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Abstract

This is the first of two articles dealing with the equation (−�)sv = f (v) in R
n, with s ∈ (0,1), where (−�)s stands for the

fractional Laplacian — the infinitesimal generator of a Lévy process. This equation can be realized as a local linear degenerate
elliptic equation in R

n+1+ together with a nonlinear Neumann boundary condition on ∂Rn+1+ =R
n.

In this first article, we establish necessary conditions on the nonlinearity f to admit certain type of solutions, with special
interest in bounded increasing solutions in all of R. These necessary conditions (which will be proven in a follow-up paper to
be also sufficient for the existence of a bounded increasing solution) are derived from an equality and an estimate involving a
Hamiltonian — in the spirit of a result of Modica for the Laplacian. Our proofs are uniform as s ↑ 1, establishing in the limit the
corresponding known results for the Laplacian.

In addition, we study regularity issues, as well as maximum and Harnack principles associated to the equation.
© 2013

1. Introduction

This paper is devoted to the study of the nonlinear problem

(−�)sv = f (v) in R
n, (1.1)

where s ∈ (0,1) and

(−�)sv(x) = Cn,s P.V.
∫
Rn

v(x) − v(x)

|x − x|n+2s
dx. (1.2)
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Here P.V. stands for the Cauchy principal value, and Cn,s is a positive constant depending only on n and s — whose
value is given in Remark 3.11 below. The above integral is well defined if, for instance, v is bounded (which ensures
the integrability at infinity) and v is C2

loc(R
n) (which ensures the integrability at x = x in the principal value sense).

The following is an essential tool in our treatment of the nonlinear equation (1.1). As explained in more detail
in Section 3 below, up to an explicit multiplicative constant (given in Remark 3.11) in front of the nonlinearity f ,
problem (1.1) can be realized in a local manner through the nonlinear boundary value problem⎧⎨

⎩
div

(
ya∇u

) = 0 in R
n+1+ ,

(1 + a)
∂u

∂νa
= f (u) on ∂Rn+1+ =R

n,
(1.3)

where n � 1, Rn+1+ = {(x, y) ∈ R
n ×R: y > 0} is the upper half space, ∂Rn+1+ = {y = 0}, u = u(x, y) is real valued,

and

∂u

∂νa
= − lim

y↓0
ya∂yu

is the conormal exterior derivative of u. Points in R
n are denoted by x = (x1, . . . , xn). The parameter a belongs to

(−1,1) and is related to the power s of the fractional Laplacian (−�)s by the formula

a = 1 − 2s ∈ (−1,1)

— a relation that we assume throughout the paper.
Indeed, Caffarelli and Silvestre [7] have proved the following formula relating the fractional Laplacian (−�)s to

the Dirichlet to Neumann operator for (1.3):

(−�)s
{
u(·,0)

} = ds

∂u

∂νa
in R

n = ∂Rn+1+ , (1.4)

where ds is a positive constant depending only on s (see Remark 3.11 below for its value).
The aim of this paper — and of the forthcoming one [4] — is to study two types of bounded solutions of (1.1):

(a) Solutions v = v(x) of (1.1) which are monotone increasing, say from −1 to 1, in one of the x-variables. These
solutions are named layer solutions and constitute our main interest.

(b) Radial solutions v = v(|x|) of (1.1) tending, say, to 0 as |x| → ±∞.

In the second part [4] of this work, we will be concerned with the existence, uniqueness, symmetry and variational
properties, as well as the asymptotic behavior of layer solutions. These questions will be related, of course, to structural
assumptions made on the nonlinearity f .

In this first article, we establish necessary conditions on the nonlinearity f to admit a layer solution in R (i.e., in
dimension one), and also to admit radial solutions in R

n with limit at infinity. In the case of layer solutions, our nec-
essary conditions (2.7) and (2.8) below will be proven in [4] to be also sufficient for the existence of a layer solution.
Conditions (2.7) and (2.8) express that f is of bistable balanced type, and thus the potential G (with G′ = −f ) is of
double-well type. Classical examples are the Allen–Cahn equation −�v = v − v3 and the Peierls–Nabarro problem
(−�)1/2v = π−1 sin(πv).

Our necessary conditions are derived from a new equality and a new estimate involving the Hamiltonian for (1.3)
— in the spirit of a celebrated inequality of Modica [17] for the Laplacian. For s = 1/2 the Hamiltonian equality and
estimate were proven by Solà-Morales and the first author in [5]. Also for s = 1/2 but in the non-stationary case,
Caffarelli, Mellet, and the second author [6] establish a corresponding Hamiltonian equality. It is a crucial tool in their
proof of existence of traveling waves for the homogeneous heat equation in a half-plane together with a nonlinear
Neumann boundary condition of combustion type. In Subsection 1.1 below we explain the Hamiltonian structure of
problem (1.3).

Let us also recall that Modica proved that every bounded solution of �v − G′(v) = 0 in the whole R
n satisfies

(1/2)|∇v|2 � G(v) pointwise in all Rn, assuming only that G � 0 in R. Using the Hamiltonian structure, here we
prove an analogue of such an estimate in dimension one in the case of nonlocal operators given by the fractional
Laplacians. This is done via a careful study of the local boundary value problem (1.3).
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In addition, in this first paper we also study regularity issues, as well as maximum, Liouville, and Harnack princi-
ples associated to the fractional Laplacian in R

n. These tools will be needed in this paper and in its follow-up.
Our work extends to all fractions s ∈ (0,1) the results of one of the authors and J. Solà-Morales [5] for the case

s = 1/2. [5] studies bounded (specially layer) solutions of⎧⎨
⎩

�u = 0 in R
n+1+ ,

∂u

∂ν
= f (u) on ∂Rn+1+ ,

which corresponds to the case a = 0 in (1.3). It is well known that the Dirichlet to Neumann operator associated to the
previous problem is precisely (−�)1/2. Therefore, layer solutions of the previous equation are actually heteroclinic
connections (between −1 and 1) of

(−�)1/2v = f (v) in R
n,

where v is the trace of u on the boundary {y = 0}. The goal of our papers is to generalize this study to any fractional
power s ∈ (0,1) of the Laplacian. We will make a great use of the tools developed in [5]. However, some new
difficulties arise due to the degeneracy of the operator in (1.3).

The first equation in (1.3) is a linear degenerate elliptic equation with weight ya . Since a ∈ (−1,1), the weight ya

belongs to the Muckenhoupt class A2; see [18]. More precisely, a nonnegative function w defined in R
N is said to be

A2 if, for some constant C,

sup
B

(
1

|B|
∫
B

w

)(
1

|B|
∫
B

w−1
)
� C

for all balls B in R
N . It is easy to verify that |y|a ∈ A2(R

n+1) for a ∈ (−1,1). As we explain in Section 3, this
fact allows to use the regularity results of Fabes, Jerison, Kenig, and Serapioni [11,10] concerning divergence form
equations with A2 weights. Another important property of the weight ya is that it depends only on the extension
variable y and not on the tangential variables x. Thus, (1.3) is invariant under translations in x — as it is Eq. (1.1).
In [4], this will allow us, for instance, to use for (1.3) the sliding method of Berestycki and Nirenberg.

The study of elliptic equations involving fractional powers of the Laplacian appears to be important in many
physical situations in which one has to consider long-range or anomalous diffusions. From a probabilistic point of
view, the fractional Laplacian is the infinitesimal generator of a Lévy process — see the book of Bertoin [3], for
instance.

A lot of interest is currently devoted to the study of nonlinear equations involving fractional powers of the Lapla-
cian. This type of operator seems to have a prevalent role in physical situations such as combustion (see [8]), and
in dislocations in mechanical systems (see [14]) or in crystals (see [13,24]). Layer solutions are a central object in
equations modeling phase transitions, for instance in the Peierls–Nabarro equation (−�)1/2v = π−1 sin(πv) for dis-
locations in crystals. In addition, these operators arise in modeling diffusion and transport in a highly heterogeneous
medium; they may be used in the description of the diffusion of a liquid in some heterogeneous media, or as an
effective diffusion in a limiting advection–diffusion equation with a random velocity field; see for instance [16].

1.1. Formal Hamiltonian structure

As in [5], the quantity appearing in our main results — see for instance (2.9) below — arises naturally when one
looks at problem (1.3) for n = 1 as a formal Hamiltonian system in infinite dimensions. Here the time variable is
τ = x, the position q is the function u(x, ·) = u(τ, ·) in the halfline {y � 0}, and the momentum is p = q ′ = ux(τ, ·).

From the action — that is, in PDE terminology the energy functional (2.1) below, which we already have at hand
— we see that the Lagrangian is L(q,p) = (1/2)‖p‖2

2,a + W(q), where

W(q) = 1

2
‖∂yq‖2

2,a + 1

1 + a
G

(
q(0)

)
,

‖w‖2 = ∫ +∞
ya|w(y)|2 dy, and G′ = −f .
2,a 0
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The Legendre transform of L with respect to p gives the Hamiltonian

H(q,p) =
+∞∫
0

ta

2

{
u2

x(x, t) − u2
y(x, t)

}
dt − 1

1 + a
G

(
u(x,0)

)

= 1

2
‖p‖2

2,a − W(q).

One can easily check that its associated Hamiltonian system(
q ′

p′

)
=

(
p

W ′(q)

)
is formally problem (1.3).

Thus, our equation admits a Hamiltonian structure in an infinite dimensional phase space. However, in this paper
we do not address the question of setting it as a true well posed semigroup. Note that a lot of challenging issues usually
arise with infinite dimensional Hamiltonian systems — see for instance [9].

1.2. Outline of the article

The paper is organized as follows. Section 2 contains the statements of our main results. In Section 3 we explain the
relation between problems (1.1) and (1.3), and we present the Poisson kernel and a regularity result for (1.3). Section 4
contains results on the operator La appearing in (1.3); we establish Schauder estimates, a Harnack inequality, a Hopf
principle, maximum principles, and a Liouville theorem. Section 5 is concerned with the proof of the Hamiltonian
equality and estimates. In Section 6 we prove our results on layers as the fraction s tends to 1. Finally, in Section 7
we collect the proofs of our main results, Theorems 2.2, 2.3, 2.4 and 2.5, using the results established in previous
sections.

2. Main results: Hamiltonian identity and necessary conditions on the nonlinearity for existence

Throughout the paper we assume that s ∈ (0,1) and that the nonlinearity satisfies

f ∈ C1,γ (R) for some γ > max(0,1 − 2s).

We will denote G the associated potential, i.e.,

G′ = −f

— which is defined up to an additive constant. We recall that the problem under study is (1.3), i.e.,⎧⎨
⎩

div
(
ya∇u

) = 0 in R
n+1+ ,

(1 + a)
∂u

∂νa
= f (u) on ∂Rn+1+ ,

with a = 1 − 2s. In the sequel we will denote

Law = div
(
ya∇w

)
.

We use the notation

B+
R = {

(x, y) ∈R
n+1: y > 0,

∣∣(x, y)
∣∣ < R

}
,

Γ 0
R = {

(x,0) ∈ ∂Rn+1+ : |x| < R
}
, and

Γ +
R = {

(x, y) ∈ R
n+1: y � 0,

∣∣(x, y)
∣∣ = R

}
.

It is easy to see that (1.3) has a variational structure, corresponding to the energy functional

EB+
R
(u) =

∫
B+

1

2
ya|∇u|2 dx dy +

∫
Γ 0

1

1 + a
G(u)dx. (2.1)
R R
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We are concerned with the following types of solutions. The first class (layer solutions) consists of solutions which
are increasing and have limits at infinity in one Euclidean variable in the space R

n of x-variables. In the following
definition, and for future convenience, after a rotation we may assume that such variable is the x1-variable.

Definition 2.1. We say that v is a layer solution of (1.1) if v is a solution of (1.1) satisfying

vx1 > 0 in R
n, and

lim
x1→±∞v(x) = ±1 for every (x2, . . . , xn) ∈R

n−1. (2.2)

We say that u is a layer solution of (1.3) if it is a solution of (1.3),

ux1 > 0 on ∂Rn+1+ , and (2.3)

lim
x1→±∞u(x,0) = ±1 for every (x2, . . . , xn) ∈R

n−1. (2.4)

It is important to emphasize that, for n� 2, the limits in (2.2) and (2.4) are taken for (x2, . . . , xn) fixed, and are not
assumed to be uniform in (x2, . . . , xn) ∈ R

n−1.
We will also study solutions v of (1.1) which are radially symmetric (not necessarily decreasing) and such that

lim|x|→∞v
(|x|) = 0. (2.5)

We can now state our main results. The next theorem provides a necessary condition — (2.7) and (2.8) — on the
nonlinearity f to admit a layer solution in R. In our subsequent paper [4], this necessary condition will be proven to
be also sufficient for the existence of a layer solution. It is interesting to point out that conditions (2.7) and (2.8) are
independent of the fraction s ∈ (0,1), and that they are also the necessary and sufficient conditions for the existence
of a layer solution to the local equation −v′′ = f (v) in all of R.

The theorem also states that families of layer solutions indexed by s ∈ (0,1) converge as s goes to 1 to a layer
solution of the equation −v′′ = f (v) in R.

Theorem 2.2. (i) Let s ∈ (0,1) and f any C1,γ (R) function, for some γ > max(0,1 − 2s). Assume that there exists a
layer solution v of

(−∂xx)
sv = f (v) in R, (2.6)

that is, v is a solution of (2.6) satisfying

v′ > 0 in R and lim
x→±∞v(x) = ±1.

Then, we have

G′(1) = G′(−1) = 0 (2.7)

and

G > G(1) = G(−1) in (−1,1). (2.8)

(ii) Let f be any C1,γ (R) function with γ ∈ (0,1). Assume that {vs}, with s = sk ∈ (0,1) and sk ↑ 1, is a sequence
of layer solutions of

(−∂xx)
svs = f (vs) in R,

such that vs(0) = 0. Then, there exits a function v such that

lim
s=sk↑1

vs = v

in the uniform C2 convergence on every compact set of R. Furthermore, the function v is the layer solution of

−v′′ = f (v) in R

with v(0) = 0.
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Conditions (2.7) and (2.8) express that is G is of double-well type and f is of bistable balanced type. Note that the
statement G(1) = G(−1) is equivalent to

1∫
−1

f = 0.

Theorem 2.2 is actually a consequence of the following Hamiltonian equality and estimate, which are of indepen-
dent interest. We have introduced the Hamiltonian associated to problem (1.3) in Subsection 1.1 above. The following
Hamiltonian identity for layer solutions in R states the conservation of the Hamiltonian in “time” — recall that x plays
the role of time variable. Instead, the Hamiltonian inequality below is the analogue in dimension 1 of the classical
Modica estimate for bounded solutions of semilinear equations �v − G′(v) = 0 in R

n, which states that the kinetic
energy is bounded at every point by the potential energy, i.e., (1/2)|∇v|2 � G(v) everywhere in R

n, whenever G � 0
in R.

Notice that our Modica-type estimate is stated for n = 1. It is still an open problem for n� 2.
The theorem also provides an asymptotic result as s goes to 1, in which we recover the classical Hamiltonian

identity.

Theorem 2.3. (i) Let a ∈ (−1,1) and f any C1,γ (R) function, for some γ > max(0, a). Let n = 1 and u be a layer
solution of (1.3). Then, for every x ∈R we have

∫ +∞
0 ta|∇u(x, t)|2 dt < ∞ and the Hamiltonian equality

(1 + a)

+∞∫
0

1

2
ta

{
u2

x(x, t) − u2
y(x, t)

}
dt = G

(
u(x,0)

) − G(1). (2.9)

Furthermore, for all y � 0 and x ∈ R we have

(1 + a)

y∫
0

1

2
ta

{
u2

x(x, t) − u2
y(x, t)

}
dt < G

(
u(x,0)

) − G(1). (2.10)

(ii) Let f be any C1,γ (R) function with γ ∈ (0,1), n = 1 and {ua}, with a = ak ∈ (−1,1) and ak ↓ −1
be a sequence of layer solutions of (1.3) (with u replaced by ua for each a) such that ua(0,0) = 0. Then,
lima=ak↓−1 ua(·,0) = v in the uniform C2 convergence on every compact set of R, where v is the layer solution
of −v′′ = f (v) in R with v(0) = 0. In addition, for every x ∈R we have

lim
a↓−1

(1 + a)

+∞∫
0

1

2
ta(ua)

2
x(x, t) dt = 1

2
v′(x)2 = G

(
v(x)

) − G(1)

and

lim
a↓−1

(1 + a)

+∞∫
0

1

2
ta(ua)

2
y(x, t) dt = 0.

We emphasize once again that the previous estimate (2.10) is pointwise and nonlocal.
The asymptotic result when a → −1 (i.e., s → 1) of part (ii) in the previous theorem allows to recover from (2.9)

the standard conservation of the Hamiltonian for the Laplacian. This will be presented in Section 6 below.
In the case of radial solutions with limit at infinity, we establish the following result. Here the dimension n is

arbitrary.

Theorem 2.4. Let s ∈ (0,1) and f any C1,γ (R) function, for some γ > max(0,1 − 2s).
Let n > 1 and v = v(x) = v(|x|) be a nonconstant radial solution of

(−�)sv = f (v) in R
n
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satisfying

lim|x|→+∞v
(|x|) = 0.

Then, we have

f (0) = 0 = G′(0) and G(0) > G
(
v(0)

)
.

If, in addition, v is decreasing in |x|, then

f ′(0) = −G′′(0) � 0.

The statement G(0) > G(v(0)) is equivalent to

v(0)∫
0

f > 0.

As in the case of layer solutions, Theorem 2.4 relies on the following statement about the Hamiltonian. In this next
theorem we do not assume u(·,0) to have a limit at infinity.

Theorem 2.5. Let a ∈ (−1,1) and f any C1,γ (R) function, for some γ > max(0, a).
Let n� 1 and u be a bounded solution of (1.3) which is radial in x, i.e., u(x, y) = u(|x|, y).
Then,

∫ +∞
0 ta|∇u(r, t)|2 dt < ∞ for every r � 0, and the quantity

(1 + a)

+∞∫
0

ta

2

{
u2

r (r, t) − u2
y(r, t)

}
dt − G

(
u(r,0)

)
(2.11)

is nonincreasing in r � 0.

3. Local realization of the fractional Laplacian and results on degenerate elliptic equations

This section is concerned with the relation between the local problem (1.3) and the nonlocal problem (1.1). We col-
lect also several results on degenerate elliptic equations with A2 weights.

We first introduce the spaces

Hs
(
R

n
) = {

v ∈ L2(
R

n
)
: |ξ |s(Fv)(ξ) ∈ L2(

R
n
)}

,

where s ∈ (0,1) and F denotes Fourier transform. For Ω ⊂ R
n+1+ a Lipschitz domain (bounded or unbounded) and

a ∈ (−1,1), we denote

H 1(Ω,ya
) = {

u ∈ L2(Ω,ya dx dy
)
: |∇u| ∈ L2(Ω,ya dx dy

)}
.

3.1. Local realization of the fractional Laplacian

The fractional Laplacian can be defined in various ways, which we review now. It can be defined using Fourier
transform by

F
(
(−�)sv

) = |ξ |2sF(v),

for v ∈ Hs(Rn). It can also be defined through the kernel representation (see the book by Landkof [15])

(−�)sv(x) = Cn,s P.V.
∫
Rn

v(x) − v(x)

|x − x|n+2s
dx, (3.1)

for instance for v ∈ S(Rn), the Schwartz space of rapidly decaying functions. One can also define the fractional
Laplacian acting on spaces of functions with weaker regularity. Indeed, following [21], one defines the space Ss(R

n)
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of C∞ functions v such that for every k � 0, the quantity (1 + |x|n+2s)Dkv(x) is bounded. We denote S ′
s(R

n) its
dual. It is then possible to check that (−�)s maps S(Rn) into Ss(R

n). By duality, this allows to define the fractional
Laplacian for functions in the space

Ls

(
R

n
) :=

{
v ∈ L1

loc

(
R

n
)
:

∫
Rn

|v(x)|
(1 + |x|)n+2s

dx < ∞
}

= L1
loc

(
R

n
) ∩ S ′

s

(
R

n
)
.

For v ∈ Ls(R
n) ∩ C2

loc(R
n), the integral in (3.1) is well defined. This is clear for |x| large. For the Cauchy principal

value to be well defined (as x → x), it suffices to assume that v is C2
loc(R

n). In particular, expression (3.1) defines the
operator on the type of solutions that we consider, since they will always be bounded in R

n and locally C2. See [21,15]
for more comments on the various definitions of the fractional Laplacian and their agreement. We refer the reader to
the book by Landkof [15] where an extensive study of integro-differential operators with Martin–Riesz kernels, i.e.,
kernels of the type (up to a normalizing constant) 1/|z|n+2s is presented.

It is well known that one can see the operator (−�)1/2 by considering it as the Dirichlet to Neumann operator
associated to the harmonic extension in the halfspace, paying the price to add a new variable. In [7], Caffarelli and
Silvestre proved that such a kind of realization is also possible for any power of the Laplacian between 0 and 1, as
follows.

Given s ∈ (0,1), let a = 1−2s ∈ (−1,1). By a result of Nekvinda [20], it is known that the space Hs(Rn) coincides
with the trace on ∂Rn+1+ of H 1(Rn+1+ , ya). In particular, every v ∈ Hs(Rn) is the trace of a function u ∈ L2

loc(R
n+1+ , ya)

such that ∇u ∈ L2(Rn+1+ , ya). In addition, the function u which minimizes

min

{ ∫
R

n+1+

ya|∇u|2 dx dy: u|
∂Rn+1+

= v

}
(3.2)

solves the Dirichlet problem{
Lau := div

(
ya∇u

) = 0 in R
n+1+ ,

u = v on ∂Rn+1+ .
(3.3)

By standard elliptic regularity, u is smooth in R
n+1+ . It turns out that −yauy(·, y) converges in H−s(Rn) to a distribu-

tion h ∈ H−s(Rn) as y ↓ 0. That is, u weakly solves{
div

(
ya∇u

) = 0 in R
n+1+ ,

−ya∂yu = h on ∂Rn+1+ .
(3.4)

Consider the Dirichlet to Neumann operator

Γa : Hs
(
R

n
) → H−s

(
R

n
)
, v → Γa(v) = h := − lim

y→0+ya∂yu,

where u is the solution of (3.3). Then, we have:

Theorem 3.1. (See [7].) For every v ∈ Hs(Rn),

(−�)sv = dsΓa(v) = −ds lim
y→0+ya∂yu

holds in the distributional sense, where a = 1 − 2s and ds is a positive constant depending only on s — whose value
is given in Remark 3.11.

In other words, given h ∈ H−s(Rn), a function v ∈ Hs(Rn) solves the equation (−�)sv = dsh in R
n if and only if

its extension u ∈ H 1(Rn+1+ , ya) solves (3.4). By duality, the same relation can be stated when v ∈ Ls(R
n) — as it is

the case of the solutions considered in this paper.
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3.2. Degenerate elliptic equations with A2 weights

According to the previous result, we must study the operator La = div(ya∇) in R
n+1+ , whose weight ya belongs

to the class A2 since a ∈ (−1,1). Through a reflection method, it will be useful to consider the equation in domains
Ω ⊂ R

n+1 not necessarily contained in R
n+1+ . In such case, we extend the weight ya by |y|a for y < 0. That is,

we define

Lau := div
(|y|a∇u

)
in Ω ⊂R

n+1. (3.5)

In a series of papers [11,10], Fabes, Jerison, Kenig, and Serapioni developed a systematic theory for this class of
operators: existence of weak solutions, Sobolev embeddings, Poincaré inequality, Harnack inequality, local solvability
in Hölder spaces, and estimates on the Green’s function.

In particular, as a consequence of a Poincaré inequality related to A2 weights, they established an existence result
(via the Lax–Milgram theorem) and a Hölder continuity result. The following three results for La as in (3.5), with
a ∈ (−1,1) follow from results of [11], stated there for general A2 weights. More precisely, they follow respectively
from Theorem 2.2, Theorems 2.3.12 and 2.3.15 (and Remark 1 preceding it), and Lemma 2.3.5 of [11].

Theorem 3.2 (Solvability in Sobolev spaces). (See [11].) Let Ω ⊂ R
n+1 be a smooth bounded domain, h = (h1, . . . ,

hn+1) satisfy |h|/|y|a ∈ L2(Ω, |y|a), and g ∈ H 1(Ω, |y|a). Then, there exists a unique solution u ∈ H 1(Ω, |y|a) of
Lau = −divh in Ω with u − g ∈ H 1

0 (Ω, |y|a).

Theorem 3.3 (Hölder local regularity). (See [11].) Let Ω ⊂ R
n+1 be a smooth bounded domain and u a solution of

Lau = −divh in Ω , where |h|/|y|a ∈ L2(n+1)(Ω, |y|a). Then, u is Hölder continuous in Ω with a Hölder exponent
depending only on n and a.

Theorem 3.4 (Harnack inequality). (See [11].) Let u be a positive solution of Lau = 0 in B4R(x0) ⊂ R
n+1. Then,

supBR(x0)
u� C infBR(x0) u for some constant C depending only on n and a — and in particular, independent of R.

As a consequence, bounded solutions of Lau = 0 in all of Rn+1 are constant.

The last statement is proved applying the previous Harnack inequality to u − infRn+1 u in B4R(0) and letting
R → ∞.

Corollary 3.5. Problems (3.3) and (3.4) admit at most one solution u with u bounded and continuous in R
n+1+ — up

to an additive constant in the case of (3.4).

Proof. The difference w of two solutions would solve the homogeneous problem. We can then perform odd reflection
for problem (3.3) and even reflection for problem (3.4), to obtain a bounded solution of Law = 0 in all of R

n+1.
By Theorem 3.4, w is constant, which finishes the proof.

We remark that in case of the Neumann problem (3.4), the previous Liouville and uniqueness results also follow
from the Harnack inequality in R

n+1+ that we prove in Lemma 4.9 below. �
The existence of a bounded solution for (3.3) and (3.4) is stated below in this same section.

3.3. A duality principle

An important property of the operator La is the following duality property. It relates the Neumann problem for the
operator La with the Dirichlet problem for L−a , the operator with the inverse weight.

Proposition 3.6. (See [7].) Assume that h ∈ C(Rn), u ∈ C2(Rn+1+ ), and ya∂yu ∈ C(Rn+1+ ). If u is a classical solution
of ⎧⎪⎨

⎪⎩
div

(
ya∇u

) = 0 in R
n+1+ ,

∂u

a
= h on ∂Rn+1+ ,
∂ν
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then w = −ya∂yu is a classical solution of{
div

(
y−a∇w

) = 0 in R
n+1+ ,

w = h on ∂Rn+1+ .

The previous duality property is related, in dimension two, to some generalized Cauchy–Riemann conditions that
we describe. Indeed, writing Lau = 0 in R

2+ as

∂x

(
ya∂xu

) + ∂y

(
ya∂yu

) = 0,

we see that the associated conjugate function ũ is such that{
ya∂yu = ∂xũ,

−ya∂xu = ∂yũ,

hence satisfying generalized Cauchy–Riemann conditions. The function ũ is the a-conjugate of u. Similarly, u is the
−a conjugate of ũ. Complexifying the problem by denoting ϕ = u + iũ, it is easy to see that ϕ satisfies

∂ϕ = ν(y)∂ϕ (3.6)

where ∂ = ∂x + i∂y is the standard ∂-operator and

ν(y) = 1 + ya

1 − ya
.

Eq. (3.6) is called conjugate Beltrami equation and has been extensively studied in the Calderon problem (see [2,22,
19] and references therein).

3.4. Fundamental solutions

Concerning the operator La involved in the extension or Dirichlet problem for the fractional Laplacian, one has the
following represention formula through a Poisson kernel.

Proposition 3.7. (See [7].) Given s ∈ (0,1), let a = 1 − 2s ∈ (−1,1). The function

Ps(x, y) = pn,s

y2s

(|x|2 + y2)
n+2s

2

= pn,s

y1−a

(|x|2 + y2)
n+1−a

2

is a solution of{
div

(
ya∇Ps

) = 0 in R
n+1+ ,

Ps = δ0 on ∂Rn+1+ =R
n,

(3.7)

where δ0 is the delta distribution at the origin, and pn,s is a positive constant depending only on n and s chosen such
that, for all y > 0,∫

Rn

Ps(x, y) dx = 1.

Its value is given below in Remark 3.11 (c).

Remark 3.8. As a consequence of Corollary 3.5 above, we have that for v ∈ (C ∩ L∞)(Rn), the convolution in the
x-variables

u(·, y) = Ps(·, y) ∗ v

is the unique solution of (3.3) in (C ∩ L∞)(Rn+1+ ).
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As a consequence, for v a bounded C2
loc(R

n) function, v is a solution of (1.1) if and only if

u(·, y) = Ps(·, y) ∗ v

is a solution of (1.3) (with f replaced by (1 + a)d−1
s f = 2(1 − s)d−1

s f ) whose trace on ∂Rn+1+ is v. Recall that ds is
the constant from (1.4).

From the previous duality principle (Proposition 3.6) and the knowledge of the fundamental solution (the Poisson
kernel) of the Dirichlet problem (3.3), we can find the fundamental solution of the fractional Laplacian or, equivalently,
the fundamental solution of the Neumann problem (3.4).

Proposition 3.9. (See [7].) Given s ∈ (0,1), let a = 1 − 2s ∈ (−1,1). The function

Γs(x, y) = en,s

∣∣(x, y)
∣∣2s−n = en,s

∣∣(x, y)
∣∣1−a−n

is a solution of{
div

(
ya∇Γs

) = 0 in R
n+1+ ,

−ya∂yΓs = δ0 on ∂Rn+1+ =R
n,

(3.8)

where δ0 is the delta distribution at the origin, and en,s is a positive constant depending only on n and s.

As a consequence, Γs(x,0) = en,s |x|2s−n is, up to a multiplicative constant, the fundamental solution of (−�)s

in R
n.

Remark 3.10. As a consequence of Corollary 3.5 above, we have that for h ∈ Cc(R
n) (h continuous with compact

support), the convolution in the x-variables

u(·, y) = Γs(·, y) ∗ h

is the unique (up to an additive constant) solution of (3.4) in (C ∩ L∞)(Rn+1+ ). Thus, its trace

v = |x|2s−n ∗ h

is up to a multiplicative constant, the unique (up to an additive constant) continuous and bounded solution of

(−�)sv = h in R
n.

Remark 3.11. (a) The normalizing constant Cn,s in (1.2) is given by

Cn,s = π− n
2 22s

Γ (n+2s
2 )

−Γ (−s)
= π− n

2 22s
Γ (n+2s

2 )

Γ (1 − s)
s = π− n

2 22s
Γ (n+2s

2 )

Γ (2 − s)
s(1 − s).

In particular, up to positive multiplicative constants, Cn,s behaves as s and 1 − s for s ↓ 0 and s ↑ 1, respectively.
(b) Let us also make some comments on the constant ds in the Caffarelli–Silvestre extension problem — see

Theorem 3.1. Its value is given by

ds = 22s−1 Γ (s)

Γ (1 − s)
.

The fact that this constant does not depend on n is already proved in Section 3.2 of [7]. Its precise value appears in
several papers; see e.g. [22,12]. Using that sΓ (s) = Γ (s+1) and (1−s)Γ (1−s) = Γ (2−s), we deduce, respectively,
that

ds

(2s)−1
→ 1 as s ↓ 0 and

ds

2(1 − s)
→ 1 as s ↑ 1. (3.9)

When u solves problem (1.3), its boundary condition (1 + a)∂νau = 2(1 − s)∂νau = f (u) gives that the trace of u

solves

(−�)s
{
u(·,0)

} = ds

2(1 − s)
f

(
u(·,0)

)
.
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(c) The value of the constant in front of the Poisson kernel is given by

pn,s = π− n
2
Γ (n+2s

2 )

Γ (s)
;

see Remark 2.2 in [22].

4. Preliminary results on elliptic problems involving La: Schauder estimates, maximum principles, and a
Liouville theorem

This section is devoted to the proof of several general results concerning problem (1.3). The following definition
provides the concept of weak solution for (1.3). More generally, we consider the problem{

div
(
ya∇u

) = 0 in B+
R ,

−yauy = h on Γ 0
R ,

(4.1)

where we have used the notation introduced in the beginning of Section 2.

Definition 4.1. Given R > 0 and a function h ∈ L1(Γ 0
R), we say that u is a weak solution of (4.1) if

ya|∇u|2 ∈ L1(B+
R

)
and ∫

B+
R

ya∇u · ∇ξ −
∫
Γ 0

R

hξ = 0 (4.2)

for all ξ ∈ C1(B+
R ) such that ξ ≡ 0 on Γ +

R .

Remark 4.2. The (weak) maximum principle holds for weak solutions of (4.1). More generally, if u weakly solves⎧⎪⎨
⎪⎩

−div
(
ya∇u

)
� 0 in B+

R ,

−yauy � 0 on Γ 0
R,

u � 0 on Γ +
R

(4.3)

(in the corresponding sense to the previous definition by taking nonnegative test functions), then u� 0 in B+
R . This is

proved simply multiplying the weak formulation by the negative part u− of u.
In addition, one has the strong maximum principle: either u ≡ 0 or u > 0 in B+

R ∪ Γ 0
R . That u cannot vanish at

an interior point follows from the classical strong maximum principle for strictly elliptic operators. That u cannot
vanish at a point in Γ 0

R follows from the Hopf principle that we establish below (see Proposition 4.11) or by the strong
maximum principle of [11].

Note that the same weak and strong maximum principles (and proofs) hold in other bounded domains of Rn+1+
different than B+

R . It also holds for the Dirichlet problem in B+
R , i.e., replacing the Neumann condition in (4.3) by

u� 0 on Γ 0
R .

4.1. Schauder estimates

In the following, we prove several estimates for solutions of (1.1) and (1.3), as well as for solutions of the Neumann
problem (4.1) in B+

R .

Remark 4.3. Note that the function u(x, y) = y1−a solves Lau = 0. Therefore, one cannot expect the Hölder regular-
ity in y to be higher than Cmin(1,1−a) up to the boundary {y = 0}. Thus, for s < 1/2 (i.e. a > 0), there are solutions of
Lau = 0 vanishing on {y = 0} which are not C1 up to {y = 0}.
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The next lemmas provide several regularity results. We start with estimates on the nonlocal equation. Here we use
results from [21] and the equivalent notions of bounded solutions described there.

Lemma 4.4. Let f be a C1,γ (R) function with γ > max(0,1 − 2s). Then, any bounded solution of

(−�)sv = f (v) in R
n

is C2,β(Rn) for some 0 < β < 1 depending only on s and γ .
Furthermore, given s0 > 1/2 there exists 0 < β < 1 depending only on n, s0, and γ — and hence independent of s

— such that for every s > s0,

‖v‖C2,β (Rn) � C

for some constant C depending only on n, s0, ‖f ‖C1,γ , and ‖v‖L∞(Rn) — and hence independent of s ∈ (s0,1).
In addition, the function defined by u = Ps ∗v (where Ps is the Poisson kernel in Proposition 3.7) satisfies for every

s > s0,

‖u‖
Cβ(Rn+1+ )

+ ‖∇xu‖
Cβ(Rn+1+ )

+ ∥∥D2
xu

∥∥
Cβ(Rn+1+ )

� C

for some constant C independent of s ∈ (s0,1), indeed depending only on the same quantities as the previous one.

Proof. Since v is bounded, f (v) is also bounded. Applying Proposition 2.9 in [21], we have

• If s � 1/2, then for any α < 2s, v ∈ C0,α(Rn).
• If s > 1/2, then for any α < 2s − 1, v ∈ C1,α(Rn).

This implies in particular that f (v) is Cα(Rn). Applying now Proposition 2.8 in [21], we have

• If α + 2s � 1, then v ∈ C0,α+2s(Rn).
• If α + 2s > 1, then v ∈ C1,α+2s−1(Rn).

Therefore, iterating the procedure a finite number of times, one gets that v ∈ C1,σ (Rn) for some σ ∈ (0,1) depending
only on s. Indeed, if α + 2s > 1, then one can take σ = α + 2s − 1. On the other hand if α + 2s � 1, we have that
f (v) is C0,α+2s . As a consequence, one gets that v is C0,α+4s . Hence iterating a finite number of times, we will end
up with α + k2s > 1 for some integer k. This gives the C1,σ regularity.

We now differentiate the equation to obtain

(−�)svxi
= f ′(v)vxi

in R
n

for i = 1, . . . , n, with vxi
and f ′(v) belonging to C0,σ (Rn) provided we take σ < γ . Therefore, applying Proposi-

tion 2.8 of [21] we obtain that vxi
∈ C0,σ+2s(Rn). We iterate this procedure a finite number of times (as long as the

Hölder exponent is smaller than γ ). Now, since by assumption γ + 2s > 1, we finally arrive at vxi
∈ C1,β(Rn), and

thus v ∈ C2,β(Rn) for some β > 0 depending only on s and γ .
For the second point of the lemma, we write the nonlocal equation as

−�v = (−�)1−sf (v) in R
n.

A careful look at the proof of Proposition 2.5 in [21] shows the following. Given s0 > 1/2, if 0 < 2 − 2s0 < α < 1,
the operator (−�)1−s maps Cα(Rn) into Cα−2+2s(Rn) continuously with a constant independent of s. Here we use
that the constant Cn,s in (1.2) is uniformly bounded as s ↑ 1 — see Remark 3.11. As a consequence, applying C2,β

estimates for Poisson equation, we deduce that v ∈ C2,α−2+2s0(Rn) = C2,β(Rn) and a C2,β estimate with a constant
independent of s — indeed depending on the quantities in the statement of the lemma.

We now come to the last point of the lemma. Let v ∈ (L∞ ∩ Cβ)(Rn) for some β ∈ (0,min(1,2s0)] — here we
allow s0 ∈ (0,1). We claim that there exists a constant C depending on n and s0, independent of s > s0, such that the
function u defined by
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u(·, y) = Ps(·, y) ∗ v

is (L∞ ∩ Cβ)(Rn+1+ ) with the estimate

‖u‖
Cβ(Rn+1+ )

� C‖v‖Cβ(Rn).

Applying this fact to v, vxi
and vxixj

, we conclude the statement of the lemma. To prove the claim, the Poisson
kernel Ps writes

Ps(x, y) = 1

yn
Hs

(
x

y

)
where

Hs(ξ) = pn,s

1

(1 + |ξ |2) n+2s
2

.

The constant pn,s is such that
∫
Rn Hs(ξ) dξ = 1 and therefore it is bounded uniformly in s, for s > s0 — alternatively,

use the formula in Remark 3.11 (c). We have

u(x, y) =
∫
Rn

v(x − yξ)Hs(ξ) dξ

and then∣∣u(x1, y1) − u(x2, y2)
∣∣ =

∣∣∣∣
∫
Rn

{
v(x1 − y1ξ) − v(x2 − y2ξ)

}
Hs(ξ) dξ

∣∣∣∣
� C

{
|x1 − x2|β + |y1 − y2|β

∫
Rn

Hs(ξ)|ξ |βdξ

}
‖v‖Cβ(Rn).

Thus we deduce the desired result taking β < 2s0 < 2s. �
The next lemma provides estimates for solutions of the Neumann problem in a half-ball.

Lemma 4.5. Let a ∈ (−1,1) and R > 0. Let ϕ ∈ Cσ (Γ 0
2R) for some σ ∈ (0,1) and u ∈ L∞(B+

2R) ∩ H 1(B+
2R,ya) be a

weak solution of⎧⎨
⎩

Lau = 0 in B+
2R ⊂R

n+1+ ,

∂u

∂νa
= ϕ on Γ 0

2R.

Then, there exists β ∈ (0,1) depending only on n, a, and σ , such that u ∈ C0,β(B+
R ) and yauy ∈ C0,β(B+

R ).
Furthermore, there exist constants C1

R and C2
R depending only on n, a, R, ‖u‖L∞(B+

2R) and also on ‖ϕ‖L∞(Γ 0
2R)

(for C1
R) and ‖ϕ‖Cσ (Γ 0

2R) (for C2
R), such that

‖u‖
C0,β (B+

R )
� C1

R

and ∥∥yauy

∥∥
C0,β (B+

R )
� C2

R.

Proof. Multiply ϕ by a cut-off function identically 1 in Γ 0
3R/2 and call it ϕ. Thus ϕ is Cσ

c (Rn) and ϕ ≡ ϕ in Γ 0
3R/2.

Let u be the solution of⎧⎨
⎩

Lau = 0 in R
n+1+ ,

∂u

∂νa
= ϕ on ∂Rn+1+

given in Remark 3.10. We have that u is continuous and bounded.
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Then, the function u|
∂Rn+1+

solves

(−�)su = dsϕ in R
n

and by Proposition 2.9 in [21], we have that u ∈ C0,β(Rn) for some β ∈ (0,1) depending only on n and s = 1−a
2 .

We consider now w = u − u. Then, w is a bounded function and a weak solution of⎧⎨
⎩

Law = 0 in B+
3R/2 ⊂R

n+1+ ,

∂w

∂νa
= 0 on Γ 0

3R/2.

Reflecting evenly the function w with respect to {y = 0}, the reflected function w̃ satisfies in the weak sense the
problem

div
(|y|a∇w̃

) = 0 in B3R/2 ⊂R
n+1.

This fact is verified with a classical computation using test functions and integration by parts. Now, since the weight
|y|a is A2 and the function w̃ is bounded, the regularity theory in [11] (see Theorem 3.3 above) ensures that w̃ is C0,β

for some β ∈ (0,1) depending only on n and s.

Putting these two results together ensures that u ∈ C0,β(B+
R ) for some β ∈ (0,1) depending on n and s. Further-

more, we get the estimate

‖u‖
C0,β (B+

R )
� C1

R

for some constant C1
R as in the statement of the lemma (depending on ‖ϕ‖L∞ and not on ‖ϕ‖Cσ ).

On the other hand, by Proposition 3.6, ψ(x,y) := −yauy(x, y) satisfies{
L−aψ = 0 in B+

2R,

ψ = ϕ on Γ 0
2R.

We introduce

ψ̃(x, y) = Ps̄(·, y) ∗ ϕ,

where s̄ is such that 1 − 2s̄ = −a. Recall that ϕ ∈ Cσ (Rn) has compact support. Thus, ψ̃ is bounded and Cβ(Rn+1+ )

if β � min(σ,2s) (for this, recall the argument on convolutions at the end of the proof of Lemma 4.4).
Now, we have that the odd reflection of the function ψ = ψ − ψ̃ satisfies in weak sense

div
(|y|−a∇ψ

) = 0 in B3R/2 ⊂R
n+1.

Hence by the results in [11] (see Theorem 3.3 above), ψ is Cβ for some β ∈ (0,1), depending only on n and s (perhaps
different than the previous β). This and the above fact on ψ̃ give the desired result and estimates for ψ = −yauy =
ψ + ψ̃ . �
4.2. Gradient estimates and integrability at infinity

The following two results concern bounds for solutions of problem (1.3).

Proposition 4.6. Let f be a C1,γ (R) function with γ > max(0,1 − 2s) and u ∈ L∞(Rn+1+ ) a weak solution of
problem (1.3).

Then, ∇xu and ya∂yu belong to L∞(Rn+1+ ). In addition, given s0 > 1/2, there exists a constant C1 depending only
on n, s0, ‖f ‖C1,γ and ‖u‖

L∞(Rn+1+ )
, such that for every s > s0, we have

‖∇xu‖
L∞(Rn+1+ )

+ (1 + a)
∥∥ya∂yu

∥∥
L∞(Rn+1+ )

� C1. (4.4)
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Furthermore, we have

∣∣∇u(x, y)
∣∣ � C2

y
for y > 0, (4.5)

where the constant C2 is uniformly bounded for a ∈ (−1,1).
As a consequence of (4.4), we have

ya|∇u|2 ∈ L1
loc

(
R

n+1+
)
.

Proof. The bound ‖∇xu‖
L∞(Rn+1+ )

in (4.4) follows from Lemma 4.4 and the fact that

ds

2(1 − s)
= ds

1 + a
→ 1 as s → 1;

see Remark 3.11. The bound on (1 + a)‖ya∂yu‖
L∞(Rn+1+ )

in (4.4) follows from duality (see Proposition 3.6) and the

boundary condition

−(1 + a)ya∂yu|y=0 = f (u) ∈ L∞(
R

n
)
.

The last bound (4.5) follows from rescaling the equation Lau = 0 in By0/2(x0, y0) to the same equation for
u(x′, y′) = u(x0 + y0x

′, y0y
′) in B1/2(0,1). Then we use that the operator La is uniformly elliptic and has Lipschitz

coefficients (y′)a with constants independent of a ∈ (−1,1) — since 1/2 < y′ < 3/2 in this ball. �
The following result is concerned with solutions of (1.3) with limits in one Euclidean variable, or in the radial

variable, at infinity.

Remark 4.7. If u is a layer solution of (1.3), then not only ux1(x,0) > 0 but ux1(x, y) > 0 for every y � 0. Indeed,

since Laux1 = 0 in R
n+1+ and ux1 is bounded and continuous in R

n+1+ (by Lemma 4.4), Remark 3.8 gives that ux1(·, y)

is the convolution of Ps(·, y) with ux1(·,0) > 0. Hence the result follows.

Lemma 4.8. (i) Let u be a bounded solution of (1.3) such that

lim
x1→±∞u(x,0) = L± (4.6)

for every (x2, . . . , xn) ∈R
n−1 and some constants L±. Then,

f
(
L+) = f

(
L−) = 0 (4.7)

and

lim
x1→±∞u(x, y) = L± (4.8)

for every (x2, . . . , xn) ∈R
n−1 and y � 0. Moreover, for every fixed R > 0 and (x2, . . . , xn) ∈R

n−1, we have∥∥u − L±∥∥
L∞(B+

R (x,0))
→ 0 as x1 → ±∞, (4.9)

‖∇xu‖L∞(B+
R (x,0)) → 0 as x1 → ±∞, (4.10)

and ∥∥yauy

∥∥
L∞(B+

R (x,0))
→ 0 as x1 → ±∞. (4.11)

(ii) Let u be a radial solution of (1.3) such that

lim|x|→∞u
(|x|,0

) = 0. (4.12)
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Then,

f (0) = 0. (4.13)

Moreover, for every fixed R > 0, we have

‖u‖L∞(B+
R (x,0)) + ‖∇xu‖L∞(B+

R (x,0)) + ∥∥yauy

∥∥
L∞(B+

R (x,0))
→ 0 as |x| → ∞. (4.14)

Proof. As in Lemma 2.4 in [5] for the half-Laplacian, the lemma follows easily by a compactness argument and the
invariance of the problem under translations in x1. Indeed, in both cases (i) and (ii) of the lemma, one considers the
family of translated (or slided) solutions in the x1-variable, ut (x, y) = u(x1 + t, x2, . . . , xn, y). In the radial case (ii)
we proceed like this in each Euclidean variable, not only the x1.

By the Hölder estimates of Lemma 4.5, the translated solutions converge locally uniformly and up to subsequences,
to a solution of the same problem (1.3). By assumption (4.6) or (4.12), such limit is identically constant. From this,
(4.7), (4.13), (4.8), (4.9) and (4.11) follow immediately. Finally, the Cβ estimate for ∇xu of Lemma 4.4 leads to (4.10)
or (4.14). �
4.3. A Harnack inequality

The following Harnack inequality for linear Neumann problems will be useful in the study of stable solutions
of (1.1). It has also been proved in [23] for the more general equation ∂νaϕ + d(x)ϕ = b(x).

Lemma 4.9. Let ϕ ∈ H 1(B+
4R,ya) be a nonnegative weak solution of⎧⎨

⎩
Laϕ = 0 in B+

4R ⊂R
n+1+ ,

∂ϕ

∂νa
+ d(x)ϕ = 0 on Γ 0

4R,

where d is a bounded function in Γ 0
4R . Then,

sup
B+

R

ϕ � CR inf
B+

R

ϕ, (4.15)

for some constant CR depending only on n, a, and R1−a‖d‖L∞(Γ 0
4R).

Proof. By scaling, one can assume R = 1. We introduce the new function

Ψ A(x, y) = eAy1−a

ϕ(x, y).

The function Ψ A satisfies⎧⎪⎨
⎪⎩

div
(
ya∇(e−Ay1−a

Ψ A)
) = 0 in B+

4 ,

∂Ψ A

∂νa
= −(

A(1 − a) + d(x)
)
Ψ A on Γ 0

4 .

Therefore, choosing

A =
‖d‖L∞(Γ 0

4 )

1 − a
,

we have ∂νaΨ A � 0 on Γ 0
4 . We consider the even extension of Ψ A across Γ 0

4 , defined by

Ψ̃ A(x, y) = Ψ A(x,−y) for (x, y) ∈ B4, y � 0.

Since ∂νaΨ A � 0 on Γ 0
4 , Ψ̃ A satisfies

−div
(|y|a∇(

e−A|y|1−a

Ψ̃ A
))

� 0 in B4

in the weak sense.
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Next, taking −A we obtain ∂νaΨ −A � 0 on Γ 0
4 , and arguing as before we deduce that Ψ̃ −A satisfies

−div
(|y|a∇(

eA|y|1−a

Ψ̃ −A
))

� 0 in B4

in the weak sense.
Denote by LA the operator

LAw := div
(|y|a∇(

e−A|y|1−a

w
))

.

We introduce now the solutions h±A of{
L±Ah±A = 0 in B4,

h±A = Ψ̃ ±A on ∂B4.
These solutions are obtained from the solutions of the Dirichlet problem for La given by Theorem 3.2, after multiply-
ing h±A by e±A|y|1−a

. By the weak maximum principle and the previous considerations, we have that

Ψ̃ A � hA and h−A � Ψ̃ −A in B4. (4.16)

On the other hand, since Ψ A/Ψ −A = e2Ay1−a � e2A41−a � e32A in B+
4 , we have that Ψ̃ A � e32AΨ̃ −A on ∂B4.

Next, since LAhA = 0 = L−Ah−A = LA(e2A|y|1−a
h−A) and on the boundary ∂B4, hA = Ψ̃ A � e32AΨ̃ −A �

e32Ae2A|y|1−a
Ψ̃ −A = e32A{e2A|y|1−a

h−A}, the weak maximum principle for the operator LA leads to

hA � e32A
{
e2A|y|1−a

h−A
}
� e64Ah−A in B4. (4.17)

Next, note that La(e
−A|y|1−a

hA) = 0 in B4. According to the Harnack inequality of Fabes, Kenig, and Serapioni,
Lemma 2.3.5 of [11] (Theorem 3.4 above), we deduce that

sup
B1

(
e−A|y|1−a

hA
)
� C inf

B1

(
e−A|y|1−a

hA
)

for some constant C depending only on n and a. Thus,

sup
B+

1

hA � CeA inf
B+

1

hA. (4.18)

Using (4.16), (4.17), and (4.18), we deduce

ϕ � Ψ̃ A � hA � e64Ah−A � e64AΨ̃ −A � e64Aϕ in B+
1 . (4.19)

Finally, (4.19) and (4.18) lead immediately to the desired result. �
4.4. A Liouville theorem

We prove the following theorem, which will be useful in [4] to prove a symmetry result for stable solutions of (1.3)
in R

2+. This is a generalization to degenerate elliptic equations of the Liouville theorem given in [5]. This type of
result had been already used in [1] to prove the De Giorgi conjecture for reactions in the interior in three dimensional
spaces.

Theorem 4.10. Let ϕ ∈ L∞
loc(R

n+1+ ) be a positive function. Suppose that σ ∈ H 1
loc(R

n+1+ , ya) is such that{−σ div
(
yaϕ2∇σ

)
� 0 in R

n+1+ ,

−σya∂yσ � 0 on ∂Rn+1+
(4.20)

in the weak sense. Assume that for every R > 1,∫
B+

R

ya(σϕ)2 dx dy � CR2 (4.21)

for some constant C independent of R.
Then σ is constant.
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Proof. We adapt the proof given in [5]. Let ζ be a C∞ function on [0,+∞) such that 0 � ζ � 1 and

ζ =
{

1 for 0 � t � 1,

0 for t � 2.

For R > 1 and (x, y) ∈ R
n+1+ , let ζR(x, y) = ζ(r/R), where r = |(x, y)|.

Multiplying (4.20) by ζ 2
R and integrating by parts in R

n+1+ , we obtain∫
R

n+1+

yaζ 2
Rϕ2|∇σ |2 dx dy �−2

∫
R

n+1+

yaζRϕ2σ∇ζR∇σ dx dy

� 2

[ ∫
R

n+1+ ∩{R<r<2R}

yaζ 2
Rϕ2|∇σ |2 dx dy

]1/2

·

·
[ ∫
R

n+1+

yaϕ2σ 2|∇ζR|2 dx dy

]1/2

� C

[ ∫
R

n+1+ ∩{R<r<2R}

yaζ 2
Rϕ2|∇σ |2 dx dy

]1/2

·

·
[

1

R2

∫
B+

2R

ya(ϕσ)2 dx dy

]1/2

,

for some constant C independent of R. Using hypothesis (4.21), we infer that∫
R

n+1+

yaζ 2
Rϕ2|∇σ |2 dx dy � C

[ ∫
R

n+1+ ∩{R<r<2R}

yaζ 2
Rϕ2|∇σ |2 dx dy

]1/2

, (4.22)

again with C independent of R. Hence,
∫
R

n+1+
yaζ 2

Rϕ2|∇σ |2 dx dy � C and, letting R → ∞, we deduce∫
R

n+1+
yaϕ2|∇σ |2 dx dy � C. It follows that the right hand side of (4.22) tends to zero as R → ∞, and therefore∫

R
n+1+

yaϕ2|∇σ |2 dx dy = 0. We conclude that σ is constant. �
4.5. A Hopf principle

The following proposition provides a Hopf boundary lemma in our context.

Proposition 4.11. Let a ∈ (−1,1) and consider the cylinder CR,1 = Γ 0
R × (0,1) ⊂ R

n+1+ where Γ 0
R is the ball of

center 0 and radius R in R
n. Let u ∈ C(CR,1) ∩ H 1(CR,1, y

a) satisfy⎧⎨
⎩

Lau� 0 in CR,1,

u > 0 in CR,1,

u(0,0) = 0.

Then,

lim sup
y→0+

−ya u(0, y)

y
< 0.

In addition, if yauy ∈ C(CR,1), then

∂νau(0,0) < 0.
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Proof. Consider the function on CR,1 defined by

wA(x, y) = y−a
(
y + Ay2)ϕ(x),

where A is a constant to be chosen later and ϕ = ϕ(x) is the first eigenfunction of −�x in Γ 0
R/2 with Dirichlet

boundary conditions, i.e.,{−�xϕ = λ1ϕ in Γ 0
R/2,

ϕ = 0 on ∂Γ 0
R/2.

Notice that λ1 > 0 and that we can choose ϕ > 0 in Γ 0
R/2 with ‖ϕ‖L∞ = 1. The function wA satisfies⎧⎪⎪⎨

⎪⎪⎩
LawA = ϕ(x)

{
A(2 − a) − λ1

(
y + Ay2)} in CR/2,1,

wA � 0 in CR/2,1,

wA = 0 on ∂Γ 0
R/2 × [0,1).

Therefore, choosing A large enough, we have in CR/2,1

LawA � 0.

Hence, for ε > 0,

La(u − εwA)� 0 in CR/2,1

and u − εwA = u � 0 on ∂Γ 0
R/2 × [0,1). Moreover, taking ε > 0 small enough, we have on Γ 0

R/2 × {y = 1/2}
u� εwA,

since u is continuous and positive on the closure of this set. Notice furthermore that wA = 0 on Γ 0
R × {y = 0}. Thus,

we have{
La(u − εwA) � 0 in CR/2,1/2,

u − εwA � 0 on ∂CR/2,1/2.

The weak maximum principle then implies that in CR/2,1/2

u − εwA � 0.

Consequently, this leads to

lim sup
y→0+

−ya u(0, y)

y
� ε lim sup

y→0+
−ya wA(0, y)

y
= −εϕ(0) < 0,

as claimed in the proposition.
Assume, in addition, yauy ∈ C(CR,1). Let y0 � 1/2. Since (u− εwA)(0, ·) � 0 in [0, y0] and (u− εwA)(0,0) = 0,

we have (uy − ε(wA)y)(0, y1)� 0 for some y1 ∈ (0, y0). Repeating this argument for a sequence of y′
0s tending to 0,

we conclude that −yauy � −εya(wA)y at a sequence of points (0, yj ) with yj ↓ 0. Since we assume yauy continuous
up to {y = 0} and −ε(ya(wA)y)(0, yj ) → −εϕ(0), we conclude that ∂νau(0,0) < 0. �
Corollary 4.12. Let a ∈ (−1,1) and ε > 0. Let d be a Hölder continuous function in Γ 0

ε and u ∈ L∞(B+
ε ) ∩

H 1(B+
ε , ya) be a weak solution of⎧⎪⎨
⎪⎩

Lau = 0 in B+
ε ,

u � 0 in B+
ε ,

∂νau + d(x)u = 0 on Γ 0
ε .

Then, u > 0 in B+
ε ∪ Γ 0

ε unless u ≡ 0 in B+
ε .
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Proof. We apply Lemma 4.5 to obtain that u (for this, see the proof of the lemma) and yauy are Cα up to the boundary.
Hence the equation

∂νau + d(x)u = 0 (4.23)

is satisfied pointwise on Γ 0
ε . If u is not identically 0 in B+

ε then u > 0 in B+
ε by the strong maximum principle for

the operator La . Now, if u(x0,0) = 0 at some point (x0,0) ∈ Γ 0
ε , then a rescaled version of Proposition 4.11 gives

∂νau(x0,0) < 0. This contradicts (4.23). �
4.6. A maximum principle

Here we present a maximum principle related to the operator La and to the fractional Laplacian. We will need it in
our subsequent article to prove monotonicity properties for solutions in R with limits, as well as the uniqueness (up to
translations) of layer solutions in R. Recall that Section 3 already contained some Liouville and maximum principles
for these operators.

Lemma 4.13. Let u ∈ (C ∩ L∞)(Rn+1+ ) with yauy ∈ C(Rn+1+ ) satisfy⎧⎨
⎩

Lau = 0 in R
n+1+ ,

∂u

∂νa
+ d(x)u � 0 on ∂Rn+1+ ,

(4.24)

where d is a bounded function, and also

u(x,0) → 0 as |x| → ∞. (4.25)

Assume that there exists a closed nonempty set H ⊂R
n such that u(x,0) > 0 for x ∈ H , and such that d is continuous

and nonnegative in R
n \ H .

Then, u > 0 in R
n+1+ .

Proof. By Remark 3.8 applied to v(x) = u(x,0) − infRn u(·,0) � 0, we see that u − infRn u(·,0) � 0 in R
n+1+ . Thus,

inf
R

n+1+
u = infRn u(·,0).

Arguing by contradiction, assume that there exists a point (x0, y0) in R
n+1+ such that u(x0, y0) � 0. Then, in case

inf
R

n+1+
u = 0, the minimum of u is achieved at (x0, y0). In case inf

R
n+1+

u = infRn u(·,0) < 0, using that u(x,0) → 0

as |x| → +∞, there exists a point (x1,0) at which the minimum of u is achieved. In both cases we conclude that the
nonpositive minimum of u is achieved at a point (x2, y2).

By the strong maximum principle, we cannot have y2 > 0, since u is not identically constant (recall u(·,0) > 0 in

H �= ∅). Thus y2 = 0. According to the Hopf lemma, Proposition 4.11, and since yauy ∈ C(Rn+1+ ), we have

∂u

∂νa
(x2,0) < 0.

Since u(x2,0) � 0 then x2 /∈ H , and thus we have d(x2) � 0. Now, using the boundary condition in (4.24) at x = x2,
we reach a contradiction. �
Remark 4.14. Lemma 4.13 can be stated in an equivalent way using the equation

(−�)sv + d(x)v � 0 in R
n

and assuming the same conditions on v as those for u(·,0) in the previous lemma. In addition, an alternative proof
of the lemma can be given using the integral expression (1.2) for (−�)sv(x2), that will be negative at a point of
minimum (since v is not identically constant in the proof).
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5. Hamiltonian estimates

This section is devoted to establish the main facts needed to prove Theorems 2.3 and 2.5. We start with an easy
lemma that will be needed later in several occasions.

Lemma 5.1. Let u ∈ L∞(Rn+1+ ) be a bounded solution of (1.3). Then, for all x ∈ R
n, we have∫ +∞

0 ta|∇u(x, t)|2 dt < ∞. In addition, the integral can be differentiated with respect to x ∈ R
n under the integral

sign. Furthermore,

lim
M→+∞

+∞∫
M

ta
∣∣∇u(x, t)

∣∣2
dt = 0 (5.1)

uniformly in x ∈ R
n.

If in addition, u is either a layer solution in R (here n = 1) or u is a radial solution in R
n for which

lim|x|→∞ u(|x|,0) exists, then

lim|x|→∞

+∞∫
0

ta
∣∣∇u(x, t)

∣∣2
dt = 0. (5.2)

Proof. The first two statements and (5.1) follow directly from the gradient bounds in Proposition 4.6. The statement
(5.2) is a consequence of (5.1) and of Lemma 4.8. �
5.1. Hamiltonian equality and estimate for layer solutions

This subsection contains two lemmas. The first one establishes that the Hamiltonian is conserved for layer solutions
in dimension one.

Lemma 5.2. Let n = 1 and assume that u is a layer solution of (1.3). Then, for all x ∈ R we have∫ +∞
0 ta|∇u(x, t)|2 dt < ∞ and the Hamiltonian identity

(1 + a)

+∞∫
0

ta

2

{
u2

x(x, t) − u2
y(x, t)

}
dt = G

(
u(x,0)

) − G(1). (5.3)

As a consequence,

G(1) = G(−1). (5.4)

Proof. The integrability of ta|∇u(x, t)|2 follows from Lemma 5.1. We now establish equality (5.3). It will be crucial
that the weight in La does not depend on the tangential variable x.

Following [5], we consider the function

v(x) =
+∞∫
0

ta

2

{
u2

x(x, t) − u2
y(x, t)

}
dt. (5.5)

Lemma 5.1 allows us to differentiate under the integral in (5.5) to get

d

dx
v(x) =

+∞∫
0

ta(uxxux − uxyuy)(x, t) dt.

Noticing that

Lau = ∂y

(
yauy

) + yauxx = 0
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and after an integration by parts (which is justified by Lemma 5.1) we have

d

dx
v(x) = lim

y→0+ yauy(x, y)ux(x, y) = 1

1 + a

d

dx
G

(
u(x,0)

)
.

The function (1 + a)v(x)−{G(u(x,0))−G(1)} is then constant in x. Letting x → +∞ and using Lemma 5.1, we
have that this constant is actually zero. Letting now x → −∞ and using Lemma 5.1, we deduce G(1) = G(−1). �

We have obtained that a necessary condition for the existence of a layer solution in R is that G(1) = G(−1). The
other necessary condition will follow from the following result — our Modica-type estimate for layer solutions in
dimension 1 (Theorem 2.3).

Lemma 5.3. Let n = 1 and assume that u is a layer solution of (1.3). Then, for every y � 0 and all x ∈R, we have

(1 + a)

y∫
0

ta

2

{
u2

x(x, t) − u2
y(x, t)

}
dt < G

(
u(x,0)

) − G(1). (5.6)

Proof. We introduce the function

w(x,y) =
y∫

0

ta

2

{
u2

x(x, t) − u2
y(x, t)

}
dt,

which is bounded in all R2+ by Lemma 5.1. We also consider the function

w(x,y) = 1

1 + a

{
G

(
u(x,0)

) − G(1)
} − w(x,y).

The function w is bounded in R
2+ and we need to show that w > 0 in R

2+.
We first derive some equations for w which will be useful in the sequel. We have, for all y > 0,

wy(x, y) = −ya

2

(
u2

x(x, y) − u2
y(x, y)

)
. (5.7)

Furthermore, using Lau = 0 and integrating by parts as in the previous proof, one gets for all y > 0

wx(x, y) = yaux(x, y)uy(x, y). (5.8)

Using the two previous equalities and the equation Lau = 0, we have for all y > 0

Law = −ay2a−1u2
x (5.9)

and

L−aw = −ay−1u2
y. (5.10)

We claim that w does not achieve its infimum at a point in R
2+. We assume the contrary and reach a contradiction.

Let (x0, y0) be a point where the infimum is achieved. There are now two cases depending if y0 is on the boundary or
not. We will also use that w is not identically constant. Indeed, if it were, since w(·,0) ≡ 0 then

constant = w(·,0) = 1

1 + a

{
G

(
u(·,0)

) − G(1)
}
.

Thus G is constant in (−1,1), f ≡ 0 in (−1,1) and u is a bounded function satisfying (1.3) with f ≡ 0. Hence, after
an even reflection across {y = 0}, Theorem 3.4 ensures that u is a constant, a contradiction with ux > 0.

Case 1: y0 = 0. After a translation in x, we may assume x0 = 0. Since x0 = 0 is a global minimum of
(1 + a)w(·,0) = G(u(·,0)) − G(1), we have

0 = (d/dx)G
(
u(x,0)

)|x=0 = −f
(
u(0,0)

)
ux(0,0),
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and therefore

0 = −f
(
u(0,0)

) = (1 + a) lim
y→0+ yauy(0, y), (5.11)

since u is a layer solution (i.e., ux(x,0) > 0). For every (x, y) ∈R
2+, we have by Remark 4.7,

ux(x, y) > 0 in R
2+. (5.12)

We now divide the conclusion into two subcases. Let consider first the case a � 0. By (5.7), we see that yawy is
Hölder continuous up to y = 0. Since Law � 0 by (5.9) and w is not identically a constant, we have w > w(0,0)

in R
2+. Thus the Hopf principle (see Proposition 4.11) gives that

0 > − lim
y→0+ yawy(0, y).

Now, using (5.7) and (5.11), we have

0 > − lim
y→0+ yawy(0, y)

= lim
y→0+

y2a

2

{
u2

x(0, y) − u2
y(0, y)

}

= lim
y→0+

y2a

2
u2

x(0, y) � 0,

a contradiction.
We turn now to the case a < 0. Since (0,0) is a global minimum for w(x,y), one gets

0 � lim inf
y→0+ −y−awy(0, y)

= lim inf
y→0+

1

2

(
u2

x(0, y) − u2
y(0, y)

) = 1

2
u2

x(0,0) > 0,

a contradiction. We have used that, by Lemma 4.5 |uy(0, y)| � Cy−a → 0 as y → 0+.

Case 2: y0 > 0. By (5.12), we have ux > 0 in R
2+. Using (5.8) and (5.10), we obtain

0 = L−aw + ay−1u2
y = L−aw +

(
ay−1−a uy

ux

)
wx

which is the same as

0 = ∇ · (y−a∇w
) + b(x, y)wx in R

2+,

with b(x, y) := ay−1−auyu
−1
x . But this last operator is uniformly elliptic with continuous coefficients in compact sets

of {y > 0}. Thus it cannot achieve its minimum at (x0, y0), since y0 > 0 and we have proved that w is not identically
constant.

Therefore, we now know that w cannot achieve its infimum at a point in R
2+. To finish the proof, assume first

inf
R

2+
w < 0.

By Lemma 5.2, w(x,y) → 0 as y → +∞ locally uniformly in x. By Lemma 5.1, we have w(x,y) → 0 as |x| → +∞
uniformly in y. Therefore, the infimum of w being negative, it should be achieved at a point in R

2+, a contradiction
with what we have proven. Therefore,

inf
R

2+
w � 0,

i.e. w � 0.
Thus, if w vanished at some point in R

2+, this point would achieve the infimum of w, a contradiction. Hence w > 0

in R
2+ as stated in the lemma. �
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5.2. The Hamiltonian for radial solutions

The next lemma deals with bounded radial solutions u of (1.3). Here we do not assume u to have a limit at infinity.

Lemma 5.4. Let u be a bounded solution of (1.3). Assume that u = u(|x|, y) is radially symmetric in x. Then,

(1 + a)

+∞∫
0

ta

2

{
u2

r (r, t) − u2
y(r, t)

}
dt − G

(
u(r,0)

)
(5.13)

is a nonincreasing function of r .

Proof. The function u solves⎧⎨
⎩urr + n − 1

r
ur + uyy + a

y
uy = 0 in (0,+∞) × (0,+∞),

−(1 + a)yauy = f (u) on (0,+∞) × {y = 0}.
Let

w(r) :=
+∞∫
0

ta

2

{
u2

r (r, t) − u2
y(r, t)

}
dt.

By Lemma 5.1, we can differentiate under the integral with respect to r and obtain

dw(r)

dr
=

+∞∫
0

ta{ururr − uyury}(r, t) dt.

Performing one integration by parts and using the equation and Lemma 5.1, we end up with

dw(r)

dr
= −n − 1

r

+∞∫
0

tau2
r (r, t) dt + 1

1 + a
G′(u(r,0)

)
ur(r,0).

As a consequence, the function

(1 + a)w(r) − G
(
u(r,0)

)
is nonincreasing in r , as claimed. Furthermore,

d

dr

{
(1 + a)w(r) − G

(
u(r,0)

)} = −(1 + a)
n − 1

r

∞∫
0

tau2
r (r, t) dt. � (5.14)

6. The limit s → 1 and the classical Laplacian

In the following, we investigate the asymptotic s → 1. For this, we will use crucially the previous Hamiltonian
estimates. We prove the following theorem.

Theorem 6.1. Assume that f ∈ C1,γ (R) for some γ ∈ (0,1) and that {vs}, with s = sk ∈ (0,1) and sk ↑ 1, is a
sequence of layer solutions of

(−∂xx)
svs = f (vs) in R,

such that vs(0) = 0. Then, there exits a function v such that

lim
s↑1

vs = v

in the uniform C2 convergence on every compact set of R.
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Furthermore, the function v is the layer solution of

−v′′ = f (v) in R

with v(0) = 0, and satisfies the Hamiltonian equality

1

2

(
v′)2 = G(v) − G(1) in R. (6.1)

The previous theorem is stronger than just saying that the limit when s goes to 1 is a solution of an ODE, since it
states that the limit is actually a layer itself. We can see Theorem 6.1 as a stability result in the class of layer solutions
of nonlocal (and local) equations.

Proof of Theorem 6.1. Let vs be a layer solution of

(−∂xx)
svs = f (vs) in R

with vs(0) = 0. Then, the extension ua = Ps ∗ vs of vs satisfies⎧⎪⎪⎪⎨
⎪⎪⎪⎩

div
(
ya∇ua

) = 0 in R
2+,

(1 + a)
∂ua

∂νa
= caf (ua) on ∂R2+,

ua = vs on ∂R2+,

where ca = d−1
s (1 + a) = d−1

s 2(1 − s) and ds is the constant in Theorem 3.1 and Remark 3.11. By (3.9), we know
that ca tends to 1 as a goes to −1. The weak formulation of this problem is

(1 + a)

∫
R

2+

ya∇ua · ∇ξ −
∫
R

caf (ua)ξ = 0 (6.2)

for all ξ ∈ C1(R2+) compactly supported.
First notice that, by the regularity result in Lemma 4.4, which is uniform as s ↑ 1, the functions ua and ∂xua

converge over compact sets (up to a subsequence) to a function u−1 = u−1(x, y) and its x-derivative as a → −1
(which corresponds to s → 1). We now choose the following test function: ξ(x, y) = η1(x)η2(y), where η2(y) = 1
for 0 � y < 1 and η2(y) = 0 for y > 2, whereas η1 is any test function. We deduce

(1 + a)

∫
R

2+

ya
{
η′

1(x)η2(y)∂xua + η1(x)η′
2(y)∂yua

}
dx dy

−
∫
R

caf (ua)η1(x) dx = 0.

We now pass to the limit in each term. Thanks to the uniform bounds of Lemma 4.4, we have that

lim
a↓−1

ca

∫
R

f (ua)η1(x) dx =
∫
R

f
(
u−1(x,0)

)
η1(x) dx.

Note that the measure (1 + a)ya dy is a probability measure on (0,1) converging as a ↓ −1 (in the weak-∗
sense of measures) to the Dirac measure δ0. More precisely, given functions wa = wa(y) continuous in [0,∞), with
|ywa(y)| � C in [0,+∞) (with C uniform in a) and with wa converging to a function w−1 uniformly in compact sets
of [0,+∞), then

lim
a↓−1

(1 + a)

∞∫
yawa(y) dy = w−1(0).
0
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Indeed, given ε > 0 let δ > 0 such that |wa(x) − wa(0)| � ε for all x ∈ (0, δ). Then, we write

(1 + a)

∞∫
0

yawa(y) dy = (1 + a)

δ∫
0

yawa(y) dy + (1 + a)

∞∫
δ

yawa(y) dy.

We have that

(1 + a)

δ∫
0

ya
(
w−1(0) + wa(0) − w−1(0)

)
dy

tends to lima↓−1 w−1(0)δ1+a = w−1(0) and

(1 + a)

δ∫
0

ya
∣∣wa(y) − wa(0)

∣∣dy � δ1+aε.

Finally,

(1 + a)

∞∫
δ

ya
∣∣wa(y)

∣∣dy � (1 + a)C

∞∫
δ

ya−1 dy � C
(1 + a)

−a
δa → 0 (6.3)

as a ↓ −1. This proves the claim above.
We now divide the integral

(1 + a)

∫
R

2+

ya
{
η′

1(x)η2(y)∂xua + η1(x)η′
2(y)∂yua

}
dx dy

= (1 + a)

∫
R×(0,+∞)

yaη′
1(x)η2(y)∂xua dx dy + (1 + a)

∫
R×(1,2)

yaη1(x)η′
2(y)∂yua dx dy.

Thanks once again to Lemma 4.4, the observation above (with wa = η2(·)∂xua(x, ·)) and the gradient bounds of
Proposition 4.6, we deduce

lim
a→−1

(1 + a)

∫
R×(0,+∞)

yaη′
1(x)η2(y)∂xua dx dy

=
∫
R

u′−1(x,0)η′
1(x) dx.

By the same lemma, |∂yua| � Cy−1 uniformly in a ∈ (−1,0), and thus the same computation as in (6.3) shows that

lim
a→−1

(1 + a)

∫
R×(1,2)

yaη1(x)η′
2(y)∂yua dx dy = 0.

Therefore, the function v := v(x) = u−1(x,0) satisfies∫
R

v′η′
1 − f (v)η1 = 0. (6.4)

Hence v is a weak solution of

−v′′ = f (v) in R,

such that v(0) = 0 and v′ � 0 in R. As a consequence, the function v admits limits at ±∞,

lim
x→±∞v(x) = L± ∈ [−1,1].
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We now prove the convergence of the Hamiltonian, which will provide in addition that the function v is actually a
layer, i.e. L± = ±1. We apply the Hamiltonian estimate (5.6) with y = 0 to the layer ua for some a ∈ (−1,1) with G

replaced by caG. We deduce

0 < G − G(1) in (−1,1). (6.5)

Next, we integrate the equation satisfied by v, we use the above observation now with wa(·) = (∂xua)
2(x, ·) and

we use the Hamiltonian identity (5.3) for the layer ua to obtain for all x ∈ R

G
(
v(x)

) − G
(
L+) = 1

2

(
v′)2

(x) = lim
a↓−1

(1 + a)

2

+∞∫
0

ya(∂xua)
2(x, y) dy

= lim
a↓−1

{
(1 + a)

2

+∞∫
0

ya(∂yua)
2(x, y) dy + caG

(
ua(x,0)

) − caG(1)

}
, (6.6)

and thus

G
(
v(x)

) − G
(
L+)

� lim
a↓−1

ca

(
G

(
ua(x,0)

) − G(1)
) = G

(
v(x)

) − G(1). (6.7)

Hence we have that

G
(
L+)

� G(1),

that together with (6.5) and L+ � 0 (since v(0) = 0) gives L+ = 1.
In addition, we deduce that the inequality (6.7) must be an equality. Thus, the term that we have dropped to obtain

the inequality must be zero, i.e.

lim
a→−1

(1 + a)

2

+∞∫
0

ya(∂yua)
2(x, y) dy = 0. (6.8)

In the same way, we prove that L− = −1. Hence v is the layer solution connecting −1 to 1, with v(0) = 0. The
uniqueness of such v follows from the Hamiltonian equality (6.1). �
7. Proof of Theorems 2.2, 2.3, 2.4, and 2.5

We prove in this section the main theorems of our paper. They will follow easily from our results in previous
sections.

Proof of Theorem 2.3. Part (i) follows from Lemmas 5.2 and 5.3. Part (ii) follows from Theorem 6.1 and from (6.6)
and (6.8) in its proof. �
Proof of Theorem 2.2. If v is a layer solution of (2.6), its extension u is a layer solution of (1.3) in R

2+, up to a
multiplicative constant in front of f that tends to 1 as s ↑ 1. In part (i) of the theorem, (2.7) follows from (4.7) in
Lemma 4.8. The equality in (2.8) is (5.4) of Lemma 5.2, while the inequality in (2.8) follows from taking y = 0 in the
statement of Lemma 5.3. Part (ii) of the theorem follows from Theorem 6.1. �
Proof of Theorem 2.5. It follows from Lemmas 5.1 and 5.4. �
Proof of Theorem 2.4. If v is a radial solution in R

n, its extension u = u(x, y) belongs to L∞(Rn+1+ ) and it is a
solution of (1.3), up to a multiplicative positive constant in front of f . Clearly, u is a radial solution in x ∈R

n.
The relation f (0) = 0 is (4.13) in Lemma 4.8.
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The conclusion G(0) > G(u(0,0)) of the theorem follows from Lemma 5.4 and (5.14). Indeed, in (5.13) we let
r = 0 and later r → ∞, and we use (5.2) in Lemma 5.1 to obtain

−G
(
v(0)

)
�−(1 + a)

∞∫
0

ta

2
u2

y(0, t) dt − G
(
v(0)

)
�−G(0).

Thus G(0) � G(v(0)). But if G(0) = G(v(0)) then the function in (5.13) would be constant in r . Hence, by (5.14)
and since n > 1, ur(r, t) ≡ 0 for all r and t , and then u is constant, contrary to our assumption.

It only remains to prove the other statement of the theorem,

f ′(0) = −G′′(0) � 0

under the assumption ur < 0. Without loss of generality, and to simplify notation, we may replace f by a positive
multiple of f in (1.3) and hence assume that u solves⎧⎨

⎩
div

(
ya∇u

) = 0 in R
n+1+ ,

∂u

∂νa
= f (u) on ∂Rn+1+ =R

n.

We differentiate both equations with respect to r = |x|, using that the first one reads urr + n−1
r

ur + uyy + a
y
uy = 0 in

(0,+∞) × (0,+∞). Let

ψ := −ur > 0 in
(
R

n \ {0}) × (0,+∞).

We deduce that

div
(
ya∇ψ

) = n − 1

|x|2 yaψ in
(
R

n \ {0}) × (0,+∞)

and

f ′(u)ψ = ∂ψ

∂νa
for y = 0.

For x0 ∈ R
n, let ψx0(x, y) := ψ(x − x0, y), a positive function in (Rn \ {x0}) × (0,+∞). Let ux0(x, y) :=

u(x − x0, y). We have

div
(
ya∇ψx0

) = n − 1

|x − x0|2 yaψx0 in
(
R

n \ {x0}
) × (0,+∞) (7.1)

and

f ′(ux0
)
ψx0 = ∂ψx0

∂νa
for y = 0. (7.2)

For R > 0, consider the cylinder CR = Γ 0
R × (0,R) ⊂ R

n+1+ , where Γ 0
R is the ball of center 0 and radius R in R

n.
Let ξ be any C1 function in CR vanishing on {|x| = R} × [0,R) and on Γ 0

R × {y = R}.
For |x0| > R, we multiply (7.2) by ξ2/ψx0 — note that ψx0 > 0 in Γ 0

R × [0,R) —, we integrate in Γ 0
R and use

(7.1) to obtain∫
Γ 0

R

f ′(ux0
)
ξ2 =

∫
CR

div
(
ya∇ψx0

) ξ2

ψx0
+ ya∇ψx0 · ∇ ξ2

ψx0
=

∫
CR

n − 1

|x − x0|2 yaξ2 + ya∇ψx0 · ∇ ξ2

ψx0

=
∫
CR

n − 1

|x − x0|2 yaξ2 + ya

{
2ξ∇ξ · ∇ψx0

ψx0
− ξ2 |∇ψx0 |2

(ψx0)2

}

�
∫
CR

n − 1

|x − x0|2 yaξ2 + ya|∇ξ |2,

where we have used Cauchy–Schwarz inequality.
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Letting |x0| → ∞, we deduce

f ′(0) �
∫
CR

ya|∇ξ |2∫
Γ 0

R
ξ2

(7.3)

for any C1 function ξ in CR vanishing on {|x| = R} × [0,R) and on Γ 0
R × {y = R}.

Let ϕR = ϕR(x) > 0 be the first eigenfunction of −�x in Γ 0
R with Dirichlet boundary conditions, i.e.,{

−�xϕR = λRϕR in Γ 0
R,

ϕR = 0 on ∂Γ 0
R,

where λR = c(n)/R2 > 0 is the first Dirichlet eigenvalue of −�x in the ball Γ 0
R . Let hR = hR(y) ∈ [0,1] be a smooth

function with compact support in [0,R) such that hR ≡ 1 in [0,R/2] and |h′
R| � C/R for some constant C. Take

ξ = ξR = ϕR(x)hR(y)

in (7.3). We have∫
CR

ya|∇ξR|2 =
∫
CR

ya
{|∇xϕR|2h2

R + ϕ2
R

(
h′

R

)2}

=
{

λR

R∫
0

yah2
R dy +

R∫
0

ya
(
h′

R

)2
dy

}∫
Γ 0

R

ϕ2
R

=
{

CR−2

R∫
0

yah2
R dy +

R∫
0

ya
(
h′

R

)2
dy

}∫
Γ 0

R

ξ2
R

� CR−2

R∫
0

ya dy

∫
Γ 0

R

ξ2
R = CR−2 R2−2s

2 − 2s

∫
Γ 0

R

ξ2
R

= C

2 − 2s
R−2s

∫
Γ 0

R

ξ2
R.

Using this in (7.3) and letting R → ∞, we conclude that f ′(0) � 0, as claimed. �
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