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Abstract

We prove certain mixed-norm Strichartz estimates on manifolds with boundary. Using them we are able to prove new results
for the critical and subcritical wave equation in 4-dimensions with Dirichlet or Neumann boundary conditions. We obtain global
existence in the subcritical case, as well as global existence for the critical equation with small data. We also can use our Strichartz
estimates to prove scattering results for the critical wave equation with Dirichlet boundary conditions in 3-dimensions.
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1. Introduction

Let (M,g) be a Riemannian manifold of dimension n � 2. Strichartz estimates are a family of space time integra-
bility estimates on solutions u(t, x) : (−T ,T ) × M → C to the wave equation

∂2
t u(t, x) − �gu(t, x) = 0, u(0, x) = f (x), ∂tu(0, x) = g(x), (1.1)

where �g denotes the Laplace–Beltrami operator on (M,g). Local homogeneous Strichartz estimates state that

‖u‖Lp((−T ,T );Lq(M)) � C
(‖f ‖Hγ (M) + ‖g‖Hγ−1(M)

)
, (1.2)

where Hγ denotes the L2 Sobolev space over M of order γ , and 2 � p � ∞, 2 � q < ∞ satisfy

1

p
+ n

q
= n

2
− γ,

2

p
+ n − 1

q
� n − 1

2
. (1.3)

Estimates involving q = ∞ hold when (n,p, q) �= (3,2,∞), but typically require the use of Besov spaces.
Strichartz estimates are well established on flat Euclidean space, where M = R

n and gij = δij . In that case, one can
obtain a global estimate with T = ∞; see for example Strichartz [26], Ginibre and Velo [8], Lindblad and Sogge [15],
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Keel and Tao [13], and references therein. However, for general manifolds phenomena such as trapped geodesics and
finiteness of volume can preclude the development of global estimates, leading us to consider local in time estimates.

If M is a compact manifold without boundary, finite speed of propagation shows that it suffices to work in coordi-
nate charts, and to establish local Strichartz estimates for variable coefficient wave operators on R

n. Such inequalities
were developed for operators with smooth coefficients by Kapitanski [12] and Mockenhaupt, Seeger and Sogge [17].
In this context one has the Lax parametrix construction, which yields the appropriate dispersive estimates. Strichartz
estimates for operators with C1,1 coefficients were shown by the second author in [20] and by Tataru in [28], the
latter work establishing the full range of local estimates. Here the issue is more intricate as the lack of smoothness
prevents the use of the Fourier integral operator machinery. Instead, wave packets or coherent state methods are used
to construct parametrices for the wave operator.

In this work, we consider the establishment of Strichartz estimates on a manifold with boundary, assuming that
the solution satisfies either Dirichlet or Neumann homogeneous boundary conditions. Strichartz estimates for certain
values of p,q were established by Burq, Lebeau and Planchon [5] using results from [24]; our work expands the
range of indices p and q , and includes new estimates of particular interest for the critical nonlinear wave equation in
dimensions 3 and 4. Our main result concerning Strichartz estimates is the following.

Theorem 1.1. Let M be a compact Riemannian manifold with boundary. Suppose 2 < p � ∞, 2 � q < ∞ and
(p, q, γ ) is a triple satisfying

1

p
+ n

q
= n

2
− γ

{
3
p

+ n−1
q

� n−1
2 , n � 4,

1
p

+ 1
q

� 1
2 , n � 4.

(1.4)

Then we have the following estimates for solutions u to (1.1) satisfying either Dirichlet or Neumann homogeneous
boundary conditions

‖u‖Lp([−T ,T ];Lq(M)) � C
(‖f ‖Hγ (M) + ‖g‖Hγ−1(M)

)
(1.5)

with C some constant depending on M and T .

A lemma of Christ and Kiselev [7] allows one to deduce inhomogeneous Strichartz estimates from the homoge-
neous estimates. In the following corollary, (r ′, s′) are the Hölder dual exponents to (r, s), and the assumptions imply
that a homogeneous (H 1−γ ,H−γ ) → LrLs holds.

Corollary 1.2. Let M be a compact Riemannian manifold with boundary. Suppose that the triples (p, q, γ ) and
(r ′, s′,1 − γ ) satisfy the conditions of Theorem 1.1. Then we have the following estimates for solutions u to (1.1)
satisfying either Dirichlet or Neumann homogeneous boundary conditions

‖u‖Lp([−T ,T ];Lq(M)) � C
(‖f ‖Hγ (M) + ‖g‖Hγ−1(M) + ‖F‖Lr([−T ,T ];Ls(M))

)
with C some constant depending on M and T .

For details on the proof of Corollary 1.2 using Theorem 1.1 and the Christ–Kiselev lemma we refer to Theorem 3.2
of [23], which applies equally well to Neumann conditions.

By finite speed of propagation, our results also apply to noncompact manifolds, provided that there is uniform
control over the size of the metric and its derivatives in appropriate coordinate charts. In particular, we obtain local
in time Strichartz estimates for the exterior in R

n of a compact set with smooth boundary, for metrics g which agree
with the Euclidean metric outside a compact set. In this case one can obtain global in time Strichartz estimates under
a nontrapping assumption. We refer to [23] for the case of odd dimensions, and Burq [4] and Metcalfe [16] for the
case of even dimensions. See also [10].

For a manifold with strictly geodesically-concave boundary, the Melrose–Taylor parametrix yields the Strichartz
estimates, for the larger range of exponents in (1.3) (not including endpoints) as was shown in [22]. If the concavity
assumption is removed, however, the presence of multiply reflecting geodesics and their limits, gliding rays, prevent
the construction of a similar parametrix.

Recently, Ivanovici [11] has shown that, when n = 2, (1.5) cannot hold for the full range of exponents in (1.3).
Specifically, she showed that if M ⊂ R

2 is a compact convex domain with smooth boundary then (1.5) cannot hold



M.D. Blair et al. / Ann. I. H. Poincaré – AN 26 (2009) 1817–1829 1819
when q > 4 if 2/p + 1/q = 1/2. It would be very interesting to determine the sharp range of exponents for (1.5) in
any dimension n � 2.

The Strichartz estimates of Tataru [28] for Lipschitz metrics yield estimates in the boundary case, but with a strictly
larger value of γ . The approach of [28] involves the construction of parametrices which apply over short time intervals
whose size depends on frequency. Taking the sum over such sets generates a loss of derivatives in the inequality.

These ideas influenced the development of the spectral cluster estimates for manifolds with boundary appearing
in [24]. Such estimates were established through squarefunction inequalities for the wave equation, which control the
norm of u(t, x) in the space Lq(M;L2(−T ,T )). These spectral cluster estimates were used in the work of Burq,
Lebeau and Planchon [5] to establish Strichartz estimates for a certain range of triples (p, q, γ ). The range of triples
that can be obtained in this manner, however, is restricted by the allowed range of q for the squarefunction estimate.
In dimension 3, for example, this restricts the indices to p,q � 5. In [5] similar estimates involving Ws,q spaces
were also established, and used in conjunction with the Strichartz estimates and boundary trace arguments to establish
global well-posedness for the critical semilinear wave equation for n = 3. In the last two sections of this paper we
shall present some new results concerning critical semilinear wave equations. Specifically, we shall obtain local well-
posedness and global existence for small data when n = 4, as well as a natural scattering result for n = 3.

The approach of this paper instead adapts the proof of the squarefunction inequalities in [24]. We utilize the
parametrix construction of that paper, and establish the appropriate time-dispersion bounds on the associated kernel.
This allows us to obtain the Strichartz estimates for a wider range of triples, including, for example, the important
L4((−T ,T );L12(M)) estimate in dimension 3, and the L3((−T ,T );L6(M)) estimate in dimension 4.

The key observation in [24] is that u satisfies better estimates if it is microlocalized away from directions tangent
to ∂M than if it is microlocalized to directions nearly tangent to ∂M . This is due to the fact that one can construct
parametrices over larger time intervals as one moves to directions further away from tangent to ∂M . More precisely,
the parametrix for directions at angle ≈ θ away from tangent to ∂M applies for a time interval of size θ , which
would normally yield a θ -dependent loss in the estimate. However, this loss can be countered by the fact that such
directions live in a small volume cone in frequency space. For sub-critical estimates, i.e. where strict inequality holds
in the second condition in (1.3), this frequency localization leads to a gain for small θ . The restriction on p and q in
Theorem 1.1 arises from requiring this gain to counteract the loss from adding over the θ−1 disjoint time intervals on
which one has estimates. Hence, while the range of p and q in our theorem is not known to be optimal, the restrictions
are naturally imposed by the local nature of the parametrix construction in [24].

Notation. The expression X � Y means that X � CY for some C depending only on the manifold, metric, and
possibly the triple (p, q, γ ) under consideration. Also, we abbreviate Lp(I ;Lq(U)) by LpLq(I × U).

2. Homogeneous Strichartz estimates

The proof of Strichartz estimates is a direct adaptation of the proof of squarefunction estimates in [24]. The differ-
ence is that Strichartz estimates result from time decay of the wave kernel, whereas squarefunction estimates result
from decay with respect to spatial separation. Consequently, in [24] the wave equation was conically localized in
frequency so as to become hyperbolic with respect to a space variable labelled x1, and the equation factored so as to
make x1 the evolution parameter.

In order to maintain the convention that x1 is the evolution parameter, in this section we set x1 = t , and will use
x′ = (x2, . . . , xn+1) to denote spatial variables in R

n. Thus x = (x1, x
′) is a variable on R

1+n.
We work in a geodesic-normal coordinate patch near ∂M in which xn � 0 equals distance to the boundary (the

estimates away from ∂M follow from [12] and [17]). The coefficients of the metric gij (x
′) are extended to xn < 0

in an even manner, and the solution u(x) is extended evenly in the case of Neumann boundary conditions, and oddly
in xn in case of Dirichlet conditions. The extended solution then solves the extended wave equation on the open set
obtained by reflecting the coordinate patch in xn.

Setting a11(x) = √
detgij (x′), we now work with an equation

n+1∑
Dia

ij (x′)Dju(x) = 0

i,j=1
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on an open set symmetric in xn. A linear change of coordinates, and shrinking the patch if necessary, reduces to
considering coefficients aij (x) which are pointwise close to the Minkowski metric on the unit ball in R

1+n, and
defined globally so as to equal that metric outside the unit ball.

Following [24, §2], the solution u is then localized in frequency to a conic set where |ξ ′| ≈ |ξ1|. On the complement
of this set the operator is elliptic, and the Strichartz estimates follow from elliptic regularity and Sobolev embedding.
As in Section 7 of [24], one uses the fact that the coefficients are smooth in all variables but xn, and Sobolev embedding
can be accomplished using at most one derivative in the xn direction.

The next step is to take a Littlewood–Paley dyadic decomposition u = ∑∞
k=1 uk with ûk localized in frequency

to shells |ξ ′| ≈ 2k . One lets a
ij
k (x) denote the coefficients frequency localized in the x′ variables to |ξ ′| � 2k , and

factorizes

n+1∑
i,j=1

a
ij
k (x)ξiξj = a11

k (x)
(
ξ1 + pk(x, ξ ′)

)(
ξ1 − pk(x, ξ ′)

)
,

where pk(x, ξ ′) ≈ |ξ ′|. Just as in [25, §2] (and the higher dimensional modifications in [24, §7]), Theorem 1.1 is
reduced to establishing, uniformly over λ = 2k , bounds of the form

‖uλ‖L
p
x1 L

q

x′ (|x|�1) � λγ
(‖uλ‖L∞L2 + ‖Fλ‖L2

)
, D1uλ − Pλ(x,D′)u = Fλ. (2.1)

Here, Pλ(x,D′) = 1
2pλ(x,D′) + 1

2pλ(x,D′)∗, and the symbol pλ(x, ξ ′) can be taken frequency localized in x′ fre-
quencies to |ξ ′| � λ, and pλ(x, ξ ′) = |ξ ′| if |ξ ′| �≈ λ.

The setup is now the same as in [24], and the reductions of §3–§6 of that paper, specifically their n-dimensional
analogues of §7, apply directly. This starts with a decomposition uλ = ∑

j uj corresponding to a dyadic decomposition

of ûλ(ξ) in the ξn variable to regions ξn ∈ [2−j−2λ,2−j+1λ] where λ−1/3 � 2−j � 1.
If 2−j � 1

8 , corresponding to non-tangential reflection, then the estimates will follow as the case for 2−j = 1
8 , so

we restrict attention to the case 2−j � 1
8 . Since |ξ ′| ≈ λ, this implies that some remaining variable is ≈ λ, and after

rotation we assume that ûj (x1, ξ
′) is supported in a set{

ξ : ξn+1 ≈ λ, |ξj | � cλ, j = 2, . . . , n − 1, and ξn ≈ θjλ
}
,

where λ−1/3 � θj � 1
8 .

The proof establishes good bounds on the term uj over time intervals of length θj . Precisely, let Sj,k , |k| � θ−1
j ,

denote the time slice x1 ∈ [kεθj , (k + 1)εθj ]. In analogy with [24, Theorem 3.1], we establish the bound

‖uj‖L
p
x1 L

q

x′ (Sj,k)
� λγ θ

σ(p,q)
j cj,k, (2.2)

where cj,k satisfies the nested summability condition [24, (3.1)], and where

σ(p,q) =
{

(n − 1)( 1
2 − 1

q
) − 2

p
, (n − 2)( 1

2 − 1
q
) � 2

p
,

1
2 − 1

q
, (n − 2)( 1

2 − 1
q
) � 2

p
.

Adding over the θ−1
j disjoint slabs intersecting |x1| � 1, the simple uniform bounds on cj,k yield

‖uj‖L
p
x1 L

q

x′ (|x1|�1) � λγ θ
σ(p,q)−1/p
j

(‖uλ‖L∞L2 + ‖Fλ‖L2

)
.

The θj take on dyadic values less than 1, and provided σ(p,q) > 1/p, one can sum over j to obtain (2.1). In case
σ(p,q) = 1/p one can also sum the series, using the nested summability condition [24, (3.1)], together with the
branching argument on [24, p. 118], to yield (2.1). Note that the restrictions on (p, q) in Theorem 1.1 are precisely
that σ(p,q) � 1/p.

Estimate (2.2) is established through the parametrix construction from [21], together with the use of the V
p

2 spaces
of Koch and Tataru [14]. Precisely, one rescales R

1+n by θj , and considers the symbol

q(x, ξ ′) = θjpj

(
θjx, θ−1ξ ′),
j
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where pj is such that q̂(x1, ζ, ξ ′) is supported in |ζ | � cμ1/2, where μ = θjλ is the frequency scale at which uj (θj x)

is localized. Fix u(x) = uj (θj x) and θj = θ , where now 1 � θ � μ−1/2. One writes

D1u − q(x,D′)u = F + G,

where G arises from the error term (p − pj )uj . The bound (2.2) is a consequence of the following bound (for a
global ε > 0)

‖u‖L
p
x1L

q

x′ (|x1|�ε) � μγ θσ(p,q)
(‖u‖L∞L2(S) + ‖F‖L1L2(S)

+ μ
1
4 θ

1
2
∥∥〈

μ
1
2 x2

〉−1
u
∥∥

L2(S)
+ μ− 1

4 θ
− 1

2
j

∥∥〈
μ

1
2 x2

〉2
G

∥∥
L2(S)

)
, (2.3)

and for θ = μ− 1
2

‖u‖L
p
x1L

q

x′ (|x1|�ε) � μγ θσ(p,q)
(‖u‖L∞L2(S) + ‖F + G‖L1L2(S)

)
. (2.4)

The solution u is written as a superposition of terms, each of which is product of χI (x1), for an interval I ⊂ [−ε, ε],
with a functions whose wave-packet transform is invariant under the Hamiltonian flow of q(x, ξ ′). The wave-packet
transform, which acts in the x′ variables, is a simple modification of the Gaussian transform used by Tataru [28] to
establish Strichartz estimates for rough metrics; see also [29]. Precisely, set

(Tμf )(x′, ξ ′) = μn/4
∫

e−i〈ξ ′,y′−x′〉g
(
μ

1
2 (y′ − x′)

)
f (y′) dy′.

The base function g is taken to be of Schwartz class with ĝ supported in a ball of small radius. Thus, ũ(x, ξ ′) =
[Tμu(x1, ·)](x′, ξ ′) has the same localization in ξ ′ as does û(x1, ξ

′).
By Lemma 4.4 of [24] one can write(

d1 − dξ ′q(x, ξ ′) · dx′ + dx′q(x, ξ ′) · dξ ′
)
ũ(x, ξ ′) = F̃ (x, ξ ′) + G̃(x, ξ ′).

By variation of parameters and the use of V
p

2 spaces, one reduces matters to establishing estimates for solutions
invariant under the flow. The use of the V

p

2 spaces from [14] requires p > 2, which is implied by the conditions of
Theorem 1.1.

Let Θt,s denote the Hamiltonian flow of q(x, ξ ′), from x1 = s to x1 = t . Then the bounds (2.3)–(2.4) are conse-
quences of the following, which is the analogue of Theorem 7.2 of [24].

Theorem 2.1. Suppose that f ∈ L2(R2n) is supported in a set of the form{
ξ : ξn+1 ≈ μ, |ξj | � cμ, j = 2, . . . , n − 1, and ξn ≈ θμ

}
or {

ξ : ξn+1 ≈ μ, |ξj | � cμ, j = 2, . . . , n − 1, and |ξn| � μ
1
2
}

in case θ = μ−1/2.
If Wf (x1, x

′) = T ∗
μ [f ◦ Θ0,x1 ](x′), then for admissible (p, q, γ )

‖Wf ‖L
p
x1L

q

x′ (|t |�ε) � μγ θσ(p,q)‖f ‖L2(R2n).

Proof. The function Wf is frequency localized to ξn ≈ θ and |ξ | ≈ μθ (respectively |ξn| � μ
1
2 when θ ≈ μ− 1

2 ). By
duality, it suffices to show the estimate

‖WW ∗F‖LpLq � μ2γ θ2σ(p,q)‖F‖
Lp′

Lq′ (2.5)

for ξ ′-frequency localized F . We use t and s in place of x1 and y1 for ease of notation. Then the operator WW ∗
applied to ξ ′-localized F agrees with integration against the kernel

K(t, x′; s, y′) = μ
n
2

∫
ei〈ζ,x′−z〉−i〈ζs,t ,y

′−zs,t 〉g
(
μ

1
2 (x′ − z)

)
g
(
μ

1
2 (y′ − zs,t )

)
βθ (ζ ) dz dζ,
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where (zs,t , ζs,t ) = Θs,t (z, ζ ). To align with the notation that x′ = (x2, . . . , xn+1) denote the space parameters, we
take ζ = (ζ2, . . . , ζn+1). Then βθ (ζ ) is a smooth cutoff to the set{

ζ : ζn+1 ≈ μ, |ζj | � cμ, j = 2, . . . , n − 1, and ζn ≈ θμ
}

(respectively |ζn| � μ
1
2 in case θ = μ− 1

2 ).
Analogous to [24, (7.1)–(7.2)], we establish the inequalities∥∥∥∥

∫
K(t, x′; s, y′)f (y′) dy′

∥∥∥∥
L2

x′
� ‖f ‖L2

y′ (2.6)

and ∥∥∥∥
∫

K(t, x′; s, y′)f (y′) dy

∥∥∥∥
L∞

x′
� μnθ

(
1 + μ|t − s|)− n−2

2
(
1 + μθ2|t − s|)− 1

2 ‖f ‖L1
y′ . (2.7)

Interpolation then yields that∥∥∥∥
∫

K(t, x′; s, y′)f (y′) dy′
∥∥∥∥

L
q

x′
�

(
μnθ

)1− 2
q
(
1 + μ|t − s|)− n−2

2 (1− 2
q
)(1 + μθ2|t − s|)− 1

2 (1− 2
q
)‖f ‖

L
q′
y′
.

In the case n−2
2 (1 − 2

q
) � 2

p
� n−1

2 (1 − 2
q
), the exponent in the third factor on the right can be replaced by n−2

2 (1 −
2
q
) − 2

p
� 0, showing that∥∥∥∥
∫

K(t, x′; s, y′)f (y′) dy′
∥∥∥∥

L
q

x′
� μ2γ θ

2((n−1)( 1
2 − 1

q
)− 2

p
)|t − s|− 2

p ‖f ‖
L

q′
y′
.

In the case n−2
2 (1 − 2

q
) � 2

p
, we can ignore the last factor and obtain the bound∥∥∥∥

∫
K(t, x′; s, y′)f (y′) dy

∥∥∥∥
L

q

x′
� μ2γ θ

2( 1
2 − 1

q
)|t − s|− 2

p ‖f ‖
L

q′
y′
.

In both cases, the Hardy–Littlewood–Sobolev inequality then establishes (2.5).
The inequality (2.6) is estimate [24, (7.1)], which follows from the fact that Tμ is an isometry and Θt,s is a measure-

preserving diffeomorphism. Hence it suffices to prove (2.7). As in [24], we consider two cases.
In the case μθ2|t − s| � 1, we fix θ̄ � θ so that μθ̄2|t − s| = 1, and decompose βθ (ζ ) into a sum of cutoffs βj (ζ ),

each of which is localized to a cone of angle θ̄ about some direction ζj . The proof of [24, Theorem 5.4] yields that∣∣Kj(t, x
′; s, y′)

∣∣ � μnθ̄n−1(1 + μθ̄ |y′ − x′
s,t,j |

)−N
,

where x′
s,t,j is the space component of Θs,t (x, ζj ). For each fixed (s, t) the x′

s,t,j are a (μθ̄)−1 separated set, and
adding over j yields the desired bounds, since in this case

μnθ̄n−1 = μ
n+1

2 |t − s|− n−1
2 � μnθ

(
1 + μ|t − s|)− n−2

2
(
1 + μθ2|t − s|)− 1

2 .

In case μθ2|t − s| � 1, we let θ̄ � θ be given by

θ̄ = min
(
μ− 1

2 |t − s|− 1
2 ,1

)
.

Following the proof of [24, (7.2)], we set ζ ′′ = (ζ2, . . . , ζn−1, ζn+1), and let βj be a partition of unity in cones of angle
θ̄ on R

n−1. We then decompose

βθ (ζ ) =
∑
j

βθ (ζ )βj (ζ
′′),

and let K = ∑
j Kj denote the corresponding kernel decomposition.

The arguments on p. 152 of [24] yield∣∣Kj(t, x
′; s, y′)

∣∣ � μnθ̄n−2θ
(
1 + μθ̄

∣∣(y′ − x′
s,t,j )2,...,n−1

∣∣)−N
.
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The x′
s,t,j are (μθ̄)−1 separated in the (2, . . . , n − 1) variables as j varies, and summing over j yields∣∣K(t, x′; s, y′)

∣∣ � μnθθ̄n−2 ≈ μnθ
(
1 + μ|t − s|)− n−2

2
(
1 + μθ2|t − s|)− 1

2 . �
3. Applications to semilinear wave equations

As an application, we consider the following family of semilinear wave equations with defocusing nonlinearity

∂2
t u − �u + |u|r−1u = 0, (u, ∂tu)|t=0 = (f, g), u|∂M = 0, (3.1)

or

∂2
t u − �u + |u|r−1u = 0, (u, ∂tu)|t=0 = (f, g), ∂νu|∂M = 0. (3.2)

We will be mostly interested in the range of exponents r < 1 + 4
n−2 (energy subcritical) and r = 1 + 4

n−2 (energy
critical).

In the boundaryless case where Ω = R
n, the first results for the critical wave equation were obtained by Gril-

lakis [9]. He showed that when n = 3 there are global smooth solutions of the critical wave equation, r = 5, if the data
is smooth. Shatah and Struwe [19] extended his theorem by showing that there are global solutions for data lying in
the energy space H 1 × L2. They also obtained results for critical wave equations in higher dimensions.

For the case of obstacles, the first results are due to Smith and Sogge [22]. They showed that Grillakis’ theorem ex-
tends to the case where Ω is the complement of a smooth, compact, convex obstacle and Dirichlet boundary conditions
are imposed, i.e. (3.1) for r = 5. Recently this result was extended to the case of arbitrary domains in Ω ⊂ R

3 and
data in the energy space by Burq, Lebeau and Planchon [5]. The case of nonlinear critical Neumann-wave equations
in 3-dimensions, (3.2), was subsequently handled by Burq and Planchon [6].

The proofs of the results for arbitrary domains in 3-dimensions used two new ingredients. First, the estimates
of Smith and Sogge [24] for spectral clusters turned out to be strong enough to prove certain Strichartz estimates
for the linear wave equations with either Dirichlet or Neumann boundary conditions. Specifically, Burq, Lebeau and

Planchon [5] showed that one can control the L5W
3
10 ,5

0 norm of the solution of (1.1) over [0,1] × Ω in terms of the
energy norm of the data, assuming that Ω is compact. The other novelty was new estimates for the restriction of u

to the boundary, specifically Proposition 3.2 in [5] and Proposition 3.1 in [6]. In the earlier case of convex obstacles
and Dirichlet boundary conditions treated in [22] such estimates were not necessary since for the flux arguments that
were used to treat the nonlinear wave equation (3.1), the boundary terms had a favorable sign. We remark that by
using the results in Theorem 1.1, we can simplify the arguments in [5] and [6] since we now have control of the
L4

t L
12
x ([0,1] × Ω) norms of the solution of (1.1) in terms of the energy norm of the data. If this is combined with the

aforementioned boundary estimates in [5] and [6] one can prove the global existence results in these papers by using
the now-standard arguments that are found in [22] for convex obstacles, and [19] and [25] for the case where Ω = R

3.
In the next section we shall show how these L4

t L
12
x and the weaker L5

t L
10
x estimates can be used to show that there is

scattering for (3.1) when n = 3, r = 5 and Ω is the compliment of a star-shaped obstacle.
Let us conclude this section by presenting another new result. We shall show that the Strichartz estimates in Theo-

rem 1.1 are strong enough to prove the following:

Theorem 3.1. Suppose that Ω ⊂ R
4 is a domain with smooth compact boundary. If 1 < r < 3 and (f, g) ∈ (Ḣ 1(Ω)∩

Lr+1(Ω)) × L2(Ω) then (3.1) and (3.2) have a unique global solution satisfying

u ∈ C0([0, T ]; Ḣ 1(Ω) ∩ Lr+1(Ω)
) ∩ C1([0, T ];L2(Ω)

) ∩ L3
t L

6
x

([0, T ] × Ω
)

for every T > 0. If r = 3 then the same result holds provided that the (Ḣ 1 ∩ L4) × L2 norm of (f, g) is sufficiently
small.

The local existence results follow from the fact that Theorem 1.1 implies that if (∂2
t − �)v = F and v has either

Dirichlet or Neumann boundary conditions then for 0 < T < 1 there is a constant C so that

‖v‖L3
t L

6
x((0,T )×Ω) � C

(∥∥v(0, ·)∥∥
H 1 + ∥∥∂tv(0, ·)∥∥

L2 +
T∫ ∥∥F(s, ·)∥∥2 ds

)
. (3.3)
0
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If Ω is the complement of a bounded set, then estimate (3.3) holds with H 1 replaced by Ḣ 1, as can be seen by
combining the estimates for the case of compact Ω with the global Strichartz estimates on R

4, and using finite
propagation velocity. Using this estimate the theorem follows from a standard convergent iteration argument with u

in the space

X = C0((0, T ); Ḣ 1(Ω) ∩ Lr+1(Ω)
) ∩ C1((0, T );L2(Ω)

) ∩ L3
t L

6
x

(
(0, T ) × Ω

)
,

and T being sufficiently small depending on the (Ḣ 1 ∩ Lr+1) × L2 norm of the initial data (f, g) of either (3.1) or
(3.2) for 1 < r < 3, and T depending on the data in the critical case r = 3. For data of sufficiently small norm, one
can obtain existence for T = 1 for the critical case r = 3. Together with energy conservation, the above yields global
existence for 1 < r < 3, and global existence for small data for r = 3.

The analog of (3.3) when n = 3 involves L5
t L

10
x in the left. As we mentioned before, a stronger inequality involving

L4
t L

12
x is valid when n = 3 by Theorem 1.1. Any such corresponding improvement of (3.3) when n = 4 would lead to

a global existence theorem for arbitrary data for the critical case where r = 3, but, at present, we are unable to obtain
such a result.

4. Scattering for star-shaped obstacles in 3-dimensions

We now consider solutions to the energy critical nonlinear wave equation in 3 + 1 dimensions in a domain Ω =
R

3 \ K exterior to a compact, nontrapping obstacle K with smooth boundary

�u(t, x) = (
∂2
t − �

)
u(t, x) = −u5(t, x), (t, x) ∈ R × Ω,

u|R×∂Ω = 0,(∇u(t, ·), ∂tu(t, ·)) ∈ L2(Ω), t ∈ R. (4.1)

We restrict attention to real-valued solutions u(t, x).
When K is a nontrapping obstacle, the estimates above, combined with those of Smith and Sogge [23] (see also

Burq [4], Metcalfe [16]) imply the following estimate on functions w(t, x) satisfying homogeneous Dirichlet boundary
conditions

‖w‖L5(R;L10(Ω)) + ‖w‖L4(R;L12(Ω)) � C
(∥∥(∇xw(0, ·), ∂tw(0, ·))∥∥

L2(Ω)
+ ‖�w‖L1(R;L2(Ω))

)
. (4.2)

In this section, we show how these global estimates can be used to show that solutions to the nonlinear equation (4.1)
above scatter to a solution to the homogeneous equation

�v(t, x) = 0, (t, x) ∈ R × Ω,

v|R×∂Ω = 0,(∇v(t, ·), ∂t v(t, ·)) ∈ L2(Ω), t ∈ R. (4.3)

Let ν = ν(x) denote the outward pointing unit normal vector to the boundary at x ∈ ∂K. We call the obstacle K
star-shaped with respect to the origin if ν(x) · x � 0 for all x ∈ ∂K. Define the energy functional

E0(v; t) = 1

2

∫
Ω

∣∣∇xv(t, x)
∣∣2 + ∣∣∂tv(t, x)

∣∣2
dx,

and recall that t �→ E0(v; t) is conserved whenever v is a solution to the homogeneous equation (4.3). We show the
following:

Proposition 4.1. Suppose u solves the nonlinear problem (4.1) and that K is star-shaped with respect to the origin.
Then there exists unique solutions v± to (4.3) such that

lim
t→±∞E0(u − v±; t) = 0. (4.4)

Moreover, u satisfies the space–time integrability bound

‖u‖L5(R;L10(Ω)) + ‖u‖L4(R;L12(Ω)) < ∞. (4.5)
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When K = ∅, this follows from the observations of Bahouri and Gérard [1]. We also remark that when K is convex,
similar results for compactly supported, subcritical nonlinearities were obtained by Bchatnia and Daoulatli [3].

Attention will be restricted to the v+ function, as symmetric arguments will yield the existence of a v− asymptotic
to u at −∞. As observed in [1], we actually have that (4.4) follows as a consequence of (4.5). We first establish the
existence of the wave operator, namely that for any solution v to (4.3), there exists a unique solution u to (4.1) such
that

lim
t→∞E0(u − v; t) = 0.

Given (4.2), for any δ > 0 we may select T large so that ‖v‖L5([T ,∞);L10(Ω)) � δ. Given any w(t, x) satisfying
‖w‖L5([T ,∞);L10(Ω)) � δ, we have a unique solution to the linear problem

�w̃ = −(v + w)5,

lim
t→∞E0(w̃; t) = 0

as the right-hand side is in L1([T ,∞);L2(Ω)). The estimate (4.2) then also ensures that

‖w̃‖L5([T ,∞);L10(Ω)) � C‖v + w‖5
L5([T ,∞);L10(Ω))

� 32Cδ5.

Hence for δ sufficiently small, the map w → w̃ is seen to be a contraction on the ball of radius δ in L5([T ,∞);
L10(Ω)). The unique fixed point w can be uniquely extended over all of R × Ω . Hence taking u = v + w shows
existence of the wave operator.

To see that the wave operator is surjective, we need a decay estimate which establishes that the nonlinear effects of
the solution map for (4.1) diminish as time evolves.

Lemma 4.2. Let K be star-shaped with respect to the origin. If u(t, x) solves (4.1), then the following decay estimate
holds

lim
t→∞

1

6

∫
Ω

∣∣u(t, x)
∣∣6

dx = 0.

When K = ∅, this is due to Bahouri and Shatah [2]. The proof below is essentially theirs, with slight modifications
made to handle the boundary conditions. However, for the sake of completeness, we replicate the full proof below.
We remark that the approach has its roots in arguments of Morawetz [18], and is related to other works regarding the
decay of local energy for linear solutions in domains exterior to a star-shaped obstacle.

To see that this implies the proposition, observe that given any ε > 0, there exists T sufficiently large such that

sup
t�T

∥∥u(t, ·)∥∥
L6 < ε.

Hence for any S > T we obtain the following for any solution u to (4.1)

‖u‖L5([T ,S];L10(Ω)) + ‖u‖L4([T ,S];L12(Ω)) � C
(
E + ‖u5‖L1([T ,S];L2(Ω))

)
� CE + Cε‖u‖L4([T ,S];L12(Ω)),

where E denotes the conserved quantity

E = E(t) =
∫
Ω

1

2

∣∣∇u(t, x)
∣∣2 + 1

2

∣∣∂tu(t, x)
∣∣2 + 1

6

∣∣u(t, x)
∣∣6

dx.

A continuity argument now yields ‖u‖L5([T ,∞);L10(Ω)) + ‖u‖L4([T ,∞);L12(Ω)) < 2CE and by a time reflection argu-
ment, (4.5) follows. However, this implies that the linear problem

�w = −u5, lim
t→∞E0(w; t) = 0

admits a solution, showing that the wave operator is indeed surjective as v = u − w is the desired solution to (4.3).
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Proof of Lemma 4.2. By a limiting argument it suffices to consider smooth, classical solutions u which decay at
infinity. We must show that for any ε0 > 0, there exists T0 such that whenever t � T0,

1

6

∫
Ω

∣∣u(t, x)
∣∣dx � ε0.

Consider the stress energy tensor associated with u (see Tao [27], p. 149)

T 00 = 1

2
(∂tu)2 + 1

2
|∇u|2 + 1

6
u6,

T 0j = −∂tu∂xj
u, 1 � j � 3,

T jk = ∂xj
u∂xk

u − δjk

2

(
|∇u|2 − (∂tu)2 + 1

3
u6

)
, 1 � j, k � 3.

It can be checked that the divergence free property holds

∂tT
00 + ∂xj

T 0j = 0, ∂tT
0j + ∂xk

T jk = 0

with the summation convention in effect. Taking the first of these identities and applying the divergence theorem to a
region {0 � t � T , |x| � R + t} (with R > 0 large enough so that K ⊂ BR(0)) we have∫

|x|�R+T

1

2

∣∣∂tu(T , x)
∣∣2 + 1

2

∣∣∇u(T , x)
∣∣2 + 1

6

∣∣u(T , x)
∣∣6

dx + 1√
2

flux(0, T )

�
∫

|x|�R

1

2

∣∣∂tu(0, x)
∣∣2 + 1

2

∣∣∇u(0, x)
∣∣2 + 1

6

∣∣u(0, x)
∣∣6

dx, (4.6)

where

flux(a, b) :=
∫

Ma
b

1

2

∣∣∣∣ x

|x|∂tu + ∇u

∣∣∣∣
2

+ |u|6
6

dσ,

Ma
b := {

a < t < b, |x| = R + t
}
.

Since the solution has finite energy, we may select R large so that the right-hand side of (4.6) is less than ε0
40 (and again

K ⊂ BR(0)). By time translation, t �→ t + R, it will suffice to show the existence of T0 such that whenever t > T0 we
have

1

6

∫
x∈Ω: |x|�t

∣∣u(t, x)
∣∣dx � ε0

2

(the additional smallness in the right-hand side of (4.6) will be used later in the proof).
We now define the following vector field X = (X0,X1,X2,X3) by contracting the stress-energy tensor with the

null vector field t∂t − x · ∇x and adding a correction term

X0 = tT 00 − xkT
0k + u∂tu,

Xj = tT j0 − xkT
jk − u∂xj

u, 1 � j � 3.

The space–time divergence of X satisfies

div(X) = −1

3
u6.

We now apply the divergence theorem over the truncated cone K
T2
T1

= {x ∈ Ω: |x| � t , T1 � t � T2}

0 =
∫

D(T2)

X0 dx −
∫

D(T1)

X0 dx −
∫

M
T2
T1

(
X0 −

3∑
j=1

xj

|x|X
j

)
dσ +

∫
K

T2
T1

|u|6
3

dx dt −
∫

∂Ω

ν · 〈X1,X2,X3〉dσ

= I + II + III + IV + V,
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where dσ denotes Lebesgue measure on the corresponding surface and D(Ti) = {x ∈ Ω: |x| � Ti}, and M
T2
T1

=
{|x| = t , T1 � t � T2}. The star-shaped assumption is crucial in controlling the last term V . Indeed, consider the
restriction of the integrand in V to the boundary ∂Ω(= ∂K) and observe that the Dirichlet boundary condition gives

ν · 〈X1,X2,X3〉 = −
∑

1�j,k�3

νjxk

(
∂xj

u∂xk
u − δjk

2
|∇u|2

)
= −(ν · ∇u)(x · ∇u) + 1

2
(ν · x)|∇u|2.

We have that ∇u is normal to ∂Ω and hence |∇u|2 = (ν · ∇u)2. Treating x as a vector, we can project it on to the
subspace orthogonal to ν obtaining

0 = ∇u · (x − (ν · x)ν
) = x · ∇u − (ν · x)(ν · ∇u).

This now gives

ν · 〈X1,X2,X3〉 = −1

2
(ν · x)(ν · ∇u)2 � 0

and since IV � 0 is clear,

0 � I + II + III.

We now impose polar coordinates (r,ω) ∈ R × S
2 on the third term, writing

III = − 1√
2

∫
M

T2
T1

(
r(∂tu + ∂ru)2 + u(∂tu + ∂ru)

)
dσ,

where ∂r = x
|x| · ∇ denotes the radial derivative. Next parameterize M

T2
T1

by (r,ω) → (r, rω) and set v(y) = u(|y|, y)

(or v(rω) = u(r, rω) in polar coordinates) so that we may write concisely

III = −
∫
S2

T2∫
T1

r

(
∂rv + v

r

)2

r2 dr dω +
∫
S2

T2∫
T1

1

2
∂r

(
r2v2)dr dω

= −
∫
S2

T2∫
T1

r

(
∂rv + v

r

)2

r2 dr dω + 1

2

∫
S2

T 2
2 v2(T2ω)dω − 1

2

∫
S2

T 2
1 v2(T1ω)dω.

To handle the first term I , first observe that in polar coordinates

|∇u|2 = (∂ru)2 + 1

r2
|∇ωu|2 =

(
∂ru + 1

r
u

)2

+ 1

r2
|∇ωu|2 − 1

r2
∂r

(
ru2).

Since K is star-shaped we may parameterize ∂Ω by (r,ω) = (Ψ (ω),ω) where Φ is a real valued function on S
2. This

allows us to write

I =
∫

D(T2)

T2

2

(
(∂tu)2 +

(
∂ru + 1

r
u

)2

+ 1

r2
|∇ωu|2 + 1

3
u6

)
+ r

(
∂r + 1

r
u

)
∂tudx

− 1

2

∫
S2

T2∫
Ψ (ω)

T2∂r

(
ru2)dr dω. (4.7)

Integrating by parts in the last term yields cancellation with one of the terms in III as the boundary condition gives
− 1

2

∫
S2

∫ T2
Ψ (ω)

T2∂r(ru
2) dr dω = − 1

2

∫
S2 T 2

2 v2(T2ω)dω. Similarly,

II = −
∫

T1

2

(
(∂tu)2 +

(
∂ru + 1

r
u

)2

+ 1

r2
|∇ωu|2 + 1

3
u6

)
+ r

(
∂r + 1

r
u

)
∂tudx + 1

2

∫
2

T 2
1 v2(T1ω)dω.
D(T1) S



1828 M.D. Blair et al. / Ann. I. H. Poincaré – AN 26 (2009) 1817–1829
In order to control remaining term in I we need to observe the following Hardy inequality, which holds in the
exterior domain∫

Ω

|u|2
|x|2 dx � 4

∫
Ω

|∇u|2 dx. (4.8)

To see this, we assume u is real-valued and denote the integral on left-hand side as J . Converting to polar coordinates

J =
∫
S2

∞∫
Ψ (ω)

(
u(rω)

)2
dr dω =

∫
S2

ru(rω)2|∞Ψ (ω) dω −
∫
S2

∞∫
Ψ (ω)

2u(∂ru)r dr dω.

The first term on the right is nonpositive (provided u exhibits sufficient decay at infinity) and Cauchy–Schwartz on
the second term gives

J � 2
√

J

( ∫
S2

∞∫
Ψ (ω)

|∂ru|2r2 dr dω

) 1
2

.

The inequality (4.8) now follows.

We now observe that the first integral in (4.7) is bounded below by T2
∫
D(T2)

|u|6
6 dx. Setting T2 = T > 0 and

T1 = εT (0 < ε < 1) and using the Hardy inequality (4.8) to control the first integral in II now yields

T

∫
D(T )

|u|6
6

dx � CεT E +
T∫

εT

∫
S2

T

(
∂rv + v

r

)2

r2 dωdr.

Here E is the conserved quantity E = E(t) = ∫
Ω

T 00(t, x) dx. We can now divide both sides of this inequality by T

and choose ε sufficiently small so that CεE � ε0/4, leaving us to control the integral involving v. However, by the
proof of the Hardy inequality above we have

T∫
εT

∫
S2

(
∂rv + v

r

)2

r2 dωdr � 10

∞∫
εT

∫
S2

(∂rv)2r2 dωdr � 10 flux(εT ,∞) <
ε

4
,

provided T is large enough so that εT > R. �
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