed-loop Schrödinger equation with the wavefunction Ψ̃ and the initial state
Ψ̃0 = Ψ∞,disc. Applying Lemma 15, for any τ > 0, we have

PdiscΨ (tn + τ) → Ψ̃ (τ ) strongly in L2(
R

N,C
)

as n → ∞.

As the Lyapunov function Vε(ψ) is continuous with respect to ψ for the L2
disc semi-norm, we have

Vε

(
Ψ (tn + τ)

) → Vε

(
Ψ̃ (τ )

)
as n → ∞.

But, applying (43), we know that

Vε

(
Ψ (tn + τ)

) → η as n → ∞,

and therefore,

Vε

(
Ψ̃ (τ )

) = η = Vε(Ψ∞,disc) = Vε

(
Ψ̃ (0)

)
. (45)
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Thus, the Lyapunov function Vε remains constant on the closed-loop trajectory of Ψ̃ (t). This, together with (12)
and (13), implies

∂

∂τ
Vε

(
Ψ̃ (τ )

) = −1

c
u2

ε

(
Ψ̃ (τ )

) = 0, (46)

and therefore by continuity of uε(Ψ̃ (τ )) with respect to τ and passing to the limit at τ = 0, we can finish the proof of
Proposition 16. �
3.3. Non-degeneracy assumptions and the proof of Theorem 9

We have now all the elements to finish the proof of Theorem 9.

Proposition 17. Let Ψ (t) denote the weak (or strong) solution of the closed-loop system. Consider the sequence
(tn)

∞
n=1 ↗ ∞, the weak limit Ψ∞, and its discrete part Ψ∞,disc as in Proposition 16. Under the assumptions A1

through A4 of Theorem 9, we have

Ψ∞,disc = ςφ0, |ς |2 > 1 − ε. (47)

Proof. Define η as in (43). We now, in particular that,

Vε(Ψ∞) = η � Vε

(
Ψ (0)

)
< ε (48)

where we have applied (11) (and therefore the assumptions A1 and A2).
Let us take

Ψ∞,disc =
M∑

j=0

ςjφj .

Taking the closed-loop system Ψ̃ (t) as in the proof of Proposition 16, we have by (46) that uε(Ψ̃ (τ )) = 0. Therefore
the wavefunction Ψ̃ (τ ) evolves freely with the Hamiltonian H0 = −� + V (x) and so is given as follows

Ψ̃ (τ ) =
M∑

j=0

ςj e
−iλj τ φj .

By (46) we have

u(Ψ̃ ) = c(1 − ε)

M∑
j,k=0

ς̄j ςke
i(λj −λk)τ 〈μφk | φj 〉 + cε

M∑
j=0

ς̄0ςj e
i(λ0−λj )τ 〈μφj | φ0〉 = 0 ∀t � 0.

The assumption A3 of non-degenerate transitions applies now. As the above relation holds true for any τ � 0, we can
easily see that

ς̄j ςk〈μφk | φj 〉 = 0 ∀j, k ∈ {0,1, . . . ,M}.
This together with the assumption A4 of simple couplings imply

ς̄j ςk = 0 ∀j, k ∈ {0,1, . . . ,M}.
Thus

∃j ∈ {0,1, . . . ,M} such that ςj = ς �= 0 and ςk = 0 ∀k �= j.

We show that the only possibility for this index j is to be 0. If this is not the case (j �= 0) taking Ψ̃ = ςφj with |ς | � 1,

η = Vε(Ψ∞) = 1 − (1 − ε)|ς |2 � ε,

which is obviously in contradiction with (48). Thus

Ψ∞,disc = ςφ0
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with |ς | � 1. Therefore

Vε(Ψ∞) = 1 − (1 − ε)|ς |2 − ε|ς |2 = 1 − |ς |2.
Apply once again (48), we have 1 − |ς |2 < ε and so we can finish the proof of Proposition 17. �

Let us now, finish the proof of Theorem 9.

Proof of Theorem 9. The well-posedness of the closed-loop system has been addressed in Proposition 11. In order to
prove the approximate stabilization result, let us assume that there exists a sequence of times {t̃n}∞n=0 ↗ ∞ such that∣∣〈Ψ (t̃n) | φ0

〉∣∣2 � 1 − ε ∀n. (49)

As in Proposition 17, we can extract from this sequence a subsequence (noted still by {t̃n}∞n=0 for simplicity sakes)
such that

PdiscΨ (t̃n)
L2-strong−−−−−→ ς̃φ0 as n → ∞,

with |ς̃ |2 > 1 − ε. This obviously implies

lim inf
t→∞

∣∣〈Ψ (t̃n) | φ0
〉∣∣2

> 1 − ε

and is in contradiction with (49). We have therefore finished the proof of Theorem 9. �
4. Proof of Theorem 2

Let us now get back to Theorem 2. Comparing to Theorem 9, the only difference is in the fact that, we are also
considering the 1D case and that the interaction Hamiltonian μ ∈ L ∩ L∞ instead of L2N− ∩ L∞ for Theorem 9.
Therefore the only cases remaining to be treated are either the 1D case or the cases where μ ∈ Lp(RN) ∩ L∞(RN)

with p � 2N .
Considering these cases and following the same steps as in the proof of Theorem 9, the only place where we will

have a problem to proceed the proof is the passage from (26) and (27) to (28) and (29). Indeed, as 2N − p is not
strictly positive, we cannot ensure the convergence towards 0 of the terms in (26) and (27).

A deep study of the estimates (26) and (27) shows that they can be improved if one had uε ∈ L1+δ
t for δ ∈ (0,1)

instead of L2
t as in the proof of Theorem 9. Indeed, if one could show that

uε ∈ L
(

p
p−N

−�)

t for some � > 0, (50)

we could replace the estimates (26) and (27) with

Tγ∫
0

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds

�
∥∥uε

(
Ψ (t)

)∥∥
L

(
p

p−N
−�)

t

‖μ‖2
L

p
x

( Tγ∫
0

(tn + τ − s)
− ζN

p ds

)1/2

�
√

p√|ζN − p|
∥∥uε

(
Ψ (t)

)∥∥
L

(
p

p−N
−�)

t

‖μ‖2
L

p
x

(|tn + τ − Tγ |− ζN−p
p − |tn + τ |− ζN−p

p
)1/2

, (51)

and

tn∫
T

∣∣uε

(
Ψ (s)

)∣∣∥∥μ(x)S(tn + τ − s)Pacμ(x)Ψ (s)
∥∥

L2
x
ds
γ
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� ‖μ‖2
L

p
x

( ∞∫
Tγ

∣∣uε

(
Ψ (t)

)∣∣ p
p−N

−�
dt

)1/2( tn∫
Tγ

(tn + τ − s)
− ζN

p ds

)1/2

�
√

p√|ζN − p|γ
1/2‖μ‖2

L
p
x

(|τ |− ζN−p
p − |tn + τ − Tγ |− ζN−p

p
)1/2

, (52)

where

ζ = p − �(p − N)

N − �(p − N)
, (53)

noting that we have applied the Hölder inequality and the fact that

1

ζ
+ 1

p
p−N

− �
= 1.

Note that, as p � 2N (this is also true for the 1D case as p � 2), p
p−N

∈ (1,2] and therefore there exists some positive

� > 0 such that p
p−N

− � > 1. Furthermore, we have

ζ = p − �(p − N)

N − �(p − N)
>

p

N
,

and therefore ζN − p is positive. We can thus proceed the proof of Theorem 2 following the same steps as those of
Theorem 9.

However, it seems that one cannot hope to prove an estimate of the form (50) for the feedback law uε of (13). We,
therefore, need to change the feedback strategy. This might be done applying the feedback law (14).

The following proposition clearly implies Theorem 2.

Proposition 18. Consider the Schrödinger equation (1)–(2). We suppose the assumptions of Theorem 2 on the potential
V (x) and we take μ ∈ Lp(RN) ∩ L∞(RN) for some p � 2N . We suppose moreover the assumptions A1 through A4
to hold true.

Then for any ε > 0, applying the feedback law u(t) = uε,α(Ψ (t)) of (14) with

α = p − 2N + �(p − N)

N − �(p − N)
, 0 < � <

N

N − p
,

the closed-loop system admits a unique weak solution in C0([0, T ],S)∩C1([0, T ], H−2(RN,C)). Moreover the state
of the system ends up reaching a population more than (1 − ε) in the eigenfunction φ0 (approximate stabilization):

lim inf
t→∞

∣∣〈Ψ (t, x) | φ0(x)
〉∣∣2

> 1 − ε.

If, moreover multiplication by μ(x) defines a bounded operator over H 2(RN), then Ψ is a strong solution, i.e. Ψ ∈
C0([0, T ],H 2 (RN,C)) ∩ C1([0, T ],L2(RN,C)).

Proof. Considering the Lyapunov function Vε of (9), the choice of the feedback law implies

d

dt
Vε = −c1+α

c2+α
|uε,α| 2+α

1+α ,

and therefore proceeding as in the proof of Lemma 12

uε,α ∈ L
2+α
1+α
t = L

p
p−N

−�

t . (54)

In particular, for γ > 0, we will chose Tγ such that
∞∫

Tγ

∣∣uε

(
Ψ (s)

)∣∣ p
p−N

−�
ds � γ. (55)

One can then proceed the proof of Proposition 17, exactly as in the proof of Theorem 9, replacing only Lemma 12
with (54) and (55) and the estimates (26) and (27) by (51) and (52). �
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5. Relaxations

As it has been proved in previous sections, the approximate stabilization of a quantum particle around the bound
states of a decaying potential (satisfying the decay assumption (A)) may be investigated through explicit feedback
laws (13) or (14). The assumptions on the potential V or the interaction Hamiltonian μ are not so restrictive and seem
to be satisfied for a large class of physical systems. However, the assumptions A1 through A4 may seem to be too
restrictive. In particular, the assumption A1 does not allow the approximate stabilization of an initial wavefunction
with a non-zero population in the absolutely continuous part Eac.

The aim of this section is to give some ideas to relax these assumptions and to consider some more general situa-
tions. Some discussions on the assumption A1 will be addressed in Section 5.1. Furthermore, a significant relaxation
of the assumptions A3 and A4 will be addressed in Section 5.2. Concerning the assumption A2, we only give the
following remark which states that this assumption is, actually, not at all restrictive in practice.

Remark 19. Physically, the assumption A2 in not really restrictive. Indeed, even if 〈Ψ0 | φ0〉 = 0, a control field in
resonance with the natural frequencies of the system (the difference between the eigenvalues corresponding to an
eigenfunction whose population in the initial state is non-zero and the ground state) will, instantaneously, ensure a
non-zero population of the ground state in the wavefunction. Then, one can just apply the feedback law of Theorems 9
or 2.

5.1. Assumption A1

Before discussing an idea which may result in a significant relaxation of this assumption, let us provide a remark
which states that the result of Theorem 2 still holds true if we relax slightly the assumption A1.

Remark 20. Consider the Schrödinger equation (1)–(2) with the same assumptions on V and μ as in Theorem 2. We
consider moreover Assumptions A2 through A4 and we replace A1 with

A1′ ‖PacΨ0‖2
L2(RN)

< ε
1−ε

|〈Ψ | φ0〉|2.

The feedback law (14) still ensures the approximate stabilization of the closed-loop. One only needs to note that,

Vε(Ψ0) < 1 − (1 − ε)

(
1 − ε

1 − ε

∣∣〈Ψ0 | φ0〉
∣∣2

)
− ε

∣∣〈Ψ0 | φ0〉
∣∣2 = ε,

where we have applied the assumptions A1′ and A2. The rest of the proof follows exactly as in Theorem 9.
Here, we have relaxed the assumption A1 by allowing a very small part of the population of the initial state to belong

to the continuum. In fact, this allowed continuum population is bounded by an O(ε)-proportion of the population in
the target state φ0.

The assumption A1′ of Remark 20 is still quite restrictive. The question is therefore to provide a strategy permitting
us to approximately stabilize an important part of the continuum. Note that the controllability of this particular problem
has never been treated. It seems that one cannot in general hope to have a strong controllability result. In fact, consid-
ering the potentials V and μ of compact supports and taking an initial state of support outside supp(V ) ∪ supp(μ),
it seems that an important part of the population may be lost at infinity through the dispersion phenomena and this
before the controller even has the time to see and to influence the state. However, one might be interested to control a
part of the continuum.

Consider for example the potentials V and μ to be negative and of compact supports and moreover that supp(μ) ⊂
supp(V ). Considering the Hamiltonian Hλ = −� + V + λμ in the strong coupling limit (λ → ∞), this Hamiltonian
admits more and more bound states. One can therefore cover a higher and higher dimensional subspace of L2(RN)

through the discrete eigenspace of Hλ. Assume an initial state Ψ0 which has a large population in the continuum of
H0 = −� + V but a small population in the continuum of Hλ for some λ > 0. Applying the strategy of Theorem 2,
to the free Hamiltonian Hλ and the interaction Hamiltonian μ one may hope to reach an ε-neighborhood of an
arbitrary bound state of Hλ. Note, in particular that while reaching this bound state the control field u(t) has converged



M. Mirrahimi / Ann. I. H. Poincaré – AN 26 (2009) 1743–1765 1761
towards −λ. Letting now the control field u(t) ∼ −λ varying slowly towards zero and applying the quantum adiabatic
theory (see e.g. [5]) the state of the system will follow closely a bound state of the Hamiltonian Hλ (λ → 0). If the
target bound state of Hλ is chosen to be on the analytic branch corresponding to the evolution of the ground state
of H0 (see e.g. [30]), as the control tends to 0, we may reach the ε-neighborhood of the desired target φ0. This idea
of applying the quantum adiabatic theory and the large coupling limit to ensure the control of a population in the
continuum will be explored in future works.

5.2. Assumptions A3 and A4

After the above discussions on the assumptions A1 and A2, let us study the non-degeneracy assumptions A3
and A4. Similar assumptions to A3 and A4 have already been considered for the stabilization of finite dimensional
quantum systems [34,9]. When dealing with finite dimensional systems, the assumptions A3 and A4 are equivalent
to the controllability of the linearized system around various eigenstates of the system. For these finite dimensional
systems, it was shown, in [34] through the quantum adiabatic theory, and in [9] through the implicit Lyapunov con-
trol techniques, that the non-degeneracy assumptions can be relaxed significantly. These relaxations have even been
applied to the problem of the approximate stabilization of the quantum particle in an infinite potential well, being an
infinite dimensional system (see [11]). In this subsection, we will see that such relaxations may also be considered for
our control problem of the quantum particle in a decaying potential.

In this aim, we consider the potential V and the interaction Hamiltonian μ both to satisfy the decay assumption (A).
Similarly to the previous works, we consider the family of the perturbed Hamiltonian Hσ = −�+V (x)+σμ(x) with
|σ | � 1 a small real constant. The family {Hσ } is a self-adjoint holomorphic family of type (A) in the sense of Kato
(see [30], page 375). Thus, the eigenvalues and the bound states of Hσ are holomorphic functions of σ around zero.

The absence of zero energy eigenstate for H0 = −� + V as been assumed in the decay assumption (A) implies
the existence of a strictly positive threshold σ ∗ such that for σ evolving in (−σ ∗, σ ∗) the bound states φj of H0
stay bound states of Hσ and do not join the continuum. This ensures that, the perturbed eigenvalues {λσ,j }Mj=0 of Hσ

(with λ0,j = λj ) are well defined and remain less than zero. Note that, one might have the appearance of new bound
states but the bound states of H0 will not disappear while considering perturbations of amplitude |σ | < σ ∗. We have
therefore the following theorem:

Theorem 21. Consider the Schrödinger equation (1)–(2) with the decay assumption (A) on both V and μ. We assume
moreover that the space dimension N � 2 and μ ∈ L2N− ∩ L∞. We consider the assumptions A1 and A2 and we
replace A3 and A4 with:

(A3–A4)′ there exists σ̄ ∈ (0, σ ∗) such that the non-degeneracy assumptions A3 and A4 hold for the eigenvalues and
the eigenstates of the perturbed Hamiltonian Hσ̄ = −� + V + σ̄μ.

There exists then a feedback law u(Ψ ), such that the closed-loop system admits a unique weak solution and that

lim inf
t→∞

∣∣〈Ψ (t) | φ0
〉∣∣2

> 1 − ε.

Remark 22. Roughly speaking the non-degeneracy assumptions A3 and A4 are always satisfied unless some kind of
symmetry is admitted in the potential. Formally, the assumption (A3–A4)′ states that if we can break this symmetry
through the addition of the interaction Hamiltonian, we are still able to ensure the approximate stabilization result.

Remark 23. Applying the same technique as in Proposition 18, one can extend the result of Theorem 21 to the case
of dimensions N � 1 and μ ∈ L ∩ L∞.

Proof. By the analyticity of the eigenvalues λσ,j and φσ,j with respect to σ around zero, the assumption (A3–A4)′
ensures the existence of a strictly positive constant σ � ∈ (0, σ ∗) such that the non-degeneracy assumptions A3 and A4
hold true for the perturbed Hamiltonians Hσ with any σ in the interval (0, σ �).

Applying once more the analyticity of the bound states {φj,σ }Mj=0 with respect to σ in (0, σ �) implies that one can

choose σ �� ∈ (0, σ �) such that
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‖φj,σ − φj‖L2 < min

(
ε

4
,

ε|〈Ψ0 | φ0〉|2
2(M + 1)(2 − ε) + 2ε

)
∀j = 0,1, . . . ,M and ∀σ ∈ (

0, σ ��
)
. (56)

Now, applying the inequality (56), the assumption A2 implies:∣∣〈Ψ0 | φ0,σ 〉∣∣2 �
∣∣〈Ψ0 | φ0〉

∣∣2 − 2
∣∣〈Ψ0 | φ0,σ − φ0〉

∣∣
�

∣∣〈Ψ0 | φ0〉
∣∣2 − 2‖φj,σ − φj‖L2 > 0, ∀σ ∈ (

0, σ ��
)
, (57)

where we have applied the Cauchy–Schwartz inequality and the fact that

ε

2(M + 1)(2 − ε) + 2ε
<

1

2
.

Let us consider the Schrödinger equation (Σσ ) characterized by the free Hamiltonian Hσ = −� + V + σμ and the
interaction Hamiltonian μ for some σ ∈ (0, σ ��). Applying the assumption (A3–A4)′, the assumptions A3 and A4 hold
true for this system. Moreover, the inequality (57) implies the assumption A2 for this system. Finally, applying (56),
we have (Mσ + 1 � M + 1 is the number of the bound states of Hσ )

Pac(Hσ )(Ψ0) = 1 −
Mσ∑
j=0

∣∣〈Ψ0 | φj,σ 〉∣∣2 � 1 −
M∑

j=0

∣∣〈Ψ0 | φj,σ 〉∣∣2

� 1 −
M∑

j=0

(∣∣〈Ψ0 | φj,σ 〉∣∣2 − 2‖φj,σ − φj‖L2

)
<

2(M + 1)ε|〈Ψ0 | φ0〉|2
2(M + 1)(2 − ε) + 2ε

<
ε/2

1 − ε/2

∣∣〈Ψ0 | φ0〉
∣∣2

. (58)

This implies the assumption A1′ or the system (Σσ ) (having replaced ε by ε/2).
Considering therefore the feedback law

v ε
2 ,σ

(
Ψ (t)

) := c

(
1 − ε

2

) Mσ∑
j=0

〈
μΨ (t) | φj,σ

〉〈
φj,σ | Ψ (t)

〉 + c
ε

2

〈
μΨ (t) | φ0,σ

〉〈
φ0,σ | Ψ (t)

〉
, c > 0, (59)

and applying Theorem 9, we ensure the approximate stabilization result:

lim inf
t→∞

∣∣〈Ψ (t) | φ0,σ

〉∣∣2 � 1 − ε/2. (60)

Note that, the feedback law (59) means the application of the feedback u := −σ + v ε
2 ,σ (Ψ (t)) for the main

Schrödinger equation (1)–(2). Finally the limit (60) implies

lim inf
t→∞

∣∣〈Ψ (t) | φ0
〉∣∣2 � lim inf

t→∞
(∣∣〈Ψ (t) | φ0,σ

〉∣∣2 − 2‖φ0,σ − φ0‖L2

)
� 1 − ε/2 − ε/2 = 1 − ε, (61)

where once again we have applied (56). �
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Appendix A

This appendix is devoted to the proof of Proposition 1.

Proof of Proposition 1. Let Ψ0 ∈ S, T > 0 and u ∈ C0([0, T ],R). Let T1 ∈ (0, T ) be such that

‖μ‖L∞‖u‖L1(0,T1)
< 1. (62)

We prove the existence of Ψ ∈ C0([0, T1],L2(RN,C)) such that (3) holds by applying the Banach fixed point theorem
to the map
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Θ :C0([0, T1],L2) → C0([0, T1],L2),
ξ �→ Ψ,

where Ψ is the weak solution of

i
∂Ψ

∂t
= H0Ψ + u(t)μ(x)ξ, Ψ (0, x) = Ψ0(x),

i.e. Ψ ∈ C0([0, T1],L2) and satisfies, for every t ∈ [0, T1],

Ψ (t) = e−iH0tΨ0 − i

t∫
0

e−iH0(t−s)u(s)μ(x)ξ(s) ds in L2(
R

N,C
)
.

Notice that Θ takes values in C1([0, T1],H−2(RN,C)).
For ξ1, ξ2 ∈ C0([0, T1],L2(RN,C)), Ψ1 := Θ(ξ1), Ψ2 := Θ(ξ2) we have

(Ψ1 − Ψ2)(t) = −i

t∫
0

e−iH0(t−s)u(s)μ(x)(ξ1 − ξ2)(s) ds

thus ∥∥(Ψ1 − Ψ2)(t)
∥∥

L2 � ‖μ‖L∞

t∫
0

∣∣u(s)
∣∣ds‖ξ1 − ξ2‖C0([0,T1],L2).

The assumption (62) guarantees that Θ is a contraction of C0([0, T1],L2), thus, Θ has a fixed point Ψ ∈
C0([0, T1],L2). Since Θ takes values in C1([0, T1],H−2), then Ψ belongs to this space. Moreover, this function
satisfies (3).

Finally, we have built weak solutions on [0, T1] for every Ψ0, and the time T1 does not depend on Ψ0, thus, this
gives solutions on [0, T ].

Let us prove that this solution is continuous with respect to the initial condition Ψ0, for the L2(RN,C)-topology.
Let Ψ0,Φ0 ∈ S and Ψ , Φ the associated weak solutions. We have

∥∥(Ψ − Φ)(t)
∥∥

L2 � ‖Ψ0 − Φ0‖L2 + ‖μ‖L∞

t∫
0

∣∣u(s)
∣∣∥∥(Ψ − Φ)(s)

∥∥
L2 ds,

thus Gronwall Lemma gives∥∥(Ψ − Φ)(t)
∥∥

L2 � ‖Ψ0 − Φ0‖L2e
‖μ‖L∞‖u‖

L1(0,T ) .

This gives the continuity of the weak solutions with respect to the initial conditions.
Now, let us assume that Ψ0 ∈ H 2(RN,C). Take C to be the bound of the multiplication operator μ over H 2, i.e.

C is a positive constant such that for every ϕ ∈ H 2(RN,C), ‖μϕ‖H 2 � C‖ϕ‖H 2 . We consider, then, T2 > 0 such that
C‖u‖L1(0,T2)

< 1. By applying the fixed point theorem on

Θ2 :C0([0, T2],H 2) → C0([0, T2],H 2)
defined by the same expression as Θ , and using the uniqueness of the fixed point of Θ , we get that the weak solution is
a strong solution. The continuity with respect to the initial condition of the strong solution can also be proved applying
the same arguments as in above.

Finally, let us justify that the weak solutions take values in S. For Ψ0 ∈ H 2, the solution belongs to C1([0, T ],L2)∩
C0([0, T ],H 2) thus, the following computations are justified

d

dt

∥∥Ψ (t)
∥∥2

L2 = 2�
〈
∂Ψ

∂t

∣∣∣ Ψ

〉
= 0.

Thus Ψ (t) ∈ S for every t ∈ [0, T ].
For Ψ0 ∈ S, we get the same conclusion thanks to a density argument and the continuity for the C0([0, T ],L2)-

topology of the weak solutions with respect to the initial condition. �
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