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Abstract

We study well-posedness of the Dirichlet problem for linear degenerate elliptic equations under mild assumptions on the coeffi-
cients (in particular, they can be unbounded). We provide sufficient conditions both for uniqueness and nonuniqueness of solutions,
which rely on the construction of suitable sub- and supersolutions to certain auxiliary problems.
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1. Introduction

In this paper we address linear degenerate elliptic equations of the form

Lu − cu = f in Ω. (1.1)

Here Ω ⊆ R
n is an open connected, possibly unbounded set with boundary ∂Ω and c,f are given functions, c � 0

in Ω ; the operator L is formally defined as follows:

Lu ≡
n∑

i,j=1

aij

∂2u

∂xi∂xj

+
n∑

i=1

bi

∂u

∂xi

.

We assume

n∑
i,j=1

aij (x)ξiξj � 0 for any x ∈ Ω, (ξ1, . . . , ξn) ∈ R
n;
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in particular, for equations degenerating at the boundary we have

n∑
i,j=1

aij (x)ξiξj > 0 for any x ∈ Ω, (ξ1, . . . , ξn) �= 0.

The coefficients aij , bi, c and the function f may be unbounded (see assumptions (H2)–(H3) below).
We study existence and uniqueness of solutions to the Dirichlet boundary value problem for Eq. (1.1). Special

attention will be paid to the case of bounded solutions.
(i) In the case of bounded coefficients much work has been devoted to this classical problem, using both analytical

methods and stochastic calculus. For equations degenerating at the boundary, it was early recognized that the Dirichlet
problem may be well posed prescribing boundary data only on a portion of the boundary, which depends on the
behavior of the coefficients of the operator L ([19]; see also [26]). Introducing a classification of the boundary points
based on such behavior, a general formulation of the Dirichlet problem for Eq. (1.1) was given in the pioneering
paper [9]; existence, uniqueness and a priori estimates of solutions to the problem were also proved under suitable
assumptions. A comprehensive account of such results can be found in [25] (see also [10,24]).

Clearly, uniqueness of solutions to the Dirichlet problem for Eq. (1.1) is related to the validity of the maximum
principle for degenerate elliptic operators. Assume aij ∈ C2(Ω), bi ∈ C1(Ω), Dαaij ∈ L∞(Ω) for |α| � 2, Dαbi ∈
L∞(Ω) for |α| � 1; let u ∈ C2(Ω) satisfy Lu � cu in Ω . For any x0 ∈ Ω such that u(x0) = supΩ u > 0 consider
the propagation set P (x0) := {x ∈ Ω | u(x) = u(x0)}. As proved in [32], P (x0) contains the closure (in the relative
topology) of the set P ′(x0) consisting of points, which can be joined to x0 by a finite number of subunitary and/or
drift trajectories (see [4,7,25,30] for the proof in particular cases; see also [1]). By a local version of the same result
a sufficient condition for the uniqueness of solutions to the Dirichlet problem, as formulated in [9], can be derived
(see [7]).

Remarkably, the above mechanism for propagation of maxima of subsolutions is closely related to the Markov
process corresponding to the operator L. In fact, the set P ′(x0) coincides with the support of this process, namely
with the closure of the collection of all trajectories of a Markovian particle, starting at x0, with generator L (see
[31,32]). Hence, roughly speaking, the above uniqueness criterion for the Dirichlet problem can be rephrased by
saying that the boundary data have to be specified only at attainable boundary points (see [11,12]).

The same idea underlies the so-called refined maximum principle in [3]. Consider the minimal positive solution U0
of the first exit time equation

LU = −1 in Ω (1.2)

(e.g., see [15]); consider those point of ∂Ω where U0 can be prolonged to zero. It was proved in [3] that a sub- and
a supersolution of Eq. (1.1) degenerating at the boundary are ordered in Ω , if they are ordered at these points; as a
consequence, prescribing the boundary data at such points is sufficient for the uniqueness of the Dirichlet problem.
Observe that prolonging U0 to zero is possible at any point of ∂Ω where a local barrier for Eq. (1.2) exists, or,
equivalently, at any attracting point of ∂Ω (see [20]; see also Definition 5.1 and Proposition 5.3 below).

Before discussing the results of the present paper, it is worth recalling the main assumptions made in the above
literature:

• boundedness of the coefficients aij , bi, c is always assumed;
• in [9,10,24,25] Ω is bounded; ∂Ω = ∂Ω is a finite union of smooth manifolds; aij ∈ C2(Ω), bi ∈ C1(Ω), c ∈

C(Ω), minΩ c > 0;
• in [32] aij ∈ C2(Ω), bi ∈ C1(Ω), Dαaij ∈ L∞(Ω) for |α| � 2, Dαbi ∈ L∞(Ω) for |α| � 1. Moreover, subsolu-

tions are meant in the classical sense;
• in [3] uniform ellipticity of the operator L is assumed.

(ii) In the present study the above assumptions are relaxed in several respects. In particular, as already remarked,
we allow the coefficients of Eq. (1.1) to be unbounded (motivations for this hypothesis come from many problems;
e.g., think of the Ornstein–Uhlenbeck process). Elliptic equations with unbounded coefficients have been widely in-
vestigated in recent years—mostly in the case Ω = R

n—both by analytical and by probabilistic methods (see [5,23]
and references therein). Also the corresponding parabolic equations have attracted much attention, particularly study-
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ing uniqueness of solutions to the Cauchy problem (e.g., see [8,14,33] and references therein; see also [18,28] for
different initial–boundary value problems).

We always think of the boundary ∂Ω as the disjoint union of the regular boundary R and the singular boundary S
(see assumption (H1)). In view of assumptions (H2)–(H3) below, it is natural to prescribe the Dirichlet boundary
condition on R. This leads to the problem{

Lu − cu = f in Ω,

u = g on R,
(1.3)

where the coefficients of L and the function c can either vanish or diverge, or need not have a limit, when
dist(x, S) → 0 and/or |x| → ∞, if Ω is unbounded. In addition, ellipticity is possibly lost in Ω and/or when
dist(x, S) → 0, and/or when |x| → ∞, if Ω is unbounded.

The assumptions concerning the regular boundary R and the singular boundary S are summarized as follows:

(H1)

{
(i) ∂Ω = R ∪ S, R ∩ S = ∅, S �= ∅;

(ii) R ⊆ ∂Ω is open, Ω satisfies the outer sphere condition at R.

It is natural to choose R as the largest subset of ∂Ω where ellipticity of the operator L holds (see assumptions
(H2)(ii), (H3)(iii) below), as we do in the following. Observe that no regularity assumption concerning S is made
(see (H1)(ii)).

Our nonuniqueness results only address the case of degeneracy at the boundary (see Section 2.1). To prove these
results, we always assume the following about the coefficients aij , bi and the functions c,f, g:

(H2)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(i) aij = aji ∈ C1,1(Ω ∪ R), bi ∈ C0,1(Ω ∪ R) (i, j = 1, . . . , n);
(ii)

∑n
i,j=1 aij (x)ξiξj > 0 for any x ∈ Ω ∪ R and (ξ1, . . . , ξn) �= 0;

(iii) c ∈ C(Ω ∪ R), c � 0;
(iv) f ∈ C(Ω);
(v) g ∈ C(R).

On the other hand, the uniqueness results in Section 2.2 hold for the general degenerate equation (1.1). In this case we
replace assumption (H2) by the following:

(H3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) aij = aji ∈ C1,1(Ω ∪ R), σi,j ∈ C1(Ω),

bi ∈ C0,1(Ω ∪ R) (i, j = 1, . . . , n);
(ii)

∑n
i,j=1 aij (x)ξiξj � 0 for any x ∈ Ω and (ξ1, . . . , ξn) ∈ R

n;
(iii)

∑n
i,j=1 aij (x)ξiξj > 0 for any x ∈ R and (ξ1, . . . , ξn) �= 0;

(iv) either c > 0 in Ω ∪ R, or c � 0, c + ∑n
i=1 σ 2

ji > 0 in Ω ∪ R
for some j = 1, . . . , n and c ∈ C(Ω ∪ R);

(v) f ∈ C(Ω);
(vi) g ∈ C(R);

here σ ≡ (σij ) denotes the square root of the matrix A ≡ (aij ) (namely, A(x) = σ(x)σ (x)T ; x ∈ Ω ∪ R). As-
sumption (H3) (in particular, (H3)(iv)) enables us to use comparison results for viscosity sub- and supersolutions
to second-order degenerate elliptic equations, via an equivalence result proved in [16] (see Propositions 2.3–2.4).

(iii) The results of the paper can be described as follows. First we prove sufficient conditions for nonuniqueness of
solutions to problem (1.3), which require the existence of suitable supersolutions to the first exit time problem:{ LU = −1 in Ω,

U = 0 on R (1.4)

(in particular, see Theorem 2.5 below). Nonuniqueness depends on the need of prescribing the value of the solution
of problem (1.3) at some point of the singular boundary S , or at infinity if Ω is unbounded. Therefore, if uniqueness
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fails, it is natural to try and recover it by assigning boundary data on some subset S1 ⊆ S and/or a condition at infinity,
if Ω is unbounded. Hence we study the problems:{

Lu − cu = f in Ω,

u = g on R ∪ S1,
(1.5)

respectively⎧⎨
⎩

Lu − cu = f in Ω,

u = g on R ∪ S1,

lim|x|→∞ u(x) = L (L ∈ R)

(1.6)

(where possibly S1 = ∅; see (2.9)). The following assumption will be made:

(H4)

⎧⎪⎪⎨
⎪⎪⎩

(i) S = S1 ∪ S2, S1 ∩ S2 = ∅;
(ii) Sj = ⋃kj

k=1 S k
j , where every S k

j is connected and, if kj � 2,

S k
j ∩ S l

j = ∅ for any k, l = 1, . . . , kj , k �= l (kj ∈ N; j = 1,2).

We prove sufficient conditions for uniqueness of solutions to problems (1.5) and (1.6), extending the classical
Phragmèn–Lindelöf principle to the present degenerate case (see Propositions 2.10, 2.11). Such conditions depend on
the existence of subsolutions to the homogeneous problem:{ LU = cU in Ω,

U = 0 on R (1.7)

and on their behavior as dist(x, S2) → 0 (e.g., see Theorem 2.13).
Let us mention that the main step in the nonuniqueness proof concerning problem (1.3) is to prove existence of

nontrivial solutions to the homogeneous problem (1.7) (see Section 2.1). Also observe that existence for problem (1.5)
implies nonuniqueness for problem (1.3), if S1 �= ∅; similarly for problems (1.6) and (2.9) below.

In Section 5 we apply our general results to some examples. The applicability of these results relies on the actual
construction of suitable super- and subsolutions to problems (1.4), respectively (1.7) (or (2.22) below; see Section 2.2);
in turn, this depends both on the behavior of the coefficients of the operator L at the boundary and on properties of
the boundary itself (e.g., the Hausdorff dimension of the subset S2). Concerning this point, we refer the reader to the
paper [27].

2. Mathematical framework and results

Let us first make precise the definition of solution to the problems introduced above. Denote by L∗ the formal
adjoint of the operator L, namely:

L∗v ≡
n∑

i,j=1

∂2(aij v)

∂xi∂xj

−
n∑

i=1

∂(biv)

∂xi

.

Definition 2.1. By a subsolution to Eq. (1.1) we mean any function u ∈ C(Ω) such that∫
Ω

u{L∗ψ − cψ}dx �
∫
Ω

f ψ dx (2.1)

for any ψ ∈ C∞
0 (Ω), ψ � 0. Supersolutions of (1.1) are defined replacing “�” by “�” in (2.1). A function u is a

solution of (1.1) if it is both a sub- and a supersolution.

Definition 2.2. Let R ⊆ E ⊆ ∂Ω , g ∈ C(E ). By a subsolution to the problem{
Lu − cu = f in Ω,

u = g on E (2.2)

we mean any function u ∈ C(Ω ∪ E ) such that:
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(i) u is a subsolution of Eq. (1.1);
(ii) u � g on E .

Supersolutions and solutions of (2.2) are defined similarly.

Let us mention the following result (for the definition of viscosity subsolution of Eq. (1.1), see e.g. [6,16]).

Proposition 2.3. Let either assumption (H2) or (H3) hold; let u ∈ C(Ω). Then the following statements are equiva-
lent:

(i) u is a subsolution of Eq. (1.1);
(ii) u is a viscosity subsolution of Eq. (1.1).

Proof. (i) ⇒ (ii): Under the present regularity assumptions the square root σ of the matrix A is in C1(Ω) (actually,
assumptions (H2)(i) and (H2)(ii) imply σij ∈ C1,1(Ω); see [12, Ch. 6, Lemma 1.1]). Hence the claim follows from
Theorem 2 in [16].

(ii) ⇒ (i): Follows from Theorem 1 in [16], due to the present regularity assumptions. �
In view of the above proposition, we obtain the following comparison result (see [21,22] for a related maximum

principle).

Proposition 2.4. Let either assumption (H2) or (H3) hold; let Ω1 be any open bounded subset of Ω such that Ω1 ⊆
Ω ∪ R. Let u ∈ C(Ω1) be a subsolution, ū ∈ C(Ω1) a supersolution of the equation

Lu − cu = f in Ω1. (2.3)

If u � ū on ∂Ω1, then u � ū on Ω1.

Proof. By Proposition 2.3 u is a viscosity subsolution, ū a viscosity supersolution of Eq. (2.3). Then the claim follows:

(a) by the comparison results in Section V.1 of [17], if (H2) holds;
(b) by Theorem II.2 in [17], if (H3) holds and c > 0 in Ω ∪ R;
(c) by a slight refinement of Theorem 3.3 in [2], if (H3) holds and c � 0, c + ∑n

i=1 σ 2
ji > 0 in Ω ∪ R for some

j = 1, . . . , n. �
2.1. Existence and nonuniqueness results

Concerning problem (1.3), we shall prove the following

Theorem 2.5. Let assumptions (H1)–(H2) be satisfied; suppose c ∈ L∞(Ω). Let there exist a supersolution V of
problem (1.4) such that

inf
Ω∪R

V = 0 < inf
R

V. (2.4)

Then either no solutions, or infinitely many solutions of problem (1.3) exist.

The assumption c ∈ L∞(Ω) is necessary for the above theorem to hold (see Example (c) in Section 5.2). Let us
also observe the following:

(a) if c = 0, in Theorem 2.5 we can assume V to be a supersolution of problem (1.7);
(b) if V is a supersolution of problem (1.4) bounded from below, then V := V − infΩ∪R V is a supersolution of the

same problem with infΩ∪R V = 0.
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It is informative to outline the proof of Theorem 2.5. Suppose first Ω is bounded. The existence of a supersolution
V of problem (1.4) satisfying (2.4) implies

lim inf
dist(x,S)→0

V (x) = inf
Ω∪R

V = 0 (2.5)

(see Lemma 3.1). Then there exists a sequence {xm} ⊆ Ω such that

lim
m→∞ dist(xm, S) = 0, (2.6)

with the following property: for any β ∈ R there exists a bounded solution Uβ of the homogeneous problem (1.7) such
that

lim
m→∞Uβ(xm) = β. (2.7)

This gives the existence of infinitely many bounded solutions of the homogeneous problem (1.7) (see Proposition 3.4).
Plainly, the existence of infinitely many nontrivial bounded solutions of (1.7) implies a corresponding nonuniqueness
result for problem (1.3), if at least one solution of the latter exists (in this respect, see Proposition 2.7 below).

If Ω is unbounded, condition (2.4) implies either equality (2.5), or

lim inf|x|→∞ V (x) = inf
Ω∪R

V = 0 (2.8)

(see Lemma 3.2). In the latter case the limit (2.7) is attained along a diverging sequence {xm} ⊆ Ω , thus nonuniqueness
depends on the absence of a “condition at infinity”.

To rule out this possibility, it is natural to consider the problem:⎧⎨
⎩

Lu − cu = f in Ω,

u = g on R,

lim|x|→∞ u(x) = L (L ∈ R).

(2.9)

The following nonuniqueness result can be proved.

Theorem 2.6. Let Ω be unbounded and assumptions (H1)–(H2) be satisfied; suppose c ∈ L∞(Ω). Let there exist a
supersolution V of problem (1.4) such that

inf
Ω∪R

V = 0 < min
{

inf
R

V, lim inf|x|→∞ V (x)
}
. (2.10)

Moreover, let there exist a positive supersolution F of the equation

Lu − cu = 0 in Ω (2.11)

such that lim|x|→∞ F(x) = 0. Then either no solutions, or infinitely many solutions of problem (2.9) exist.

The proof of Theorem 2.6 is analogous to that of Theorem 2.5. In this case the stricter inequality (2.10) implies
the existence of a bounded sequence {xm} ⊆ Ω satisfying (2.6), such that for any β ∈ R equality (2.7) holds. Now the
bounded solution Uβ of the homogeneous problem (1.7) satisfies the additional condition

lim|x|→∞Uβ(x) = 0; (2.12)

this follows from the properties of the function F , which plays the role of a barrier at infinity. This entails the existence
of infinitely many bounded solutions to problem (2.9) with f = g = L = 0 (see Proposition 3.5), whence Theorem 2.6
follows.

Theorems 2.5 and 2.6 show that infinitely many solutions to problems (1.3), respectively (2.9) exist, if one does.
Therefore the following existence results, combined with the above theorems, imply nonuniqueness for such problems.

Proposition 2.7. Let assumptions (H1)–(H2) be satisfied; suppose f ∈ L∞(Ω), g ∈ L∞(R). Let there exist a positive
supersolution F ∈ C(Ω ∪ R) of the equation

Lu − cu = −1 in Ω. (2.13)

Then there exists a solution of problem (1.3).
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Remark 2.8. In connection with Proposition 2.7 observe that, if c(x) � c0 > 0 for any x ∈ Ω ∪ R, F := 1/c0 is a
bounded supersolution of Eq. (2.13).

Concerning problem (2.9), we have the following

Proposition 2.9. Let Ω be unbounded and assumptions (H1)–(H2) be satisfied. Let f ∈ L∞(Ω), g ∈ L∞(R), c ∈
L∞(Ω \ BM) for some M > 0; if R is unbounded, suppose

lim|x|→∞g(x) = L.

Let there exist a positive supersolution F ∈ C(Ω ∪ R) of Eq. (2.13) such that lim|x|→∞ F(x) = 0. Then there exists a
solution of problem (2.9).

The proofs of Propositions 2.7, 2.9 make use of a local barrier at the points of R (which exists by assumptions
(H1)(ii), (H2)(ii); e.g., see [13]).

It is immediately seen that, if the supersolution F in the above statements is bounded, the solution u is bounded,
too. Then by Propositions 3.4, 3.5 we obtain nonuniqueness in L∞(Ω) for problems (1.3), respectively (2.9).

Existence results analogous to Propositions 2.7, 2.9 hold for problems (1.5) and (1.6), respectively (however, see
Proposition 5.2 and Example (c) in Section 5.1).

2.2. Comparison and uniqueness results

In this subsection we address uniqueness of solutions to problem (1.5). In the particular case S1 = ∅, S2 = S we
recover uniqueness criteria for problem (1.3).

Set Br(x̄) := {|x − x̄| < r} (x̄ ∈ R
n), Br(0) ≡ Br . We shall prove the following Phragmèn–Lindelöf principle (e.g.,

see [29] for the classical case, where ellipticity of the operator, smoothness of the coefficients and a classical notion
of supersolution are assumed).

Proposition 2.10. Let assumptions (H1) and (H4) hold, and either (H2) or (H3) be satisfied; suppose S2 �= ∅. Let
there exist a subsolution Z � H < 0 of problem (1.7). Let u be a subsolution of problem (1.5) with f = g = 0, such
that

lim inf
dist(x,S2)→0

u(x)

Z(x)
� 0. (2.14)

If Ω is unbounded, assume also

lim inf|x|→∞
u(x)

Z(x)
� 0. (2.15)

Then u � 0 in Ω .

If Ω is unbounded and condition (2.14) is satisfied, the same conclusion of Proposition 2.10 holds true if we
“prescribe the sign at infinity”. In fact, the following result can be proved.

Proposition 2.11. Let Ω be unbounded, assumptions (H1) and (H4) hold, and either (H2) or (H3) be satisfied;
suppose S2 �= ∅. Let there exist a subsolution Z � H < 0 of problem (1.7) Let u be a subsolution of problem (1.5)
with f = g = 0 such that

lim inf
dist(x,S2)→0

u(x)

Z(x)
� 0, lim sup

|x|→∞
u(x) � 0. (2.16)

Then u � 0 in Ω .

Remark 2.12. In the above propositions we can replace condition (2.14) by the weaker assumption

lim sup

{
inf

Aε\S
u

Z

}
� 0, (2.17)
ε→0 2
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where

Aε
2 := {

x ∈ Ω
∣∣ dist(x, S2) = ε

}
(ε ∈ (0, ε0), ε0 > 0 suitably small). Similarly, condition (2.15) can be replaced by the weaker assumption

lim sup
ε→0

{
inf

[Ω∪R]∩∂B 1
ε

u

Z

}
� 0, (2.18)

and the second inequality in (2.16) by

lim inf
ε→0

{
sup

[Ω∪R]∩∂B 1
ε

u
}

� 0. (2.19)

In fact, the proofs of Propositions 2.10–2.11 will be given using assumptions (2.17)–(2.19) instead of (2.14)–(2.16).

Observe that, if Z is a subsolution of problem (1.7) bounded from above with H0 := supΩ∪R Z � 0 and M > H0,
then Z := Z − M � H0 − M < 0 is a subsolution of the same problem. The same remark holds for problems (1.4)
and (2.22) below.

The following uniqueness result is an immediate consequence of Proposition 2.10.

Theorem 2.13. Let assumptions (H1) and (H4) hold, and either (H2) or (H3) be satisfied. Suppose S2 �= ∅, g ∈
C(R ∪ S1). Let there exist a subsolution Z � H < 0 of problem (1.7). Then:

(i) if Ω is bounded, there exists at most one solution u of problem (1.5) such that

lim
dist(x,S2)→0

u(x)

Z(x)
= 0; (2.20)

(ii) if Ω is unbounded, there exists at most one solution u of problem (1.5) such that

lim
dist(x,S2)→0

u(x)

Z(x)
= lim|x|→+∞

u(x)

Z(x)
= 0. (2.21)

Remark 2.14. (i) It is easily seen that in the proof of Proposition 2.10 (thus in Theorem 2.13) the homogeneous
problem (1.7) can be replaced by the eigenvalue problem:{ LU = μU in Ω,

U = 0 on R (2.22)

with μ ∈ [0, infΩ∪R c].
(ii) If c(x) � c0 > 0 for any x ∈ Ω ∪ R, we can replace problem (2.22) by (1.4), obtaining uniqueness results

analogous to Theorem 2.13. In fact, let Z be a subsolution of problem (1.4); it is not restrictive to assume

Z � − 1

c0
in Ω ∪ R.

Then by Definition 2.2 we have∫
Ω

ZL∗ψ dx � −
∫
Ω

ψ dx � c0

∫
Ω

Zψ dx �
∫
Ω

cZψ dx

for any ψ ∈ C∞
0 (Ω),ψ � 0; moreover, Z � 0 on R. Hence Z is a subsolution of problem (1.7); thus by Theorem 2.13

and the above remark (i) the claim follows.

Concerning problem (1.6), from Proposition 2.11 we obtain the following uniqueness result. The elementary proof
is omitted.

Theorem 2.15. Let Ω be unbounded, assumptions (H1) and (H4) hold, and either (H2) or (H3) be satisfied; suppose
S2 �= ∅, g ∈ C(R ∪ S1). Let there exist a subsolution Z � H < 0 of problem (1.7). Then there exists at most one
solution u of problem (1.6) such that condition (2.20) is satisfied.
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Uniqueness results in L∞(Ω) for problems (1.5), (1.6) follow immediately from those above, if the subsolution Z

diverges as dist(x, S2) → 0. We state below such consequences of Theorems 2.13 and 2.15.

Proposition 2.16. Let assumptions (H1) and (H4) hold, and either (H2) or (H3) be satisfied. Suppose S2 �= ∅, g ∈
C(R ∪ S1). Let there exist a subsolution Z � H < 0 of problem (1.7) such that

lim
dist(x,S2)→0

Z(x) = −∞ (2.23)

if Ω is bounded, or

lim
dist(x,S2)→0

Z(x) = lim|x|→∞Z(x) = −∞ (2.24)

if Ω is unbounded. Then there exists at most one solution u ∈ L∞(Ω) of problem (1.5).

Proposition 2.17. Let Ω be unbounded, assumptions (H1) and (H4) hold, and either (H2) or (H3) be satisfied;
suppose S2 �= ∅, g ∈ C(R ∪ S1). Let there exist a subsolution Z � H < 0 of problem (1.7), satisfying condition (2.23).
Then for any L ∈ R there exists at most one solution u ∈ L∞(Ω) of problem (1.6).

3. Existence and nonuniqueness results: Proofs

To prove Theorem 2.5 we need a few preliminary results; the proofs are adapted from [28].

Lemma 3.1. Let Ω be bounded and assumptions (H1)–(H2) be satisfied. Let V be a supersolution of problem (1.7)
with c = 0 satisfying condition (2.4). Then equality (2.5) holds.

Proof. By absurd, suppose

lim inf
dist(x,S)→0

V (x) =: γ > 0;
then V (x) � γ /2 for any x ∈ S ε := {x ∈ Ω | dist(x, S) < ε} (ε ∈ (0, ε0) sufficiently small). It follows that

inf
Ω\S ε

V = inf
Ω∪R

V = 0.

On the other hand, V is a supersolution of the problem{
LU = 0 in Ω \ S ε,

U = α on ∂[Ω \ S ε ]
where α := min{ γ

2 , infR\S ε V }, while V1 := α is a solution of the same problem. By Proposition 2.4 we obtain

V � α > 0 in Ω \ S ε , a contradiction. Hence the conclusion follows. �
If Ω is unbounded, a slight modification of the previous proof gives the following1

Lemma 3.2. Let Ω be unbounded and assumptions (H1)–(H2) be satisfied. Let V be a supersolution of problem (1.7)
with c = 0 satisfying condition (2.4). Then either equality (2.5), or equality (2.8) holds.

Corollary 3.3. Let Ω be unbounded and assumptions (H1)–(H2) be satisfied. Let V be a supersolution of prob-
lem (1.7) with c = 0 satisfying condition (2.10). Then equality (2.5) holds.

Now we can prove the following result.

Proposition 3.4. Let the assumptions of Theorem 2.5 be satisfied. Then there exist infinitely many bounded solutions
of the homogeneous problem (1.7).

1 Lemmas 3.1–3.2 can be proved using the strong maximum principle in [21], if more regularity of the coefficients is assumed.
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Proof. (i) If c = 0 and R = ∅ any constant is a solution of problem (1.7), thus the conclusion follows in this case.
Otherwise define

l :=
{

infR V if c = 0,

min{infR V, 1
‖c‖∞ } if c �= 0;

then condition (2.4) implies l ∈ (0,∞).
Set

Rj := {
x ∈ R

∣∣ dist(x, S) > 1/j
}

(j ∈ N).

Consider a sequence of bounded domains {Hj }j∈N satisfying an exterior sphere condition at each point of the bound-
ary ∂Hj , such that⎧⎪⎪⎨

⎪⎪⎩
Hj ⊆ Ω ∪ Rj , Hj ⊆ Hj+1,

∞⋃
j=1

Hj = Ω ∪ R,

∂Hj = Rj ∪ Tj , Rj ∩ Tj = ∅;
(3.1)

observe that by assumption (H2)(ii) the operator L is strictly elliptic in Hj (j ∈ N).
It is easily seen that W := max{l − V,0} is a subsolution of the problem{

Lu = cu in Hj ,

u = W on ∂Hj
(3.2)

for any j ∈ N. In fact, for any ψ ∈ C∞
0 (Hj ),ψ � 0 there holds:∫

Hj

(l − V ){L∗ψ − cψ}dx = −l

∫
Hj

cψ dx −
∫
Hj

V {L∗ψ − cψ}dx �
∫
Hj

(1 − lc)ψ dx � 0.

Since u = 0 is also a (classical) subsolution, the claim follows. It is also immediately seen that W := supΩ∪R W = l

is a classical supersolution of problem (3.2).
(ii) By usual arguments (e.g., see [13]) for any j ∈ N there exists a solution Wj ∈ C(Hj ) (α ∈ (0,1)) of prob-

lem (3.2), such that

0 � W � Wj � W = l in Hj ; (3.3)

observe that W = 0, thus Wj = 0 on Rj .
By compactness arguments there exists a subsequence {Wjk

} ⊆ {Wj }, which converges uniformly in any compact
subset of Ω . Set

W := lim
k→∞Wjk

. (3.4)

We shall prove the following

Claim. The function W is a bounded solution of the homogeneous problem (1.7). Moreover, W is nontrivial, for there
exists a sequence {xm} ⊆ Ω such that

lim
m→∞W(xm) = l > 0. (3.5)

The above claim leads easily to the conclusion. In fact, define

Uβ := β

l
W. (3.6)

Then Uβ solves (1.7) and by (3.3)–(3.4)

|Uβ | � |β| in Ω ∪ R;
moreover, along the sequence {xm} there holds

lim
m→∞Uβ(xm) = β.

Since β is arbitrary the result follows.
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(iii) Let us now prove the claim. Clearly, by its very definition W is a solution of Eq. (2.11). We use a local barrier
argument to prove that W ∈ C(Ω ∪ R) and W = 0 on R.

Let x0 ∈ R; take j0 ∈ N so large that x0 ∈ Rj for any j � j0. Choose δ0 > 0 so small that

Nδ(x0) ⊆ Hj ⊆ Ω ∪ R
for any j � j0, where Nδ(x0) := Bδ(x0) ∩ Ω ; observe that

∂Nδ(x0) = [
∂Bδ(x0) ∩ [Ω ∪ R]] ∪ [

Bδ(x0) ∩ R
] (

δ ∈ (0, δ0)
)
.

Since the operator L is strictly elliptic in Nδ(x0) and an exterior sphere condition is satisfied at x0 ∈ R by assumption
(H1)(ii), there exists a local barrier at x0—namely, a function h ∈ C2(Nδ(x0)) ∩ C(Nδ(x0)) such that

Lh − ch � −1 in Nδ(x0), (3.7)

h > 0 in Nδ(x0) \ {x0}, h(x0) = 0 (3.8)

(e.g., see [13]). Set

m := min
∂Bδ(x0)∩[Ω∪R]

h > 0.

Plainly, from inequality (3.3) we obtain

0 � Wj � l

m
h on ∂Nδ(x0) (3.9)

for any j � j0 (recall that Wj = 0 on Rj for any j ∈ N, thus Wj = 0 on Bδ(x0) ∩ R if j � j0). In view of inequal-
ity (3.9), it is easily seen that

Fj := −Wj + l

m
h (j � j0)

is a supersolution of the problem{
Lu = cu in Nδ(x0),

u = 0 on ∂Nδ(x0); (3.10)

then by Proposition 2.4 we obtain

0 � Wj � l

m
h in Nδ(x0)

for any j � j0. Rewriting the above inequality with j = jk and letting k → ∞, we obtain

0 � W(x) � l

m
h(x) for any x ∈ Nδ(x0),

whence limx→x0 W(x) = 0; then the claim follows.
It remains to prove equality (3.5). Let {xm} ⊆ Ω be a sequence such that

lim
m→∞V (xm) = inf

Ω∪R
V = 0; (3.11)

such a sequence exists by Lemmas 3.1–3.2. By inequality (3.3) we have:

l − V � W � W � W = l in Ω ∪ R, (3.12)

thus equality (3.11) implies (3.5). This completes the proof. �
Proof of Theorem 2.5. Let Uβ ∈ L∞(Ω) be the solution of problem (1.7) satisfying (2.7) constructed in the above
proof (β ∈ R). Since U1 is nontrivial and Uβ = βU1 (see (3.6)), there exists x̄ ∈ Ω such that U1(x̄) �= 0, thus Uβ1(x̄) �=
Uβ2(x̄) for any β1, β2 ∈ R, β1 �= β2.

Let there exist a solution ū of problem (1.3). Then uβ := ū + Uβ is a solution of problem (1.3) for any β ∈ R;
moreover, uβ1(x̄) �= uβ2(x̄) for any β1, β2 ∈ R, β1 �= β2. Hence the conclusion follows. �

The proof of Theorem 2.6 is the same of Theorem 2.5, using the following proposition instead of Proposition 3.4.
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Proposition 3.5. Let the assumptions of Theorem 2.6 be satisfied. Then there exist infinitely many bounded solutions
of problem (2.9) with f = g = L = 0.

Proof. Define

l∞ := min
{

inf
R

V, lim inf|x|→∞ V (x)
}

if c = 0,

l∞ := min

{
inf

R
V, lim inf|x|→∞ V (x),

1

‖c‖∞

}
otherwise;

then condition (2.10) implies l∞ > 0.
Fix l ∈ (0, l∞); consider the family of problems (3.2) with Hj ,W defined as above. Arguing as in the proof of

Proposition 3.4 (using Corollary 3.3 instead of Lemmas 3.1–3.2), we prove the following: there exist a sequence
{xm} ⊆ Ω satisfying (2.6) and a bounded solution W � 0 of problem (1.7), defined by (3.4), such that equality (3.5)
holds. We prove below the additional property:

lim|x|→∞W(x) = 0; (3.13)

then defining the family Uβ (β ∈ R) as in (3.6) the conclusion follows.
To prove equality (3.13), observe preliminarily that

lim sup
|x|→∞

W(x) = lim|x|→∞W(x) = 0 (3.14)

(this follows from the above definition of l, since W := max{l − V,0}). Then for any σ > 0 there exists M > 0 such
that

0 � W(x) < σ in [Ω ∪ R] \ BM. (3.15)

Consider the subsequence {jk} ⊆ N such that (3.4) holds. Fix k so large that

Nk := Hjk
∩ [[Ω ∪ R] \ BM

] �= ∅;
observe that

∂Nk = [
∂Hjk

∩ [[Ω ∪ R] \ BM

]] ∪ [Hjk
∩ ∂BM ] (k ∈ N).

By (3.15) there holds

0 � Wjk
= W < σ,

on ∂Hjk
∩ [[Ω ∪ R] \ BM ] (see (3.2)). Besides, for any k sufficiently large in Hjk

∩ ∂BM there holds (see inequal-
ity (3.3)):

0 � Wjk
� l � l

m
F,

where

m := min
∂BM

F > 0.

From the above inequalities we get

0 � Wjk
< σ + l

m
F on ∂Nk (3.16)

for any k sufficiently large.
It is easily seen that for such values of k the function

Zk := Wjk
− σ − l

m
F

is a subsolution of the problem{
Lu = cu in Nk,

u = 0 on ∂N .
k
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In fact, for any ψ ∈ C∞
0 (Nk),ψ � 0 we have:∫

Nk

Zk{L∗ψ − cψ}dx = σ

∫
Nk

cψ dx − l

m

∫
Nk

F {L∗ψ − cψ}dx � 0;

moreover, Zk � 0 on ∂Nk by (3.16), thus the claim follows.
In view of Proposition 2.4, this implies

0 � Wjk
< σ + l

m
F in Nk (3.17)

for any k ∈ N sufficiently large. As k → ∞ we obtain

0 � W(x) < σ + l

m
F(x)

for any x ∈ [Ω ∪ R] \ BM . This obtains

0 � lim sup
|x|→∞

W(x) � σ ;

since σ > 0 is arbitrary, equality (3.13) follows. This completes the proof. �
Let us now prove Proposition 2.7.

Proof of Proposition 2.7. (i) If R ∩ S �= ∅, let ζj ∈ C∞
0 (Rj ), 0 � ζj � 1, ζj = 1 in Rj−1 (j ∈ N; R0 := ∅). If

R ∩ S = ∅, we have that Rj = R, for any j � j0, for some j0 ∈ N; in this case we set ζj ≡ 1 on Rj = R, for any
j � j0.

For any j � j0 consider the problem{
Lu − cu = f in Hj ,

u = φj on ∂Hj ; (3.18)

here {Hj } is the sequence of domains used in the proof of Proposition 3.4 and the boundary data

φj :=
{

ζjg + (1 − ζj )F on Rj ,

F in Tj
(3.19)

are continuous on ∂Hj (j � j0).
It is easily seen that the function

F̃ := max
{‖f ‖∞,1

}(
F + ‖g‖∞

)
(3.20)

is a supersolution of problem (3.18)–(3.19) for any j � j0. In fact, for any ψ ∈ C∞
0 (Hj ), ψ � 0 we have:∫

Hj

F̃ {L∗ψ − cψ}dx = max
{‖f ‖∞,1

}{∫
Hj

F {L∗ψ − cψ}dx − ‖g‖∞
∫
Hj

cψ dx

}

� −max
{‖f ‖∞,1

}∫
Hj

ψ dx �
∫
Hj

f ψ dx;

moreover, F̃ � F + ‖g‖∞ � φj on ∂Hj . Hence the claim follows. It is similarly checked that −F̃ is a subsolution of
the same problem.

(ii) In view of (i) above, there exists a solution uj ∈ C(Hj ) (α ∈ (0,1)) of problem (3.18)–(3.19), such that

|uj | � F̃ in Hj (3.21)

for any j � j0. By standard compactness arguments there exists a subsequence {ujk
} ⊆ {uj }, which converges uni-

formly in any compact subset of Ω . Clearly, u := limk→∞ ujk
is a solution of Eq. (1.1); moreover, |u| � F̃ in Ω .
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(iii) It remains to prove that u ∈ C(Ω ∪ R) and u = g on R. To this purpose, we use a local barrier argument as in
the proof of Proposition 3.4.

Let x0 ∈ R be arbitrarily fixed; take j0 ∈ N so large that x0 ∈ Rj0−1. Since each Rj is open and Rj0−1 ⊆ Rj for
j � j0, there exists δ0 > 0 such that:

uj = g in Bδ0(x0) ∩ R (3.22)

for any j � j0 (see (3.19)). Moreover, we can choose δ0 > 0 so small that

Nδ(x0) ⊆ Hj ⊆ Ω ∪ R (3.23)

for any j � j0, where Nδ(x0) := Bδ(x0) ∩ Ω . Observe that

∂Nδ(x0) = [
∂Bδ(x0) ∩ [Ω ∪ R]] ∪ [

Bδ(x0) ∩ R
] (

δ ∈ (0, δ0)
)
.

Since g ∈ C(R) (see (H2)(v)), in view of (3.22) for any σ > 0 there exists δ ∈ (0, δ0) such that∣∣uj (x) − g(x0)
∣∣ < σ for any x ∈ Bδ0(x0) ∩ R, j � j0. (3.24)

Let h ∈ C2(Nδ(x0)) ∩ C(Nδ(x0)) satisfy (3.7)–(3.8). For any x ∈ ∂Bδ(x0) ∩ [Ω ∪ R] (δ ∈ (0, δ0)) and j � j0 there
holds ∣∣uj (x) − g(x0)

∣∣ � max
Nδ(x0)

F̃ + ∣∣g(x0)
∣∣ � mM � Mh(x), (3.25)

where

m := min
∂Bδ(x0)∩[Ω∪R]

h > 0,

M := 2

m
max

{
max
Nδ(x0)

F̃ ,‖g‖∞,m‖f ‖∞,m‖g‖∞ max
Nδ(x0)

c
}

(see (3.21), (3.23)).
In view of inequalities (3.24)–(3.25), we conclude that for any σ > 0 there exists δ ∈ (0, δ0) such that∣∣uj (x) − g(x0)

∣∣ < σ + Mh(x) for any x ∈ ∂Nδ(x0), j � j0.

Then it is easily seen that for such values of j

Ej := −uj + g(x0) − σ − Mh

is a subsolution,

Fj := −uj + g(x0) + σ + Mh

a supersolution of problem (3.10). By Proposition 2.4 this implies Ej � 0 � Fj in Nδ(x0), namely∣∣uj (x) − g(x0)
∣∣ < σ + Mh(x) for any x ∈ Nδ(x0), j � j0. (3.26)

Set j = jk in inequality (3.26), then let k → ∞. This obtains the following: for any σ > 0 there exists δ ∈ (0, δ0)

such that∣∣u(x) − g(x0)
∣∣ < σ + Mh(x) for any x ∈ Nδ(x0),

whence

lim sup
x→x0

∣∣u(x) − g(x0)
∣∣ � σ

for any σ > 0. Then the conclusion follows. �
To prove Proposition 2.9, first a solution u of problem (1.3) is constructed as for Proposition 2.7. Then, arguing as

in the proof of Proposition 3.5, it is proved that lim|x|→∞ u(x) = L. We leave the details to the reader.
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Fig. 1. Bounded Ω .

4. Comparison and uniqueness results: Proofs

Let us first introduce some notations. Set for any ε ∈ (0, ε0), δ ∈ (0, ε
2 ) (ε0 > 0 suitably small):

S1,ε := {
x ∈ S1

∣∣ dist(x, S2) � ε
}
,

S ε := {
x ∈ Ω

∣∣ dist(x, S) < ε
}
,

S ε
2 := {

x ∈ Ω
∣∣ dist(x, S2) < ε

}
,

Aε
2 := {

x ∈ Ω
∣∣ dist(x, S2) = ε

}
.

Rε,δ := {
x ∈ R

∣∣ dist(x, S1) > δ, dist(x, S2) > ε
}
.

If S1,ε �= ∅, we also define:

I ε,δ
1 := {

x ∈ Ω
∣∣ dist(x, S1,ε) < δ

}
,

F ε,δ
1 := {

x ∈ Ω
∣∣ dist(x, S1,ε) = δ, dist(x, S2) � ε

}
,

I ε,δ
2 := {

x ∈ S ε
2

∣∣ dist(x, S1,ε) � δ
}
,

F ε,δ
2 := {

x ∈ Aε
2

∣∣ dist(x, S1,ε) > δ
};

otherwise we set I ε,δ
1 = F ε,δ

1 := ∅, I ε,δ
2 := S ε

2 , F ε,δ
2 := Aε

2. Finally, define:

I ε,δ := I ε,δ
1 ∪ I ε,δ

2 , F ε,δ := F ε,δ
1 ∪ F ε,δ

2 .

The above sets are depicted in Fig. 1 for the case of bounded Ω . Observe that S1 ⊆ I ε,δ .

Lemma 4.1. For any ε ∈ (0, ε0), δ ∈ (0, ε
2 ):

(i) there hold

Ω \ I ε,δ ⊆ Ω ∪ R, (4.1)

∂
[
Ω \ I ε,δ

] = Rε,δ ∪ F ε,δ; (4.2)

(ii) for any open subset Ω1 ⊆ Ω \ I ε,δ there holds

∂Ω1 \ [R ∪ S1] = ∂Ω1 \ R = ∂Ω1 \ Rε,δ. (4.3)

Proof. We only check (4.1), since equalities (4.2)–(4.3) are clear. In fact, there holds:

Ω \ I ε,δ ⊆ [
Ω \ I ε,δ

] ∪ F ε,δ ⊆ Ω \ S = Ω ∪ R, (4.4)

since S ⊆ I ε,δ , F ε,δ ⊆ Ω \ S . �
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Fig. 2. Unbounded Ω .

When Ω is unbounded, we also use the following family of subsets of Ω (see Fig. 2):

Ωε,δ,β := (
Ω \ I ε,δ

) ∩ B 1
β

(ε ∈ (0, ε0), δ ∈ (0, ε
2 ), β > 0); observe that by (4.2)

∂Ωε,δ,β = [
∂
[
Ω \ I ε,δ

] ∩ B 1
β

] ∪ [
Ω \ I ε,δ ∩ ∂B 1

β

]
= [[

Rε,δ ∪ F ε,δ
] ∩ B 1

β

] ∪ [
Ω \ I ε,δ ∩ ∂B 1

β

]
.

Now we can prove Proposition 2.10.

Proof of Proposition 2.10. Let us distinguish two cases: (a) Ω bounded, and (b) Ω unbounded.
(a) Ω bounded: (i) In view of inequality (2.17), there exists a sequence {εk} ⊆ (0, ε0), εk → 0 as k → ∞, such that

lim
k→+∞

{
inf

Aεk
2 \S

u

Z

}
� 0. (4.5)

Then for any α > 0 there exists k̄ = k̄(α) ∈ N such that for any k > k̄ there holds
u

Z
> −α in Aεk

2 \ S. (4.6)

(ii) Define for any α > 0

Vα(x) := −αZ(x) = α
∣∣Z(x)

∣∣ (x ∈ Ω ∪ R). (4.7)

Observe that

α|H | � Vα in Ω ∪ R. (4.8)

In view of (4.1)–(4.2) and (4.8), the following claim is easily seen to hold.

Claim 1. For any α > 0, ε ∈ (0, ε0), δ ∈ (0, ε
2 ) the function Vα defined in (4.7) is a supersolution of the problem⎧⎨

⎩
Lu − cu = 0 in Ω \ I ε,δ,

u = 0 on Rε,δ,

u = Vα on F ε,δ.

(4.9)
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(iii) We shall prove the following

Claim 2. For any α > 0 there exists k̄ = k̄(α) ∈ N with the following property: for any k > k̄ there exists δk ∈ (0,
εk

2 )

such that the function u is a subsolution of problem (4.9) with ε = εk , δ = δk , where {εk} is the infinitesimal sequence
of inequality (4.6).

From Claims 1 and 2 the conclusion follows immediately. In fact, by Proposition 2.4 we obtain for any α > 0,
k > k̄

u � Vα in Ω \ I εk,δk .

Letting α → 0 in the latter inequality we obtain u � 0 in any compact subset of Ω (observe that k̄ → ∞, thus εk → 0
as α → 0); hence the result follows.

To prove Claim 2 we use the following facts:

• for any α > 0, ε ∈ (0, ε0) there exists δ̄ ∈ (0, ε
2 ) such that for any δ ∈ (0, δ̄) there holds

u < α|H | in F ε,δ
1 ; (4.10)

• for any α > 0 there exists k̄ = k̄(α) ∈ N such that for any k > k̄ and for any δ ∈ (0,
εk

2 ) the function Vα satisfies

u < Vα in F εk,δ
2 . (4.11)

Let us put off the proof of (4.10)–(4.11) and complete the proof of Claim 2. Plainly, from (4.8) and (4.10)–(4.11) we
obtain

u < Vα in F εk,δk (4.12)

for any α > 0, k > k̄ and some δk ∈ (0,
εk

2 ). On the other hand, the function u is by assumption a subsolution of the
problem{

Lu = cu in Ω,

u = 0 on R ∪ S1,
(4.13)

thus in particular u � 0 on Rεk,δk ⊆ R. Hence Claim 2 follows.
It remains to prove inequalities (4.10)–(4.11). Concerning (4.10), observe that u � 0 on S1 and u ∈ C(S1), thus

in particular u � 0 on S1,ε and u ∈ C(S1,ε) (recall that u is a subsolution of (4.13), hence u ∈ C(Ω ∪ R ∪ S1) by
Definition 2.2). As a consequence, for any x̄ ∈ S1,ε and any σ > 0 there exists δ = δ(x̄, σ ) > 0 such that

u(x) < σ for any x ∈ [Ω ∪ R] ∩ Bδ(x̄).

It is immediately seen that S1,ε is closed, thus compact. Hence from the covering {Bδ(x̄)}x̄∈S1,ε
we can extract a finite

covering {Bδn(x̄n)}n=1,...,n̄ (n̄ ∈ N), namely

S1,ε ⊆
n̄⋃

n=1

Bδn(x̄n) =: Bε,σ .

Set

δ̄ := min

{
δ1, . . . , δn̄,

ε

3

}
;

then {
x ∈ Ω ∪ R

∣∣ dist(x, S1,ε) � δ̄
} ⊆ [Ω ∪ R] ∩ Bε,σ ,

thus in particular

F ε,δ ⊆ [Ω ∪ R] ∩ Bε,σ for any δ ∈ (0, δ̄).
1
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This shows that for any σ > 0, ε ∈ (0, ε0) and δ ∈ (0, δ̄) there holds

u < σ in F ε,δ
1 ;

choosing σ = α|H | we obtain (4.10).
Inequality (4.11) follows immediately from (4.6), since F εk,δ

2 ⊆ Aεk

2 \ S for any δ ∈ (0,
εk

2 ). This completes the
proof when Ω is bounded.

(b) Ω unbounded: (i) In view of inequalities (2.17) and (2.18), there exist two sequences {εk} ⊆ (0, ε0), εk → 0 as
k → ∞ and {βk} ⊆ (0,∞), βk → 0 as k → ∞, such that

lim
k→+∞

{
inf

Aεk
2 \S

u

Z

}
� 0, lim

k→+∞

{
inf

[Ω∪R]∩∂B 1
βk

u

Z

}
� 0. (4.14)

Then for any α > 0 there exists k̄ = k̄(α) ∈ N such that for any k > k̄

u

Z
> −α in Aεk

2 \ S,
u

Z
� −α on [Ω ∪ R] ∩ ∂B 1

βk

. (4.15)

(ii) As in the above case of bounded Ω , it is easily seen that the function Vα := −αZ is a supersolution of the
problem⎧⎪⎪⎨

⎪⎪⎩
Lu − cu = 0 in Ωε,δ,β,

u = 0 on Rε,δ ∩ B 1
β
,

u = Vα on [F ε,δ ∩ B 1
β

] ∪ [Ω \ I ε,δ ∩ ∂B 1
β
]

(4.16)

for any α > 0, ε ∈ (0, ε0), δ ∈ (0, ε
2 ), β > 0.

Arguing as in (a) above the conclusion follows from

Claim 3. For any α > 0 there exists k̄ = k̄(α) ∈ N with the following property: for any k > k̄ there exists δk ∈ (0,
εk

2 )

such that the function u is a subsolution of problem (4.16) with ε = εk , δ = δk , β = βk , where {εk} and {βk} are the
infinitesimal sequences of inequalities (4.15).

To prove Claim 3, it suffices to prove that

u < Vα on
[

F εk,δk ∩ B 1
βk

] ∪ [
Ω \ I εk,δk ∩ ∂B 1

βk

]
(4.17)

with α, k, εk, δk, βk as above. Notice that (4.8) and (4.11) are still valid. Moreover, in view of the compactness of
S1,ε ∩ B 1

β
(ε ∈ (0, ε0), β > 0), arguing as in the proof of (4.10), we get that

• for any α > 0, ε ∈ (0, ε0), β > 0 there exists δ̄ ∈ (0, ε
2 ) such that for any δ ∈ (0, δ̄) there holds

u < α|H | in F ε,δ
1 ∩ B 1

β
. (4.18)

Then by (4.8), (4.11), (4.18), the inequality

u < Vα in F εk,δk ∩ B 1
βk

(4.19)

follows. Concerning the inequality

u < Vα in Ω \ I εk,δk ∩ ∂B 1
βk

, (4.20)

it follows immediately from (4.15) since Ω \ I εk,δ ⊆ Ω ∪ R for any δ ∈ (0,
εk

2 ) (see (4.1)). Then inequality (4.17) and
the conclusion for unbounded Ω follow. This completes the proof. �
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Proof of Proposition 2.11. The proof is the same of Proposition 2.10 in the case of unbounded Ω , the only difference
being that to prove (4.20) we use (4.8) and the following inequality:

u < α|H | in Ω \ I εk,δk ∩ ∂B 1
βk

. (4.21)

As for the latter, by the second inequality in (2.16) there exists a sequence {βk} ⊆ (0,∞), βk → 0 as k → ∞, such
that

lim
k→+∞

{
sup

[Ω∪R]∩∂B 1
βk

u
}

� 0.

Then for any α > 0 there exists k̄ = k̄(α) ∈ N such that for any k > k̄ there holds

u < α|H | in [Ω ∪ R] ∩ ∂B 1
βk

,

which implies (4.21). Then the conclusion follows. �
Proof of Theorem 2.13. Let u1, u2 solve problem (1.5); then both u1 − u2 and u2 − u1 are solutions of the same
problem with f = g = 0. In view of Proposition 2.10 and Remark 2.12, conditions (2.14), (2.15) with u = u1 − u2,
u = u2 − u1 yield u1 � u2, respectively u2 � u1. Then the conclusion follows. �
5. Examples and remarks

In this section we discuss some applications of the above general results.

5.1. Nonuniqueness and existence

According to the assumptions made in Section 2.1, only degeneracy at the boundary is allowed in the examples of
this subsection.

(a) Consider the problem{
x2uxx + y2uyy − uy − u = f in (0,∞) × (0,1) = Ω,

u = g on (0,∞) × {1} = R (5.22)

with f ∈ C(Ω) ∩ L∞(Ω), g ∈ C(R) ∩ L∞(R). The function V (x, y) = y satisfies

LV = −1 in Ω, inf
Ω∪R

V = 0 < inf
R

V = 1;
moreover,

LV − V = −1 − y � −1 in Ω.

By Theorem 2.5 and Proposition 2.7 (applied with F = V ) problem (5.22) has infinitely many solutions in L∞(Ω).
(b) Consider the problem⎧⎪⎨

⎪⎩
1
2x2uxx + (x − 1)2y2uyy + 2x2ux − (2x2 + 1)uy − u = f in (1,∞) × (0,1) = Ω,

u = g on (1,∞) × {1} = R,

limx→∞ u(x, y) = L (y ∈ (0,1))

(5.23)

with f ∈ C(Ω) ∩ L∞(Ω), g ∈ C(R) ∩ L∞(R), L ∈ R and

lim
x→∞g(x) = L.

The function V (x, y) = x + y − 1 satisfies

LV = −1 in Ω, inf
Ω∪R

V = 0 < min
{

inf
R

V, lim
x→∞V (x, y)

}
= 1

(
y ∈ (0,1)

)
.

Moreover, the function F ∈ L∞(Ω), F(x, y) = 1
x

satisfies

LF − F � −1 in Ω, lim F(x) = 0.

x→∞



2020 F. Punzo, A. Tesei / Ann. I. H. Poincaré – AN 26 (2009) 2001–2024
In view of Theorem 2.6 and Proposition 2.9, problem (5.23) has infinitely many solutions in L∞(Ω).
Let us show by an example that general Dirichlet boundary data cannot be prescribed on a portion of the boundary,

which is attracting in the sense of the following definition (see [20]).
Let Σ ⊆ ∂Ω ; for any ε ∈ (0, ε0) (ε0 > 0 suitably small) set

Σε := {
x ∈ Ω

∣∣ dist(x,Σ) < ε
}
.

Definition 5.1. A subset Σ ⊆ ∂Ω is attracting if there exist ε ∈ (0, ε0) and a supersolution V ∈ C(Σε) of the equation:

LV − cV = −1 in Σε, (5.24)

such that

V > 0 in Σε \ Σ, V = 0 on Σ.

Sufficient conditions for the attractivity of Σ can be given adapting results in [12,25]. The proof of the following
result is very similar to that of Proposition 2.7, thus we omit it.

Proposition 5.2. Let S1 ⊆ ∂Ω . Let assumptions (H1), (H2) and (H4) be satisfied; suppose f ∈ L∞(Ω), g ∈
C(R ∪ S1)∩L∞(R ∪ S1), c ∈ L∞(S ε

1 ) for some ε ∈ (0, ε0). Let there exist a positive supersolution F ∈ C(Ω ∪ R)∩
L∞(S ε

1) of Eq. (2.13). If S1 is attracting and bounded, there exists a solution u ∈ C(Ω ∪ R ∪ S1) of problem (1.5),
provided that

g = constant on S1. (5.25)

Condition (5.25) and the boundedness of S1 are unnecessary, if a local barrier exists at any point x0 ∈ S1.

In view of the above proposition, the function V can be regarded as a barrier for the whole of S1, if the latter is
bounded (clearly, V is a local barrier at some point x0 ∈ Σ if and only if x0 is isolated in the relative topology of ∂Ω).
In such case constant Dirichlet data can be prescribed on S1. However, this need not be the case for general Dirichlet
data, as the following example shows.

(c) Consider the problem{ 1
y sinx

(uxx + y2uyy) = f in (π
4 , 3π

4 ) × (0,1) = Ω,

u = g on ∂Ω \ ([π
4 , 3π

4 ] × {0}) = R
(5.26)

with f ∈ C(Ω) ∩ L∞(Ω), g ∈ C(R) ∩ L∞(R). Here we take S1 = S = [π
4 , 3π

4 ] × {0}, S2 = ∅.
It is easily checked that the function Z(x, y) := x2 + logy − π2 satisfies

Z < 0 in Ω, LZ = 1

y sinx
> 0 in Ω, lim

y→0
Z(x, y) = −∞.

Then by Proposition 2.16 there exists at most one solution u ∈ L∞(Ω) of problem (5.26).
On the other hand, the function V ∈ C(Ω), V (x, y) := y sinx satisfies

V > 0 in Ω ∪ R, V = 0 on S1, LV = −1 in Ω,

thus S1 is attracting (see Definition 5.1). By Proposition 5.2 there exists a solution u0 ∈ L∞(Ω) of the problem{
1

y sinx
(uxx + y2uyy) = f in Ω,

u = 0 on ∂Ω.

In view of the above uniqueness result, this implies that there exists no solution ug ∈ L∞(Ω) of the problem{
1

y sinx
(uxx + y2uyy) = f in Ω,

u = g on ∂Ω

with g ∈ C(∂Ω), g = 0 on R, g(x̄) �= 0 at some point x̄ ∈ S1.
Let us add some remarks concerning Proposition 5.2. If some subset Σ ⊆ ∂Ω is attracting and the coefficients

ai,j , bi are bounded in Σε for some ε > 0, for any x0 ∈ Σ a local barrier does exist, thus general Dirichlet data g can
be assigned on Σ . This is the content of the following proposition (see [20]).
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Proposition 5.3. Let assumptions (H1), (H2) and (H4) be satisfied. Let Σ ⊆ ∂Ω be attracting; suppose ai,j , bi ∈
L∞(Σε) for some ε ∈ (0, ε0) (i, j = 1, . . . , n). Then for any x0 ∈ Σ there exists a local barrier.

Finally, let us mention a nonuniqueness result for problem (1.3), which immediately follows from Proposition 5.2.

Corollary 5.4. Let the assumptions of Proposition 5.2 be satisfied; suppose R ∩ S1 = ∅. Then there exist infinitely
many solutions of problem (1.3).

5.2. Uniqueness

(a) Consider the problem{
uxx + y2uyy + yuy = f in (0,1) × (0,1) = Ω,

u = g on ∂Ω \ ([0,1] × {0}) = R
(5.27)

with f ∈ C(Ω) ∩ L∞(Ω), g ∈ C(R) ∩ L∞(R). Here we take S1 = ∅, S2 = S = [0,1] × {0}.
It is easily checked that the function Z(x, y) := x2 + logy − 2 satisfies

Z � −1 in Ω, LZ = 0 in Ω, lim
y→0

Z(x, y) = −∞.

Then by Proposition 2.16 there exists at most one solution u ∈ L∞(Ω) of problem (5.27). Moreover, observe that the
function F(x, y) = −x2 + 1 satisfies

F > 0 in Ω, LF < −1 in Ω.

Then by Proposition 2.7 and the above uniqueness result problem (5.27) is well posed in L∞(Ω).
(b) Consider the problem{

(x − 1
2 )4[uxx + y2(1 − y)uyy] − u = f in (0,1) × (0,1) = Ω,

u = g on R ∪ S1
(5.28)

with f ∈ C(Ω), g ∈ C(R ∪ S1); here R = [{0}× (0,1)] ∪ [{1}× (0,1)], S1 = [0,1]× {1}, S2 = [0,1]× {0}. Observe
that the operator L degenerates on { 1

2 } × (0,1) ⊆ Ω .
The function Z(x, y) := x2 + logy − 2 satisfies

Z � −1 in Ω, LZ � Z in Ω, lim
y→0

Z(x, y) = −∞.

Then by Proposition 2.16 there exists at most one solution u ∈ L∞(Ω) of problem (5.28).
(c) Consider the problem{

uxx + y2uyy − uy − y+1
y| logy|u = f in (0,1) × (0,1) = Ω,

u = g on ∂Ω \ ([0,1] × {0}) = R
(5.29)

with f ∈ C(Ω) ∩ L∞(Ω), g ∈ C(R) ∩ L∞(R). Here we take S1 = ∅, S2 = S = [0,1] × {0}. Observe that the
coefficient c does not belong to L∞(Ω).

The function Z(x, y) = logy − 1 satisfies

Z � −1 in Ω ∪ R, LZ − cZ = c � 0 in Ω, lim
y→0

Z(x, y) = −∞;
hence by Proposition 2.16 there exists at most one bounded solution u of problem (5.29). Further observe that the
function V (x, y) := (x − 1

2 )2 + 3y is a positive supersolution of Eq. (2.13). Then, in view of Proposition 2.7 and the
above uniqueness result, problem (5.29) is well posed in L∞(Ω).

It is worth observing that

inf
Ω∪R

V = 0 < inf
R

V = 1

4
, LV = −1 in Ω;

however, Theorem 2.5 does not apply since the coefficient c is unbounded.
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(d) Consider the problem{
uxx + y2(1 − y)2uyy − (y+1)2(y2+2)

x
ux = f in (0,∞) × (0,1) = Ω,

u = g on {0} × (0,1) = S1

(5.30)

with f ∈ C(Ω), g ∈ C(S1); here we take R = ∅, S = ∂Ω , S1 = {0} × (0,1), S2 = [0,∞) × {0,1}.
The function

Z(x, y) = −(
x2 + y2) + log

[
y(1 − y)

] − 1

satisfies

Z � −1 in Ω, LZ � 0 in Ω,

lim
y→0

Z(x, y) = lim
y→1

Z(x, y) = lim
x→∞Z(x, y) = −∞.

In view of Proposition 2.16, there exists at most one solution in L∞(Ω) of problem (5.30).
(e) Consider the problem2{

x2uxx + uyy + 3xux = f in (0,∞) × R = Ω,

lim|x|+|y|→∞ u(x, y) = L
(5.31)

with f ∈ C(Ω), L ∈ R. In this case R = S1 = ∅, S = S2 = {0} × R. Consider the function

Z(x, y) = − 1

dist((x, y), S)
− 1 = − 1

x
− 1

(
(x, y) ∈ Ω

)
.

It is easily seen that

Z � −1 in Ω, LZ > 0 in Ω, lim
x→0

Z(x, y) = −∞.

In view of Proposition 2.17, for any L ∈ R problem (5.31) admits at most one bounded solution. Observe that the
“condition at infinity” is necessary to ensure uniqueness: in fact, any constant is a bounded solution of the differential
equation in (5.31) with f = 0.

The sub- and supersolutions constructed in the above examples are smooth in Ω ; however, less regularity is needed
for the general results to hold (see Definition 2.2). This is expedient in several respects; for instance, the subsolution
used to prove uniqueness is often a function of the distance from the boundary, thus its smoothness depends on that of
the latter. A simple example is given below.

(f) Consider the problem{
a11uxx + a22uyy + 2xux + 2yuy − | log |1 − x2||u = f in Ω,

u = g on R ∪ S1,
(5.32)

where

Ω = (
(−1,1) × [0,1)

) ∪ (
(−1,0) × (−1,0)

)
,

R = ([−1,0] × {−1}) ∪ ([−1,1] × {1}),
S1 = ({−1} × (−1,1)

) ∪ ({1} × (0,1)
)
,

S2 = ({0} × (−1,0)
) ∪ ([0,1] × {0});

a11(x, y) =
{

x2 + y2 if x ∈ (−1,1), y ∈ [0,1),

x2 if x ∈ (−1,0), y ∈ (−1,0),

a22(x, y) =
{

x2 + y2 if x ∈ (−1,0), y ∈ (−1,1),

y2 if x ∈ [0,1), y ∈ (0,1)

2 This example was suggested by X. Cabré.
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and f ∈ C(Ω), g ∈ C(R ∪ S1). Since

dist
(
(x, y), S2

) =
⎧⎨
⎩

y if x ∈ [0,1), y ∈ (0,1),√
x2 + y2 if x ∈ (−1,0), y ∈ (0,1),

−x if x ∈ (−1,0), y ∈ (−1,0]
for any (x, y) ∈ Ω), it is easily seen that the function

Z(x, y) = 2 log
[
dist

(
(x, y), S2

)] − log 3
(
(x, y) ∈ Ω

)
belongs to C1(Ω) ∩ C(Ω ∪ R), but not to C2(Ω). However, Z ∈ C2(Ω \ [{0} × (0,1) ∪ (−1,0) × {0}]) and there
holds

Z � log
2

3
in Ω, LZ � 0 a.e. in Ω;

hence we have∫
Ω

Z{L∗ψ − cψ}dx =
∫
Ω

{LZ − cZ}ψ dx � 0

for any ψ ∈ C∞
0 (Ω),ψ � 0. Clearly, condition (2.23) is satisfied; hence by Proposition 2.16 problem (5.32) admits at

most one bounded solution.
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