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Abstract

Existence and bifurcation of positive solutions to a Kirchhoff type equation⎧⎪⎨
⎪⎩

−
(

a + b

∫
Ω

|∇u|2
)

�u = νf (x,u), in Ω,

u = 0, on ∂Ω

are considered by using topological degree argument and variational method. Here f is a continuous function which is asymptot-
ically linear at zero and is asymptotically 3-linear at infinity. The new results fill in a gap of recent research about the Kirchhoff
type equation in bounded domain, and in our results the nonlinearity may be resonant near zero or infinity.
© 2013 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let Ω be a bounded domain in R
N , N = 1,2,3, with a smooth boundary ∂Ω . We consider the following Kirchhoff

type nonlocal problem with Dirichlet boundary condition⎧⎪⎨
⎪⎩

−
(

a + b

∫
Ω

|∇u|2
)

�u = νf (x,u), in Ω,

u = 0, on ∂Ω,

(1.1)

where a � 0, b � 0 are real constants, a + b > 0 and ν is a positive parameter.
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Problem (1.1) is the stationary case of a nonlinear wave equation

utt −
(

a + b

∫
Ω

|∇u|2
)

�u = νf (x,u), (1.2)

which was first proposed by Kirchhoff in 1883 to describe the transversal oscillations of a stretched string, where
u denotes the displacement, f is the external force, b represents the initial tension, and a is related to the intrinsic
properties of the string. The solvability of Kirchhoff type equation (1.2) has been well studied in general dimension
by many authors, see [6,7] and the references therein. More recently, there have been many papers studying the
elliptic version Kirchhoff type equations (1.1) with ν = 1 by using variational method, see for example, [1,3–5,10,11,
15–17,20,21,23]. To state the conditions and conclusions in this paper, we recall some results about the following two
eigenvalue problems:{−�u = λu, in Ω,

u = 0, on ∂Ω,
(1.3)

and ⎧⎪⎨
⎪⎩

−
( ∫

Ω

|∇u|2
)

�u = μu3, in Ω,

u = 0, on ∂Ω.

(1.4)

Let λ1 > 0 be the principal eigenvalue of the problem (1.3) and let ϕ1 > 0 be its associated eigenfunction. It is known
that λ1 can be characterized by

λ1 = inf

{ ∫
Ω

|∇u|2: u ∈ H 1
0 (Ω),

∫
Ω

|u|2 = 1

}
, (1.5)

where H 1
0 (Ω) is the usual Sobolev space defined as the completion of C∞

0 (Ω) with respect to the norm ‖u‖ =
(
∫
Ω

|∇u|2)1/2. On the other hand define

μ1 = inf

{
‖u‖4: u ∈ H 1

0 (Ω),

∫
Ω

|u|4 = 1

}
. (1.6)

As shown in [17], there exists μ1 > 0 which is the principal eigenvalue of (1.4) and there is a corresponding eigen-
function φ1 > 0 in Ω . It is well known that λ1 is a simple eigenvalue and any eigenfunction corresponding to other
eigenvalue must be sign-changing. In Lemma 5.3, we show that if Ω is a ball in R

N , then μ1 must be a simple eigen-
value of (1.4) and any eigenfunction corresponding to another eigenvalue must be sign-changing. This appears to be
the first such result for the eigenvalue problem (1.4).

We impose on f the following global conditions.

(f1) f ∈ C(Ω̄ ×R,R), f (x, t) � 0 for any x ∈ Ω̄, t > 0 and f (x, t) = 0 for any x ∈ Ω̄, t � 0;
(f2) For f0, f∞ < ∞, the limits

lim
t→0+

f (x, t)

aλ1t + bμ1t3
= f0, lim

t→∞
f (x, t)

aλ1t + bμ1t3
= f∞

exist uniformly for x ∈ Ω̄ .

Recall that f is called asymptotically linear at zero and asymptotically 3-linear at infinity if (f2) holds and a > 0,
b > 0. In addition, (f1) and (f2) guarantee that f satisfies the subcritical growth condition for 1 � N � 3, that is,

(f0) there exist C > 0 and p ∈ [2,2∗) such that∣∣f (x, t)
∣∣� C

(
1 + |t |p−1), (x, t) ∈ Ω̄ ×R,

where 2∗ = ∞ for N = 1,2 and 2∗ = 6 for N = 3.
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The goal of this paper is to obtain sufficient conditions on the constants f0, f∞ for problem (1.1) to have positive
solutions by using topological degree method and critical point theory.

In [20], the authors assumed that f is asymptotically linear near zero and is 3-superlinear at infinity which means
that

lim
t→∞

f (x, t)

t3
= ∞.

In [16], it was assumed that f was superlinear at zero and is 3-superlinear at infinity. In [17], the situation that
a > 0, b > 0 and f satisfies (f2) is considered, and under the additional conditions that f0λ1 and f∞μ1 are not
an eigenvalue of (1.3) and (1.4) respectively, the existence of a nontrivial solution to problem (1.1) with ν = 1 was
proved. Motivated by [17], in the present paper we are concerned with problem (1.1) under the assumptions (f1) and
(f2). Our main results are as follows. Note that in our results the constants f0λ1 or f∞μ1 could be an eigenvalue to
(1.3) or (1.4) respectively.

Theorem 1.1. Assume that N = 1,2,3, a > 0, b > 0 and f satisfies (f1) and (f2) with f0 > 1 and f∞ < 1. Then (1.1)
with ν = 1 has a positive solution. In addition, if a > 0, b = 0, then (1.1) has a positive solution with ν = 1 for all
N � 1.

Theorem 1.2. Assume that N = 1,2,3, a � 0, b > 0, and f satisfies (f1) and (f2) with f0 < 1 and f∞ > 1. Then one
of the following alternatives holds:

(i) (1,∞) is a bifurcation point of (1.1) where a bifurcation from infinity occurs, that is, there exists a sequence of
positive solutions (νn,un) to (1.1) such that limn→∞ νn = 1 and limn→∞ ‖un‖ = ∞; or

(ii) (1.1) has a positive solution with ν = 1.

In addition, if a > 0, b = 0, then (1.1) has a positive solution with ν = 1 for all N � 1.

Remark 1.3. The results above complete the study made in the recent papers in the following sense. The methods
used in [17] cannot be applied to the case that f0λ1 or f∞μ1 is an eigenvalue. In addition, there have been no
previous studies considering the bifurcation phenomena in Kirchhoff type equations to the best of our knowledge. In
Theorem 5.2, we will show that if Ω is a ball, then the alternative (ii) in Theorem 1.2 must hold, thus the bifurcation
from infinity does not occur in this case.

Remark 1.4. For the Kirchhoff equation (1.1), the usual assumption is that a � 0, b � 0 and a +b > 0 as in this paper,
see [5]. When a > 0 and b = 0, we can reduce (1.1) to{−�u = g(x,u), in Ω,

u = 0, on ∂Ω,
(1.7)

where g(x, t) = (ν/a)f (x, t). Eq. (1.7) has been extensively studied for bounded domain Ω ⊂R
N with N � 1. Under

the assumption:

(g) For g0, g∞ < ∞, the limits limt→0+ g(x,t)
t

= g0 and limt→∞ g(x,t)
t

= g∞ exist uniformly for x ∈ Ω̄ ,

the following results have been proved in [13]:

1. If g0 > λ1 and g∞ < λ1, then (1.7) has a positive solution;
2. If g0 < λ1 and g∞ > λ1, then (1.7) has a positive solution.

In this context, our results in this paper can be seen as the generalization of the results above to the Kirchhoff type
equation (1.1).

Remark 1.5. In this paper, we prove Theorems 1.1 and 1.2 only for the case of N = 1,2,3 and b > 0. This is because
that our proofs depend fundamentally on the subcritical growth condition (f0), which is essential in the definition of
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L in Section 2 and the compact embedding from H 1
0 (Ω) to L4(Ω) in Section 4. We conjecture that Theorems 1.1

and 1.2 still hold for dimension N � 4. In Theorem 1.1, we provide a positive answer to the existence of solutions
to (1.1) for the cases a > 0, b > 0 and a > 0, b = 0, except the situation that a = 0 and b > 0, which is an open
problem.

Throughout this paper, we denote by X the Sobolev space H 1
0 (Ω) with the inner product (u, v) = ∫

Ω
∇u · ∇v and

norm ‖u‖2 = ∫
Ω

|∇u|2, by X∗ the duality space of X, by ⇀ the weak convergence in X, and by 〈·,·〉 the duality
pairing between X∗ and X. The symbols C1,C2,Cε, . . . denote various positive constants whose exact values are not
essential to the analysis of the problem.

This paper is organized as follows. In Section 2, we recall some preliminaries and prove some lemmas. In Section 3,
using topological degree argument, we give the proof of Theorem 1.1. Section 4 is dedicated to prove Theorem 1.2 by
using critical point theory. Furthermore, we will give some applications of Theorem 1.2 in Section 5.

2. Preliminaries

Let P = {u ∈ X: u(x) � 0, a.e. x ∈ Ω} be the positive cone in X and let P ∗ = {h ∈ X∗: 〈h,u〉 � 0, u ∈ P } be its
dual cone. Define nonlinear operators A,L,K : X → X∗ by

〈Au,v〉 = (
a + b‖u‖2)∫

Ω

∇u · ∇v, 〈Lu,v〉 =
∫
Ω

f (x,u)v, 〈Ku,v〉 =
∫
Ω

uv, u, v ∈ X.

We first show the following property of the operator A.

Lemma 2.1. Assume that a > 0. Then the operator A is a homeomorphism from X to X∗ and A−1(P ∗) ⊂ P .

Proof. For any u,v ∈ X, we have

〈Au − Av,u − v〉
= 〈Au,u〉 − 〈Av,u〉 − 〈Au,v〉 + 〈Av,v〉
= (

a + b‖u‖2)‖u‖2 − (
a + b‖v‖2)∫

Ω

∇u · ∇v − (
a + b‖u‖2)∫

Ω

∇u · ∇v + (
a + b‖v‖2)‖v‖2

= a

(
‖u‖2 − 2

∫
Ω

∇u · ∇v + ‖v‖2
)

+ b

[
‖u‖4 + ‖v‖4 − (‖u‖2 + ‖v‖2)∫

Ω

∇u · ∇v

]

� a‖u − v‖2 + b

[
‖u‖4 + ‖v‖4 − 1

2

(‖u‖2 + ‖v‖2)2
]

� a‖u − v‖2.

Hence, A is a strongly monotone operator. It is easy to see that A is continuous from X to X∗. By the strong monotone
operator theorem [22, Theorem 26.A, p. 557], A is a homeomorphism.

To show the second part of the lemma, we assume that h ∈ P ∗. By the first part of the lemma, there exists u ∈ X

such that(
a + b‖u‖2)∫

Ω

∇u · ∇v = 〈h,v〉, v ∈ X. (2.1)

Taking v = u− = min{u,0} in (2.1), we have that (a + b‖u‖2)‖u−‖2 � 0. Hence u(x) � 0 almost everywhere for
x ∈ Ω , that is, u ∈ P . The proof is completed. �

Since the assumptions (f1) and (f2) hold, then f satisfies (f0). By [18, Proposition B.10, p. 90], we know that
L : X → X∗ is compact. Furthermore, we can easily see that L maps P into P ∗ by (f1). Similarly, K : X → X∗ is
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also compact and K maps P into P ∗. Because we are concerned with the existence of positive solutions of (1.1) with
ν = 1 in Theorem 1.1, we may consider the following operator equation in P

Au = Lu. (2.2)

Denote by Pr for r > 0 the bounded open subset {u ∈ P : ‖u‖ < r} of P . If (2.2) has no solution on ∂Pr , that is, the
completely continuous operator A−1L : P̄r ⊂ P → P has no fixed point on ∂Pr , then by [2] the index of fixed point
i(A−1L,Pr,P ) is well defined. Hence, we can use the fixed point index theory to complete the proof of Theorem 1.1.
To this end, we recall some necessary results about the fixed point index in the sequel.

Theorem 2.2. (See [2].) Let E be a real Banach space, V ⊂ E a cone, and U ⊂ V a bounded open subset of V . If the
completely continuous operator B : Ū → V has no fixed point on ∂U , then there exists an integer i(B,U,V ), which
is regarded as the fixed point index, and the following statements hold:

(i) If B : Ū → U is a constant mapping, then i(B,U,V ) = 1;
(ii) Assume that U1 and U2 are disjoint open subsets of U and B has no fixed point in Ū \ (U1 ∪ U2). Then

i(B,U,V ) = i(B,U1,V ) + i(B,U2,V ),

where i(B,Ui,V ) = i(B|Ūi
,Ui,V ), i = 1,2;

(iii) If H : [0,1] × Ū → V is a completely continuous homotopy and H(t,u) �= u for any (t, u) ∈ [0,1] × ∂U , then
i(H(t, ·),U,V ) is independent of t ∈ [0,1];

(iv) If i(B,U,V ) �= 0, then B has a fixed point in U .

Before concluding this section, we recall another theorem from [14], which will be used to prove our second
theorem in this paper. The “monotonicity trick” at the core of the recalled theorem was first formulated by Struwe [19].

Theorem 2.3. Let (E,‖ · ‖) be a Banach space and I ⊂R+ an interval. Consider the family of C1 functionals on E,

Jν(u) = S(u) − νT (u), ν ∈ I,

with Jν(0) = 0, ν ∈ I, T nonnegative and either S(u) → ∞ or T (u) → ∞ as ‖u‖ → ∞. For any ν ∈ I , we set

Γν = {
γ ∈ C

([0,1],E)
: γ (0) = 0, Jν

(
γ (1)

)
< 0

}
.

If for every ν ∈ I the set Γν is nonempty and

cν = inf
γ∈Γν

max
t∈[0,1]

Jν

(
γ (t)

)
> 0,

then for almost every ν ∈ I there exists a sequence {uν
n} ⊂ E such that

(i) {uν
n} is bounded;

(ii) Jν(u
ν
n) → cν as n → ∞;

(iii) J ′
ν(u

ν
n) → 0 in the dual E∗ as n → ∞.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we first prove two lemmas.

Lemma 3.1. Assume that a > 0, b > 0, (f1) and (f2) hold. Then

L′+(0) = af0λ1K (3.1)

and

lim‖u‖→∞,u∈P

Lu − bf∞μ1Ku3

‖u‖3
= 0, (3.2)

where L′+(0) is the right derivative of L at 0, see [8, p. 225].
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Proof. The proof of the lemma is similar to that in [12,13]. For the sake of completeness, we give a proof here. Since
(f1) and (f2) hold, then for any ε > 0, there exists Cε > 0 such that∣∣f (x, t) − af0λ1t

∣∣� εt + Cεt
3, x ∈ Ω̄, t � 0.

For any u ∈ P \ {0}, set w = u/‖u‖. Then we have by Hölder’s inequality and Sobolev’s inequality that

sup
‖v‖�1

∣∣∣∣
〈
Lu − af0λ1Ku

‖u‖ , v

〉∣∣∣∣� sup
‖v‖�1

∫
Ω

|f (x,u) − af0λ1u|
‖u‖ |v|

� sup
‖v‖�1

∫
Ω

[
εw|v| + Cε‖u‖2w3|v|]

� εC1 + C2Cε‖u‖2,

where C1,C2 > 0 are constants independent of ε. Therefore,

lim‖u‖→0, u∈P

Lu − af0λ1Ku

‖u‖ = 0,

and (3.1) holds.
Since (f1) and (f2) hold, for any ε > 0, there exists Cε > 0 such that∣∣f (x, t) − bf∞μ1t

3
∣∣� Cε + εt3, x ∈ Ω̄, t � 0.

For any u ∈ P \ {0}, set w = u/‖u‖. Then we have by Hölder’s inequality and Sobolev’s inequality that

sup
‖v‖�1

∣∣∣∣
〈
Lu − bf∞μ1Ku3

‖u‖3
, v

〉∣∣∣∣ � sup
‖v‖�1

∫
Ω

|f (x,u) − bf∞μ1u
3|

‖u‖3
|v|

� sup
‖v‖�1

∫
Ω

[
Cε‖u‖−3|v| + εw3|v|]

� C3Cε‖u‖−3 + εC2,

where C3 > 0 is a constant. Therefore, (3.2) holds. The proof is completed. �
Lemma 3.2. Assume that a > 0, b > 0 and f0 > 1. Then for r ∈ (0, r1) where r1 = √

a(f0 − 1)/b,

i
(
A−1(af0λ1K),Pr ,P

) = 0.

Proof. Given 0 � h ∈ C∞
0 (Ω) with h �= 0, define a completely continuous homotopy H : [0,1] × X → X∗ by

H(t,u) = af0λ1Ku + tKh, (t, u) ∈ [0,1] × P.

We first claim that the operator equation

Au = H(t,u)

has no solutions on [0,1] × ∂Pr for r ∈ (0, r1). Suppose this is not true. Then there exist t1 ∈ [0,1] and u1 ∈ P with
0 < ‖u1‖ < r1 such that

Au1 = H(t1, u1).

Thus for any v ∈ X, we have

(
a + b‖u1‖2)∫

Ω

∇u1 · ∇v = af0λ1

∫
Ω

u1v + t1

∫
Ω

hv.

That is, u1 is a weak solution of the following problem
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⎧⎪⎨
⎪⎩

−
(

a + b

∫
Ω

|∇u|2
)

�u = af0λ1u + t1h, in Ω,

u = 0, on ∂Ω.

By the elliptic regularity theory and the strong maximum principle, we know that u1 ∈ C2(Ω) ∩ C1
0(Ω̄) and u1 > 0

in Ω . Hence, u1 satisfies the following equation

−�u = λ1u +
(

af0λ1

a + b‖u‖2
− λ1

)
u + t1

a + b‖u‖2
h, in Ω. (3.3)

Since ‖u1‖ = r < r1, we have(
af0λ1

a + b‖u1‖2
− λ1

)
u1 + t1

a + b‖u1‖2
h > 0, in Ω.

This is impossible since (3.3) has no positive solution. Notice that this fact holds for the problem{−(
a + b‖u‖2)�u = af0λ1u + h, in Ω,

u = 0, on ∂Ω.

Indeed, the above problem has no solutions in Pr for r ∈ (0, r1). Consequently, Theorem 2.2 (iii) and (i) imply that

i
(
A−1(af0λ1K),Pr ,P

) = i
(
A−1H(0, ·),Pr ,P

) = i
(
A−1H(1, ·),Pr ,P

) = 0, r ∈ (0, r1),

which completes the proof. �
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. In order to prove Theorem 1.1 with a > 0, b > 0, we only need to show that the fixed point
indices i(A−1L,Pr,P ) take different values for small r and for large r by Theorem 2.2 (ii) and (iv).

Firstly, we prove that

i
(
A−1L,Pr,P

) = 1 for large r.

To this end, we define a completely continuous homotopy function H : [0,1] × X → X∗ by

H(t,u) = tLu, (t, u) ∈ [0,1] × P.

We claim that there exists R0 > 0 such that the operator equation

Au = H(t,u) (3.4)

has no solutions on [0,1] × ∂Pr for r > R0. We prove by contradiction. Suppose that there exists a sequence
{(tn, un)} ⊂ [0,1] × P such that

tn → t0 ∈ [0,1], ‖un‖ → ∞,

and (tn, un) satisfies (3.4), that is,(
a + b‖un‖2)∫

Ω

∇un · ∇v = tn

∫
Ω

f (x,u)v, v ∈ X.

Let wn = un/‖un‖ for any n. Then we have, for any v ∈ X,

a + b‖un‖2

‖un‖2

∫
Ω

∇wn · ∇v = tnbf∞μ1

∫
Ω

w3
nv + tn

∫
Ω

f (x,un) − bf∞μ1u
3
n

‖un‖3
v. (3.5)

Since {wn} is bounded in P , we may assume, by passing to a subsequence if necessary, that wn ⇀ w0 ∈ P . Taking
v = wn in (3.5) and letting n → ∞, we have from Lemma 3.1 that

1 = t0f∞μ1

∫
w4

0.
Ω
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Hence,

1 � f∞μ1

∫
Ω

w4
0 � f∞,

which contradicts to f∞ < 1. Taking r > R0, we have

i
(
A−1L,Pr,P

) = i
(
A−1H(1, ·),Pr ,P

) = i
(
A−1H(0, ·),Pr ,P

) = 1.

Secondly, we complete the proof of Theorem 1.1 by showing that

i
(
A−1L,Pr,P

) = 0 for small r.

Define now another completely continuous homotopy function

H̃ (t, u) = (1 − t)Lu + taf0λ1Ku, (t, u) ∈ [0,1] × P.

We show that there exists r0 > 0 such that the operator equation

Au = H̃ (t, u) (3.6)

has no solutions on [0,1]× ∂Pr for r ∈ (0, r0). Again we prove it by contradiction argument. Suppose that there exists
a sequence {(tn, un)} ⊂ [0,1] × P such that

tn → t0, ‖un‖ → 0,

and (tn, un) satisfies (3.6). Let wn = un/‖un‖ for any n. Then we have, for any v ∈ X,∫
Ω

∇wn · ∇v = 1 − tn

a + b‖un‖2

∫
Ω

f (x,un)

‖un‖ v + tnaf0λ1

a + b‖un‖2

∫
Ω

wnv

= 1 − tn

a + b‖un‖2

∫
Ω

f (x,un) − af0λ1un

‖un‖ v + af0λ1

a + b‖un‖2

∫
Ω

wnv. (3.7)

Since {wn} is bounded in P , passing to a subsequence if necessary, we may assume that wn ⇀ w0 ∈ P . Letting
n → ∞ in (3.7), by Lemma 3.1, we obtain∫

Ω

∇w0 · ∇v = f0λ1

∫
Ω

w0v.

Taking v = wn in (3.7) and letting again n → ∞,

1 = f0λ1

∫
Ω

w2
0,

which implies that w0 �= 0 and w0 is a nontrivial eigenfunction of (1.3). But the assumption f0 > 1 implies that w0

must be sign-changing, which contradicts with w0 ∈ P . Hence, it follows from Theorem 2.2 (iii) and Lemma 3.2 that

i
(
A−1L,Pr,P

) = i
(
A−1H̃ (0, ·),Pr ,P

) = i
(
A−1H̃ (1, ·),Pr ,P

) = i
(
A−1(af0λ1K),Pr ,P

) = 0

for r ∈ (0,min{r0, r1}).
When a > 0, b = 0, the results in Theorem 1.1 is a direct conclusion of [13, Theorem 1]. For the detail, the reader

can also see Remark 1.4. The proof is completed. �
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4. Proof of Theorem 1.2

In this section, we always assume that b > 0 unless specified otherwise and (f1) and (f2) hold with f0 < 1 and
f∞ > 1. Hence, there exist ε1 > 0 and Cε1 > 0 such that

F(x, t) � 1

4
(bμ1 + ε1)t

4 − Cε1, x ∈ Ω̄, t � 0, (4.1)

F(x, t) � 1

2
a(1 − ε1)λ1t

2 + 1

4
b(1 − ε1)μ1t

4 + Cε1 t
6, x ∈ Ω̄, t ∈R, (4.2)

where F(x, t) = ∫ t

0 f (x, s)ds.
In the following, we utilize Theorem 2.3 to complete the proof of Theorem 1.2. In the setting of Theorem 2.3 we

have E = X, I = [δ,1] with bμ1
bμ1+ε1

< δ < 1, and

S(u) = 1

2
a‖u‖2 + 1

4
b‖u‖4, T (u) =

∫
Ω

F(x,u),

Jν(u) = 1

2
a‖u‖2 + 1

4
b‖u‖4 − ν

∫
Ω

F(x,u), u ∈ X, ν ∈ I.

It is easy to verify that

〈
J ′

ν(u), v
〉 = (

a + b‖u‖2)∫
Ω

∇u · ∇v − ν

∫
Ω

f (x,u)v, u, v ∈ X, ν ∈ I.

In the following, we show that Jν satisfies the conditions of Theorem 2.3 by proving several lemmas.

Lemma 4.1. Γν �= ∅ for any ν ∈ I .

Proof. Let φ1 > 0 be a μ1-eigenfunction mentioned in Section 1. For t > 0, we have by (4.1) and (1.6) that

Jν(tφ1) = 1

2
at2‖φ1‖2 + 1

4
bt4‖φ1‖4 − ν

∫
Ω

F(x, tφ1)

� 1

2
at2‖φ1‖2 + 1

4
bμ1t

4
∫
Ω

φ4
1 − 1

4
(bμ1 + ε1)δt

4
∫
Ω

φ4
1 + C1

= 1

2
at2‖φ1‖2 − 1

4
C2t

4
∫
Ω

φ4
1 + C1,

where C2 = (bμ1 + ε1)δ − bμ1. Noting that C2 > 0, we can choose t0 > 0 large enough so that Jν(t0φ1) < 0, where
t0 is independent of ν ∈ I . The proof is completed. �
Lemma 4.2. There exists a constant c > 0 such that cν � c for any ν ∈ I .

Proof. For any u ∈ X, it follows from (4.2), (1.5) and (1.6) that

Jν(u) � 1

2
a‖u‖2 + 1

4
b‖u‖4 − 1

2
a(1 − ε1)λ1

∫
Ω

|u|2 − 1

4
bμ1(1 − ε1)

∫
Ω

|u|4 − Cε1

∫
Ω

|u|6

� 1

2
aε1‖u‖2 + 1

4
bε1‖u‖4 − Cε1

∫
|u|6.
Ω
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By Sobolev’s embedding theorem, we conclude that there exist ρ > 0 and c > 0 such that Jν(u) > 0 for ‖u‖ ∈ (0, ρ]
and

Jν(u) � c, ‖u‖ = ρ.

Fix ν ∈ I and γ ∈ Γν . By the definition of Γν , we have that ‖γ (1)‖ > ρ. Hence, there exists tγ ∈ (0,1) such that
‖γ (tγ )‖ = ρ. So,

cν = inf
γ∈Γν

max
t∈[0,1]

Jν

(
γ (t)

)
� inf

γ∈Γν

Jν

(
γ (tγ )

)
� c.

The proof is completed. �
Lemma 4.3. For any ν ∈ I , if {un} is bounded and J ′

ν(un) → 0 in X∗, then {un} admits a convergent subsequence.

Proof. Given ν ∈ I , assume that {un} is bounded, J ′
ν(un) → 0 in X∗. By extracting a subsequence, we may suppose

that there exists u ∈ X such that

un ⇀ u, in X,

un → u, in Ls(Ω), s ∈ [
1,2∗),

un(x) → u(x), a.e. x ∈ Ω.

It follows from (f1) and (f2) that there exist C1,C2 > 0 such that

f (x, t) � C1|t | + C2|t |3, x ∈ Ω̄, t ∈ R. (4.3)

Hence, by Hölder’s inequality and Sobolev’s embedding theorem, we have∣∣∣∣
∫
Ω

f (x,un)(un − u)

∣∣∣∣ � C1

∫
Ω

|un||un − u| + C2

∫
Ω

|un|3|un − u|

� C3

( ∫
Ω

|un − u|2
)1/2

+ C4

( ∫
Ω

|un − u|4
)1/4

→ 0.

Noting that

(
a + b‖un‖2)∫

Ω

∇un · ∇(un − u) = (
a + b‖un‖2)[(un,un) − (un,u)

]
,

we know that

o(1) = 〈
J ′

ν(un), un − u
〉 + ν

∫
Ω

f (x,un)(un − u) = (
a + b‖un‖2)[(un,un) − (un,u)

]
.

Hence, (un,un) → (u,u). This together with un ⇀ u shows that un → u in X. The proof is completed. �
Lemma 4.4. There exist a sequence {νn} ⊂ I with νn → 1− as n → ∞ and {uνn} ⊂ X such that

Jνn(uνn) = cνn, J ′
νn

(uνn) = 0.

Proof. We only need to show that for almost every ν ∈ I there exists uν ∈ X such that Jν(u
ν) = cν and J ′

ν(u
ν) = 0.

By Theorem 2.3, for almost each ν ∈ I , there exists a bounded sequence {uν
n} ⊂ X such that

Jν

(
uν

n

) → cν, J ′
ν

(
uν

n

) → 0.

By Lemma 4.3, we may assume that uν
n → uν in X. Then the continuity of Jν and J ′

ν imply that Jν(u
ν) = cν and

J ′
ν(u

ν) = 0. The proof is completed. �
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In the sequel, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. First we consider the case of a � 0, b > 0. By Lemma 4.4, there exists a sequence {νn} ⊂ I

with νn → 1− and {uνn} ⊂ X such that

Jνn(uνn) = cνn, J ′
νn

(uνn) = 0. (4.4)

Since cνn � c > 0 by Lemma 4.2, by standard regularity theory, we know that uνn is a positive solution to (1.1) with
ν = νn. To prove the theorem, we assume the first alternative does not hold. Then the sequence {uνn} above is bounded
in X. Since νn → 1−, we can show that

J ′
1(uνn) → 0, in X∗.

In fact, for any v ∈ X, it follows form (4.3), Hölder’s inequality and Sobolev’s embedding theorem that∣∣∣∣
∫
Ω

f (x,uνn)v

∣∣∣∣� C1

∫
Ω

|uνn ||v| + C2

∫
Ω

|uνn |3|v|� C3‖v‖.

Furthermore, (4.4) implies that〈
J ′

1(uνn), v
〉 + (1 − νn)

∫
Ω

f (x,uνn)v = 〈
J ′

νn
(uνn), v

〉 = 0, v ∈ X.

Hence, J ′
1(uνn) → 0 in X∗. By Lemma 4.3, {uνn} has a convergent subsequence. Without loss of generality, we may

assume that uνn → u. According to Lemma 4.2, (4.4) and noting that∣∣∣∣
∫
Ω

F(x,uνn)

∣∣∣∣ � C4,

we have

J1(u) = lim
n→∞J1(uνn) = lim

n→∞Jνn(uνn)� c > 0,

and

J ′
1(u) = lim

n→∞J ′
1(uνn) = 0.

The standard process shows that u is a positive solution to (1.1) with ν = 1, and the second alternative holds.
For the case of a > 0, b = 0, by Remark 1.4, we know easily that (1.1) has a positive solution with ν = 1 for all

N � 1. The proof is completed. �
5. Applications of Theorem 1.2

In this section, we show that Theorem 1.2 is a useful result in some applications. Here, we assume that a � 0, b > 0
and N = 1,2,3.

Theorem 5.1. Assume that f satisfies (f1) and (f2) with f0 < 1 and f∞ > 1. If in addition f∞μ1 is not an eigenvalue
of (1.4), then problem (1.1) has a positive solution with ν = 1.

The result in this theorem holds by the mountain pass theorem and [23, Lemma 2.2]. Here we give an alternative
proof of Theorem 5.1 by using Theorem 1.2.

Proof of Theorem 5.1. From Theorem 1.2, we only need to exclude that the bifurcation from infinity occurs. Suppose
by contradiction that there exists a sequence of positive solutions {(νn,un)} to (1.1) such that limn→∞ νn = 1 and
limn→∞ ‖un‖ = ∞. Let wn = un/‖un‖. Similar to (3.5), we have

a + b‖un‖2

‖un‖2

∫
∇wn · ∇v = νnbf∞μ1

∫
w3

nv + νn

∫
f (x,un) − bf∞μ1u

3
n

‖un‖3
v, v ∈ X. (5.1)
Ω Ω Ω
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Since {wn} is bounded in X, we may assume that wn ⇀ w0 ∈ P ⊂ X. Passing to limit n → ∞ in (5.1), we obtain that∫
Ω

∇w0 · ∇v = f∞μ1

∫
Ω

w3
0v, v ∈ X, (5.2)

and w0 �= 0. Hence, f∞μ1 is an eigenvalue of (1.4), which contradicts with the assumption. The proof is com-
pleted. �

Finally we prove that the bifurcation from infinity in Theorem 1.2 cannot occur if the domain Ω is a ball.

Theorem 5.2. Assume that Ω is a ball in R
N and f satisfies (f1) and (f2) with f0 < 1 and f∞ > 1. Then problem (1.1)

has a positive solution with ν = 1.

Proof. Similar to the proof of Theorem 5.1, we have (5.2) and ‖w0‖ = 1. Hence, w0 is a positive solution to (1.4)
with μ = f∞μ1. By Lemma 5.3 below, f∞ = 1, which is a contradiction to f∞ > 1. The proof is completed. �

The following result on the simplicity of principal eigenvalue of (1.4) is of independent interest.

Lemma 5.3. Assume that Ω is a ball in R
N . Then the principal eigenvalue μ1 of (1.4) is simple and every eigenfunc-

tion corresponding to an eigenvalue μ > μ1 of (1.4) must be sign-changing.

Proof. Assume that Ω is a ball. Then the following equation⎧⎪⎨
⎪⎩

−�u = u3, in Ω,

u > 0, in Ω,

u = 0, on ∂Ω

(5.3)

has a unique solution, see [9].

Without loss of generality, suppose that u� 0 and v � 0 are both eigenfunctions corresponding to μ1. Then
√

μ1
‖u‖ u

and
√

μ1
‖v‖ v are both solutions to (5.3). Hence u = ‖u‖

‖v‖v, which shows that μ1 is simple. To prove the second part of the
lemma, we assume by contradiction that v � 0 is an eigenfunction to μ > μ1. Then

√
μ

‖v‖v =
√

μ1

‖φ1‖φ1,

where φ1 > 0 is a μ1-eigenfunction mentioned in Section 1. Therefore, μ = μ1, which is a contradiction. The proof
is completed. �
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