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Abstract

In this article, we prove the null controllability of the 2D Kolmogorov equation both in the whole space and in the square. The
control is a source term in the right-hand side of the equation, located on a subdomain, that acts linearly on the state. In the first
case, it is the complementary of a strip with axis x and in the second one, it is a strip with axis x.

The proof relies on two ingredients. The first one is an explicit decay rate for the Fourier components of the solution in the
free system. The second one is an explicit bound for the cost of the null controllability of the heat equation with potential that the
Fourier components solve. This bound is derived by means of a new Carleman inequality.

Keywords: Kolmogorov equation; Controllability; Carleman inequalities

1. Introduction

1.1. Main result

We consider the Kolmogorov equation

∂f

∂t
+ v

∂f

∂x
− ∂2f

∂v2
= u(t, x, v)1ω(x, v), (x, v) ∈ Ω, t ∈ (0,+∞), (1)

where Ω is an open subset of R
2, ω ⊂ Ω , 1ω is the characteristic function of this set and u(t, x, v) is a source term

located on the subdomain ω. It is a linear control system in which

• the state is f ,
• the control is u and it is supported in the subset ω.
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We investigate the null controllability of Eq. (1) in two different geometric configurations,

Ω1 = Rx × Rv, ω1 = Rx × [
R − (a1, b1)

]
v

where −∞ < a1 < b1 < +∞ and

Ω2 = (0,2π)x × (0,2π)v, ω2 = (0,2π)x × (a2, b2)v,

where 0 � a2 < b2 � 2π . More precisely, we study the Cauchy problems⎧⎨
⎩

∂f

∂t
+ v

∂f

∂x
− ∂2f

∂v2
= u(t, x, v)1ω1(v), (x, v) ∈ Ω1, t ∈ (0,+∞),

f (0, x, v) = f0(x, v),

(2)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂f

∂t
+ v

∂f

∂x
− ∂2f

∂v2
= u(t, x, v)1ω2(x, v), (x, v) ∈ Ω2, t ∈ (0,+∞),

f (t,0, v) = f (t,2π,v),

f (t, x,0) = f (t, x + 2πt,2π),

∂vf (t, x,0) = ∂vf (t, x + 2πt,2π),

f (0, x, v) = f0(x, v).

(3)

The boundary conditions in (3) may seem strange. We chose them to ensure that the function h(t, x, v) := f (t, x +
vt, v) is 2π -periodic with respect to x and v, which facilitates the Fourier analysis of solutions. Notice that, thanks to
the second line of (3), one can identify the function f and the function from (0,+∞)t ×Rx × (0,2π)v to R, which is
2π -periodic with respect to the variable x and coincides with f on (0,+∞)t × (0,2π)x × (0,2π)v . This gives sense
to the third and fourth lines of (3).

The main result of this article guarantees the null controllability of systems (2) and (3):

Theorem 1. For every T > 0 and f0 ∈ L2(Ω1,R) (resp. f0 ∈ L2(Ω2,R)), there exists u ∈ L2((0, T ) × Ω1,R) (resp.
u ∈ L2((0, T ) × Ω2,R)) such that the solution of (2) (resp. (3)) satisfies f (T ) = 0.

By duality, this result is equivalent to the following observability inequalities for the corresponding adjoint systems
(see for instance [2, Lemma 2.48]).

Theorem 2. For every T > 0, there exists C > 0 such that, for every g0 ∈ L2(Ω1,R), the solution of⎧⎨
⎩

∂g

∂t
− v

∂g

∂x
− ∂2g

∂v2
= 0, (x, v) ∈ Ω1, t ∈ (0, T ),

g(0, x, v) = g0(x, v), (x, v) ∈ Ω1

(4)

satisfies

∫
Ω1

∣∣g(T , x, v)
∣∣2

dx dv � C

T∫
0

∫
ω1

∣∣g(t, x, v)
∣∣2

dx dv dt.

Theorem 3. For every T > 0, there exists C > 0 such that, for every g0 ∈ L2(Ω2,R), the solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂g

∂t
− v

∂g

∂x
− ∂2g

∂v2
= 0, (x, v) ∈ Ω2, t ∈ (0, T ),

g(t,0, v) = g(t,2π,v),

g(t, x,0) = g
(
t, x + 2π(T − t),2π

)
,

∂g

∂v
(t, x,0) = ∂g

∂v

(
t, x + 2π(T − t),2π

)
,

(5)
g(0, x, v) = g0(x, v),
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satisfies

∫
Ω2

∣∣g(T , x, v)
∣∣2

dx dv � C

T∫
0

∫
ω2

∣∣g(t, x, v)
∣∣2

dx dv dt.

1.2. Some bibliographical comments

The null controllability property of the Kolmogorov equation has not been much explored in the literature. On the
contrary, the null and approximate controllability of the heat equation are essentially well understood subjects both
for linear equations and for semilinear ones, both for bounded and unbounded domains (see, for instance, [4,6,8–10,
12,16–20,23,24]).

Let us summarize some of the existing main results. We consider the linear heat equation{
yt (t, x) − �y(t, x) = u(t, x)1ω(x), x ∈ Ω, t ∈ (0, T ),

y = 0 on (0, T ) × ∂Ω,

y(0) = y0,

(6)

where Ω is an open subset of R
l , l ∈ N

∗ and ω a subset of Ω . One has the following theorem, which is due to
H. Fattorini and D. Russell [7, Theorem 3.3] if l = 1, to O. Imanuvilov [14,15] (see also the book [11] by A. Fursikov
and O. Imanuvilov), and to G. Lebeau and L. Robbiano [17] for l � 2. We also refer to the book [2, Theorem 2.66] by
J.-M. Coron for a pedagogical presentation.

Theorem 4. Let us assume that Ω is bounded, of class C2 and connected, T > 0, and ω is a nonempty open
subset of Ω . Then the control system (6) is null controllable in time T : for every y0 ∈ L2(Ω,R), there exists
u ∈ L2((0, T ) × Ω,R) such that the solution of (6) satisfies y(T ) = 0.

In particular, the heat equation on a bounded domain is null controllable

• in arbitrarily small time,
• with an arbitrarily small control support ω.

As a consequence of Theorem 4, we also have the following result [1].

Theorem 5. Let us assume that Ω = R
l , T > 0, and ω is the complementary in R

l of a compact set. Then the control
system (6) is null controllable in time T : for every y0 ∈ L2(Rl ,R), there exists u ∈ L2((0, T ) × R

l ,R) such that the
solution of (6) satisfies y(T ) = 0.

In particular, the heat equation on the whole space is null controllable

• in arbitrarily small time,
• when the control support is the complementary of a compact subset of R

l .

The Kolmogorov equation (1) diffuses both in space and velocity variables: it diffuses in v thanks to ∂2
v f and also

in x, in a hidden way, thanks to an interplay between the transport term v∂xf and the diffusive term ∂2
v f (see, for

instance, [13] where the hypoellipticity of this operator and more general systems is proved and characterized and
[22] for the study of the asymptotic behavior, see also Lemmas 1 and 2 of this article). Thus, it is natural to ask if the
null controllability results known for the heat equation also hold for the Kolmogorov equation.

The results proved in this article constitute a first step in this direction. Indeed, Theorem 1 shows that one can
generalize, for the 2D Kolmogorov equation (1), the results known for the 1D heat equation in the velocity variable

∂f − ∂2f

2
= u(t, v)1ω(v), v ∈ Ω, t ∈ (0,+∞).
∂t ∂v
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In particular, our results show that the transport term v∂xf does not destroy the zero controllability produced by the
diffusive term ∂2

v f , but they have the drawback of needing the support of the control to be independent of the x

variable. This is due to the fact that our proof uses the Fourier transform in the variable x to reduce the problem to a
one-parameter family of heat equations in the variable v.

Finally, let us mention Ref. [21], in which a simplified version of the Kolmogorov equation (the linearized Crocco
type equation) is studied. This equation mixes transport in the variable x and diffusion in the variable v but in a
simpler way than the Kolmogorov equation, because the transport in variable x is done at constant velocity 1 instead
of velocity v,{

ft + fx − fvv = u(t, x, v)1ω(x, v), (t, x, v) ∈ (0, T ) × (0,L) × (0,1),

f (t, x,0) = f (t, x,1) = 0,

f (t,0, v) = f (t,L, v).

Because of this decoupling of the transport and the diffusion phenomena, the linearized Crocco type equation does
not diffuse in variable x, thus the question of using an arbitrarily small control domain becomes very different.

For a given open subset ω of Ω := (0,L) × (0,1), the authors of [21] prove the property of “regional null control-
lability”, which consists on the control of the solution within the domain of influence of the controls located in ω.

However, for the Kolmogorov equation, the result may be different, because, as we said above, this equation
diffuses both in variables v and x, thus the domain of influence of an arbitrarily small subset ω may be the whole
domain Ω in any time T > 0. This problem is still open.

1.3. Structure of the article

Section 2 is devoted to the case where Ω is the whole space and Section 3 to the case of the square domain.

For each section, in a first subsection, we recall standard results about the existence and uniqueness of solutions.
Then, in a second subsection, we present the strategy for the proof of Theorem 1, that relies on two key ingredients:

• an explicit decay rate for the Fourier components of the solution of (1) without control (u ≡ 0),
• an explicit bound for the cost of the null controllability of a particular heat equation with potential, that is solved

by the Fourier components of the solution of (1).

This cost estimate is new and it is proved in a last subsection, with Carleman inequalities.

2. Control in the whole space

In this section, we prove Theorem 1 on the whole space.

2.1. Well posedness of the Cauchy problem

First, let us define a concept of solution for (2).

Definition 1. Let T > 0, f0 ∈ L2(Ω1,R) and u ∈ L2((0, T ) × Ω1,R). A weak solution of the Cauchy problem (2) on
[0, T ] is a function

f ∈ C0([0, T ],L2(Ω1,R)
)

such that f (0) = f0 in L2(Ω1,R) and, for every ϕ ∈ C2([0, T ] × Ω1,R) ∩ H 2((0, T ) × Ω1,R), and t∗ ∈ (0, T ),

∫
Ω1

[
f (t∗, x, v)ϕ(t∗, x, v) − f0(x, v)ϕ(0, x, v)

]
dx dv =

t∗∫
0

∫
Ω1

{
f

(
∂ϕ

∂t
+ v

∂ϕ

∂x
+ ∂2ϕ

∂v2

)
+ u1ωϕ

}
dx dv dt.

With this definition, one has the following existence and uniqueness result, whose proof is standard.
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Proposition 1. For every f0 ∈ L2(Ω1,R), T > 0 and u ∈ L2((0, T ) × Ω1,R), there exists a unique weak solu-
tion of the Cauchy problem (2). Moreover, the solutions are continuous with respect to the initial condition for the
C0([0, T ],L2(Ω1))-topology.

Proof. First, we get, heuristically, an explicit expression of the solution. Let us consider a solution f (t, x, v). We
define the functions h and w by

f (t, x, v) := h(t, x − vt, v) and u(t, x, v)1ω1(x, v) = w(t, x − vt, v). (7)

Then, formally, h solves⎧⎨
⎩

∂h

∂t
− ∂2h

∂v2
+ 2t

∂2h

∂x∂v
− t2 ∂2h

∂x2
= w, (x, v) ∈ Ω1, t ∈ (0,+∞),

h(0, x, v) = f0(x, v)

(8)

and its Fourier transform
ˆ̂
h(t, ξ, η) :=

∫
Ω

h(t, x, v)e−i(xξ+vη) dx dv

solves⎧⎪⎨
⎪⎩

∂
ˆ̂
h

∂t
+ (

η2 − 2tηξ + t2ξ2) ˆ̂
h = ˆ̂w, (ξ, η) ∈ Ω1, t ∈ (0,+∞),

ˆ̂
h(0, ξ, η) = ˆ̂

f 0(ξ, η),

which leads to the following explicit expression

ˆ̂
h(t, ξ, η) =

(
ˆ̂

f 0(ξ, η) +
t∫

0

ˆ̂w(τ, ξ, η)eη2τ−ηξτ 2+ξ2 τ3
3 dτ

)
e−η2t+ηξt2−ξ2 t3

3 . (9)

Now, let us prove that the function f defined by (7), (9) is a solution of (2) in the sense of Definition 1. It is sufficient
to prove that h ∈ C0([0, T ],L2(Ω1)) and that for every t∗ ∈ [0, T ] and ψ ∈ C2([0, T ]×Ω1,R)∩H 2((0, T )×Ω1,R),
one has

∫
Ω1

[
h(t∗, x, v)ψ(t∗, x, v) − f0(x, v)ψ(0, x, v)

]
dx dv =

t∗∫
0

∫
Ω1

{
h
[
∂t + ∂2

v − 2t∂v∂x + t2∂2
x

]
ψ + wψ

}
dx dv dt.

First, it is clear, from (9), that h ∈ C0([0, T ],L2(Ω1)). Let t∗ ∈ [0, T ] and ψ ∈ C2([0, T ] × Ω1,R) ∩ H 2((0, T ) ×
Ω1,R). Thanks to Plancherel theorem and (9), we have

t∗∫
0

∫
Ω1

{
h
[
∂t + ∂2

v − 2t∂x∂v + t2∂2
x

]
ψ + wψ

}
dx dv dt

= �
t∗∫

0

∫
Ω1

{ ˆ̂
h
[
∂t − η2 + 2tηξ − t2ξ2] ¯̂̂

ψ + ˆ̂w ¯̂̂
ψ

}
dξ dη dt

= �
t∗∫

0

∫
Ω1

∂

∂t
[ ˆ̂
h

¯̂̂
ψ](t, ξ, η) dξ dη dt

= �
∫
Ω1

ˆ̂
h(t∗, ξ, η)

ˆ̂
ψ(t∗, ξ, η) − ˆ̂

h(0, ξ, η)
ˆ̂
ψ(0, ξ, η) dξ dη

=
∫ [

h(t∗, x, v)ψ(t∗, x, v) − h(0, x, v)ψ(0, x, v)
]
dx dv.
Ω1
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Let h be a weak solution of (8), in the sense above, associated to the initial condition f0 ≡ 0 and the source term
w ≡ 0. For every t∗ ∈ (0, T ) and ψ ∈ C2([0, T ] × Ω1,R) ∩ H 2((0, T ) × Ω1,R), we have

∫
R2

h(t∗, x, v)ψ(t∗, x, v) dx dv =
t∗∫

0

∫
Ω1

h(t, x, v)
[
∂t + ∂2

v − 2t∂v∂x + t2∂2
x

]
ψ(t, x, v) dx dv dt.

Let t∗ ∈ [0, T ] be fixed. We consider the sequence of functions (gn)n∈N∗ defined by

ˆ̂gn(ξ, η) := ˆ̂
h(t∗, ξ, η)1[−n,n](ξ)1[−n,n](η), ∀n ∈ N

∗.

Then gn belongs to the Schwarz space S(R2,R) for every n ∈ N
∗ because ˆ̂gn has compact support. Let ψn be the

solution of⎧⎨
⎩

∂ψn

∂t
+ ∂2ψn

∂v2
− 2t

∂2ψn

∂v∂x
+ t2 ∂2ψn

∂x2
= 0, (x, v) ∈ Ω1, t ∈ (0, T ),

ψn(t
∗, x, v) = gn(x, v),

(10)

built with the previous construction. Since gn is smooth, then ψn is also smooth and solves Eq. (10) pointwise. By
definition, ψn belongs to C2([0, T ] × Ω1,R) ∩ H 2((0, T ) × Ω1,R). Thus, for every n ∈ N∗,∫

Ω1

h(t∗, x, v)ψn(t
∗, x, v) dx dv =

∫
Ω1

h(t∗, x, v)gn(x, v) dx dv = 0.

By definition, gn → h(t∗) in L2(Ω1,R) when n → +∞ thus, letting n → +∞ in the previous equality, we get∫
Ω1

∣∣h(t∗, x, v)
∣∣2

dx dv = 0.

We have proved that, for every t∗ ∈ [0, T ], h(t∗) = 0. This gives the uniqueness of the solution of (2).
Now let us prove the continuity with respect to the initial conditions. Let f0, f̃0 ∈ L2(Ω1) and f, f̃ be the solutions

of (2) associated to these initial conditions, with the same source term u. With obvious notations, we have, for every
t∗ ∈ [0, T ],∥∥(f̃ − f )(t∗)

∥∥2
L2(Ω1)

= ∥∥(h̃ − h)(t∗)
∥∥2

L2(Ω1)

= 1

2π

∥∥(
ˆ̃̂
h − ˆ̂

h)(t∗)
∥∥2

L2(Ω1)

= 1

2π

∫
Ω1

∣∣( ˆ̂
f 0 − ˆ̃̂

f 0)(ξ, η)
∣∣2

e−2η2t+2ηξt2−2ξ2 t3
3 dξ dη

� ‖f0 − f̃0‖2
L2(Ω1)

. �
2.2. Proof of Theorem 1

Let us consider a solution of (2) in the sense of Definition 1. The function f belongs to C0([0, T ],L2(R2,C)), so
x �→ f (t, x, v) belongs to L2(R,C), for almost every (t, v) ∈ (0, T ) × R and we can consider the Fourier transform
of f in the variable x, denoted f̂ (t, ξ, v), that solves⎧⎨

⎩
∂f̂

∂t
(t, ξ, v) + iξvf̂ (t, ξ, v) − ∂2f̂

∂v2
(t, ξ, v) = û(t, ξ, v)1R−[a1,b1](v), (ξ, v) ∈ R

2,

f̂ (0, ξ, v) = f̂0(ξ, v).

(11)

The strategy of the proof of Theorem 1 is standard and relies on two key ingredients. The first one is an explicit
decay rate for the solutions of (11) without control, stated in the next lemma.
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Lemma 1. For every f0 ∈ L2(R2,R), the solution of (2) with u ≡ 0 satisfies∥∥f̂ (t, ξ, ·)∥∥
L2(R)

�
∥∥f̂0(ξ, ·)∥∥

L2(R)
e−ξ2t3/12, ∀ξ ∈ R, ∀t ∈ R+. (12)

Proof. We use an explicit expression of the solution of (11). Applying the Fourier transform in the variable v to (11),
we get⎧⎪⎪⎨

⎪⎪⎩
∂

ˆ̂
f

∂t
(t, ξ, η) − ξ

∂
ˆ̂

f

∂η
(t, ξ, η) + η2 ˆ̂

f = 0, (ξ, η) ∈ R
2,

ˆ̂
f (0, ξ, η) = ˆ̂

f 0(ξ, η).

(13)

Let ξ ∈ R be fixed and k(t, η̃) be defined by ˆ̂
f (t, ξ, η) := k(t, η + ξ t). Then⎧⎨

⎩
∂k

∂t
+ (η̃ − ξ t)2k = 0, η̃ ∈ R,

k(0, η̃) = ˆ̂
f 0(ξ, η̃).

(14)

Thus,

k(t, η̃) = ˆ̂
f 0(ξ, η̃)e−t η̃2+t2η̃ξ− t3

3 ξ2
,

from which we deduce

ˆ̂
f (t, ξ, η) = ˆ̂

f 0(ξ, η + ξ t)e−tη2−t2ηξ− t3
3 ξ2

.

The inequality (12) is a consequence of

tη2 + t2ηξ + t3

3
ξ2 = t

[(
η + 1

2
ξ t

)2

+ t2

12
ξ2

]
� t3

12
ξ2. �

The second key ingredient for the proof of Theorem 1 is the following result.

Theorem 6. Let T > 0. There exists C(T ) > 0 such that, for every ξ ∈ R, for every k0 ∈ L2(R,C), there exists
ν ∈ L2((0, T ) × R,C) such that the solution of⎧⎨

⎩
∂k

∂t
(t, v) + iξvk(t, v) − ∂2k

∂v2
(t, v) = ν(t, v)1R−[a1,b1](v), v ∈ R, t ∈ (0, T ),

k(0, v) = k0(v),

(15)

satisfies k(T ) = 0 and

‖ν‖L2((0,T )×R) � eC(T )max{1,
√|ξ |}‖k0‖L2(R).

This theorem is proved in the next subsection.

Proof of Theorem 1. Let T > 0 and f0 ∈ L2(R2,R). On the time interval [0, T /2], we apply the control u ≡ 0 in (2).
Thanks to Lemma 1, we have∥∥f̂ (T /2, ξ, ·)∥∥

L2(Rv)
� e− ξ2T 3

96
∥∥f̂0(ξ, ·)∥∥

L2(Rv)
, ∀ξ ∈ R. (16)

Thanks to Theorem 6, for every ξ ∈ R+, there exists a control νξ ∈ L2((T /2, T )×R,C) such that the solution of (15)
with ν(t) = νξ (T /2 + t) satisfies k(T /2, ·) = 0 and

T∫ ∫ ∣∣νξ (t, v)
∣∣2

dv dt � e2C(T )max{1,
√|ξ |}

∫ ∣∣f̂ (T /2, ξ, v)
∣∣2

dv.
T/2 R R
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Then the function ν−ξ := νξ accomplishes the same purpose with ξ replaced by −ξ . Thanks to (16), we get

T∫
T/2

∫
R2

∣∣νξ (t, v)
∣∣2

dv dξ dt �
∫
R2

e2C(T )max{1,
√|ξ |}− ξ2T 3

48
∣∣f̂0(ξ, v)

∣∣2
dv dξ � M

∫
R2

∣∣f̂0(ξ, v)
∣∣2

dv dξ,

where M := max{e2C(T )max{1,
√|ξ |}− ξ2T 3

48 ; ξ ∈ R} is finite. Thus, there exists u ∈ L2((T /2, T ) × R
2,R) such that

û(t, ξ, v) = νξ (t, v) for almost every (t, v) ∈ (T /2, T ) × R. On the time interval [T/2, T ], we apply this control u

in (2). Then f̂ (T , ξ, ·) = 0, for every ξ ∈ R, so f (T ) = 0. �
Remark 1. By taking advantage of the dissipation of Eq. (15) we have proved that the cost for the null controllability
of this equation can be bounded uniformly with respect to ξ .

Remark 2. In this section we have adopted the control strategy in two steps to show that the cost for the null control-
lability of system (11) is bounded uniformly with respect to ξ .

This, by duality, guarantees the uniform observability of the adjoint system (18) with respect to the parameter ξ

(i.e. in Theorem 8 below, the obervability constant eC(T )max{1,
√|ξ |} can be replaced by a constant C′(T )).

This uniform observability property can be obtained directly working in the context of observability. We refer to
Remark 4 below for a direct proof.

Remark 3. Let us recall that explicit bounds for the cost of the null controllability of heat equations with potentials
are already known. For example in [12, Theorem 1.2]), one has the following result.

Theorem 7. There exists C > 0 such that, for every T > 0, a, b ∈ L∞((0, T ) × R,C), y0 ∈ L2(R,C), there exists a
control ν ∈ L2((0, T ) × R,C) such that the solution of⎧⎨

⎩
∂y

∂t
− ∂2y

∂v2
+ b

∂y

∂v
+ ay = ν1R−[a1,b1], v ∈ R,

y(0, v) = y0(v),

(17)

satisfies y(T ) = 0 and

‖ν‖L2((0,T )×R) � eCH(T ,‖a‖∞,‖b‖∞)‖y0‖L2(R),

where

H
(
T ,‖a‖∞,‖b‖∞

) := 1 + 1

T
+ T ‖a‖∞ + ‖a‖2/3∞ + (1 + T )‖b‖2∞.

However, this result does not apply in our situation because our potential a(v) = iξv, does not belong to L∞(R,C).

2.3. Proof of Theorem 6

It is well known that Theorem 6 is a consequence of the following observability estimate.

Theorem 8. Let T > 0. There exists C > 0 such that, for every ξ ∈ R, for every g0 ∈ L2(R,C), the solution of⎧⎨
⎩

∂g

∂t
− iξvg − ∂2g

∂v2
= 0, v ∈ R, t ∈ (0, T ),

g(0, v) = g0(v),

(18)

satisfies

∫
R

∣∣g(T , v)
∣∣2

dv � eC(T )max{1,
√|ξ |}

T∫
0

∫
R−[a1,b1]

∣∣g(t, v)
∣∣2

dv dt. (19)
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Proof. First, notice that, thanks to the continuity of the solutions of (18) with respect to the initial condition (whose
proof is the same as in Proposition 1), by density, it is sufficient to prove the inequality (19) when g0 belongs to the
Schwarz space S(R2,R).

This assumption implies, in particular, that for every k ∈ N
∗, ∂k

v g belongs to L2(Q), where Q := (0, T ) × R.
Indeed, for every t ∈ (0, T ), one has∫

R

∣∣∂k
v g(t, v)

∣∣2
dv =

∫
R

∣∣ηkĝ(t, η)
∣∣2

dη

=
∫
R

∣∣ηkĝ0(η − ξ t)e−tη2+t2ηξ− t3
3 ξ2 ∣∣2

dξ

�
∫
R

∣∣(η + ξ t)kĝ0(η)
∣∣2

dξ < +∞.

In the same way, one has ∂tg ∈ L2(Q,R).
Let a, b be such that

−∞ < a < a1 < b1 < b < +∞. (20)

To obtain the relevant Carleman inequality, let us define a weight function, similar to the one introduced by Fursikov
and Imanuvilov in [11],

α(t, v) := Mβ(v)

t (T − t)
, (t, v) ∈ (0, T ) × R, (21)

where β ∈ C2(R,R+) is such that

β � 1 on R, (22)

|β ′| > 0 on [a, b], (23)

β ′ = 0 on (−∞, a − 1) ∪ (b + 1,+∞), (24)

β ′′ < 0 on [a, b], (25)

and M > 0 will be chosen later on. We also introduce the function z(t, v) such that

z(t, v) = g(t, v)e−α(t,v). (26)

This function satisfies

P1z + P2z = P3z, (27)

with

P1z := − ∂2z

∂v2
+ (

αt − α2
v

)
z, P2z := ∂z

∂t
− 2αv

∂z

∂v
− iξvz, P3z := αvvz.

We develop the classical proof, consisting in taking the L2(Q,C)-norm in the identity (27), then developing the double
product. This leads to

�
( ∫

Q

P1P2

)
� 1

2

∫
Q

|P3|2, (28)

where Q := (0, T ) × R. And we compute precisely each term.
First, let us justify that all the terms in (27) belong to L2(Q,C). At this step, the assumption g0 ∈ S(R2,R) is used.

Let us justify it, for example, with the term αv∂vz (the arguments for the other terms are similar). We have
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∣∣∣∣αv

∂z

∂v

∣∣∣∣ �
∣∣∣∣
(

αv

∂g

∂v
− α2

vg

)
e−α

∣∣∣∣
�

∣∣∣∣ Mβ ′

t (T − t)
e
− Mβ

t(T −t)
∂g

∂v

∣∣∣∣ +
∣∣∣∣
(

Mβ ′

t (T − t)

)2

e
− Mβ

t(T −t) g

∣∣∣∣
� c1

|β ′|
β

∣∣∣∣∂g

∂v

∣∣∣∣ + c2

(
β ′

β

)2

|g|2, (29)

where c1 := sup{xe−x, x ∈ R+}, c2 := sup{x2e−x, x ∈ R+}. Thanks to the assumptions (22) and (24), the function
β ′/β is bounded on R. Moreover g and ∂vg belong to L2(Q,R) (because g0 ∈ S(R2,R)) thus αv∂vz belongs to
L2(Q,R).

Let us compute the left-hand side of the inequality (28). In the following computations, we use integrations by
parts in the space variable, in which the boundary terms at v = ±∞ vanish because z, ∂vz, ∂t z vanish at v = ±∞, for
every t ∈ (0, T ) and α, αt , αv are bounded on R, for every t ∈ (0, T ).

Terms concerning −∂2z/∂v2: First, one has

�
( ∫

Q

− ∂2z

∂v2

∂z̄

∂t

)
=

T∫
0

1

2

d

dt

∫
R

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

dv dt = 0,

where the first equality comes from an integration by parts in the space variable and the second one is due to z(0) ≡
z(T ) ≡ 0, which is a consequence of (26), (21) and (22). Then, one has

�
( ∫

Q

∂2z

∂v2
2αv

∂z̄

∂v

)
= −

∫
Q

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

αvv,

thanks to an integration by parts in the space variable. Finally, one has

�
(

−
∫
Q

∂2z

∂v2
iξvz̄

)
= −ξ�

( ∫
Q

∂z

∂v
z̄

)
,

thanks to an integration by parts in the space variable.
Terms concerning (αt − α2

v)z: First, one has

�
( ∫

Q

(
αt − α2

v

)
z
∂z̄

∂t

)
= −

∫
Q

1

2

(
αt − α2

v

)
t
|z|2,

thanks to an integration by parts in the time variable. The boundary terms at t = 0 and t = T vanish because, thanks
to (26), (21), (22),∣∣(αt − α2

v

)|z|2∣∣ � 1

[t (T − t)]2
e

−M
t(T −t)

∣∣M(T − 2t)β + (Mβ ′)2
∣∣|g|2 (30)

tends to zero when t → 0 and t → T , for every v ∈ R. Then, one has

�
(

−
∫
Q

(
αt − α2

v

)
z2αv

∂z̄

∂v

)
=

∫
Q

[(
αt − α2

v

)
αv

]
v
|z|2,

thanks to an integration by parts in the space variable. Finally, one has

�
( ∫

Q

(
αt − α2

v

)
ziξvz̄

)
= 0.

Putting all these computations together and using (28), we get∫
−

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

αvv − ξ�
(

∂z

∂v
z̄

)
+ |z|2

{
−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv

}
� 0. (31)
Q
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Now, we separate in (31) the terms concerning (0, T ) × R − [a, b] and the terms concerning (0, T ) × (a, b). First,
one has

−αvv(t, v) = − Mβ ′′(v)

t (T − t)
� C1M

t(T − t)
, ∀v ∈ [a, b] and ∀t ∈ (0, T ),

where C1 := min{−β ′′(v); v ∈ [a, b]} is positive thanks to (25). One also has∣∣αvv(t, v)
∣∣ =

∣∣∣∣ Mβ ′′(v)

t (T − t)

∣∣∣∣ � C2M

t(T − t)
, ∀v ∈ R − [a, b] and ∀t ∈ (0, T ),

where C2 := sup{|β ′′(v)|;v ∈ R − [a, b]} is finite thanks to (24). Thus,

∫
Q

−
∣∣∣∣ ∂z

∂v

∣∣∣∣
2

αvv �
T∫

0

∫
(a,b)

C1M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

−
T∫

0

∫
R−[a,b]

C2M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

. (32)

Then, one has

−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv

= 1

(t (T − t))3

(
−3M3β ′′β ′2 − M2

[
(T − 2t)β ′′β ′ + 1

2
t (T − t)β ′′

]
+ M

(
T 2 − 5T t + 5t2)β)

.

Thus, using (23) and (25), there exists M1 = M1(T ,β) > 0, C3 = C3(T ,β) > 0, C4 = C4(T ,β) > 0, such that, for
every M � M1,

−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv � M3C3

[t (T − t)]3
, ∀v ∈ (a, b), ∀t ∈ (0, T ) (33)

and ∣∣∣∣−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv

∣∣∣∣ � M3C4

[t (T − t)]3
, ∀v ∈ R − (a, b), ∀t ∈ (0, T ). (34)

Thus, ∫
Q

|z|2
{
−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv

}

�
T∫

0

∫
(a,b)

M3C3

[t (T − t)]3
|z|2 −

T∫
0

∫
R−(a,b)

M3C4

[t (T − t)]3
|z|2. (35)

Using (31), (32) and (35), we get, for every M � M1,

T∫
0

∫
(a,b)

C1M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

− ξ�
(

∂z

∂v
z̄

)
+ C3M

3

(t (T − t))3
|z|2

�
T∫

0

∫
R−[a,b]

C2M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

+ ξ�
(

∂z

∂v
z̄

)
+ C4M

3

(t (T − t))3
|z|2. (36)

Let M2 = M2(T ,β, ξ) be defined by

M2 := T 2√|ξ |
4(2C1C3)1/4

. (37)

From now on, we take

M = M(T,β, ξ) := max
(
1,M1(T ,β),M2(T ,β, ξ)

)
. (38)
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Then, we have∣∣∣∣ξ�
(

∂z

∂v
z̄

)∣∣∣∣ � 1

2

C3M
3

(t (T − t))3
|z|2 + 1

2

(t (T − t))3

C3M3
ξ2

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

� 1

2

C3M
3

(t (T − t))3
|z|2 + C1M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

, (39)

because

1

2

(t (T − t))3

C3M3
ξ2 = C1M

t(T − t)

(t (T − t))4ξ2

2C1C3M4
� C1M

t(T − t)

(T 2/4)4ξ2

2C1C3M4
= C1M

t(T − t)

M4
2

M4

and M � M2. Using (36) and (39), we get

T∫
0

∫
(a,b)

C3M
3

2(t (T − t))3
|z|2 �

T∫
0

∫
R−[a,b]

C5M
3

(t (T − t))3
|z|2 + C6M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

(40)

where C5 = C5(T ,β) := C4 + C3/2 and C6 = C6(T ,β) := C2 + C1. Coming back to our original variable thanks to
(26) the inequality (40) can be written

T∫
0

∫
(a,b)

C3M
3|g|2e−2α

2(t (T − t))3
�

T∫
0

∫
R−[a,b]

(
C5M

3|g|2
(t (T − t))3

+ C6M

t(T − t)

∣∣∣∣∂g

∂v
− αvg

∣∣∣∣
2)

e−2α (41)

thus

T∫
0

∫
(a,b)

C3M
3|g|2e−2α

2(t (T − t))3
�

T∫
0

∫
R−[a,b]

(
C7M

3|g|2
(t (T − t))3

+ C8M

t(T − t)

∣∣∣∣∂g

∂v

∣∣∣∣
2)

e−2α (42)

where C8 := C8(T ,β) = 2C6 and C7 = C7(T ,β) := C5 + 2C6 sup{β ′(v)2; v ∈ R − (a, b)} is finite thanks to (24).
Thanks to (22), and the assumption M � 1 (see (38)) we have, for every v ∈ R − (a, b),

C7M
3

(t (T − t))3
e−2α � C7M

3

(t (T − t))3
e
− 2M

t(T −t) � C9,

C8M

t(T − t)
e−2α � C8t (T − t)

M

(
M

t(T − t)

)2

e
− 2M

t(T −t) � C10t (T − t)

where C9 = C9(T ,β) := C7 sup{x3e−2x; x ∈ R+} and C10 = C10(T ,β) := C8 sup{x2e−2x ; x ∈ R+}. Therefore, us-
ing the two previous inequalities and (42), we get

T∫
0

∫
(a,b)

C3M
3|g|2e−2α

2(t (T − t))3
�

T∫
0

∫
R−[a,b]

(
C9|g|2 + C10t (T − t)

∣∣∣∣∂g

∂v

∣∣∣∣
2)

. (43)

Now, let us prove that the last term can be bounded by a first order term in g on R − [a1, b1]. We consider ρ ∈
C∞(R,R+) such that

ρ ≡ 1 on (−∞, a) ∪ (b,+∞), (44)

ρ ≡ 0 on (a1, b1). (45)

Multiplying the first equation of (18) by ḡρt (T − t), integrating over (0, T ) × R and considering the real part of the
resulting equality, we get

T∫ ∫ (
1

2

d

dt

[|g|2]ρt(T − t) − �
(

∂2g

∂v2
ḡ

)
ρt(T − t)

)
dv dt = 0. (46)
0 R
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Performing integrations by parts with respect to the space and time variables, we get

T∫
0

∫
R

1

2

d

dt

[|g|2]ρt(T − t) dv dt = −
T∫

0

∫
R

1

2
|g|2ρ(T − 2t) dv dt, (47)

−�
T∫

0

∫
R

∂2g

∂v2
ḡρt (T − t) dv dt = �

T∫
0

∫
R

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) + ∂g

∂v
ḡρ′t (T − t) dv dt

=
T∫

0

∫
R

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) − 1

2
|g|2ρ′′t (T − t) dv dt. (48)

Indeed, the boundary terms at t = 0 and t = T in (47) vanish thanks to the factor t (T − t) and the boundary terms at
v = ±∞ in (48) vanish because g(t) ∈ S(R,R) for every t ∈ (0, T ). Thanks to (46), (47) and (48), we get

T∫
0

∫
R

(
−1

2
|g|2ρ(T − 2t) +

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) − 1

2
|g|2ρ′′t (T − t)

)
dv dt = 0. (49)

Thus, using (44), (49) and (45), we get

T∫
0

∫
R−[a,b]

∣∣∣∣∂g

∂v

∣∣∣∣
2

t (T − t) dv dt �
T∫

0

∫
R

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) dv dt

=
T∫

0

∫
R

1

2
|g|2[ρ(T − 2t) + ρ′′t (T − t)

]
dv dt

� C11

T∫
0

∫
R−(a1,b1)

|g|2 dv dt, (50)

where C11 = C11(T ,ρ) := T ‖ρ‖L∞(R) + T 2

2 ‖ρ′′‖L∞(R). The previous inequality and (43) lead to

T∫
0

∫
(a,b)

C3M
3|g|2e−2α

(t (T − t))3
dv dt �

T∫
0

∫
R−(a1,b1)

C12|g|2 dv dt, (51)

where C12 = C12(T ,β,ρ) := 2[C9 + C10C11]. We have

t (T − t) � 2T 2

9
, ∀t ∈

[
T

3
,

2T

3

]
,

t (T − t) � T 2

4
, ∀t ∈

[
T

3
,

2T

3

]
,

thus

e−2α(t,v)

(t (T − t))3
� e−9c3M/T 2

(T 2/4)3
, ∀v ∈ (a, b), ∀t ∈ (T /3,2T/3),

where c3 := sup{β(v); v ∈ [a, b]}. Thus (51) leads to

C3M
3

(T 2/4)3
e
− 9c3M

T 2

2T/3∫ ∫
|g|2 dv dt �

T∫ ∫
C12|g|2 dv dt. (52)
T/3 (a,b) 0 R−(a1,b1)
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Adding the same quantity in both sides and using the inclusion [R − (a, b)] ⊂ [R − (a1, b1)] (which is a consequence
of (20)), we get

C3M
3

(T 2/4)3
e
− 9c3M

T 2

2T/3∫
T/3

∫
R

|g|2 dv dt �
(

C12 + C3M
3

(T 2/4)3
e
− 9c3M

T 2

) T∫
0

∫
R−(a1,b1)

|g|2 dv dt, (53)

which can also be written
2T/3∫

T/3

∫
R

|g|2 dv dt �
(

C12
(T 2/4)3

C3M3
e

9c3M

T 2 + 1

) T∫
0

∫
R−(a1,b1)

|g|2 dv dt. (54)

Using the decreasing property of t �→ ‖g(t)‖L2 and the inequality M � 1 (see (38)), we get

∫
R

∣∣g(T , v)
∣∣2

dv � 3

T
e

9c3M

T 2

(
C12

(T 2/4)3

C3
+ 1

) T∫
0

∫
R−(a1,b1)

|g|2 dv dt

which gives the conclusion thanks to (38). �
Remark 4. Let us propose an alternative strategy for the direct proof of the uniform observability of (18) with respect
to the parameter ξ , i.e. the existence of a constant C(T ) > 0 such that, for every ξ ∈ R, the solution of (18) satisfies

∫
R

∣∣g(T , v)
∣∣2

dv � C(T )

T∫
0

∫
R−(a1,b1)

∣∣g(t, v)
∣∣2

dv dt. (55)

This proof is the same as the one of Theorem 8 above, until the formula (54). At this step, instead of using the
decreasing behavior of t �→ ‖g(t)‖L2 , one may use the inequality∥∥g(t)

∥∥
L2(R)

�
∥∥g(T )

∥∥
L2(R)

e
ξ2(T −t)3

12 . (56)

This inequality can be proved in the same way as Lemma 1.
This strategy has already been used in [3].

3. Control in the square

In this section, we prove Theorem 1 on the square.
As mentioned in the introduction, the boundary conditions in (3) have been chosen to ensure that the function

h(t, x, v) := f (t, x + vt, v) is 2π periodic with respect to x and v. Then, one has explicit solutions of (3), for which
one can prove an explicit decay rate in the same spirit as in Lemma 1, which allows to use the strategy of the previous
section for the proof of Theorem 1.

We adopt the following convention: for any function ϕ : (0,2π) × (0,2π) → C, ϕ = ϕ(x, v), such that ϕ(0, v) =
ϕ(2π,v) for every v ∈ (0,2π), ϕ denotes indifferently the function ϕ : (0,2π) × (0,2π) → C or the function ϕ : R ×
(0,2π) → C which is 2π -periodic with respect to x. In order to simplify the notations, in this section, we write (Ω,ω)

instead of (Ω2,ω2).

3.1. Well posedness of the Cauchy problem

First, let us define a concept of solution for (3).

Definition 2. Let T > 0, f0 ∈ L2(Ω,R) and u ∈ L2((0, T )×Ω,R). A solution of the Cauchy problem (3) is a function
f ∈ C0([0, T ],L2(Ω,R)) such that f (0) = f0 in L2(Ω,R) and for every t∗ ∈ [0, T ] and ϕ ∈ C2([0, T ]×Ω,R) with{

ϕ(t,0, v) = ϕ(t,2π,v), ∀(t, v) ∈ [0, T ] × (0,2π),

ϕ(t, x,0) = ϕ(t, x + 2πt,2π), ∀(t, x) ∈ [0, T ] × (0,2π),
∂vϕ(t, x,0) = ∂vϕ(t, x + 2πt,2π), ∀(t, x) ∈ [0, T ] × (0,2π),
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one has∫
Ω

[
f (t∗, x, v)ϕ(t∗, x, v) − f0(x, v)ϕ(0, x, v)

]
dx dv

=
t∗∫

0

∫
Ω

{
f (t, x, v)

(
∂t + v∂x + ∂2

v

)
ϕ(t, x, v) + u(t, x, v)1ω(x, v)ϕ(t, x, v)

}
dx dv dt.

With this definition, one has the following result.

Proposition 2. Let T > 0, f0 ∈ L2(Ω,R) and u ∈ L2((0, T ) × Ω,R). There exists a unique solution of the Cauchy
problem (3). Moreover, the solutions are continuous with respect to the initial conditions for the C0([0, T ],L2(Ω))-
topology.

Proof. The proof is similar to the one of Proposition 1. We perform the heuristic part, because the explicit expression
will be useful in the end of the article. For ϕ ∈ L2(Ω,C), ϕ = ϕ(x, v), we denote by ˆ̂ϕ(p,n) its Fourier coefficients

ˆ̂ϕ(p,n) = 1

(2π)2

∫
(0,2π)

∫
(0,2π)

ϕ(x, v)e−i(px+nv) dx dv, ∀n,p ∈ Z.

Let w ∈ L2((0, T )×Ω,R) be defined by u(t, x, v)1ω(x, v) = w(t, x−vt, v) and h ∈ C0([0, T ],L2(Ω,R)) be defined
by its Fourier coefficients,

ˆ̂
h(t,p,n) := ˆ̂

f 0(p,n)e−n2t+npt2−p2 t3
3 +

( t∫
0

ˆ̂w(τ,p,n)en2τ−npτ 2+p2 τ3
3 dτ

)
e−n2t+npt2−p2 t3

3 . (57)

Then h is a solution of⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂h

∂t
− ∂2h

∂v2
+ 2t

∂2h

∂x∂v
− t2 ∂2h

∂x2
= w, (x, v) ∈ Ω, t ∈ (0,+∞),

h(t,0, v) = h(t,2π,v),

h(t, x,0) = h(t, x,2π),

∂vh(t, x,0) = ∂vh(t, x,2π),

h(0, x, v) = f0(x, v).

(58)

Let f be defined by

f (t, x, v) := h(t, x − vt, v). (59)

Then, f is a solution of (3). �
3.2. Proof of Theorem 1

The strategy for the proof of Theorem 1 is the same as in the previous section. We consider a solution f of (3). The
Fourier components

f̂ (t,p, v) := 1

2π

2π∫
0

f (t, x, v)e−ipx dx, t ∈ (0,+∞), p ∈ Z, v ∈ (0,2π),

solve ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂f̂

∂t
(t,p, v) + ipvf̂ (t,p, v) − ∂2f̂

∂v2
(t,p, v) = û(t,p, v)1(a2,b2)(v), v ∈ (0,2π),

f̂ (t,p,0) = f̂ (t,p,2π)ei2πpt ,

∂vf̂ (t,p,0) = ∂vf̂ (t,p,2π)ei2πpt ,

ˆ ˆ

(60)
f (0,p, v) = f0(p, v).
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The key ingredients for the proof of Theorem 1 are the following lemma and the following theorem.

Lemma 2. For every f0 ∈ L2(Ω,C), the solution of (3) with u ≡ 0 satisfies∥∥f̂ (t,p, ·)∥∥
L2((0,2π),C)

�
∥∥f̂0(p, ·)∥∥

L2((0,2π),C)
e− p2t3

12 , ∀p ∈ Z, ∀t ∈ R+.

Remark 5. Notice that we have the same decay rate as in Lemma 1.

Proof of Lemma 2. Let h be defined by (59). Thanks to (57) and Bessel Parseval equality, we have

1

2π

2π∫
0

∣∣f̂ (t,p, v)
∣∣2

dv = 1

2π

2π∫
0

∣∣ĥ(t,p, v)e−ipvt
∣∣2

dv =
∑
n∈Z

∣∣ ˆ̂h(t,p,n)
∣∣2

=
∑
n∈Z

∣∣ ˆ̂
f 0(p,n)

∣∣2
e−2t (n− pt

2 )2
e− p2 t3

6 � e− p2 t3

6
1

2π

2π∫
0

∣∣f̂0(p, v)
∣∣2

dv. �

Theorem 9. Let T > 0. There exists C(T ) > 0 such that, for every p ∈ Z and k0 ∈ L2((0,2π),C), there exists
ν ∈ L2((0, T ) × (0,2π),C) such that the solution of⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂k

∂t
(t, v) + ipvk(t, v) − ∂2k

∂v2
(t, v) = ν(t, v)1(a2,b2)(v), v ∈ (0,2π),

k(t,0) = k(t,2π)ei2πpt ,

∂vk(t,0) = ∂vk(t,2π)ei2πpt ,

k(0, v) = k0(v),

(61)

satisfies k(T ) = 0 and

‖ν‖L2((0,T )×(0,2π)) � eC(T )max{1,
√|p|}‖k0‖L2(0,2π).

This theorem is proved in the next subsection.

Remark 6. The analogue of Theorem 7 when the system is posed on the bounded domain v ∈ (0,2π), with Dirichlet
boundary conditions at v = 0 and v = 2π is proved in [9, Theorem 1.3] with b ≡ 0 and in [4, Theorem 2.3] with
b �= 0. Moreover, it has been proved in [5] that, in that case, the power 2/3 of the norm of the potential a appearing in
the exponential factor (of Theorem 7) is optimal.

However, the analogue of Theorem 7 for system (61), in which the boundary conditions are not of Dirichlet type,
is unknown.

Notice that, if it was known with the boundary conditions of (61), it would be sufficient to conclude.
Instead of checking that the proof of [9] can indeed be generalized in our context, we have preferred to adapt

it in order to emphasize that, in particular cases, the same technics may lead to a better bound for the cost (here
eC(T )

√|p| � eCT |p| for large p).
Note however that, our main results show that, by taking advantage of the dissipativity of the systems, the cost for

the null controllability of the 1D heat equation (60) can be made independent of the frequency parameter p.

Remark 7. Another strategy to prove Theorem 1 in the case of the square domain consists in considering the Fourier
series of the function h solution of (58),⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ĥ

∂t
(t,p, v) − ∂2ĥ

∂v2
(t,p, v) + 2ipt

∂ĥ

∂v
(t,p, v) + p2t2ĥ(t,p, v) = 0, v ∈ (0,2π),

ĥ(t,p,0) = ĥ(t,p,2π),

∂vĥ(t,p,0) = ∂vĥ(t,p,2π),

ˆ ˆ

(62)
h(0,p, v) = f0(p, v).
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Indeed, one has (see the proof of Lemma 2)∥∥ĥ(t,p, ·)∥∥
L2(0,2π)

� e−p2 t3
12

∥∥f̂0(p, ·)∥∥
L2(0,2π)

.

Assuming that the analogue of Theorem 7 holds in the bounded domain v ∈ (0,2π) with periodic boundary conditions,
one would have the following bound for the cost of the null controllability of Eq. (62)

eC[1+ 1
T

+Tp2+|p|4/3+(1+T )p2].

However, the function

p �→ eC[1+ 1
T

+Tp2+|p|4/3+(1+T )p2]−p2 T 3
96

is not necessarily bounded on Z (it depends on the values of C and T ). For this strategy to work, one would need a
better bound for the cost of the null controllability of (62) than the one given in Theorem 7.

3.3. Proof of Theorem 9

It is well known that Theorem 9 is a consequence of the following observability estimate.

Theorem 10. Let T > 0. There exists C(T ) > 0 such that, for every p ∈ Z, and g0 ∈ L2(Ω,R), the solution of⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂g

∂t
− ipvg − ∂2g

∂v2
= 0, v ∈ (0,2π), t ∈ (0, T ),

g(t,0) = g(t,2π)eip2π(T −t),

∂vg(t,0) = ∂vg(t,2π)eip2π(T −t),

g(0, v) = g0(v),

(63)

satisfies

∫
(0,2π)

∣∣g(T , v)
∣∣2

dv � eC(T )max{1,
√|p|}

T∫
0

∫
(a2,b2)

∣∣g(t, v)
∣∣2

dv dt. (64)

Remark 8. Note however that, as a consequence of our uniform (in p) controllability result, the observability constant
in (64) can be made uniform on the frequency parameter p.

The proof of Theorem 10 relies on a new Carleman estimate for the solutions of (63).

Proof of Theorem 10. Let p ∈ Z be fixed in all the proof and a, b be such that

0 � a2 < a < b < b2 � 2π. (65)

To obtain the relevant Carleman inequality, let us define a weight function, similar to the one introduced by Fursikov
and Imanuvilov in [11],

α(t, v) := Mβ(v)

t (T − t)
, (t, v) ∈ (0, T ) × R, (66)

where β ∈ C2(R,R+) is 2π periodic and

β � 1 on (0,2π), (67)

|β ′| > 0 on [0, a] ∪ [b,2π ], (68)

β ′′ < 0 on [0, a] ∪ [b,2π ], (69)

and M > 0 will be chosen later on. We also introduce the function

z(t, v) := g(t, v)e−α(t,v) (70)
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that satisfies

P1z + P2z = P3z, (71)

with

P1z := − ∂2z

∂v2
+ (

αt − α2
v

)
z, P2z := ∂z

∂t
− 2αv

∂z

∂v
− ipvz, P3z := αvvz. (72)

We develop the classical proof, consisting in taking the L2(Q,C)-norm in the identity (71), then developing the double
product, which leads to

�
( ∫

Q

P1P2

)
� 1

2

∫
Q

|P3|2, (73)

where Q := (0, T ) × (0,2π) and we compute precisely each term. Notice that, since β is 2π -periodic, one has

z(t,0) = z(t,2π)eip2π(T −t), ∂vz(t,0) = ∂vz(t,2π)eip2π(T −t). (74)

Terms concerning −∂2z/∂v2: First, thanks to an integration by parts, one has

�
( ∫

Q

− ∂2z

∂v2

∂z̄

∂t

)
= �

( T∫
0

(
− ∂z

∂v
(t,2π)

∂z̄

∂t
(t,2π) + ∂z

∂v
(t,0)

∂z̄

∂t
(t,0)

)
dt

)
+ �

( ∫
Q

∂z

∂v

∂2z̄

∂t∂v

)
.

We have

�
( ∫

Q

∂z

∂v

∂2z̄

∂t∂v

)
=

T∫
0

1

2

d

dt

∫
(0,2π)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

dv dt = 0,

because z(0) ≡ z(T ) ≡ 0, which is a consequence of (70), (66) and (67). Thanks to (74), we have

∂z

∂t
(t,0) =

(
∂z

∂t
(t,2π) − i2πpz(t,2π)

)
eip2π(T −t),

so
∂z

∂v
(t,0)

∂z̄

∂t
(t,0) − ∂z

∂v
(t,2π)

∂z̄

∂t
(t,2π) = i2πp

∂z

∂v
(t,2π)z(t,2π).

Therefore

�
( ∫

Q

− ∂2z

∂v2

∂z̄

∂t

)
= −2πp�

( T∫
0

∂z

∂v
(t,2π)z(t,2π)dt

)
. (75)

Then, thanks to an integration by parts, one has

�
( ∫

Q

∂2z

∂v2
2αv

∂z̄

∂v

)
= �

( T∫
0

(
αv(t,2π)

∣∣∣∣ ∂z

∂v
(t,2π)

∣∣∣∣
2

− αv(t,0)

∣∣∣∣ ∂z

∂v
(t,0)

∣∣∣∣
2)

dt

)
− �

( ∫
Q

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

αvv dv dt

)
,

where the boundary term vanishes thanks to (74) and the 2π -periodicity of the function β ′. Thus

�
( ∫

Q

∂2z

∂v2
2αv

∂z̄

∂v

)
= −

∫
Q

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

αvv. (76)

Finally, thanks to an integration by parts, one has

�
(

−
∫

∂2z

∂v2
ipvz̄

)
= 2πp�

( T∫
∂z

∂v
(t,2π)z(t,2π)dt

)
− p�

( ∫
∂z

∂v
z̄ dv dt

)
. (77)
Q 0 Q
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Terms concerning (αt − α2
v)z: First, one has

�
( ∫

Q

(
αt − α2

v

)
z
∂z̄

∂t

)
= −

∫
Q

1

2

(
αt − α2

v

)
t
|z|2, (78)

thanks to an integration by parts in the time variable. The boundary terms at t = 0 and t = T vanish because, thanks
to (70), (66), (67),∣∣(αt − α2

v

)|z|2∣∣ � 1

[t (T − t)]2
e

−M
t(T −t)

∣∣M(T − 2t)β + (Mβ ′)2
∣∣|g|2

tends to zero when t → 0 and t → T , for every v ∈ [0,2π ]. Then, one has

�
(

−
∫
Q

(
αt − α2

v

)
z2αv

∂z̄

∂v

)
=

∫
Q

[(
αt − α2

v

)
αv

]
v
|z|2, (79)

thanks to an integration by parts in the space variable. The boundary terms vanish thanks to (74) and the 2π -periodicity
of the functions β and β ′. Finally, one has

�
( ∫

Q

(
αt − α2

v

)
zipvz̄

)
= 0. (80)

Putting together (73), (75)–(80) and noticing that the boundary terms in (75) and (77) compensate each other, we
get ∫

Q

−
∣∣∣∣ ∂z

∂v

∣∣∣∣
2

αvv − p�
(

∂z

∂v
z̄

)
+ |z|2

{
−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv

}
� 0. (81)

Now, we separate in (81) the terms in (0, T ) × [(0, a) ∪ (b,2π)] and those in (0, T ) × (a, b). First, one has

−αvv(t, v) = − Mβ ′′(v)

t (T − t)
� C1M

t(T − t)
, ∀v ∈ [0, a] ∪ [b,2π ], ∀t ∈ (0, T ),

∣∣αvv(t, v)
∣∣ =

∣∣∣∣ Mβ ′′(v)

t (T − t)

∣∣∣∣ � C2M

t(T − t)
, ∀v ∈ [a, b], ∀t ∈ (0, T ), (82)

where C1 := min{−β ′′(v); v ∈ [0, a] ∪ [b,2π ]} is positive thanks to (69) and C2 := sup{|β ′′(v)|; v ∈ [a, b]}. Then,
one has

−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv

= 1

(t (T − t))3

{
M

(
T 2 − 5T t + 5t2) − M2

[
(T − 2t)β ′′β ′ + t (T − t)β ′′

2

]
− 3M3β ′′β ′2β

}
.

Thus, using (68) and (69), there exists M1 = M1(T ,β) > 0, C3 = C3(T ,β) > 0, C4 = C4(T ,β) > 0, such that, for
every M � M1 and t ∈ (0, T ),

−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv � M3C3

[t (T − t)]3
, ∀v ∈ [0, a] ∪ [b,2π ],∣∣∣∣−1

2

(
αt − α2

v

)
t
+ [(

αt − α2
v

)
αv

]
v
− 1

2
α2

vv

∣∣∣∣ � M3C4

[t (T − t)]3
, ∀v ∈ [a, b]. (83)

Using (81), (82) and (83), we get, for every M � M1,

T∫
0

∫
(0,a)∪(b,2π)

C1M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

− p�
(

∂z

∂v
z̄

)
+ C3M

3

(t (T − t))3
|z|2

�
T∫ ∫

C2M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

+ p�
(

∂z

∂v
z̄

)
+ C4M

3

(t (T − t))3
|z|2. (84)
0 (a,b)
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Let M2 = M2(T ,β,p) be defined by

M2 := T 2√|p|
4(2C1C3)1/4

. (85)

From now on, we take

M = M(T,β,p) := max
(
1,M1(T ,β),M2(T ,β,p)

)
. (86)

We have∣∣∣∣p�
(

∂z

∂v
z̄

)∣∣∣∣ � 1

2

C3M
3

(t (T − t))3
|z|2 + 1

2

(t (T − t))3

C3M3
p2

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

� 1

2

C3M
3

(t (T − t))3
|z|2 + C1M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

, (87)

because

1

2

(t (T − t))3

C3M3
p2 = C1M

t(T − t)

(t (T − t))4p2

2C1C3M4
� C1M

t(T − t)

(T 2/4)4p2

2C1C3M4
= C1M

t(T − t)

M4
2

M4

and M � M2. Using (84) and (87), we get

T∫
0

∫
(0,a)∪(b,2π)

C3M
3

2(t (T − t))3
|z|2 �

T∫
0

∫
(a,b)

C5M
3

(t (T − t))3
|z|2 + C6M

t(T − t)

∣∣∣∣ ∂z

∂v

∣∣∣∣
2

(88)

where C5 = C5(T ,β) := C4 + C3/2 and C6 = C6(T ,β) := C2 + C1. Coming back to our original variables thanks to
(70) the inequality (88) provides

T∫
0

∫
(0,a)∪(b,2π)

C3M
3|g|2e−2α

2(t (T − t))3
�

T∫
0

∫
(a,b)

(
C7M

3|g|2
(t (T − t))3

+ C8M

t(T − t)

∣∣∣∣∂g

∂v

∣∣∣∣
2)

e−2α (89)

where C8 := C8(T ,β) = 2C6 and C7 = C7(T ,β) := C5 + 2C6 sup{β ′(v)2; v ∈ [a, b]}. Thanks to (67), and the as-
sumption M � 1 (see (86)) we have, for every v ∈ [a, b],

C7M
3

(t (T − t))3
e−2α � C7M

3

(t (T − t))3
e
− 2M

t(T −t) � C9,

C8M

t(T − t)
e−2α � C8t (T − t)

M

(
M

t(T − t)

)2

e
− 2M

t(T −t) � C10t (T − t)

where C9 = C9(T ,β) := C7 sup{x3e−2x ; x ∈ R+} and C10 = C10(T ,β) := C8 sup{x2e−2x ; x ∈ R+}. Therefore, using
the two previous inequalities and (89), we get

T∫
0

∫
(0,a)∪(b,2π)

C3M
3|g|2e−2α

2(t (T − t))3
�

T∫
0

∫
(a,b)

(
C9|g|2 + C10t (T − t)

∣∣∣∣∂g

∂v

∣∣∣∣
2)

. (90)

Now, let us prove that the right-hand side of the previous inequality can be bounded by a first order term in g on
(0, T ) × (a2, b2). We consider ρ ∈ C∞(R,R+) 2π -periodic, such that

ρ ≡ 1 on (a, b), (91)

ρ ≡ 0 on (0, a2) ∪ (b2,2π). (92)

Multiplying the first equation of (63) by ḡρt (T − t), integrating over (0, T )× (0,2π) and considering the real part of
the resulting equality, we get

T∫ ∫ (
1

2

d

dt

[|g|2]ρt(T − t) − �
(

∂2g

∂v2
ḡ

)
ρt(T − t)

)
dv dt = 0. (93)
0 (0,2π)
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Performing integrations by parts with respect to the space and time variables, we get

T∫
0

∫
(0,2π)

1

2

d

dt

[|g|2]ρt(T − t) dv dt = −
T∫

0

∫
(0,2π)

1

2
|g|2ρ(T − 2t) dv dt, (94)

−�
T∫

0

∫
(0,2π)

∂2g

∂v2
ḡρt (T − t) dv dt = �

T∫
0

∫
(0,2π)

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) + ∂g

∂v
ḡρ′t (T − t) dv dt

=
T∫

0

∫
(0,2π)

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) − 1

2
|g|2ρ′′t (T − t) dv dt. (95)

Indeed, the boundary terms at t = 0 and t = T in (94) vanish thanks to the factor t (T − t) and the boundary terms at
v = 0, v = 2π in (95) vanish thanks to the boundary conditions satisfied by g and the 2π -periodicity of the function ρ.
Thanks to (93), (94) and (95), we get

T∫
0

∫
(0,2π)

(
−1

2
|g|2ρ(T − 2t) +

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) − 1

2
|g|2ρ′′t (T − t)

)
dv dt = 0. (96)

Thus, using (91), (92) and (96), we get

T∫
0

∫
(a,b)

∣∣∣∣∂g

∂v

∣∣∣∣
2

t (T − t) dv dt �
T∫

0

∫
(0,2π)

∣∣∣∣∂g

∂v

∣∣∣∣
2

ρt(T − t) dv dt

=
T∫

0

∫
(0,2π)

1

2
|g|2[ρ(T − 2t) + ρ′′t (T − t)

]
dv dt � C11

T∫
0

∫
(a2,b2)

|g|2 dv dt,

where C11 = C11(T ,ρ) := T ‖ρ‖L∞ + T 2

2 ‖ρ′′‖L∞ . The previous inequality and (90) lead to

T∫
0

∫
(0,a)∪(b,2π)

C3M
3|g|2e−2α

(t (T − t))3
dv dt �

T∫
0

∫
(a2,b2)

C12|g|2 dv dt, (97)

where C12 = C12(T ,β,ρ) := 2[C9 + C10C11]. We have

t (T − t) � 2T 2

9
, ∀t ∈

[
T

3
,

2T

3

]
,

t (T − t) � T 2

4
, ∀t ∈

[
T

3
,

2T

3

]
,

thus

e−2α(t,v)

(t (T − t))3
� e−9c3M/T 2

(T 2/4)3
, ∀v ∈ [0, a] ∪ [b,2π ], ∀t ∈ (T /3,2T/3),

where c3 := sup{β(v); v ∈ [0, a] ∪ [b,2π ]}. Thus (97) leads to

C3M
3

(T 2/4)3
e
− 9c3M

T 2

2T/3∫ ∫
|g|2 dv dt �

T∫ ∫
C12|g|2 dv dt. (98)
T/3 (0,a)∪(b,2π) 0 (a2,b2)
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Adding the same quantity in both sides and using the inclusion (a, b) ⊂ (a2, b2) (see (65)), we get

C3M
3

(T 2/4)3
e
− 9c3M

T 2

2T/3∫
T/3

∫
(0,2π)

|g|2 dv dt �
(

C12 + C3M
3

(T 2/4)3
e
− 9c3M

T 2

) T∫
0

∫
(a2,b2)

|g|2 dv dt, (99)

which can also be written
2T/3∫

T/3

∫
(0,2π)

|g|2 dv dt �
(

C12
(T 2/4)3

C3M3
e

9c3M

T 2 + 1

) T∫
0

∫
(a2,b2)

|g|2 dv dt. (100)

Using the decreasing property of t �→ ‖g(t)‖L2 , and the inequality M � 1 (see (86)) we get

∫
(0,2π)

|g(T , v)|2 dv � 3

T
e

9c3M

T 2

(
C12

(T 2/4)3

C3
+ 1

) T∫
0

∫
(a2,b2)

|g|2 dv dt, (101)

which gives the conclusion, thanks to (86). �
4. Conclusion and open problems

In this article, we have proved the null controllability of the 2D Kolmogorov equation with a control domain ω that
is

• either the complementary of a strip in the whole space (Ω = R
2),

• or a strip in a square domain (Ω = (0,2π)2).

4.1. On the whole space

Our result on the control of the Kolmogorov equation in the whole space with control in the exterior of a finite band
implies in particular the controllability with control in the exterior of any bounded domain. In this sense the result
coincides with the well known one on the heat equation that we recalled in Theorem 5.

However, in the case of the heat equation on the whole space, it is well known that there are other geometric
situations in which the null controllability holds (see, for instance, [12] and [19]). It would be desirable to explore this
issue further for the Kolmogorov equation.

4.2. On bounded domains

In the case of the square domain, the null controllability of the Kolmogorov equation in any time T > 0, with an
arbitrarily small control domain ω ⊂ (0,2π)2 (i.e. the analogue of Theorem 4 for the Kolmogorov equation) stays an
open problem. Is the hypoellipticity or the hypocoercivity property of the Kolmogorov equation sufficient to prove the
same controllability result as for the heat equation?

For more general domains Ω , the analysis of the control domains ω for which the null controllability holds is also
an open problem. In that cases, one has additional difficulties. Which boundary conditions ensure the hypocoercivity
of the Kolmogorov equation? How to use this hypocoercivity in the proof of the null controllability? In other words,
what are the analogues of Lemmas 1 and 2 when the Fourier technic cannot be used?

In the case of bounded domains Ω , for the Kolmogorov equation, as far as we know, the only existing result is
the one we have given above for the square domain. However, we can use the result above on the control of the
Kolmogorov equation in the whole space to derive null controllability results for the same equation in an arbitrary
domain Ω . This can be done by the classical extension–restriction argument, that we recall for brevity. Given an initial
datum to be controlled in Ω , we extend it by zero to the whole space and then build a control for the Cauchy problem
in the whole space with support in the exterior of Ω . The restriction of the solution of the controlled Cauchy problem
to the boundary of Ω , ∂Ω , yields a boundary control for the Kolmogorov equation in Ω . Note however that this
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argument, that applies in any bounded domain Ω , yields controls that are distributed everywhere on the boundary of
Ω . Whether the same holds with controls localized in some subset of the boundary or more general internal controls
than the ones we have built for the equation in the square are interesting open problems.

4.3. More general hypoelliptic operators

Finally, it would also be of interest to analyze to which extent the results of this paper extend to more general linear
hypoelliptic equations as those analyzed in [13] and the more general linear and nonlinear kinetic models in [22].
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