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Abstract

In this paper we extend the notion of sectionally dissipative periodic points to arbitrarily compact invariant sets. We show that
given a sectionally dissipative and attracting region for a diffeomorphisms f , there is a neighborhood of f and a dense subset of
it such that any diffeomorphism g in this dense subset either exhibits a sectional dissipative homoclinic tangency or the part of the
limit set of g in this attracting region is a hyperbolic compact set. The proof goes extending some results on dominated splitting
obtained for compact surfaces maps.

Résumé

Dans cet article nous étendons la notion de points périodiques sectionnellement dissipatifs à des ensembles compacts invariants
quelconques. Nous montrons qu’ayant une région sectionnellement dissipative et attrayante pour un difféomorphisme f , il y a
un voisinage de f et un sous-ensemble dense de celui-ci tels que tout difféomorphisme g dans ce sous-ensemble a une tangence
homoclinique sectionnellement dissipative oú la partie de l’ensemble limite de g dans la région attrayante est un ensembe compact
hyperbolique. La preuve est une géneralisation des résultats obtenus pour des difféomorphismes de surfaces.

Keywords: Generic dynamics; Partial hyperbolicity; Dominated splitting; Homoclinic bifurcations; Homoclinic tangencies

1. Introduction

During the early times of non-conservative dynamics was a common sense that “non-pathological” systems behave
in a very simple form such as the nonwandering set consisting of finitely many periodic elements. The achievement of
Peixoto that an open and dense subset of C1 vector fields on surfaces consist of the now-called Morse–Smale systems
is paradigmatic of this view. However, in the early sixties (by Anosov and Smale following Birkhoff, Cartwright
and Littlewood, and others) it was shown that “chaotic behavior” may exist within stable systems and this was the
starting point of the hyperbolic theory and the modern non-conservative dynamical systems theory. A major result
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in hyperbolic theory is the so-called Ω spectral decomposition theorem for Axiom A systems. This means that for
these systems, the nonwandering set can be decomposed into finitely many compact, disjoint and transitive pieces.
Although this pieces could exhibit a chaotic behavior (and nowadays well understood) there are just finitely many of
them and this recovers the old vision by replacing finitely many periodic elements by these finitely many “dynamically
irreducible” pieces.

It was soon realized that hyperbolic systems were not as universal as initially thought: there were given examples of
open sets of diffeomorphism were none of them are hyperbolic. Nevertheless in all these new examples the nonwan-
dering set still decomposes into finitely many compact, disjoint and transitive pieces. It was through the seminal work
of Newhouse (see [10–12]) where a new phenomena was shown: the existence of infinitely many periodic attractors
(today called Newhouse’s phenomena) for residual subsets in the space of Cr diffeomorphisms (r � 2) of compact
surfaces. The underlying mechanism here was the presence of a homoclinic tangency: non-transversal intersection of
the stable and unstable manifold of a periodic point.

In the late eighties, Palis conjectured (see [14,15,21]) that for surface diffeomorphisms, homoclinic tangencies are
the solely mechanisms that leads to the explosion of the limit set into an infinite number of transitive isolated sets:
Any Cr -diffeomorphism on a surface can be Cr -approximated by one which is hyperbolic or by one exhibiting a
homoclinic tangency.

The above conjecture was proved to be true for the case of surfaces and the C1 topology (see [17]). Moreover,
in [20], it was proved that any C2-diffeomorphisms having infinitely many periodic attracting points with unbounded
period, can be C1-approximated by another diffeomorphisms exhibiting a homoclinic tangency.

One may think that in higher dimensions the unfolding of a homoclinic tangency may lead to the breakdown of a
finite decomposition of the nonwandering set. However, there are examples of robust transitive diffeomorphisms that
coexist with the presences of a homoclinic tangency (see for instance [2]).

Nevertheless, it was shown in [22] that for smooth diffeomorphisms on manifold with dimension larger than two,
the unfold of tangencies associated to sectional dissipative periodic points (tangencies associated to a periodic point
such that the modulus of the product of any pair of eigenvalues is smaller than one) leads to the same phenomena that
holds in dimension two: residual subsets of diffeomorphisms exhibiting infinitely many periodic attractors.

Regarding the previous comments and following the conjecture formulated by Palis, it is naturally to ask if is true
that any diffeomorphisms on a finite-dimensional manifold can be either Cr -approximated by another one such its
dynamic is hyperbolic restricted to a “sectionally dissipative regions of the limit set”, or it is Cr -approximated by a
system exhibiting a sectional dissipative homoclinic tangency. In few words, any result in this direction, would be a
converse to the one proved in [22] and mentioned above. This is one of the aims of this paper (see Corollary 1.1).

1.1. Definitions and statements

Let f : M → M be a diffeomorphism of a compact Riemannian manifold without boundary. We denote by Ω(f )

the nonwandering set of f and by L(f ) its limit set which is defined as the closure of the forward and backward
accumulation points of all orbits, i.e.

L(f ) =
⋃
x∈M

ω(x) ∪ α(x).

A set Λ is called hyperbolic for f if it is compact, f -invariant and the tangent bundle TΛM can be decomposed as
TΛM = Es ⊕ Eu invariant under Df and there exist C > 0 and 0 < λ < 1 such that∥∥Df n

/Es(x)

∥∥ � Cλn and
∥∥Df −n

/Eu(x)

∥∥ � Cλn

for all x ∈ Λ and for every positive integer n.
We say that f is a hyperbolic diffeomorphism if L(f ) is hyperbolic.
We recall that the stable and unstable sets

Ws(p) = {
y ∈ M: dist

(
f n(y), f n(p)

) → 0 as n → ∞}
,

Wu(p) = {
y ∈ M: dist

(
f n(y), f n(p)

) → 0 as n → −∞}
are Cr -injectively immersed submanifold when p is a hyperbolic periodic point of f . The index of p is the dimension
of Ws(p). If Ws(p) and Wu(p) has a nontransverse intersection we say that p has a homoclinic tangency.
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A periodic point p of period m is called sectionally dissipative if the modulus of the product of any two distinct
eigenvalues of Df m

p is smaller than one. A homoclinic tangency associated to a sectionally dissipative periodic point
is called a sectionally dissipative tangency.

We wish to “extend” the notion of sectional dissipativeness to non-periodic points. This is done as follows.

Definition 1.1 (Two-dimensional determinant). Let 〈 , 〉 be the Riemannian metric of M . Let G2(M) be the Grassman-
nian space of all two-dimensional subspaces in T M . Observe that given (x,L) ∈ G2(M) we can consider the metric
〈 , 〉x restricted to L and in particular it induces a two dimension volume form wL on L. The derivative of f acts
naturally over G2(M), i.e.: Df (x,L) = (f (x),Df (L)). The determinant of Df at (x,L) is defined as the unique real
number det(Dfx |L) such that

f ∗(wDf (L)) = det(Dfx |L)wL,

where f ∗ is the pull back associated to f .

Definition 1.2 (Sectionally dissipative compact sets). Let f : M → M be a C1-diffeomorphism and Λ a compact
invariant set. We say that f is sectionally dissipative on Λ (or Λ is a sectionally dissipative set for f ) if for any point
x ∈ Λ and for any two-dimensional subspace L holds that

∣∣det(Dfx |L)
∣∣ < 1.

We remark that if p is a periodic point and the orbit O(p) is a sectionally dissipative set then p is a sectionally
dissipative periodic point, i.e, the modulus of the product of any two eigenvalues of Df m

p is less than one. The converse
is not true even if p if fixed.

More generally, given λ > 0, we denote with SDf (λ) the set

SDf (λ) := {
x ∈ M:

∣∣det(Dfx |L)
∣∣ < λ for any two-dimensional subspace L ⊂ TxM

}
.

We define

S Df (λ) := {
x: O(x, f ) ⊂ SDf (λ)

}
,

where O(x, f ) is the orbit of x by f . Notice that if Λ is a sectionally dissipative set then Λ ⊂ S Df (1).
We denote by

L(f,1) := L(f ) ∩ S Df (1).

Finally, given two compact invariant sets A ⊂ B we say that A is isolated within B if there is a neighborhood U

of A such that B ∩ U = A. We say that U is an attracting region if f (U) ⊂ U and observe that L(f ) ∩ U is isolated
within L(f ).

Now we can formulate our main theorem that relates tangencies and hyperbolicity in the sectionally dissipative
regions of the limit set:

Theorem A. Let f : M → M be a C2-diffeomorphism of a finite-dimensional compact Riemannian manifold M . Let
Λ ⊂ L(f,1) be a compact invariant isolated set in L(f ) and such that the periodic points in Λ are hyperbolic. Then,
one of the following statements holds:

1. For any neighborhood U (f ) and a neighborhood U of Λ there exits g ∈ U (f ) exhibiting a sectionally dissipative
tangency associated to a (sectionally dissipative) periodic point p such that O(p,g) ⊂ U .

2. Λ = Λ1 ∪ Λ2 where Λ1 is a hyperbolic set and Λ2 consists of a finite union of periodic simple closed curves
C1, . . . , Cn, normally hyperbolic and such that f mi : Ci → Ci is conjugated to an irrational rotation (mi denotes
the period of Ci ).

The following corollary is an immediate consequence of Theorem A and represents a weak converse of the main
result in [22]. Before to state it, we introduce the set
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Λ0 = P0(f )

the closure of the periodic attractors. Observe that Λ0 is a compact invariant set in L(f ).

Corollary 1.1. Let f ∈ Diff 2(M) be a diffeomorphism exhibiting infinitely many attracting periodic points and let us
assume that Λ0 is an isolated compact set in L(f,1) such that all the periodic points are hyperbolic. Then, f can be
C1-approximated by a diffeomorphism g having a sectionally dissipative tangency in a neighborhood of Λ0.

The previous result follows immediately since Λ0 cannot verify the second option of Theorem A. Another version
of this corollary is the following:

Corollary 1.2. Let f ∈ Diff 2(M) be a Kupka–Smale diffeomorphism and let U be an attracting region such that
U ⊂ SDf (μ),μ < 1. Assume that f has infinitely many periodic attractors in U . Then, f can be C1-approximated
by a diffeomorphism g having a sectionally dissipative tangency in U .

Indeed, observe that Λ = L(f )∩U is isolated within L(f ) since U is an attracting region and Λ ⊂ S Df (1). Since
the second option of Theorem A cannot happen since f has infinitely many periodic attractors then the first one must
occur.

An important consequence of Theorem A is also the following result which extends in some sense a bidimensional
result in [9]:

Corollary 1.3. Let f ∈ Diff 1(M) and let U be an attracting region such that U ⊂ SDf (μ), μ < 1. Then, there exist a
neighborhood U (f ) and a residual subset R ⊂ U such that for any g ∈ R one of the following statements holds:

1. g has infinitely many periodic attractors in U .
2. L(g) ∩ U is hyperbolic.

Another straightforward important consequence is also the following result which extends in some sense a bidi-
mensional result in [17]:

Corollary 1.4. Let f ∈ Diff 1(M) and let U be an attracting region such that U ⊂ S Df (1). Then, there exists a
neighborhood U (f ) such that any g ∈ U (f ) can be C1-approximated by a diffeomorphism g either exhibiting a
sectionally dissipative tangency in U or such that L(g) ∩ U is hyperbolic.

The proof of these two last corollaries are given in the next section.
In the direction to prove Theorem A, we shall extend some results on dominated splitting that we have obtained for

compact surfaces. Let f : M → M be a C1 diffeomorphism of a compact Riemannian manifold M . An f -invariant
set Λ is said to have dominated splitting if we can decompose its tangent bundle in two invariant subbundle TΛM =
E ⊕ F , such that:

∥∥Df n
/E(x)

∥∥∥∥Df −n
/F(f n(x))

∥∥ � Cλn, for all x ∈ Λ, n � 0,

with C > 0 and 0 < λ < 1.
We say that the dominated splitting is a codimension one dominated splitting if dimension(F ) = 1. We say that

a codimension one dominated splitting is a contractive codimension one dominated splitting if the direction E is a
contractive direction, i.e.: there exist C > 0 and 0 < λ1 < 1 such that for any x and any positive integer n holds that

∣∣Df n
/E(x)

∣∣ < C λn
1 .

In this case we denote the direction E as Es .
The next result establishes the relation between contractive codimension one dominated splitting and not being

approximated by sectionally dissipative tangency. Let us state first a definition.
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Definition 1.3. Given a compact invariant set Λ we say that f/Λ is C1-far from sectionally dissipative homoclinic
tangencies if there is a neighborhood U ⊂ Diff 1(M) of f and a neighborhood U of Λ such that any g ∈ U does not
exhibit a sectionally dissipative tangency associated to a periodic point p of g with O(p,g) ⊂ U .

Theorem B. Let Λ be a compact invariant set in L(f,1) and isolated within L(f ). Let us assume that f/Λ is C1-far
from sectionally dissipative tangencies and all the periodic points in Λ are hyperbolic. Then, Λ \ P0(f/Λ) (where
P0(f/Λ) is the set of periodic attractors of f in Λ) has a contractive codimension one dominated splitting.

Now we prove, that under certain conditions, contractive codimension one dominated splitting are actually hyper-
bolic.

Theorem C. Let f : M → M be a C2-diffeomorphism. Let Λ be a compact invariant set contained in L(f ) and
exhibiting a contractive codimension one dominated splitting. Let also assume that Λ is isolated within L(f ) and all
the periodic points in Λ are hyperbolic. Then,

Λ = Λ1 ∪ Λ2

where Λ1 is a hyperbolic set and Λ2 consists of a finite union of periodic simple closed curves C1, . . . Cn, normally
hyperbolic and such that f mi : Ci → Ci is conjugated to an irrational rotation (mi denotes the period of Ci ).

Remark 1.1. Observe that in Theorem C we are not assuming that the set Λ is contained in L(f,1).

We will prove also the next corollary from Theorem C.

Corollary 1.5. Let f : M → M be a C2-diffeomorphism. Assume that M has a contractive codimension one dom-
inated splitting and all the hyperbolic periodic points are of saddle type. Then f is an Anosov diffeomorphism and
M = T n.

The paper is organized as follows: In Section 2 we give the proofs of Theorem A, Corollaries 1.3, 1.4 and 1.5
assuming that Theorems B and C hold. In Section 3 we give the proof of Theorem B. The proof of Theorem C is
given in Section 5. To perform the proof, we need a series of results about the dynamical geometry of sets having a
contractive codimension one dominated splitting. In this direction, in Section 4, under the hypothesis of contractive
codimension one dominated splitting, we show the existence of Markov partition for a general class of sets that include
the homoclinic classes. This result is a fundamental tool in the proof of the rest of Theorem C.

2. Proof of Theorem A and Corollaries 1.3, 1.4 and 1.5

Through this section we assume that Theorems B and C hold.

Proof of Theorem A. Let f and Λ be as in the statement and assume that the first option does not happen, i.e.
f/Λ is C1-far from sectionally dissipative tangencies. By Theorem B follows that f/Λ\P0(f/Λ) exhibits a contractive
codimension one dominated splitting. Given a neighborhood V of Λ \ P0(f/Λ) we have that �P0(f/Λ) ∩ V c < ∞ and
set P0(f/Λ) ∩ V c = {p1, . . . , pn}. If the neighborhood V has been appropriately chosen, we have that any compact
invariant set in V has contractive codimension one dominated splitting. Therefore Λ̃ = Λ \ {O(p1), . . . , O(pn)} has
contractive codimension one dominated splitting. On the other hand, if Λ is isolated within L(f ) so it is Λ̃. Now
applying Theorem C to Λ̃ we have the desired decomposition of it as a union of a hyperbolic set and finitely many
periodic curves “supporting an irrational rotation”. Since Λ = Λ̃∪{O(p1), . . . , O(pn)} and p1, . . . , pn are hyperbolic
(periodic attractors) we have the desired decomposition of Λ as required in the second option of Theorem A. �
Proof of Corollary 1.3. Let U be such that for any g ∈ U we have that g(U) ⊂ U and L(g) ∩ U ⊂ S Dg(1). For
g ∈ U consider the map Γ that Γ (g) = P0(g,U) where P0(g,U) is the set of attracting periodic point of g in U .
This map is lower semicontinuous and there is a residual subset R1 ⊂ U (f ) of continuity points of Γ . Let R2 =
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{g ∈ R1: �P0(g,U) = ∞} and consider V = U \ R2. It follows that if g ∈ R1 ∩ V then g has finitely many periodic
attractors and since R1 is formed by continuity points of Γ we have that there is V1 open and dense in V such that
any g ∈ V1 has finitely many periodic attractors. The set of C2 Kupka–Smale diffeomorphism g in V1 is dense in V1
and by Theorem A all of them satisfy L(g) ∩ U is hyperbolic. Since there cannot exist a cycle among the basic pieces
of L(g) (since g is Kupka–Smale and the basic pieces have index n − 1 or are periodic attractors) it follows by a
straightforward adaptation of the Ω-stability theorem that there is V2 open and dense in V1 such that for any g ∈ V2
holds that L(g) ∩ U is hyperbolic. Hence

R = V2 ∪ R2

satisfies the conclusion of Corollary 1.3. �
Proof of Corollary 1.4. In the same way as in the proof of Corollary 1.3, let U (f ) be such that any g ∈ U (f ) satisfies
g(U) ⊂ U and L(g) ∩ U ⊂ L(g,1). Recalling again that the set of C2 Kupka–Smale diffeomorphism in U (f ) are
dense and arguing again as in Corollary 1.3 the result follows by a direct application of Theorem A. �
Proof of Corollary 1.5. By Theorem B holds that L(f ) is the union of a hyperbolic set and a finite number of periodic
simple closed curves normally hyperbolic (attracting) “supporting an irrational rotation”. It follows that there must
be a hyperbolic repeller in L(f ). In other words, there exists Λ ⊂ L(f ) such that Λ is maximal invariant with local
product structure and it is a repeller. Moreover it has stable index n − 1. On the other hand, by [19] follows that F

is uniquely integrable. Now, the exact same proof of the main theorem in [13] where it is proved that a repeller in a
codimension one Anosov diffeomorphism is also an open set applies here to Λ. Thus M = Λ and hence f is Anosov.
By a result in [5] follows that M = Tn. �
3. Proof of Theorem B: Dominated splitting for systems far from sectionally dissipative homoclinic tangencies

Let Λ be as in Theorem B, that is, Λ ⊂ L(f,1) and it is isolated within L(f ). Recall that f/Λ is far from sectionally
dissipative homoclinic tangencies and hence there exist a neighborhood U of Λ and U (f ) such that any g ∈ U (f )

does not exhibit a homoclinic tangency associated to a sectionally dissipative periodic point of g whose orbit lies
entirely in U . From now on and through this section, U and U (f ) will be as above.

We denote by

PerSD
n−1(g,U)

the set of sectionally dissipative periodic points (i.e the product of any two distinct eigenvalues is less than one) of g

having index n − 1 and whose orbit lies entirely in U .
We shall split the proof of Theorem B in the following sequence of propositions.

Proposition 3.1. Let Λ be as in Theorem B and fix any η > 0. Let x ∈ Λ and assume that x is not a periodic attractor.
Then, there exist sequences of diffeomorphisms {gn} and periodic points {qn} such that gn → f , qn → x such that
qn ∈ PerSD

n−1(g,U) ∩ S Dgn(1 + η).

For the next proposition we need the definition of angle between subspaces. Let E and F be two subspaces of
finite-dimensional vector space V with an inner product and assume that E ⊕ F = V . Hence dim(F ) = dim(E⊥) and
F is the graph of the linear map L : E⊥ → E defined as follows: given w ∈ F there exists a unique pair of vectors
v ∈ E, u ∈ E⊥, such that v + u = w. Define L(v) = u obtaining that graph(L) = F . We define, as it is done in [9],
the angle  (E,F ) between E and F as ‖L‖−1 In particular  (E,E⊥) = +∞.

Remark 3.1. If E and F are subspaces of a vector space W with an inner product and such that E ∩ F = {0} then we
can define the angle between them as before just setting V = E ⊕ F with the inner product inherited from W .

Proposition 3.2. Let Λ be as in Theorem B. There exist a neighborhood V (f ) of f , a neighborhood U of Λ, γ > 0
and η > 0 such that for any g ∈ V (f ) and any q ∈ PerSD

n−1(g,U) ∩ S Dg(1 + η) it holds that

 (
Es

q,Eu
q

)
> γ.
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With the above two propositions we prove Theorem B and this is the content of our last proposition in this section.

Proposition 3.3. Under the assumptions of Theorem B, Propositions 3.1 and 3.2 imply that the set Λ \ P0(f/Λ) has
contractive codimension one dominated splitting.

The proofs of these propositions are done in the next subsections. Before given the proof, we state now a classical
C1 perturbation technique known as Franks’ lemma.

Lemma 3.0.1. (See [4, Lemma 1.1].) Let M be a closed n-manifold and f : M → M be a C1 diffeomorphism, and
let U (f ) a neighborhood of f . Then, there exist U1(f ) ⊂ U (f ) and ε > 0 such that if g ∈ U1(f ), S ⊂ M is a finite
set, S = {p1,p2, . . . , pm} and Li , i = 1, . . . ,m, are linear maps Li : Tpi

M → Tf (pi)M satisfying ‖Li − Dpi
g‖ � ε,

i = 1, . . . ,m, then there exists g̃ ∈ U (f ) satisfying g̃(pi) = g(pi) and Dpi
g̃ = Li , i = 1, . . . ,m. Moreover, if U is any

neighborhood of S then we may chose g̃ so that g̃(x) = g(x) for all x ∈ {p1,p2, . . . , pm} ∪ (M \ U).

3.1. Proof of Proposition 3.1

We first recall a version of the closing lemma (see [9, Lemma I.2]).

Lemma 3.1.1. Given f ∈ Diff 1(M), x ∈ M , ε > 0 and a neighborhood U (f ) there exist r > 0, ρ > 1 such that if w ∈
Br(x) with 0 < r � r and f m(w) ∈ Br(x) for some m > 0 then there exist 0 � m1 < m2 � m and g ∈ U (f ) such that
f mi (w) ∈ Bρr , i = 1,2, gm2−m1(f m2(w)) = f m2(w) and d(gj (f m2(w)), f j (f m1(w))) � ε for 0 � j � m2 − m1.

Corollary 3.1. Let Λ be as in Theorem B and let x ∈ Λ. Then, there exist sequences gn → f , qn → x and ηn → 0
such that qn ∈ Per(gn,U) ∩ SDgn(1 + ηn).

Proof. Let ηn be a sequence of positive real numbers decreasing to 0. Then there exist εn ↘ 0 and Un(f ) such that
if g ∈ Un(f ) and z satisfies that d(z,Λ) � 2ε then z ∈ SDg(1 + ηn). This follows by a standard continuity argument
since Λ ⊂ SDf (1). We may assume that Un+1 ⊂ Un and

⋂
n Un = f .

Now, let x ∈ Λ. If x is periodic then there is nothing to prove. Assume that x is not periodic. Since Λ is isolated
within L(f ), we may assume that for all εn it holds that L(f ) ∩ {z: d(z,Λ) � εn} = Λ. It follows that if ω(y) (or
α(y)) intersects {z: d(z,Λ) � εn} then it is contained in Λ and hence d(f j (y),Λ) � εn for all j � j0 (or j � j0).
Now fix n. Since x ∈ L(f ) there exist yk and zk ∈ ω(yk) ∪ α(yk) such that zk → x. Then, the result follows by direct
application of the preceding lemma by setting w as an appropriate iterate of yk for k large enough. �

In order to finish the proof of the proposition we have to prove that if x ∈ Λ is not a periodic attractor, then the
sequences given by the above corollary can be chosen so that qn is also sectionally dissipative periodic point of g of
index n − 1.

We may assume without loss of generality that the periodic points qn of gn are hyperbolic with simple spectrum
and denote by mn the period of qn.

Assume first that qn are saddles for infinitely many n’s (and we may assume without loss of generality that this
holds for any n), and let λu = max{|λ|: λ eigenvalue of Dg

mn
n (qn)}. Since qn ∈ SDgn(1 + ηn) it follows that the

product of any two eigenvalues is less than (1 + ηn)
mn . We now choose a number ρ:

• If λu > (1 + ηn)
mn then ρ = (1 + ηn)

mn .
• Otherwise choose 1 < ρ < λu that ρ2 is bigger than the product of any two distinct eigenvalues.

Let μ = ρ
1

mn . Apply Franks’ lemma to Li = μ−1Dgn(g
i
n(qn)). Thus we obtain g̃n such that qn is a periodic point

of g̃n and O(qn, gn) = O(qn, g̃n). Notice that g̃n → f . The largest eigenvalue of qn will now have modulus equals to
λu/ρ and hence qn is a saddle. On the other hand, either qn ∈ SDg̃n

(1) or the product of any two distinct eigenvalues
is equal to the product of any two distinct eigenvalues of Dg

mn
n divided by ρ2. In any case the periodic point is

sectionally dissipative. Moreover it is always true that qn ∈ SDg̃n
(1 + ηn).
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It remains to prove the proposition in case the periodic points given by Corollary 3.1 are periodic attractors for
every large n.

The periods of the periodic points qn must be unbounded. Otherwise, the point x ∈ Λ is also periodic and cannot
be an attractor by our hypothesis. It cannot be a saddle because otherwise the points qn are also saddle for gn. Thus,
x is nonhyperbolic periodic point contradicting the assumption that any periodic point of f in Λ is hyperbolic.

It is left to prove the proposition in the case the period of the periodic attractors qn are unbounded. For this we need
a result which essentially due to Pliss [16].

Theorem 3.1. Let gn be a sequence of diffeomorphisms converging to f ∈ Diff 1(M). Assume that there is a sequence
qn such that qn is a periodic attractor of gn and whose periods kn are unbounded. Then, for every sequence εm ↘ 0
there exist a subsequence nm and a sequence g̃m such that:

1. g
j
nm

(qnm) = g̃
j
m(qnm) for 0 � j � knm .

2. ‖Dgnm(g
j
nm

(qnm)) − Dg̃m(g
j
m(qnm))‖ < εm for 0 � j � knm .

3. qnm is a saddle hyperbolic periodic point of gm.
4. gm → f .

Before giving the (outline of) the proof of this theorem let us remark that with it, the proof of our Proposition 3.1
can be finished since we fall again in the case where the sequence of points qn in Corollary 3.1 can be chosen as
hyperbolic saddles and then we finish the proof as it was done before.

Proof. As we said this is essentially due to Pliss. We will give an outline of the proof so that the reader could
complete it by itself. Fix the sequence εm. For ever m we have to find qnm and g̃m. Fix m and set ε = εm. It is
enough, by a direct application of Franks’ lemma, to show that for some n � m it holds that there are linear maps
Li : Tgi

n(qn)M → T
gi+1
n (qn)

M , i = 0, . . . , kn − 1, such that ‖Li − Dgn(g
i
n(qn))‖ < ε and

∏kn−1
i=0 Li has an eigenvalue

of modulus equal to one. Arguing by contradiction, assume that this does not hold. This means (following [9]) that the
family of sequence of periodic matrices induced by {Dgn(g

i
n(qn)): i ∈ Z, n � m} is uniformly attracting. It follows

by Lemma II.5 of [9] that there exit K0, 0 < λ < 1 and m0 such that

k−1∏
j=0

∥∥Dgm0
n

(
g

m0j
n (qn)

)∥∥ � K0λ
k

where k = [kn/m0].
To continue we need a lemma known as Pliss’ lemma [16] (see also [8]):

Lemma 3.1.2. Let H > 0 and 0 < λ2 < λ1 < 1 be given. Then there exist a positive integer N and 0 < c < 1 such that
given positive real numbers aj , j = 0, . . . , k − 1, with k − 1 � N such that aj � H for j = 0, . . . , k and satisfying

k−1∏
j=0

aj � λk
2

then there exist 0 � j1 < j2 < · · · < jl � k − 1 such that

p∏
j=0

aj+ji
� λ

p

1 for any 1 � p � k − 1 − ji and i = 1,2, . . . , l.

Moreover, l � ck.

Continuing with the proof of the theorem we observe that given m0 there is a constant H such that ‖Dg
m0
n (x)‖ � H

for any x ∈ M since gn → f . Since the periods kn of the periodic points qn are unbounded (and we may assume that
kn → ∞) we may choose 0 < λ2 < λ1 < 1 such that K0λ

k < λk where k = [kn/m0] for every n large enough.
2
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Applying Pliss’ lemma, we have that for every large n that there exist 0 � j1(n) < j2(n) < · · · < jln(n) � [kn/m0]−1
such that

p∏
j=0

∥∥Dgm0
n

(
g

(j+ji )m0
n (qn)

)∥∥ � λ
p

1 ∀0 � p � [kn/m0] − 1 − ji .

By this uniform contraction of rate λ1 we have that there exist γ > 0 and λ1 < ρ < 1 such that for any x, y ∈
Bγ (g

ji
n (qn)) it holds that

d
(
g

pm0
n (x), g

pm0
n (y)

)
� ρpd(x, y) ∀0 � p � [kn/m0] − 1 − ji .

Let p0 be such that ρp < γ/4 for all p � p0. Now, since the number of “times” 0 � j1(n) < j2(n) < · · · < jln(n) �
[kn/m0] − 1 goes to infinity as n grows, we may find n large enough and 0 � i < t < ln such that

jt (n) − ji(n) � p0 and d
(
g

jim0
n (qn), g

jtm0
n (qn)

)
< γ/4.

Therefore, setting p = jt − ji we have that

g
pm0
n : Bγ

(
g

jim0
n (qn)

) → Bγ/4
(
g

(p+ji )m0
n (qn)

) ⊂ Bγ

(
g

jim0
n (qn)

)
is a contraction and hence every point in Bγ (g

jim0
n (qn)) under iteration of g

pm0
n converge to the unique fixed point of

this contraction. This is not possible because the point g
jim0
n (qn) is periodic of gn of period kn and cannot be fixed

by g
pm0
n . This is a contradiction and the proof is completed. �

3.2. Proof of Proposition 3.2

Recall that f/Λ is far from sectionally dissipative tangencies and so there are neighborhoods U (f ) and U(Λ) such
that there are no homoclinic tangencies associated to points in PerSD

n−1(g,U) for any g ∈ U (f ).
Proposition 3.2 asserts that there exist V (f ), γ > 0 and η > 0 such that for any g ∈ V (f ) and q ∈ PerSD

n−1(g,U) ∩
S Dg(1 + η) then

 (
Es

q,Eu
q

)
> γ.

We state first the key lemma of this section which establishes the relationship between small angle of stable and
unstable subspaces and homoclinic tangencies. It is a straightforward adaptation of Lemma 2.2.1 of [17]. Compare
also with Lemma 4.2 of [24] where an explicit proof can be found.

Lemma 3.2.1. Let ε > 0 and let g ∈ Diff 1(M). Assume that p ∈ M is a hyperbolic periodic point of g with period m.
Assume that there are Eu

1 ⊂ Eu
p and Es

p invariant under Dgm(p) and such that ‖Dgm
/Es

1
‖ < λ < 1 and ‖Dg−m

/Eu
1
‖−1 >

σ > 1. Assume that λσ < 1 and let γ =  (Es
1,E

u
1 ). If

γ <
σ − 1

σ + 1

ε

2

then there is g̃ ε-C1 close to g such that p as a hyperbolic periodic point of g̃, gi(p) = g̃i (p) for i = 0,1, . . . ,m and
g̃ exhibits a homoclinic tangency associated to p. Furthermore Dgm(p) = Dg̃m(p).

Although the last part is not included in the original bidimensional statement it follows from the proof since the
support of the perturbation is disjoint of the orbit of p. Hence the orbit remains the same and if for instance p is
sectionally dissipative still it is after the perturbation.

Now let U0(f ) be a neighborhood of f and ε1 such that if g ∈ U0(f ) and g̃ is ε1 − C1 close to g then g̃ ∈ U (f ).
Let U1(f ) and ε be from Lemma 3.0.1 applied to U0(f ).

Lemma 3.2.2. There exists m0 such that if g ∈ U1(f ) and p is a periodic point of g whose orbit is in U of period
mp � m0 such that:
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1. All eigenvalues of Dgmp : TpM → TpM has modulus � 1.
2. There is a bidimensional subspace P ⊂ TpM such that Dg

mp

/P = Id.

Then, there exists g̃ ∈ U (f ) such that p ∈ PerSD
n−1(g̃,U) and has a homoclinic tangency associated to p.

Proof. Let K > 1 and choose γ > 0 such that γ < K−1
K+1

ε1
2 . Consider also C = sup{‖Dg‖: g ∈ U0(f )} and set ε′ =

ε/C. Finally, let m0 be such that

m0
ε′ε

4(K + 1)
> 1.

We will show that m0 as above satisfies the lemma. So, let g and p satisfying the conditions of the lemma. By
performing a very small perturbation we may assume that Dgmp(p) is diagonalizable and that Ker(Dgmp(p) − Id) =
P and also g ∈ U1(f ). Let E and F be two one-dimensional subspaces of P such that  (E,F ) < γ . After performing
a very small perturbation, we obtain g1 still in U1(f ) such that:

• gi(p) = gi
1(p) for i = 0, . . . ,mp − 1.

• p ∈ PerSD
n−1(g1,U).

• E and F are invariant by Dg
mp

1 (p).
• ‖Dg

mp

1 /E
‖ = λ < 1; ‖Dg

mp

1 /F
‖ = σ > 1 and λσ < 1.

Notice that Eu
p = F and E ⊂ Es

p . Let γ1 =  (E,F ) and we may assume without loss of generality that  (E,F ) =
min{ (Dgi

1(E),Dgi
1(F )), i = 0, . . . ,mp − 1}. Moreover we may assume that γ1 �  (Es(gi

1(p)),Eu(g1
1(p))), i =

0, . . . ,mp − 1.
If

γ1 <
(σ − 1)ε1

(σ + 1)2

then, by Lemma 3.2.1 we are done. Otherwise we set δ = γ1ε
′/2 and for 0 � i � mp − 1 consider Ti : Tgi

1(p)M →
T

gi+1
1

(p)M such that

Ti/Es

gi
1(p)

= (1 − δ)Id and Ti/Eu

gi
1(p)

= (1 + δ)Id.

It follows that ‖Ti − Id‖ < ε′. For 0 � i � mp − 2 let Li = Ti+1 ◦ Dg1(g
i
1(p)) and Lmp−1 = T0 ◦ Dg1(g

mp−1
1 (p)). It

holds that ‖Li − Dg1(g
i
1(p))‖ < ε and by applying Lemma 3.0.1 we obtain g̃ ∈ U0(f ) such that gi

1(p) = g̃i (p) and
Dg̃(g̃i(p)) = Li . It is straightforward to check that:

• p ∈ PerSD
n−1(g̃,U).

• E ⊂ Es
p , F ⊂ Eu

p .

• λ̃ = ‖Dg̃
mp

/E ‖ = λ(1 − δ)mp and σ̃‖Dg̃
mp

/F ‖ = σ(1 + δ)mp .
•  (E,F ) = γ1.

If σ̃ � K then it follows that γ1 � (σ̃−1)ε1
(σ̃+1)2 and by Lemma 3.2.1 we are done. On the other hand, if σ̃ � K by the way

we choose m0 we have that:

(σ̃ − 1)ε1

(σ̃ + 1)2
= ((1 + δ)mpσ − 1)ε1

((1 + δ)mpσ + 1)2
� ((1 + mpδ)σ − 1)ε1

(K + 1)2
� (mpδσ)ε1

(K + 1)2
� m0

ε′ε1

(K + 1)4
γ1 > γ1

and again by Lemma 3.2.1 the proof is now complete. �
Corollary 3.2. Under the assumptions of Theorem B, there exist δ > 0 and a neighborhood U2(f ) such that for any
g ∈ U2(f ) and p ∈ PerSD

n−1(g,U) then there exists only one eigenvalue of Dgm(p) (where m is period of p) of modulus
> (1 − δ)m and it is real and simple.
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Proof. Let U1 ⊂ U0 ⊂ U be as before where any g ∈ U does not exhibit a homoclinic tangency associated to a
periodic point in PerSD

n−1(g,U). Hence by the above lemma no g ∈ U1 has a periodic point of period � m0 satisfying
the conditions in the statement. Let U2(f ) and ε0 from Lemma 3.0.1, that is, any ε0-perturbation of the linear maps
along a periodic orbit of g ∈ U2 can be realized as the linear maps on the same orbit of g̃ ∈ U1. Let C = sup{‖Dg‖:
g ∈ U2} and set δ0 = ε0/C and choose δ such that (1 − δ)−1 < 1 + δ0. We shall prove the corollary for this U2
and δ. So, let g ∈ U2 and p ∈ PerSD

n−1(g,U) and assume by contradiction that Dgm(p) where m is the period of p

has two eigenvalues of modulus > 1 − δ. Let λu be the largest eigenvalue (in modulus) of Dgm(p). Notice that λu

is real and simple and |λu| > 1 and any other eigenvalue is smaller than 1. Let λs be the largest (in modulus) of the
eigenvalues with modulus smaller than 1. Thus |λs | > (1 − δ)m and |λsλu| < 1. We shall pursue a similar argument as
in Lemma 3.5 of [24] and split the proof into several cases. First assume that λs is real and (1 − δ)m < λs < 1 < λu.
Let δu = λ

1/m
u and δs = λ

1/m
s . Let Ti : Tgi(p)M → Tgi(p)M such that Ti/Eu = δ−1

u Id and Ti/Eu⊥ = δ−1
s Id. Consider

Li : Tgi(p)M → Tgi+1(p)M defined by Li = Ti+1 ◦ Dg(gi(p)), i = 0, . . . ,m − 1. By applying Lemma 3.0.1 we find
g̃ ∈ U1 such that 1 is a double root of Dg̃m(p). By an arbitrarily small perturbation (if necessary) we may assume that
there is a bidimensional subspace P ⊂ TpM such that Dg̃m

/P = Id. If m � m0 we get a contradiction with the previous
lemma. On the other hand, if m < m0 then after a small perturbation we may assume that Dg̃m

/P = Rφ where Rφ is a
rotation with a very small rational angle φ such that l = min{n � 0: nφ = 1} � m0. On the other hand, we also may
assume that gm coincides with Dgm in a neighborhood of p. Thus, take q ∈ P near p but different from p. It follows
that q is a periodic point of period l � m0 and Dgl

q/P = Id and by the previous lemma we get a contradiction.
Any other case with λs real can be treated similarly. In case λs is complex we perturb first to have one real

eigenvalue of modulus one and a complex eigenvalue of modulus one. The complex eigenvalue can be interpreted in
an appropriate basis as a rotation with rational angle. And a similar argument as before can be done. �
Lemma 3.2.3. There exist η > 0, K > 0 and 0 < λ < 1 and a neighborhood U3(f ) such that for any g ∈ U3(f ) and
p ∈ PerSD

n−1(g,U) ∩ SDg(1 + η) then∥∥Dg
mp

/Es(p)

∥∥ � Kλmp

where mp is the period of p.

Proof. Let U2 and δ be as in Corollary 3.2. Let η, 0 < η < δ/2. Let ε and U3 be the constant and neighborhood
obtained from Lemma 3.0.1 when it is applied to U2. We may assume that ε is so small that if g ∈ U3 and p ∈
Per(g) ∩ S Dg(1 + η) and we perform an ε perturbation of Dg along the orbit of p then we obtain g̃ ∈ U2 and such
that p ∈ Per(g̃) ∩ S Dg̃(1 + 2η). For this U3 and η we will find K and λ as in the lemma. For this it is enough
following Lemma II.4 of [9] to show that the family of periodic sequence of linear isomorphism of Rn−1 induced by
{Dg/Es

p
: p ∈ PerSD

n−1(g,U) ∩ S Dg(1 + η); g ∈ U3} is a uniformly contracting family.
Notice that if p ∈ Pern−1(g) and Ls

i : Es
gi(p)

→ Es
gi+1(p)

satisfy ‖Ls
i − Dg/Es

gi (p)
‖ < ε then it induced

Li :Tgi(p)M → Tgi+1(p)M such that ‖Li − Dg(gi(p))‖ < ε just by declaring

Li/Es

gi (p)
= Ls

i and Li/Es⊥
gi (p)

= Id.

So, let us show that if g ∈ U3, p ∈ PerSD
n−1(g,U) ∩ S Dg(1 + η) and for any Ls

i : Es
gi(p)

→ Es
gi+1(p)

satisfying

‖Ls
i −Dg/Es

gi (p)
‖ < ε for i = 0, . . . ,mp −1 where mp is the period of p then

∏mp−1
0 Ls

i : Es
p → Es

p has no eigenvalue

of modulus one. Arguing by contradiction, assume that there exist p and g and Ls
i as before such that

∏
Ls

i has an
eigenvalue of modulus one. We may take, for each i and any 0 � t � 1 a map Ls

i (t) : Es
gi(p)

→ Es
gi+1(p)

satisfy

‖Ls
i (t) − Dg/Es

gi (p)
‖ < ε depending continuously on t and such that Ls

i (0) = Dg/Es

gi (p)
and Ls

i (1) = Ls
i . Moreover,

we may assume that
∏mp−1

0 Ls
i (t) has all the eigenvalues with modulus less than one for 0 � t < 1.

Consider the induced maps Li(t) : Tgi(p)M → Tgi+1(p)M and by applying Frank’s lemma 3.0.1 we obtain gt ∈ U2

such that gi
t (p) = gi(p) and Dgt(g

i(p)) = Li(t). Let λu(g) be the largest (in modulus) eigenvalue of Dgmp(p). By
the way the induce map are defined we have that λu(gt ) = λu(g) for any 0 � t � 1.

Now, if |λu(g)| � (1 + δ)mp we arrive to a contradiction since p ∈ S Dg1(1 + 2η) but the product of λu(g1) with
the eigenvalue of modulus one is larger than (1 + δ)mp which is bigger than (1 + 2η)mp .
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On the other hand, if |λu(g)| < (1 + δ)mp then there exists 0 � t0 < 1 such that all eigenvalues of Dg
mp

t0
in Es

p

have modulus < (1 + δ)−mp but has at least one eigenvalue with modulus larger than (1 − δ)mp . This contradicts
Corollary 3.2 for gt0 . �

Now we are ready to finish the proof of Proposition 3.2. Recall that we have found U3 ⊂ U2 ⊂ U1 ⊂ U0 ⊂ U with
some desired properties stated in the previous results. We shall prove Proposition 3.2 for V (f ) = U3 and η as in
Lemma 3.2.3. So, we have to find γ > 0 such that for any g ∈ V and p ∈ PerSD

n−1(g,U) ∩ S Dg(1 + η) then

 (
Es

p,Eu
p

)
> γ.

First we prove that for any m there is γ > 0 such that the above holds provided the period of p is smaller than m.
Assume by contradiction that this does not hold. Thus, there is a sequence gn and pn ∈ PerSD

n−1(gn,U) ∩ S Dgn(1 + η)

of period � m such that  (Es
pn

,Eu
pn

) → 0. We may assume without loss of generality that the periods of pn are all
the same, say m. Let C = sup{‖Dgm‖: g ∈ V } < ∞. Write Dgm

n : TpnM → TpnM with respect to Es
pn

⊕ Es⊥
pn

as

Dgm
n =

(
An vn

0 λu(n)

)

where λu is the eigenvalue of modulus larger than 1. Let Ln : Es⊥
pn

→ Es
pn

be such that ‖Ln‖−1 =  (Es
pn

,Eu
pn

) → 0.
This means that there exists wn such that Ln(0, . . . ,0,1) = wn and ‖Ln‖ = ‖wn‖. Moreover, wn satisfies(

An − λu(n)I
)
wn = vn.

By Corollary 3.2 the spectrum of An is contained in B(0, (1−δ)m). Since λu(n) � 1 it follows that ‖(An −λu(n)I )−1‖
is uniformly bounded. Since ‖vn‖ � C for every n we have a contradiction since ‖wn‖ → ∞ and ‖wn‖ � ‖(An −
λu(n)I )−1‖‖vn‖.

Finally, to finish the proof of our proposition we must show that the angle between the subspaces are bounded
away of zero for any periodic point of arbitrarily large period. Arguing again by contradiction let gn ∈ V and
pn ∈ PerSD

n−1(gn,U) of period mn → ∞ such that  (Es
pn

,Eu
pn

) = γn → 0. By Lemma 3.2.3 we have that λn =
‖Dg

mn
n /Es

pn
‖ � Kλmn < 1 for n large enough. Let σn = ‖Dg

mn
n /Eu

pn
‖ > 1. Since pn ∈ PerSD

n−1(gn,U) we may as-

sume that λnσn < 1. Thus, if γn <
(σn−1)ε1
(σn+1)2 for some n then by Lemma 3.2.1 we get a contradiction. Otherwise we

argue exactly as in the last part of the proof of Lemma 3.2.2 and we also get a contradiction with Lemma 3.2.1. This
completes the proof of Proposition 3.2.

3.3. Proof of Proposition 3.3

The proof of this proposition is based on the following lemma.

Lemma 3.3.1. There exist V1, η1 > 0 and a positive integer m0 such that for any g ∈ V1 and p ∈ PerSD
n−1(g,U) ∩

S Dg(1 + η1) it holds for some 1 � m(p) � m0 that

∥∥Dgm
/Es

p

∥∥.
∥∥Dg−m

/Eu
gm(p)

∥∥ <
1

2
.

Proof. The proof is strongly based on the strategy developed by Mañé in [9] and we shall follow [17].
Let V (f ), γ and η be as in Proposition 3.2. Let V1(f ) and ε be as in Lemma 3.0.1 applied to V (f ). Let also

0 < η1 < η and we may assume that ε is so small that any ε perturbation of the linear map of Dg along a periodic
orbit p ∈ S Dg(1 + η1) then Franks’ lemma gives g̃ ∈ V such that p ∈ S Dg̃(1 + η).

Now, arguing by contradiction, for this V1 and η1 assume that such m0 does not exist. Thus, for every n we may
find gn ∈ V1 and pn ∈ PerSD

n−1(gn,U) ∩ S Dgn(1 + η1) such that

∥∥Dgm
n/Es

p

∥∥.
∥∥Dg−m

n/Eu
gm(p)

∥∥ � 1

2
for any 1 � m � n. The period of the periodic points pn must be unbounded. Otherwise, we may assume that all
the periods are equal, say m0 and by taking a subsequence (and identifying Rn with TpnM we may assume that
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Dg
m0
n converge to a linear isomorphism A of Rn, recall that ‖Dgm0‖ is uniformly bounded). Furthermore, we may

assume that Es
pn

and Eu
pn

converge to subspaces Es of dimension n − 1 and Eu of dimension 1 (which are different
since  (Es

pn
,Eu

pn
) > γ ). These subspaces are invariant by A and moreover, the spectrum of A/Es is contained in

{z: |z| � (1 − δ)m0} by Lemma 3.2 and ‖A/Eu‖ � 1. On the other hand

∥∥Am
/Es

∥∥.
∥∥A−m

/Eu

∥∥ � 1

2

for every m � 1. However ‖Am
/Es ‖ → 0 (by the spectrum) and ‖A−m

/Eu‖ � 1. This is a contradiction.
So, let us assume that the periods of the periodic points pn are unbounded. Let C = sup{‖Dg‖: g ∈ V1} and take

ε0 satisfying (2ε0 + ε2
0)C � ε, ε1 and m such that

ε1 � γ

1 + γ
ε0 and (1 + ε1)

m � 4 + 2

γ
.

Since the periods of pn are unbounded, we can choose pn such that its period mn > 2m and such that ‖Dg
mn

n/Es
pn

‖ �
Kλmn < 1 (see Lemma 3.2.3). For the sake of simplicity in notation, set p = pn, g = gn and n0 = mn. Take v ∈ Eu

p

and w ∈ Es
p with ‖v‖ = ‖w‖ = 1 and observe that

1

2

∥∥Dgmv
∥∥ �

∥∥Dgmw
∥∥.

Take a linear map L : Eu
p → Es

p satisfying Lv = ε1w and ‖L‖ = ε1. Define L̃ = Dg
n0
/Es

p
◦ L ◦ Dg

−n0
/Eu

p
and observe that

‖L̃‖ � ε1. Define

G = {
u + Lu: u ∈ Eu

p

}
and G̃ = {

u + L̃u: u ∈ Eu
p

}
and take linear maps P,S from TpM to itself such that

P/Es
p = 0; (Id + P).Eu

p = G; S/Es
p

= 0; (Id + S).G̃ = Eu
p.

By Lemma II.10 of [9] it follows that ‖P‖ � ε0 and ‖S‖ � ε0. Now, for 1 � j � m define Tj : Tgj (p)M → Tgj (p)M

such that

Tj/Es

gj (p)
= (1 + ε1)Id and Tj/Eu

gj (p)
= Id

and for m + 1 � j � 2m define Tj : Tgj (p)M → Tgj (p)M such that

Tj/Es

gj (p)
= (1 + ε1)

−1Id and Tj/Eu

gj (p)
= Id.

It follows also that ‖Tj‖ � ε0. Finally, let L0 : TpM → Tg(p)M by L0 = T1 ◦ Dg ◦ (Id + P); for 1 � j � 2m − 1 let
Lj = Tj+1 ◦ Dg; for 2m � j � n0 − 2 let Lj = Dg and Ln0−1 = (Id + S) ◦ Dg. It follows that ‖Lj − Dggj (p)‖ � ε

for 0 � j � n0 −1. Therefore, by Lemma 3.0.1, there exists g̃ ∈ V such that g̃j (p) = gj (p) and Dg̃gj (p) = Lj . Notice
that p ∈ S Dg̃(1 + η). It also holds that Dg̃(Es

gj ) = Es
gj+1(p)

and Dg̃
n0
/Es

p
= Dg

n0
/Es

p
. On the other hand

Dg̃n0 .Eu
p = Ln0−1 ◦ · · · ◦ L0.E

u
p = Eu

p

and ∥∥Dg̃
n0
/Eu

p

∥∥ = ∥∥Dg
n0
Eu

p

∥∥ > 1

and so p ∈ PerSD
n−1(g̃,U) and

Es
p(g̃) = Es

p, Eu
p(g̃) = Eu

p.

The estimate of the angle between Es
m = Dg̃m(Es

p) and Eu
m = Dg̃(Eu

p) are exactly the same as in [9] or [17] and
yields

 (
Es

m,Eu
m

)
� γ

a contradiction with Proposition 3.2. �
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The next corollary is straightforward.

Corollary 3.3. Let V1, η1 and m0 be as in Lemma 3.3.1. Then, there exist K0 > 0 and 0 < μ < 1 such that for any
g ∈ V1 and p ∈ PerSD

n−1(g,U) ∩ S Dg(1 + η1) it holds that
∥∥Dgn

/Es
p

∥∥.
∥∥Dg−n

/Eu
gn(p)

∥∥ � K0μ
n

for any n � 0.

Now we will finish the proof of Proposition 3.3. Hence, let x ∈ Λ which is not a periodic attractor. By Proposi-
tion 3.1 there exist gn → f and pn ∈ PerSD

n−1 ∩S Dg(1 + η1) such that pn → x. We may assume that gn ∈ V1 for all n.
Taking a subsequence if necessary we may assume that the subspaces Es

pn
converge to a subspace Ep ⊂ TpM (of

dimension n − 1) and the subspaces Eu
pn

converge to a one-dimensional subspace Fp ⊂ TpM and TpM = E ⊕ F .
It follows that for any fixed j that Es

g
j
n(pn)

converge to the subspace Df j (Ep) := Ef j (p) ⊂ Tf j (p)M and the sequence

Eu

g
j
n(pn)

converges to Df j (Fp) := Ff j (p) ⊂ Tf j (p)M . From Corollary 3.3 it holds that

∥∥Df n
/Es

z

∥∥.
∥∥Df −n

/Eu
f n(z)

∥∥ � K0μ
n

for any n � 0 and for any z ∈ O(x) This implies that the subspaces Ex and Fx are unique and does not depends on the
sequence of gn and pn. This proves that Λ\P0(f/Λ) has codimension one dominated splitting TΛ\P0(f/Λ)M = E⊕F .

It is just left to prove that the subbundle E is contractive. This is done as follows. First notice that, since  (E,F )

is bounded away from zero, there exists c > 0 such that if v ∈ Ex and w ∈ Eu
x with ‖v‖ = ‖w‖ = 1 and L is the

bidimensional subspace spanned by {v,w} then for any n � 0 it holds that

det
(
Df n

/L

)
� c

∥∥Df nv
∥∥.

∥∥Df nw
∥∥.

Now, for any x and n let vn be such that ‖Df n
/Ex

‖ = ‖Df nvn‖ and let Ln be the subspace spanned by vn and F . Since
Λ ⊂ L(f,1) we have that det(Df n

/Ln
) � 1 for any n. Now, since F is one-dimensional, we have

∥∥Df n
/Ex

∥∥2 = ∥∥Df n
/Ex

∥∥.
∥∥Df −n

Ffn(x)

∥∥.
∥∥Df nvn

∥∥∥∥Df n
Fx

∥∥ � K0

c
μn

and therefore

∥∥Df n
/Ex

∥∥ �
√

K0

c

(
μ1/2)n

.

This completes the proof of Proposition 3.3 and Theorem B.

4. Markov partitions for contractive codimension one dominated splitting

In this section, we show the existence of Markov partition for “basic sets” (see Definition 4.6) exhibiting a contrac-
tive codimension one dominated splitting (see Section 4.2 for the definitions). First, in the next subsection we show
some dynamical properties that hold for the center unstable manifold. More precisely, we prove that it has dynamical
meaning and we use this to prove in Section 4.2 that for some special sets it is possible to exhibit a Markov partition.

4.1. Some dynamical properties

Let I1 = (−1,1) and Iε = (−ε, ε), and denote by Embr (I1,M) the set of Cr -embedding of I1 on M , and denote
by Embr (I n−1

1 ,M) the set of Cr -embedding of In−1
1 on M , where n is the dimension of M .

Following the classical results of stable manifold theorems (see [7]) we get that for a contractive codimension one
dominated splitting holds the next:

Lemma 4.1.1. There exist two continuous functions φs : Λ → Emb1(In−1
1 ,M) and φcu : Λ → Emb1(I1,M) such that

if define Ws
ε (x) = φs(x)In−1

ε and W cu
ε (x) = φcu(x)Iε the following properties hold:
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(a) TxW
s
ε (x) = E(x) and TxW

cu
ε (x) = F(x).

(b) There is λ < 1 such that

f
(
Ws

ε (x)
) ⊂ Ws

λε

(
f (x)

)
.

(c) For all 0 < ε1 < 1 there exists ε2 such that and

f −1(W cu
ε2

(x)
) ⊂ W cu

ε1

(
f −1(x)

)
.

Sometimes, one needs the central manifold to be of class C2. This is guaranteed, for C2 diffeomorphisms, by the
so-called 2-domination: the splitting E ⊕ F is 2-dominated if there exists 0 < σ < 1 such that

∥∥Df n
/E(x)

∥∥∥∥Df −n
/F(f n(x))

∥∥2 � Cσn, n � 0.

Remark 4.1. It follows that if f is a C2 diffeomorphisms and Λ is a compact invariant manifold exhibiting a codi-
mension one dominated splitting which is also 2-dominated then the map φcu in Lemma 4.1.1 is indeed a map
φcu : Λ → Emb2(I1,M) (see [7] for details).

The following result in [18] guarantees that a codimension one dominated splitting is 2-dominated. In the men-
tioned paper the result is only proved for surfaces map’s, but the adaptation is straightforward:

Lemma 4.1.2. Let f be a C2 diffeomorphisms and let Λ be a compact invariant manifold exhibiting a codimension
one dominated splitting. Then, there exists at most finitely many periodic attractors (sinks) in Λ such that any compact
invariant set Λ0 ⊂ Λ and disjoint from those periodic attractors is 2-dominated.

We conclude some dynamical properties for the center unstable manifold tangent to the F direction. First, we
appeal to some results and definitions proved in [19] for “codimension one dominated splitting”. It what follows with
�(I ) it is denoted the usual length of an arc I .

Definition 4.1. Let f : M → M be a C2 diffeomorphism and let Λ be a compact invariant set having dominated
splitting E ⊕ F with dim(F) = 1. Let U be an open set containing Λ where is possible to extend the previous
dominated splitting. We say that a C2-arc I in M (i.e, a C2-embedding of the interval (−1,1)) is a δ–E-arc provided
the next two conditions holds:

1. f n(I ) ⊂ U , and �(f n(I )) � δ for all n � 0.
2. f n(I ) is always transverse to the E-subbundle.

Related to this kind of arcs it is proved in [19] the following result (see Theorem 3.2 in [19]).

Theorem 4.1 (Denjoy Theorem). Let f be a C2 diffeomorphisms, and let Λ be a compact invariant set exhibiting a
codimension one dominated splitting. There exists δ0 such that if I is a δ–E-arc with δ � δ0, then one of the following
properties holds:

1. ω(I) = ⋃
{x∈I } ω(x) is a periodic simple closed curve and f m

/C : C → C (where m is the period of C ) is conjugated
to an irrational rotation,

2. ω(I) ⊂ J where J is a periodic arc.

As a consequence of the Denjoy Theorem, we can conclude the following lemma related to the center unstable
manifolds. The proof is a straightforward version of Lemma 3.3.2 of [17] for codimension one dominated splitting.

Lemma 4.1.3. Let f be a C2 diffeomorphisms, and let Λ be a compact invariant set exhibiting a codimension one
dominated splitting such that all the periodic points are hyperbolic. There exists ε > 0 such that for all γ < ε there
exists r = r(γ ) such that:
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1. For any positive integer n follows that f −n(W cu
r (x)) ⊂ W cu

γ (f −n(x)).
2. For every r � r(γ ), either:

(a) �(f −n(W cu
r (x))) → 0 as n → +∞,

(b) or x ∈ Wu
r (p) for some p ∈ Per(f/Λ) such that p ∈ W cu

r (x) and there exists in another periodic points
q ∈ Wu

r (p) which is a sink or a nonhyperbolic periodic point,
(c) x ∈ C such that C is a periodic simple closed curve and f m

/C : C → C (where m is the period of C ) is conjugated
to an irrational rotation.

4.2. Markov partitions

In what follows we assume that Λ exhibits a codimension one contractive dominated splitting and Λ is not a peri-
odic simple closed curve. First we give a series of definitions inspired in similar definitions introduced for hyperbolic
sets.

Definition 4.2. We say that Λ has local product structure if exists α > 0 such that if for any x, y ∈ Λ with d(x, y) < α

holds that Ws
ε (x) ∩ W cu

ε (y) ∈ Λ. We denote with

[x, y] := Ws
ε (x) ∩ W cu

ε (y).

Definition 4.3. A subset B ⊂ Λ is called a box if

1. [x, y] ∈ B whenever x, y ∈ B ,
2. B = int(B), where int(B) denotes the interior of B in Λ.

We also define the diameter of B as the maximum distance between points in B .

Definition 4.4. Let Λ be a compact and invariant set having contractive codimension one dominated splitting.
A Markov partition of Λ is a collection of boxes P = {B1, . . . ,Bn} such that:

1. Λ ⊂ ⋃
1�i�n Bi ,

2. int(Bi) ∩ int(Bj ) = ∅ if i = j ,
3. for any x ∈ Λ, if x ∈ Bi for some Bi ∈ P follow that:

(a) there exists Bj ∈ P such that f −1(W cu
ε (x) ∩ Bi) ⊂ Bj ,

(b) there exists Bk ∈ P such that f (Ws
ε (x) ∩ Bi) ⊂ Bk .

Moreover, we define the size of the Markov partition as the maximum of the diameters of Bi .

Definition 4.5. We say that a point x in the limit set L(f ) is isolated if there exists a neighborhood Ux of x such that
Ux ∩ L(f ) ⊂ Per(f ). Let L̃(f ) ⊂ L(f ) be the sets of the non-isolated points.

Definition 4.6. We say that a compact and invariant set Λ with contractive codimension one dominated splitting is a
basic piece if it is transitive and has local product structure.

The next theorem is the main one in the present subsection.

Theorem 4.2. Let Λ be a basic piece of L̃(f ) such that all the periodic points are hyperbolic. Then, there exists a
Markov partition of Λ of arbitrarily small size.

The proof is different for the case that for any points the local center unstable manifold of any point is contained in
the local unstable manifold, and for the case that this does not hold, that is:
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Case A. There exists r > 0 such that for any x ∈ Λ holds that W cu
r (x) ⊂ Wu

loc(x).

Case B. For any r small there exists a point x ∈ Λ satisfying the item 2(b) of Lemma 4.1.3.

4.2.1. Proof of Theorem 4.2 in Case A
In this case, we just follows the strategy developed by Fathi in [6]. Observe that in this case, f/Λ is expansive,

and since Λ has local product structure it follows that Λ is a maximal invariant set. In fact in [6] it is proved that
for expansive homeomorphisms, it is possible to obtain a hyperbolic adapted metric, not necessarily coherent with
a Riemannian structure but defining the same topology. Using the hyperbolic metric for f , and the fact that we are
dealing with a maximal invariant set, the proof of the shadowing lemma for hyperbolic sets with local product structure
can be pushed in the present case, and after that it is possible to repeat the classic construction of a Markov partition
done for a maximal invariant hyperbolic set (see [1]).

4.2.2. Proof of Theorem 4.2 in Case B
The proof of Theorem 4.2 goes through different steps:

• Step I: First we study the boundary points in Λ.
• Step II: We induce an expansive quotient map and following [1] we get a Markov partition for the quotient map.
• Step III: We refine the Markov partition obtained in Step II, using the periodic boundary points. From the that, we

construct a Markov partition for f of arbitrarily small size.

Definition 4.7 (Boundary points). Let Λ be a basic piece of L̃(f ). Let ε be the positive constant given by Lemma 4.1.3.
We say that x is a boundary point, if there exists ε1 < ε such that one of the connected components of W cu

ε1
(x) \ {x}

does not contain points in Λ.
Let γ < ε; we say that x is a γ -boundary point if one of the connected components of W cu

γ (x) \ {x} does not
contain points in Λ but both end points of this connected component are in Λ.

Remark 4.2. Observe that any x ∈ Λ is at least accumulated by points in Λ contained in one of the connected
components of W cu

ε1
(x) \ {x}.

Remark 4.3. Observe that in the present case, always exist boundary points.

Lemma 4.2.1. Let Λ be a basic piece of L̃(f ). The following hold:

1. if x is a boundary points then it belongs to the stable manifold of a periodic point p in Λ;
2. there exists γ > 0 such that for any γ2 < γ1 < γ follows that

Cardinal
({γ ′-boundary periodic points, γ2 < γ ′ < γ1}

)
< ∞.

Proof. Let x be a boundary point. Then, there is ε1 < ε such that one of the connected components of W cu
ε1

(x) \ {x}
do not contain points in Λ.

To see the first item, let us start observing that we can assume that there exists r = r(ε1) such that

�
(
f −n

(
W cu

r

(
f n(x)

))) → 0 (1)

otherwise, we have that there exists r ′ such that �(f n(W cu
r ′ (x))) does not converge to zero and therefore, it follows

from Lemma 4.1.3 that belongs to the stable manifold of a periodic points and so the lemma is proved in this case.
Now, to conclude, it is enough to show that there are positive integers m < n such that f n(x) ∈ Ws

ε (f m(x)). If this
does not hold, we would have positive integers n1, n2, n3 such that [W cu

r (f n2(x)) \ {f n2(x)}] ∩ Ws
ε (f n1(x)) = ∅

and [W cu
r (f n2(x)) \ {f n2(x)}] ∩ Ws

ε (f n3(x)) = ∅, such that these intersections hold at both side of f n2(x). But this
implies from (1) that W cu

ε1
(x) has points in Λ in both sides of x which is a contradiction with the assumption that x is

a boundary point.
The second item is immediate. �
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Lemma 4.2.2. For any periodic point p in Λ it follows that Ws(p) is dense. Moreover, for any ε > 0 and any
periodic point p there is a compact disk D contained in the stable manifold of p such that for any x ∈ Λ follows that
D ∩ W cu

ε (x) = ∅.

Proof. Let z such that ω(z) = α(z) = Λ. It follows that for this point the central unstable manifold is dynamically
defined: otherwise, by Lemma 4.1.3 follows that z ∈ Ws(q) for some periodic point q and therefore, ω(z) = O(q);
a contradiction.

Then, given any periodic point p, there exists n > 0 such that dist(f n(z),p) < ε
2 and therefore, Ws

ε (p) ∩
W cu

ε (f n(z)) = ∅. Noting with z′ the point of intersection, it follows that

dist
(
f −m

(
f n(z)

)
, f −m(z′)

) → 0, n → +∞,

and since α(z) = Λ it follows that α(z′) = Λ.
The second part, follows from compactness and transversality between the local center unstable and local stable

manifolds. �
Lemma 4.2.3. Let Λ be a basic piece of L̃(f ). Given β , there are a finite number of periodic points p1, . . . , pr and
D1, . . . ,Dr compact disks contained in

⋃
1�i�r Ws(pi) such that

f

(⋃
i

Di

)
⊂

⋃
i

Di (2)

and if x /∈ Λ ∩ D = Λ ∩ [⋃1�i�r Di] then:

(1) W cu
ε (x) has intersection with D at both sides of x (i.e.: D intersects both connected components of W cu

ε (x)\ {x}).
(2) The connected component of W cu

ε (x) \ D containing x has length smaller than β/2.

Proof. We take ε1 < β/2, ε2 < β/2 and such that �(f −n(W cu
ε2

(x))) < ε1. Take γ < ε1, ε2 and take all the γ -boundary
periodic points p1, . . . , pr . Let us assume that the lemma is not true. Then, there exists a sequence xn of points in Λ

and compacts disks Dn = ⋃
i Di,n such that the conclusion (1) of the lemma does not holds for any xn and Dn. Take

x and accumulation point of {xn}. If x is in the stable manifold of some pi , from the fact that pi is a boundary point,
then all points xn are converging either from one side of the stable compact disk Dx of Ws(pi) or are contained in Dx .
Using Lemma 4.2.2 we get that there are compact disks D̂n contained in the stable manifold of pi converging to Dx ,
and so the points xn are enclosed by compact disks of the stables manifolds of the points pi getting a contradiction. If
x does not belong to any of the stables manifolds of the points pi , we get two alternatives; either x is a boundary point,
or it is not a boundary point. In the first case, x belong to the stable manifold of some δ-boundary periodic point q

with δ < γ . This implies that on one of the connected components of W cu
ε (q) \ {q} we get points of Λ converging to q

and on the other components there are points of Λ also contained in W cu
γ (q). Taking n large enough such that f n(x) is

close to q we get that there are points of Λ contained in both side of W cu
γ (f n(x)), and this implies that there are points

of Λ on both sides of W cu
γ (x). Again, using that the stables manifolds of the periodic points are dense, we conclude

the points xn are closed by compact disks of the stables manifolds of the points pi getting a contradiction. In the case
that x is not a boundary point, there are points of Λ on both sides of W cu

γ (x), and again we get a contradiction. �
Notation. If y ∈ W cu

γ (x) we denote by W cu(x, y) the (open) arc in the central unstable manifolds W cu
γ (x) whose

endpoints are x an y.

Definition 4.8. Let β1 be a small positive number. We define a relation in Λ as follows: we say that x ∼β1 y if:

1. x = y or
2. (a) y ∈ W cu

γ (x),
(b) W cu(x, y) ∩ Λ = ∅ (in particular x and y are boundary points),
(c) there exist periodic points px , py in Λ such that x ∈ Ws(px) and y ∈ Ws(py) and px,py are η-boundary

points with η � β1. Notice that py ∈ W cu
γ (px) and W cu

γ (px,py) ∩ Λ = ∅.
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Remark 4.4. The relation ∼β1 is an equivalence relation. It is obvious by definition that is identical and reflexive. The
transitivity follows because if x ∼β1 y and y ∼β1 z then z = x or z = y. Otherwise some of these points is a boundary
points at both sides of the central unstable manifold and this is impossible due to the transitivity of Λ (unless Λ is just
a periodic orbit).

Lemma 4.2.4. Let x ∼β1 y then f m(x) ∼β1 f m(y) for all m ∈ Z.

Proof. Let r be such that if w ∈ W cu
r (z) then f −n(w) ∈ W cu

γ (f −n(z)) for all n � 0. Choose β1 � r/2. Take n large
enough so that f n(x) is close to px . It follows that W cu

r (f n(x))∩Ws
ε (py) is nonempty, and let w be this intersection.

It suffices to prove the lemma that w = f n(y). Otherwise, notice that W cu
r (f n(x),w) ∩ Λ = ∅ since f n(x) is a

boundary point. It follows that f −n(w) ∈ W cu
γ (x). Since x cannot be a boundary point at both sides of W cu

γ (x) \ {x}
then y ∈ W cu

γ (x, f −n(w)) or f −n(w) ∈ W cu
γ (x, y). In any case we arrive to a contradiction, because in these open

arcs there are no point of Λ. �
Lemma 4.2.5. Given γ0 there exists η such that if β1 � η and x ∼β1 y then d(f n(x), f n(y)) � γ0 for all n ∈ Z.

Proof. Let r be such that if w ∈ W cu
r (z) then f −n(w) ∈ W cu

γ0
(f −n(z)) for all n � 0. Let η � r/2. Now let x ∼β1 y

and m ∈ Z. It follows that for n large enough (we may assume that n > |m|) f n(x) is arbitrarily close to px and as in
the previous lemma, f n(x) ∈ W cu

r (f n(x)) then f m(y) ∈ W cu
γ0

(f m(x)) and hence d(f m(x), f m(y)) � γ0. �
Lemma 4.2.6. If γ1 is small then if two points satisfy d(f n(x), f n(y)) � γ1 for all n ∈ Z it holds that x ∼η y for
some η.

Proof. Let r be such that f −n(W cu
r (w)) has length less than ε/2 for all n � 0 and any w ∈ Λ. Choose γ1 < ε/2 be

such that if d(x, y) < γ1 then z = W cu
γ (y) ∩ Ws

ε (x) ∈ W cu
r (y). Now assume that x and y are as in the lemma. First

we prove that y ∈ W cu
γ (x). If x /∈ W cu

γ (y), we take z = W cu
γ (y) ∩ Ws

ε (x) and observe that for some positive integer n

follows that dist(f −n(z), f −n(x)) > ε and for any positive integer m, dist(f −m(z), f −m(y)) < γ1. Therefore we get
that

γ1 > dist
(
f −n(y), f −n(x)

)
> dist

(
f −n(z), f −n(x)

) − dist
(
f −n(z), f −n(y)

)
> ε − ε/2 > γ1,

a contradiction.
On the other hand, if W cu(x, y)∩Λ = ∅ it follows that Ws(q)∩W cu(x, y) = ∅ for some q with unbounded unstable

manifold. Hence the arc length of W cu(x, y) growths by positive iteration and this contradicts that d(f n(x), f n(y)) <

γ1 for all n.
Finally, from above it follows that x and y are boundary points. Therefore they belongs to the stable manifold of

some periodic points px and py , respectively. Since f n(x) → px and f n(y) → py and W cu(x, y) does not grow in
length by future iteration we conclude the proof of the lemma. �

Now we fix γ1 in such a way that the above lemma applies and we choose γ0 < γ1/2 and we take β1 from
Lemma 4.2.5 corresponding to γ0. To avoid notation we denote the equivalence relation ∼β1 with ∼.

Let

Λ̃ = Λ/ ∼ and p : Λ → Λ̃

the canonical projection and endow Λ̃ with the quotient topology. Denote by [x] = p(x). Moreover, denote by

f̃ : Λ̃ → Λ̃

the induced homeomorphism (recall Lemma 4.2.4).

Lemma 4.2.7. With the notations above the following hold:

1. p is closed and Λ̃ is a compact Hausdorff metrizable space;
2. f̃ is expansive.
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Proof. If x ∼ y we may find z1, z2 ∈ W cu
γ (x) which are not boundary points and that W cu(x, y) ⊂ W cu(z1, z2). Now,

for any w in a neighborhood of x consider the set of points in Λ which lies in W cu
γ (w) between the local stable

manifolds of z1 and z2. These points form an open set U such that if z ∈ U and w ∼ z then w ∈ U . In other words
U is a saturated open set. Now for different equivalent classes it is not difficult to find disjoint open sets as above.
This implies that Λ̃ is Hausdorff. Since p is continuous, Λ is compact and Λ̃ is Hausdorff it follows that p is closed.
Finally, if {Un} is a countable basis (and closed under finite unions) for the topology of Λ it is not difficult to see that
{p(Uc

n)c} is a basis for Λ̃. Therefore Λ̃ is metrizable. Let d̃ be a metric in Λ̃ compatible with the topology.
Let us show that f̃ is expansive. Let W = {(x, y) ∈ Λ × Λ: d(x, y) � γ1}. Then p × p(W) is a compact subset of

Λ̃ × Λ̃ which does not contain the diagonal �̃ of Λ̃ × Λ̃. Let α1 be such that the B(�̃,α1) ∩ p × p(W) = ∅ where
B(�̃,α1) denote the α1 neighborhood of �̃.

Let P denote the set of η-boundary periodic points of Λ with η > β1. It is clear that P is a finite set. Let α2 be
such that if q1 = q2 are two different points in P then d̃(p(q1),p(q2)) > α2.

Let

α0 = min{α1, α2}.
We are going to show that α0 is the constant of expansivity. Let [x] and [y] be such that their orbits by f̃ remain to
a distance smaller than α0. Therefore, it follows that d(f n(x), f n(y)) < γ1 for all n (otherwise, (f n(x), f n(y)) ∈ W

and hence d̃([f n(x)], [f n(y)]) > α0). From Lemma 4.2.6 follows that x ∈ Ws(px) and y ∈ Ws(py) and such that
px ∈ W cu

loc(py) with W cu(px,py) ∩ Λ = ∅. Since, by continuity d̃([px], [py]) � α0 it follows that px , py are not η

boundary points with η > β1. Therefore they are η boundary points with η � β1. Hence, [x] = [y]. �
Lemma 4.2.8. For all α, there exists a Markov partition of Λ̃ of size smaller than α.

Proof. For any η we define Ws
η([x]) = ⋃

z∼x p(Ws
η(z)). We also define W cu

η ([x]) = ⋃
z∼x p(W cu

η (z)). It is straight-

forward to verify that Ws
η([x]) and W cu

η ([x]) are true local stable and unstable sets and that Λ̃ has local product
structure.

Using the notion of adapted metric for expansive maps introduced by Fathi in [6] it follows the shadowing property.
And arguing exactly in the same way as in [1] we can construct a Markov partition P̃ = {B̃1, . . . , B̃n} on Λ̃ of size
less than β1 for f̃ . �
Lemma 4.2.9. Given β > 0 there exists α > 0 such that if z ∈ Ws

ε (x) and d̃([z], [x]) < α then d(x, z) < β/2.

Proof. Otherwise, there are sequences zn, xn such that zn ∈ Ws
ε (xn), d(xn, zn) � β/2 and such that d̃([xn], [zn]) <

1/n. Taking limit points x and z of xn and yn we have z ∈ Ws
ε (x) and x ∼ z which is not possible. �

End of the proof of Theorem 4.2. We have to prove that given β > 0 Λ has a Markov partition of size smaller
than β . Choose α so that the previous lemma applies and take a Markov partition P̃ = {B̃1, . . . , B̃n} on Λ̃ of size less
than α for f̃ . Define Bi = p−1(B̃i). It is straightforward to verify that P = {B1, . . . ,Bn} is a Markov partition of Λ.

It remains the question if it has size less than β . By the previous lemma the “stable” size of this boxes is smaller
than β/2. Nevertheless, a priori we have no much control on the “unstable” size. So we argue as follows. From
Lemma 4.2.3 we have that there are a finite number of periodic points p1, . . . , pr and D1, . . . ,Dr compact disks
contained in

⋃
1�i�r Ws(pi) such that

f

(⋃
i

Di

)
⊂

⋃
i

Di (3)

and if x /∈ Λ ∩ D = Λ ∩ [⋃1�i�r Di] then:

1. W cu
ε (x) has intersection with D at both sides of x;

2. the connected component of W cu
ε (x) \ D containing x has length smaller than β/2.
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We refine the Markov partition in the following way: Fix Bi any one of the previous Markov box. There are finitely
many points x1, . . . , xm in Bi such that D ∩ int(Bi) ⊂ ⋃

j Ws
ε (xj ). Now we define a relation in Bi − ⋃

j Ws
ε (xj ):

z ∼ w if

1. z ∈ Ws
ε (w) or

2. denoting by u = Ws
ε (w) ∩ W cu

γ (z) it holds that W cu(z, u) ∩ (
⋃

j Ws
ε (xj )) = ∅.

The above relation is an equivalence relation. Let Ci,j , j = 1, . . . , ki , be the set of equivalent classes. The refine-

ment of Bi is the collection B
j
i = Ci,j , j = 1, . . . , ki .

Finally, the collection B = {Bj
i : Bi ∈ P , j = 1, . . . , ki} is a Markov partition of Λ of size smaller than β . �

Remark 4.5. In the proof of Theorem C (see next section) we shall use also Markov boxes that consists on a collection
of central unstable arcs. If Bi is a Markov box and x ∈ Bi we take x−, x+ points in W cu

γ (x)∩Bi such that W cu
γ (x)∩Bi

is contained in the closed arc in W cu
γ (x) whose endpoints are x− and x+. We denote this arc by W cu[x−, x+].

Now, if B = {B1, . . . ,Bk} is a Markov partition as before the collection P = {B̂1, . . . , B̂k} defined by:

B̂i =
⋃
x∈Bi

W cu[x−, x+]

is a Markov partition consisting of central unstable arcs.

In the sequel, we consider the especial case of homoclinic class, and we show that they exhibit Markov partition.

Definition 4.9. We define the homoclinic class of a saddle hyperbolic periodic point as the closure of intersection of
the stable and unstable manifold of p and it is denoted with H(p) = Ws(p) ∩ Wu(p).

Proposition 4.1. If a homoclinic class has codimension one contractive dominated splitting, then it is a basic piece.
In particular, it has Markov partition.

Proof. It is well known that a homoclinic class is transitive. So, to finish the proof we need to prove that has local
product structure. If one of the components Wu(p) \ {p} has finite length, we take γ smaller than ε and the length of
the connected component of Wu(p) \ {p} that does not intersect the class. If x belongs to the intersection of the stable
and unstable manifold of p we have that W cu

γ (x) ⊂ Wu(p). And also Ws
γ (x) ⊂ Ws(p). Thus, if x, y ∈ Ws(p)∩Wu(p)

and dist(x, y) is small then W cu
γ (x) ∩ Ws

γ (y) ∈ Ws(p) ∩ Wu(p), i.e., [x, y] ∈ Λ = H(p). Since H(p) is the closure
of the intersection of the stable and unstable manifold of p we conclude, by continuity, the local product structure
on H(p). �
5. Proof of Theorem C

Theorem C is an extension of Theorem B in [17]. Although the proofs have strong similarity there are nontrivial
difficulties to overcome in our context. This is the main reason why we assume contractive codimension one dominated
splitting and that the set Λ is isolated in L(f ) (in order to obtain a Markov partition).

First, Theorem C follows from the next theorem.

Theorem 5.1. Let f : M → M be a C2 diffeomorphism. Let Λ ⊂ L(f ) be a compact invariant set such that it is
isolated in L(f ), all the periodic points are hyperbolic, and has contractive codimension one dominated splitting.
Then, one of the following statements holds:

1. Λ is a hyperbolic set;
2. there exists a simple closed curve C ⊂ Λ which is invariant under f m for some m and it is normally hyperbolic.

Moreover f m : C → C is conjugated to an irrational rotation.
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Assuming that this last theorem is true we show that in this case, the number of periodic simple closed curves
normally hyperbolic and conjugated to an irrational rotation contained in Λ is finite. This implies Theorem C. For
more details see [17, p. 977].

The first step in the proof of Theorem 5.1 is the following elementary lemma.

Lemma 5.0.10. Let Λ0 be a compact invariant set having a contractive codimension one dominated splitting T/ΛM =
Es ⊕ F . If for any x ∈ Λ0 holds that ‖Df −n

/F(x)‖ → 0 as n → ∞ then Λ0 is a hyperbolic set.

Now, using the previous lemma, we prove Theorem 5.1 based on the next lemma.

Main Lemma. Let f : M → M and Λ be as in Theorem 5.1 and assume that Λ does not contain a periodic simple
closed curve normally hyperbolic conjugated to an irrational rotation. Let Λ0 ⊂ Λ be a nontrivial compact invariant
set such that every properly compact invariant subset of Λ0 is hyperbolic. Then, Λ0 is a hyperbolic set.

To show how the Main Lemma implies Theorem 5.1 we argue as follows: assume that statement 2 in Theorem 5.1
does not hold and we have to prove then that Λ is hyperbolic. If this is not the case, we take a compact invariant
subset Λ0 ⊂ Λ which is the minimal set, in the Zorn’s lemma sense, such that Λ0 is not hyperbolic. To prove the
existence of this set, it is enough to show that given a sequences of nonhyperbolic compacts invariant sets {Λα}α∈A
ordered by inclusion follows that

⋂
α∈A Λα is a nonhyperbolic compact invariant set. By election of Λ0 it follows that

every properly compact invariant subset of Λ0 is hyperbolic. By the Main Lemma it follows that Λ0 is hyperbolic, a
contradiction. More details can be found in [17].

The proof of the Main Lemma is given in the next subsection. Nevertheless we give here the basics steps of it
proof:

1. The central unstable manifolds (which are of class C2, recall Lemma 4.1.2) have dynamics properties. In fact for
every x ∈ Λ0 there exists ε(x) such that W cu

ε(x)(x) is an unstable manifold of x, meaning that �(f −n(W cu
ε(x)(x))) →

0 as n → ∞.
2. For point x in an open set B in Λ0 we have∑

n�0

�
(
f −n

(
W cu

ε(x)(x)
))

< ∞.

3. For every point x ∈ Λ0 we have∥∥Df −n
/F(x)

∥∥ → 0

when n → ∞.

5.1. Proof of the Main Lemma

In this section we shall assume that Λ0 is in the hypothesis of the Main Lemma, i.e., Λ0 is a nontrivial compact
invariant transitive set, such that every proper compact invariant subset is hyperbolic and Λ0 ⊂ Λ where Λ has
contractive codimension one dominated splitting with all its periodic points hyperbolic and has no periodic simple
curve normally hyperbolic conjugated to an irrational rotation. Under this conditions, we will prove that for every
x ∈ Λ0, ‖Df −n

/F(x)‖ → 0. Then next lemma show a sufficient condition. The rest of the paper will consist on showing
that this condition holds.

Lemma 5.1.1. Assume that there exists a set B containing an open set of Λ0 such that for every y ∈ B ∩ Λ0 we have
‖Df −n

/F(y)‖ →n→∞ 0. Then for every z ∈ Λ0, ‖Df −n
/F(z)‖ → 0.

Proof. Let z be any point in Λ. There are two possibilities:

• α(z) (the α-limit set of z) is properly contained in Λ0. Then, α(z) is a hyperbolic set, thus∥∥Df −n
/F(z)

∥∥ →n→∞ 0.
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• α(z) = Λ0. Then, there exists m0 such that f −m0(z) ∈ B0, implying that
∥∥Df −n

/F(f −m0 (z))

∥∥ →n→∞ 0

and so
∥∥Df −n

/F(z)

∥∥ →n→∞ 0. �
The next lemma of this subsection is classical in one-dimensional dynamics (see for example [3]) and the proof is

left to the reader. We only have to remark, since the diffeomorphism f is of class C2, the center unstable manifolds
are also C2, and the center unstable manifolds varies continuously in the C2 topology, we have a uniform Lipschitz
constant K0 of log(Df ) restricted to the center unstable manifolds.

Lemma 5.1.2. There exists K0 such that for all x ∈ Λ0 and J ⊂ W cu
γ (x) we have for all z, y ∈ J and n � 0:

1.
‖Df −n

/F̃ (y)
‖

‖Df −n

/F̃ (z)
‖ � exp(K0

∑n−1
i=0 �(f −i (J ))),

2. ‖Df −n

/F̃ (x)
‖ � �(f −n(J ))

�(J )
exp(K0

∑n−1
i=0 �(f −i (J )))

where F̃ (z) = TzW
cu
ε (x).

In order to prove the existence of the open set B as in Lemma 5.1.1 we need a Markov partition. For this reason
we show that Λ0 is contained in a homoclinic class.

Lemma 5.1.3. There exists a periodic point p such that Λ0 is contained in the homoclinic class or p.

Proof. Let x ∈ Λ0 be such that Λ0 = α(x). So, there is a subsequence mi of positive integers such that f −mi (x) → x.
We can assume that x does not belong to the unstable manifold of a periodic point (in other case, Λ would be a periodic
point) and so by Lemma 4.1.3 we get that there is γ such that �(f −n(W cu

γ (x))) → 0. Then, for mi0 large enough, we

get that for any y ∈ f −mi0 (W cu
γ (x)) follows that Ws

ε (y) ∩ W cu
γ /3(x) = ∅. Then, from standard arguments, we get a

periodic point p1 with orbit in a neighborhood of Λ0 (and hence it is in Λ since Λ is isolated within L(f )) and such
that W cu

γ (p1) ∩ Ws
ε (x) = ∅. If W cu

γ (p1) ⊂ Wu(p1) we set p = p1. Otherwise, there must exists p ∈ W cu
γ (p1) such

that for one connected component of W cu
γ (p) \ {p}, say Wcu,+

γ (p) we have that

Wcu,+
γ (p) ⊂ Wu(p) and Wcu,+

γ (p) ∩ Ws
ε (x) = ∅.

Moreover, we get that for any y ∈ Λ0 in a small ball centered at x we get that Ws
ε (p)∩W cu

γ (y) = ∅ and Wcu,+
γ (p)∩

Ws
ε (y) = ∅. In particular we get that Ws

ε (p)∩W cu
γ (f −mi (x)) = ∅ and Wcu,+

γ (p)∩Ws
ε (f −mi (x)) = ∅ for any mi large

enough. Notice that the orbits of the points in these intersection remains in a neighborhood of Λ0.
From the fact that Wcu,+

γ (p) ∩ Ws
ε (f −mi (x)) = ∅ for any mi and that Wcu,+

γ (p) ⊂ Wu(p), we conclude that there
are compact disks of Wu(p) converging to the central unstable manifold of x. On the other hand, since Ws

ε (p) ∩
W cu

γ (f −mi (x)) = ∅, f −mi (x) → x and the dynamical properties of the central unstable manifold, we get that there
are compact disks of Ws(p) converging to the local stable manifold of x. These two fact, together, imply that there
are homoclinic points of p converging to x. Thus, x ∈ H(p), the homoclinic class of p. Therefore, since α(x) = Λ0
it follows that Λ0 ⊂ H(p) �

Our next goal is to show that if p is as above, then H(p) ⊂ Λ.

Lemma 5.1.4. Let Λ ⊂ L(f ) be a compact invariant set isolated in L(f ). Then, there is a neighborhood U of Λ such
that if Λ ∩ ω(x) = ∅ for some x ∈ M it follows that there exists a positive integer n0 such that f n(x) ∈ U for any
n > n0.
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Proof. Let us assume that the lemma is false. Then for any closed neighborhood U of Λ such that Λ ⊂ interior(Λ)

and L(f ) ∩ U = Λ, there exist x and y ∈ Λ ∩ ω(x) such that O+
n (x) = {f k(x): k > n} is not contained in U for any

positive integer n. Let ni → +∞ be such that f ni (x) → y. Let for each ni the first positive ki such that f ni+ki (x) /∈
U and let z be an accumulation point of {f ni+ki−1(x)}i>0. We can assume that f ni+ki−1(x) → z. It follows that
z ∈ U and z ∈ ω(x). Therefore, z ∈ Λ and so f (z) ∈ Λ. However, f ni+ki (x) → f (z) and so f (z) ∈ interior(U)c .
A contradiction. �

It follows immediately the following corollary.

Corollary 5.1. Let Λ and Λ0 be as in the Main Lemma and let p be as in Lemma 5.1.3. Then Λ0 ⊂ H(p) ⊂ Λ.

Now, since Λ0 ⊂ H(p) ⊂ Λ for some hyperbolic periodic point p and since Λ has contractive codimension one
dominated splitting and all its hyperbolic points are hyperbolic the same holds for H(p). Finally, by Proposition 4.1,
there is a Markov partition P = {B1, . . . ,Bn} associated for H(p) of arbitrarily small size (to be fixed later) and we
will use it to conclude the Main Lemma. Recall also that we may define the Markov partition as consisting of central
unstable manifolds (see Remark 4.5).

Definition 5.1. Given a Markov partition P = {B1, . . . ,Bn} we say that a set B is a Markov subbox if there exist k � 0
and two boxes Bi and Bj of P such that

1. B ⊂ f −k(Bi) ∩ Bj .
2. If x ∈ B ∩ H(p) then the connected component of W cu

γ (x) ∩ (f −k(Bi) ∩ Bj ) that contains x is W cu
γ (x) ∩ B .

Now, given a Markov subbox B , for any y ∈ B ∩ H(p) we define:

JB(y) = W cu
γ (y) ∩ B.

Notice that JB(y) = f −k(JBi
(f k(y))). Moreover, since P is a Markov partition we get that for any y ∈ B and any

k � 0 either,

1. f −k(JB(y)) ∩ B = ∅ or
2. f −k(JB(y)) ⊂ B .

In many occasions, we need to estimate the length between different central unstable arcs in a Markov subbox.
In this direction, we introduce the following definitions.

Definition 5.2. Let P = {B1, . . . ,Bn} be a Markov partition in H(p) and let B ⊂ Bj be a Markov subbox B . We
say that B has distortion (or cu-distortion) C if for any two arcs J1, J2 where Ji = JB(yi) for some yi ∈ B ∩ H(p),
i = 1,2, the following holds:

1

C
� �(J1)

�(J2)
� C.

Lemma 5.1.5. Let Λ be a compact invariant set having a contractive codimension one dominated splitting. It follows
that the local stable foliation defined on Λ is a C1-foliation.

The proof follows from the classical Cr -section theorem (for details, see Theorem 5.18 in [7, p. 58] and also
[23, p. 44]). To conclude that a stable lamination associated to a dominated splitting Es ⊕ F is C1, it is necessary to
show that

‖Df/Es ‖
m(Df/F )

‖Df/F ‖ < λ < 1

where m(.) is the minimum norm. In particular, if the subbundle F is one-dimensional, this condition translates into
the condition ‖Df/Es ‖ < λ < 1.
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Lemma 5.1.6. Let P = {B1, . . . ,Bn} be a Markov partition of sufficiently small size. Then, there exists C = C(P )

such that any Markov subbox B has distortion C.

Proof number one. Let Bi be an element of the Markov partition. Notice that there exist x+
i , x−

i ∈ Bi ∩ H(p) such
that ∂cu

B ⊂ Ws
ε (x+

i ) ∪ Ws
ε (x−

i ). It is not difficult to show that there exists a C1 codimension one foliation F s
i in an

open set (in M) that contains Bi whose tangent spaces are close to the Es subbundle and such that F s
i (x±

i ) (the leaf
of this foliation through the points x±

i ) contains Ws
ε (x±

i ), respectively. There exists Ci such that for any two arcs
Jj = JBi

(yj ), j = 1,2, for some points yj ∈ Bi ∩ H(p) and setting Πi = Πi(J1, J2) the projection from J1 onto J2
along the foliation F s

i then

1

Ci

�
∥∥Π ′

i

∥∥ � Ci.

For each box Bi we fix the foliation F s
i . Now, let B be any Markov subbox. Let k � 0 and Bi,Bj element of the

Markov partition as in Definition 5.1 and let any two arcs J1, J2 where Ji = JB(yi) for some yi ∈ B ∩H(p), i = 1,2.
We define ΠB : J1 → J2 as follows:

ΠB = f −k ◦ Πi

(
f k(J1), f

k(J2)
)
.

If we show that there exists C such that for any Markov subbox B and any J1, J2 as before we have that

1

C
�

∥∥Π ′
B

∥∥ � C

we are done. From standard arguments about foliations and contractive direction (see for instance [23] and the proof
of Lemma 3.4.1 of [17]) it follows that there exists D such that

1

DCi

�
∥∥Π ′

B

∥∥ � DCi.

Thus, taking C = max{DC1, . . . ,DCn} the proof is finished. �
Proof number two. We could also argue as follows. The stable foliation in H(p) is of class C1. Extends this foliation
to a C1 foliation in a neighborhood of H(p). Choose a Markov partition with such a small size that any element of this
partition is contained in that neighborhood. For any Bi of the Markov partition consider Πi the (local) projection along
this foliation. Now for any Markov subbox B ⊂ Bj project along the foliation in Bj (it is well defined since the stable
foliation in H(p) is invariant and ∂cu

B is contained in the stable foliation of Λ). Therefore there if C = max{C1, . . . ,Cn}
where Ci is such that

1

Ci

�
∥∥Π ′

i

∥∥ � Ci

we are done. �
The previous lemma, help us to prove the following.

Lemma 5.1.7. Let P = {B1, . . . ,Bn} be a Markov partition. Then, exists K = K(P ) such that for any Markov subbox
B and any z ∈ B ∩ Λ0 holds that

n∑
i=0

�
(
f −i

(
JB(z)

))
� K

provided f −i (z) /∈ B , 1 � i � n.

Proof. Let P = {B1, . . . ,Bn} be a Markov partition of H(p). For each box Bj we choose a point xj ∈ Bj ∩ H(p)

and we take Jj = JBj
(xj ).

Let B be a Markov subbox and let z ∈ B ∩ Λ0 such that f −i (z) /∈ B for i = 1, . . . , n. For each i = 1, . . . , n let
Bki

the element of the partition P that contains f −i (z). Let B(i) the Markov subbox contained in f −i (B) ∩ Bki
that

contains f −i (JB(z)). Now, we consider Ji,ki
(z) = Jki

∩ B(i). Observe that:



1996 E.R. Pujals, M. Sambarino / Ann. I. H. Poincaré – AN 26 (2009) 1971–2000
1. Since each B ∈ P is Markovian in the stable direction follows that for i = j , B(i) ∩ B(j) = ∅, and in particular
Ji,ki

(z) ∩ Jj,kj
(z) = ∅ (no matter if ki = kj ).

2. For any i,

1

C
� �(Ji,ki

(z))

�(f −i (JB(z)))
� C.

Then,

n∑
i=0

�
(
f −i

(
JB(z)

))
< C

n∑
i=0

�
(
Ji,ki

(z)
)
� C

∑
j

�(Jj ) := K. �

Now, we proceed to conclude the proof of the Main Lemma. We will split the rest of the proof in two cases: either
there exists a point x ∈ Λo such that x /∈ ω(x) or no such a point exists.

5.1.1. Proof of Main Lemma when ∃x ∈ Λ0 with x /∈ ω(x)

Let U be a neighborhood of x such that f n(x) /∈ U for any n � 1. Such a neighborhood of x exists since x /∈ ω(x).
Now fix a Markov partition P = {B1, . . . ,Bm} such that if x ∈ Bi then Bi ⊂ U .

Definition 5.3. Given an element Bi of the Markov partition P , we say that it has infinitely many returns (associated
to Λ0) if there are points xn ∈ Bi ∩Λ0 such that f −kn(xn) ∈ Bi , f −j (xn) /∈ B for j = 1, . . . , kn − 1 and kn → ∞. For
the point xn we call the integer kn, the return time of xn.

Notice that by the way we choose the Markov partition there is Bi such that x ∈ Bi and Bi has infinitely many
returns associated to Λ0 since Λ0 is transitive (and so there is a point whose forward orbit is dense and as it goes very
near x for a long time does not return to Bi ).

Lemma 5.1.8. Let B be a Markov subbox (see Definition 5.1) and assume that there is ξ < 1 such that for every
y ∈ B ∩ Λ0 we have ‖Df −k

/F̃ (z)
‖ < ξ for all z ∈ JB(y) where k is such that f −k(y) ∈ B and f −i (y) /∈ B for 1 � i < k.

Then for all y ∈ B ∩ Λ0 the following holds:
∑
n�0

�
(
f −n

(
JB(y)

))
< ∞.

In particular this implies that
∥∥Df −n

/F(y)

∥∥ →n→∞ 0.

The proof of the previous lemma is the same as the proof of Lemma 3.7.2 in [17].
Now, we show that it is possible to find a Markov subbox verifying the condition of Lemma 5.1.8.

Lemma 5.1.9. Let Bi be an element of the Markov Partition with infinitely many returns. Then there exists Markov
subbox B contained in Bi such that satisfies the conditions of Lemma 5.1.8.

From this, it follows from Lemmas 5.1.8 and 5.1.1 the proof of the Main Lemma in the case we are dealing with.
Now we give the proof of Lemma 5.1.9.

Proof. Let Bi be an element of the Markov partition as in the hypothesis of the lemma, and let K , K0, C be as in
Lemmas 5.1.7, 5.1.2 and 5.1.6, respectively. Consider also L = min{�(JB(z)): z ∈ B ∩ Λ0}.

Let r > 0 such that

r
C1 exp(2K0K) <

1
.

L 2
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Let r1 be such that �(f −n(W cu
r1

(z))) � r for any z ∈ Λ0 (recall Lemma 4.1.3). Since Bi has infinite returns, there
exists w ∈ Bi ∩ Λ0 such that if we take B the Markov subbox in f −k0(Bi) ∩ Bi that contains f −k0(w), where k0 is
the return time of w, then follows that

JB(z) ⊂ W cu
r1

(z), ∀z ∈ B ∩ Λ0,

and therefore

�
(
f −j

(
JB(z)

))
< r, ∀j � 0, ∀z ∈ B ∩ Λ0.

Let us prove that the box B satisfied the thesis of the lemma. Let y ∈ B ∩ Λ0 and let k be the return time of y to B .
Notice that k � k0. Observe that if w ∈ f k0(B) ∩ Λ0, then for z ∈ J (w) = JBi

(w),

∥∥Df
−k0

/F̃ (z)

∥∥ � �(f −k0(J (w)))

J (w)
exp(K0K)

and moreover JB(f −k0(w)) = f −k0(J (w)).
Now, set n0 = k − k0 (k � k0) and we have f −n0(y) ∈ f k0(B).
Then, for z ∈ JB(y),∥∥Df −k

/F̃ (z)

∥∥ �
∥∥Df

−k0

/F̃ (f −n0 (z))

∥∥∥∥Df
−n0

/F̃ (z)

∥∥
� �(f −k0(J (f −n0(y))))

�(J (f −n0(y)))
exp(K0K)

�(f −n0(JB(y)))

�(JB(y))
exp(K0K)

= �
(
f −n0

(
JB(y)

))�(JB(f −k(y)))

�(JB(y))

1

�(J (f −n0(y)))
exp(2K0K)

� rC1
1

L
exp(2K0K) <

1

2
.

So, the proof is finished. �
5.1.2. Proof of Main Lemma when x ∈ ω(x) for all x ∈ Λ0

We begin remarking that we cannot expect to do the same argument here as in the preceding case since by our
assumption then, for every Markov box, the set of returns associated to Λ0 of this box is always finite. Nevertheless
we shall exploit the fact that in the case Λ0 the central unstable manifold is in fact an unstable together with the
existence of “boundary points of Λ0”. We begin by showing that in the present case there are no periodic points in Λ0.

Lemma 5.1.10. Assume that x ∈ ω(x) for all x ∈ Λ0. Then there are no periodic points in Λ0.

Proof. Assume that there is a periodic point q ∈ Λ0. Since Λ0 is not just a periodic orbit and it is transitive, then there
is x ∈ Λ0 such that x ∈ Ws(q). Hence x /∈ ω(x). �

Notice in particular that any x in Λ0 is not a boundary point of H(p). The next corollary follows immediately from
the above lemma and Lemma 4.1.3.

Corollary 5.2. Let x ∈ Λ0. Then �(W cu
γ (x)) → 0.

We introduce some notations. Given a Markov partition (consisting of central unstable manifolds) and let B be an
element of it. Let x ∈ int(B) and let JB(x) = W cu

γ (x) ∩ B . We order J = JB(x) in some way and we denote J+ =
{y ∈ J : y > x}, J− = {y ∈ J : y < x}. Notice that there are points z+, z− in H(p) ∩ B such that Ws

ε (z+) ∩ J+ = ∅
and Ws

ε (z−) ∩ J− = ∅ and Ws
ε (z+) ∩ J− = ∅ = Ws

ε (z−) ∩ J+ (since x is not a boundary point of H(p)).
For any other point y ∈ B ∩ H(p) we denote by J+(y) the connected component of JB(y) \ Ws

ε (x) that contains
a point of Ws

ε (z+) and by J− the other one (and so contains a point of Ws
ε (z−)).

We shall denote by B+ the collection of J+(y) for y ∈ B ∩ H(p) and by B− the collection of J−(y) for y ∈
B ∩ H(p).
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Lemma 5.1.11. There exist a Markov partition arbitrary small and B and element of it such that there is x ∈ int(B)∩
Λ0 such that (with the notations above) that B+ ∩ Λ0 = ∅ or B− ∩ Λ0 = ∅.

Proof. Let us start with any Markov partition of H(p) (with small size) and let B1 be an element of this partition
such that contains a point of z ∈ Λ0. Let A be the subset of JB(z) that consist of points of Ws

ε (x) with x ∈ B ∩ Λ0.
It follows that A is compact and has empty interior (as a subset of JB(z)) since there are no periodic points in Λ0. If
there is a connected component L of the complement of A in JB(z) with one endpoint in common with an endpoint
of JB(z) we are done since the other point must belong to Ws

ε (x) for some point x ∈ B ∩ Λ0. Otherwise, take L

any component and there exists x1, x2 ∈ B ∩ Λ0 such that the endpoints of L are in Ws
ε (x1) and Ws

ε (x2). Now we
consider a Markov partition Pk consisting of the subboxes of f −k(Bi) ∩ Bj where Bi,Bj ∈ P and k is large enough
so that the central unstable size of Pk is smaller that the distance between Ws

ε (x1) and Ws
ε (x2) in B . Let B̂ be the

element of Pk in B that contains x1. We claim that B̂ satisfy the thesis of our lemma. It is enough to show that x1
in not in ∂cu(B̂). Assume that x1 is in ∂cu(B̂). Since x1 ∈ ω(x1) there are points of the forward orbit of x1 in B̂ and
arbitrarily close to x1. There cannot be in the ∂cu(B̂) since otherwise ω(x1) is a periodic orbit. Therefore, for some
m, f m(x1) ∈ int(B̂). Then f −m(J

B̂
(f m(x1))) ∩ B̂ = ∅ but f −m(J

B̂
(f m(x1))) � B̂ , a contradiction. �

Lemma 5.1.12. Let B be a Markov box such that B+ ∩ Λ0 = ∅. Then there exists K such that for every y ∈ B ∩ Λ0,∑
j�0

�
(
f −j

(
J+(y)

))
< K.

In particular there exist J1(y), J+(y) ⊂ J1(y) ⊂ J (y) such that the length of J1(y) − J+(y) is bounded away from
zero (independently of y) and such that

∞∑
n=0

�
(
f −n

(
J1(y)

))
< ∞.

Assuming this lemma, we can prove the Main Lemma in the present case. Using the notation of the preceding
lemma, take

B =
⋃

y∈B∩Λ0

J1(y).

Notice that B is an open set of Λ0, and for every y ∈ B ∩ Λ0 (i.e. y ∈ J1(y)), we have

∞∑
n=0

�
(
f −n

(
J1(y)

))
< ∞

and so
∥∥Df −n

/F(y)

∥∥ →n→∞ 0.

Thus, Lemma 5.1.1 provides the end of the proof of the Main Lemma in the present case if Lemma 5.1.12 holds.
To prove this lemma we show first that the box introduced in Lemma 5.1.11, has some similar property as the Markov
box.

Lemma 5.1.13. Let B be a Markov box such that B+ ∩ Λ0 = ∅. Then B+ verifies that for all y ∈ B ∩ Λ0 and n � 0,

f −n
(
J+(y)

) ∩ B+ = ∅ or f −n
(
J+(y)

) ⊂ B+.

Moreover, there exists K1 such that if y ∈ B ∩ Λ0 and f −j (J+(y)) ∩ B+ = ∅, 1 � j < n, then

n∑
j=0

�
(
f −j

(
J+(y)

))
< K1.
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Proof. Assume that for some y ∈ B ∩Λ0 and n > 0 f −n(J+(y))∩B+ = ∅ holds. As B is a Markov box we conclude
that f −n(J (y)) ⊂ B . If f −n(J+(y)) is not contained in B+, then f −n(J+(y)) ∩ Ws

ε (x) = ∅. However, this implies
that f n(x) ∈ B+. Since x ∈ Λ0 this is a contradiction, and completes the proof of the first part.

The existence of K1 it can be proved with the same arguments as in Lemma 5.1.7. �
Definition 5.4. Let B be as in the previous lemma and let y ∈ B ∩ Λ0 The set of positive integers m such that
f −m(J+(y)) ⊂ B+ will be called the set of return times of y.

Now, we conclude the proof of Lemma 5.1.12.

Proof of Lemma 5.1.12. First, if we have that there are not points in B+ that for some negative iterates are also in
B+, by the preceding lemma, we conclude the thesis.

Take r > 0 such that

r

L
exp(K0K1) <

1

2

where L = min{�(J+(y)): y ∈ B ∩ Λ0}. Let N > 0 be such that if n > N then �(f −n(J (y))) < r .
It follows that if for some y ∈ B ∩ Λ0 we have that f −k(J+(y)) ∩ B+ = ∅ for 1 � k � m with m � N then, by

item 2 of Lemma 5.1.2 that ‖Df −m

F̃(z)
‖ < 1

2 for all z ∈ J+(y).

On the other hand we claim that there exists r1 (� r) such that if y ∈ B ∩ Λ0 and f −k(J+(y)) ∩ B+ = ∅ for
1 � k < k(y) � N and f −k(y)(J+(y)) ⊂ B+ then

dist
(
Ws

ε (x), f −k0
(
J+(y)

))
> r1.

Otherwise, since k(y) is bounded by N we get a point y ∈ B ∩ Λ0 such that f −k(y)(J+(y)) ∩ Ws
ε (x) = ∅; then, using

that B is a Markov box, and that the extremal points of J+(y) and f −k(y)(J+(y)) are Ws
ε (x), we conclude that ω(x)

is a periodic point, which is impossible.
Now, let N1 be such that if n > N1 then �(f −n(J (y))) < r1. Let y ∈ B ∩ Λ0 and consider k1(y), k2(y), . . . ,

kn(y), . . . be the successive return times of J+(y), i.e, f −j (J+(f −k1(y)−···−ki (y)(y))) ∩ B+ = ∅ if 1 � j < ki+1 and
f −ki+1(y)(J+(f −k1(y)−···−ki (y)(y))) ⊂ B+. We claim that if i � N1 then ki > N . Otherwise, since m = k1(y) + · · · +
ki(y) � N1 then �(f −m(J (y))) < r1 and dist(Ws

ε (x), f −m(J+(y))) > r1 and so f −m(y) ∈ B+, a contradiction.
Finally, for any point y ∈ B ∩ Λ0 we have three possibilities:

1. the set of return times is empty,
2. the set of return times is finite,
3. the set of return times is infinite.

In any case we have that, taking into account the previous estimations that for every y ∈ B ∩ Λ0 we have

∑
j�0

�
(
f −j

(
J+

1 (y)
))

� N1K1 +
∑
j�0

diam(M) exp(2K0K1)

(
1

2

)j

+ K1 = K < ∞.

In particular, as in the Schwarz’s proof of the Denjoy Theorem, we conclude that ∀y ∈ B ∩ Λ0 there exist J1(y),
J+(y) ⊂ J1(y) ⊂ J (y) such that the length of J1(y) − J+(y) is bounded away from zero (independently of y) and
such that

∞∑
n=0

�
(
f −n

(
J1(y)

))
< ∞

and the proof of the lemma is finished. �
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