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Abstract

For ψ ∈ W1,p(Ω;Rm) and g ∈ W−1,p(Ω;Rd), 1 < p < +∞, we consider a sequence of integral functionals

F
ψ,g
k

:W1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞] of the form

F
ψ,g
k

(u, v) =
{∫

Ω fk(x,∇u,v) dx if u − ψ ∈ W
1,p
0 (Ω;Rm) and divv = g,

+∞ otherwise,

where the integrands fk satisfy growth conditions of order p, uniformly in k. We prove a Γ -compactness result for F
ψ,g
k

with

respect to the weak topology of W1,p(Ω;Rm) × Lp(Ω;Rd×n) and we show that under suitable assumptions the integrand of the

Γ -limit is continuously differentiable. We also provide a result concerning the convergence of momenta for minimizers of F
ψ,g
k

.
© 2013

Résumé

Pour tout ψ ∈ W1,p(Ω;Rm) et g ∈ W−1,p(Ω;Rd), 1 < p < +∞, nous considérons une suite de fonctionnelles intégrales

F
ψ,g
k

:W1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞] définies par

F
ψ,g
k

(u, v) =
{∫

Ω fk(x,∇u,v) dx si u − ψ ∈ W
1,p
0 (Ω;Rm) et divv = g,

+∞ sinon,

où les intégrandes fk satisfont des conditions de croissance d’ordre p, uniformément en k. Nous démontrons un résultat de

Γ -compacité pour F
ψ,g
k

par rapport à la topologie faible sur W1,p(Ω;Rm)×Lp(Ω;Rd×n) et nous prouvons que sous des condi-
tions appropriées, l’intégrande de la Γ -limite est continûment différentiable. Nous montrons également un résultat de convergence

des moments pour les minima de F
ψ,g
k

.
© 2013
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1. Introduction

In this paper we consider sequences of integral functionals Fk :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞) of the
form

Fk(u, v) =
∫
Ω

fk(x,∇u,v) dx, (1.1)

where Ω is a bounded open set in Rn and the integrands fk satisfy suitable coerciveness and growth conditions of
order p ∈ (1,∞), uniformly in k (see (2.1) below). Specifically we are interested in the asymptotic behavior of the
solutions to the following minimization problems

min
{
Fk(u, v): u − ψ ∈ W

1,p

0

(
Ω;Rm

)
, v ∈ Lp

(
Ω;Rd×n

)
, divv = g

}
, (1.2)

where ψ ∈ W 1,p(Ω;Rm) and g ∈ W−1,p(Ω;Rd) are given. The relevance of this setting where the functionals are
defined on pairs (u, v) satisfying the differential constraint (curlu,divv) = (0, g) lies in the fact that in many appli-
cations (see e.g. the case of electromagnetism) PDEs constraints of this type arise naturally.

To take into account the boundary and divergence constraints on u and v, respectively, we introduce the functionals

F
ψ,g
k (u, v) =

{
Fk(u, v) if u − ψ ∈ W

1,p

0 (Ω;Rm) and divv = g,

+∞ otherwise.
(1.3)

The main result of the present paper is as follows: if fk is a sequence of functions satisfying (2.1) and Fk are as
in (1.1), there exist a subsequence of fk , not relabeled, and a function f such that the sequence F

ψ,g
k Γ -converges to

the corresponding functional Fψ,g , with respect to the weak topology of W 1,p(Ω;Rm)×Lp(Ω;Rd×n). Moreover, the
integrand f does not depend on ψ and g (see Theorem 2.1 and Theorem 3.3). The case of functionals independent of u,
with the constraint divv = 0, has been studied in [2], while similar problems in the framework of A-quasiconvexity
have been studied in [9]. However, it does not seem that the techniques used in these papers can lead directly, in our
case, to a limit integrand f independent of g.

We prove our main result in a nonconstructive way, following the so-called localization method of Γ -convergence.
To this end, for every open set U ⊆ Ω we consider the functionals

Fk(u, v,U) =
∫
U

fk(x,∇u,v) dx. (1.4)

Notice that at this first stage both the boundary condition u = ψ and the constraint divv = g are omitted. In order to
add the divergence constraint in the final step of the proof, it is convenient to introduce the following distance

d
(
(u1, v1), (u2, v2)

) := ‖u1 − u2‖Lp(Ω;Rm) + ‖v1 − v2‖W−1,p(Ω;Rd×n) + ∥∥div(v1 − v2)
∥∥

W−1,p(Ω;Rd )
(1.5)

for which (W 1,p(Ω;Rm) × Lp(Ω;Rd×n), d) is separable. Then, thanks to the general theory of Γ -convergence in
separable metric spaces, in Section 2 we prove that there exist a subsequence of fk , not relabeled, and a function f such
that for every open set U ⊆ Ω the functionals Fk(·, ·,U) Γ (d)-converge to the functional F(·, ·,U) corresponding
to f (see Theorem 2.3). In particular this gives the Γ (d)-convergence for U = Ω (see Theorem 2.1). We also prove
that under suitable assumptions on fk , for a.e. x ∈ Ω the integrand f (x, ·, ·) of the Γ (d)-limit F is continuously
differentiable (see Theorem 2.8).

By virtue of the above results, in Section 3 we deduce that the functionals F
ψ,g
k Γ -converge to Fψ,g with re-

spect to the weak topology of W 1,p(Ω;Rm) × Lp(Ω;Rd×n). By general properties of Γ -convergence this gives the
convergence of minima and minimizers.

In Section 4 we also prove a result about the convergence of momenta for minimizers. Specifically, in Corollary 4.6
we show that, if (uk, vk) is a minimizer of F

ψ,g
k , then there exist a subsequence of (uk, vk), not relabeled, and a mini-

mum point (u, v) of Fψ,g such that uk ⇀ u weakly in W 1,p(Ω;Rm), vk ⇀ v weakly in Lp(Ω;Rd×n) (convergence
of minimizers), and



N. Ansini et al. / Ann. I. H. Poincaré – AN 31 (2014) 185–202 187
∂ξfk(x,∇uk, vk) ⇀ ∂ξf (x,∇u,v) weakly in Lq
(
Ω;Rm×n

)
, (1.6)

∂ηfk(x,∇uk, vk) ⇀ ∂ηf (x,∇u,v) weakly in Lq
(
Ω;Rd×n

)
(1.7)

(convergence of momenta). More in general we show that (1.6) and (1.7) can be obtained without assuming the
minimality of (uk, vk) (see Theorem 4.5). Indeed, the only hypotheses we need are: uk ⇀ u weakly in W 1,p(Ω;Rm),
vk ⇀ v weakly in Lp(Ω;Rd×n), and∫

Ω

fk(x,∇uk, vk) dx →
∫
Ω

f (x,∇u,v) dx.

We finally remark that in the recent paper [3], inspired by previous results contained in [10,16], it is shown that
minimum problems like (1.2) naturally arise when dealing with sequences of Dirichlet problems of the type{−div(σk∇wk) = h in Ω,

wk ∈ H 1
0 (Ω),

with (σk) uniformly elliptic and non-symmetric. In this respect, the results contained in the present paper are used
in [1] to provide a Γ -convergence approach to the study of H -convergence of non-symmetric linear elliptic operators
(see also [3]). Namely, thanks to Proposition 2.6 and Theorem 4.5 of the present paper, in [1] we give an alternative
and purely variational proof of the compactness of H -convergence, originally proved by other methods by Murat and
Tartar [17,18].

2. Γ -convergence of integral functionals

In this section we prove a compactness result, with respect to Γ -convergence, for integral functionals depending
on the gradient of a vector-valued function and on a matrix-valued field.

Let Ω be a bounded open set in Rn and let 1 < p < +∞. Let fk :Ω × Rm×n × Rd×n → [0,+∞) be a sequence
of Borel functions satisfying the following growth conditions of order p: there exist a0, a1 > 0 and two nonnegative
functions b0, b1 ∈ L1(Ω) such that for almost every x ∈ Ω

a0
(|ξ |p + |η|p) − b0(x) � fk(x, ξ, η) � a1

(|ξ |p + |η|p) + b1(x), (2.1)

for every k ∈N, ξ ∈Rm×n, and η ∈Rd×n.
Consider the sequence of integral functionals Fk :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞) defined as follows

Fk(u, v) :=
∫
Ω

fk(x,∇u,v) dx. (2.2)

On W 1,p(Ω;Rm) × Lp(Ω;Rd×n) consider the distance d defined by (1.5). Clearly we have

d
(
(uk, vk), (u, v)

) → 0 ⇔

⎧⎪⎨
⎪⎩

uk → u strongly in Lp
(
Ω;Rm

)
,

vk → v strongly in W−1,p
(
Ω;Rd×n

)
,

divvk → divv strongly in W−1,p
(
Ω;Rd

)
.

Notice that (W 1,p(Ω;Rm) × Lp(Ω;Rd×n), d) is a separable metric space.
The following compactness theorem is the main result of this section.

Theorem 2.1 (Γ -compactness of integral functionals). Let Fk be the sequence of functionals defined in (2.2) with fk

satisfying (2.1). Then, there exist a subsequence Fkj
and a Borel function f :Ω × Rm×n × Rd×n → [0,+∞) such

that the functionals Fkj
Γ (d)-converge to the functional F :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞) defined as

F(u, v) :=
∫
Ω

f (x,∇u,v) dx, (2.3)

with f satisfying
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a0
(|ξ |p + |η|p) − b0(x) � f (x, ξ, η) � a1

(|ξ |p + |η|p) + b1(x), (2.4)∣∣f (x, ξ1, η1) − f (x, ξ2, η2)
∣∣ � a2

(|ξ1 − ξ2| + |η1 − η2|
)(|ξ1| + |ξ2| + |η1| + |η2| + b2(x)

)p−1 (2.5)

for almost every x ∈ Ω , ξ, ξ1, ξ2 ∈ Rm×n, η,η1, η2 ∈ Rd×n, where a2 ∈ R+ and b2 ∈ Lp(Ω)+ depend only on
a0, a1, b0, b1.

We prove Theorem 2.1 in a nonconstructive way, following the so-called localization method of Γ -convergence,
for which we refer the reader to [12, Chapters 14–20]. Loosely speaking, this method consists of two main steps. In
the first one, based on compactness arguments, we prove the existence of a Γ -converging (sub)sequence. While in the
second one we recover enough information on the structure of the Γ -limit as to obtain a representation in an integral
form.

As a preliminary step, we localize the sequence Fk by introducing an explicit dependence on the set of integration.
With a little abuse of notation, we consider the functionals

Fk(u, v,B) :=
∫
B

fk(x,∇u,v) dx, (2.6)

defined for every u ∈ W 1,p(Ω;Rm), v ∈ Lp(Ω;Rd×n), and for every Borel set B ⊆ Ω , so that Fk(u, v,Ω) =
Fk(u, v).

Let A(Ω) be the set of all open subset of Ω . The following compactness theorem shows that there exists a sub-
sequence whose Γ -limit F(u, v,U) is a measure with respect to U . This is a preliminary step to obtain the integral
representation (2.8) below.

Proposition 2.2 (Γ -compactness). Let Fk :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) × A(Ω) → [0,+∞) be the sequence of
functionals defined by (2.6), with fk satisfying the growth conditions (2.1). Then, there exist a subsequence Fkj

and a
local functional F :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) ×A(Ω) → [0,+∞) such that

Fkj
(·, ·,U) Γ (d)-converges to F(·, ·,U)

for every U ∈ A(Ω). Moreover, for all (u, v) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) the set function F(u, v, ·) is the re-
striction to A(Ω) of a nonnegative Borel measure defined on Ω . Finally,

F(u + s, v,U) = F(u, v,U) (2.7)

for every (u, v) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n), s ∈Rm, and U ∈A(Ω).

Proof. Arguing as in [12, Theorem 19.1] we can prove that the sequence Fk satisfies the fundamental estimate intro-
duced in [12, Definition 18.2]. Since (W 1,p(Ω;Rm) × Lp(Ω;Rd×n), d) is a separable metric space, the result can
be obtained by adapting the arguments of [12, Section 18]. The functional F is local by [12, Proposition 16.15]. The
final statement of the proposition is trivial. �

Using Proposition 2.2, we now provide an integral representation formula for the Γ (d)-limit F . The proof relies
on standard arguments that we repeat and adapt to our context for the reader’s convenience. Note that Theorem 2.1
follows from Theorem 2.3 below by taking U = Ω .

Theorem 2.3 (Γ -compactness of local integral functionals). Let fk :Ω ×Rm×n×Rd×n → [0,+∞) be Borel functions
satisfying the growth assumptions (2.1), and let Fk be as in (2.6). Then, there exist a subsequence Fkj

and a Borel
function f :Ω ×Rm×n ×Rd×n → [0,+∞), satisfying (2.4) and (2.5), such that for every U ∈ A(Ω) the functionals
Fkj

(·, ·,U) Γ (d)-converge to the functional F(·, ·,U) :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞) defined as

F(u, v,U) :=
∫
U

f (x,∇u,v) dx. (2.8)
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Proof. Proposition 2.2 ensures the existence of a subsequence Fkj
(·, ·,U) that Γ (d)-converges to a functional

F(·, ·,U), for every U ∈A(Ω). Hence, it remains to deduce the integral representation formula (2.8). This is done in
several steps.

Step 1. Definition of f .
Fix (ξ, η) ∈ Rm×n × Rd×n and define uξ (x) = ξx; by Proposition 2.2 F(uξ , η, ·) can be extended to a Borel

measure on Ω which, by (2.1), is absolutely continuous with respect to the Lebesgue measure. For every x ∈ Ω we
define

f (x, ξ, η) := lim sup
ρ→0+

F(uξ , η,Bρ(x))

|Bρ(x)| , (2.9)

where Bρ(x) is the n-dimensional ball of radius ρ > 0, centered at x. Then f is a Borel function and by the Lebesgue
Differentiation Theorem we have

F(uξ , η,U) =
∫
U

f (x, ξ, η) dx, (2.10)

for every U ∈A(Ω). By (2.1) it follows that (2.4) holds at every Lebesgue point common to b0 and b1.

Step 2. Integral representation on piecewise affine and piecewise constant functions.
Since F is local and F(u, v, ·) is a measure, from (2.7) and (2.10) we obtain that

F(u, v,U) =
∫
U

f (x,∇u,v) dx

when u is piecewise affine and v is piecewise constant (we assume that the boundaries of the sets where u is affine
and v is constant have zero Lebesgue measure). We refer to the proof of [12, Theorem 20.1] for the details.

Step 3. Convexity properties of f .
The proof of the rank-1-convexity in ξ is standard (see, e.g., [8, Theorem 9.1]). Let us prove that f is rank-(n − 1)

convex in η, i.e., for every t ∈ (0,1)

f
(
x, ξ, tη1 + (1 − t)η2

)
� tf (x, ξ, η1) + (1 − t)f (x, ξ, η2) (2.11)

for every x ∈ Ω , for every ξ ∈ Rm×n, and for every η1, η2 ∈ Rd×n with rank(η1 − η2) � n − 1. By (2.9) it suffices to
show that, if Bρ(x) ⊂ Ω , then for all t ∈ (0,1)

F
(
uξ , tη1 + (1 − t)η2,Bρ(x)

)
� tF

(
uξ , η1,Bρ(x)

) + (1 − t)F
(
uξ , η2,Bρ(x)

)
for every ξ ∈Rm×n and for every η1, η2 ∈ Rd×n with rank(η1 − η2)� n − 1. This inequality can be obtained as in [2,
Theorem 4.2, Step 3]. Indeed, as a consequence of the rank property of η1, η2 we deduce the existence of a unit vector
ν ∈ Sn−1 such that (η1 − η2)ν = 0. Then, if we define v : Rn �→ {η1, η2} as v(y) = η1 if y ∈ Uν

1 and v(y) = η2 if
y ∈ Uν

2 , with

Uν
1 := {

y ∈ Rn: h� y · ν < h + t, h ∈ Z
}
,

Uν
2 := {

y ∈ Rn: h + t � y · ν < h + 1, h ∈ Z
}
,

we clearly have divv = 0. These sets represent a lamination of Rn in the direction orthogonal to ν, with volume
fraction t and 1 − t . If we define vh(y) := v(hy) for y ∈Rn, it is easy to show that

vh ⇀ tη1 + (1 − t)η2 weakly∗ in L∞(
Ω;Rd×n

)
, as h → ∞.

Hence, in particular vh converges strongly to v in W−1,p(Ω;Rd×n) and divvh = 0 = divv.
Moreover, setting Uν

1,h := (1/h)Uν
1 and Uν

2,h := (1/h)Uν
2 , we have

χUν ⇀ t and χUν ⇀ 1 − t weakly∗ in L∞(Ω), as h → ∞.

1,h 2,h
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By Step 2 and by the lower semicontinuity of F with respect to the metric d , we have

F
(
uξ , tη1 + (1 − t)η2,Bρ(x)

)
� lim inf

h→∞ F
(
uξ , vh,Bρ(x)

)
= lim inf

h→∞

( ∫
Uν

1,h∩Bρ(x)

f (y, ξ, η1) dy +
∫

Uν
2,h∩Bρ(x)

f (y, ξ, η2) dy

)

= t

∫
Bρ(x)

f (y, ξ, η1) dy + (1 − t)

∫
Bρ(x)

f (y, ξ, η2) dy

= tF
(
uξ , η1,Bρ(x)

) + (1 − t)F
(
uξ , η2,Bρ(x)

)
,

for every ξ ∈ Rm×n. Finally, taking the limsup in ρ yields (2.11).
The rank-1 convexity in ξ together with the rank-(n − 1) convexity in η ensures that f is separately convex in

each component; i.e., if ξ = (ξ)ij and η = (η)
j , f is convex in ξij for every i = 1, . . . ,m and j = 1, . . . , n, and it is
convex in η
j for every 
 = 1, . . . , d and j = 1, . . . , n. Therefore, the growth condition (2.4) together with the separate
convexity yields that f (x, ·, ·) is locally Lipschitz (see, e.g., [11, Lemma 2.2]). More precisely, there exist a2 > 0 and
a nonnegative function b2 ∈ Lp(Ω) such that (2.5) holds.

Step 4. Integral representation.
By (2.4) and (2.5) for every U ∈ A(Ω) the functional

(u, v) �→
∫
U

f (x,∇u,v) dx (2.12)

is continuous with respect to the strong convergence of W 1,p(Ω;Rm) × Lp(Ω;Rd×n).
Let (u, v) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) and let U ∈ A(Ω) with U ⊂⊂ Ω . We can find a sequence of functions

uh ∈ W 1,p(Ω;Rm) strongly converging to u in W 1,p(Ω;Rm) with piecewise affine restrictions to U and a sequence
of piecewise constant functions vh strongly converging to v in Lp(Ω;Rd×n). Note that (uh, vh) converge to (u, v)

with respect to the distance d . Since F is lower semicontinuous and (2.12) is continuous, by Step 2 we get

F(u, v,U) � lim inf
h→∞ F(uh, vh,U) = lim

h→∞

∫
U

f (x,∇uh, vh) dx =
∫
U

f (x,∇u,v) dx.

We now prove the converse inequality. Let (u, v) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) and let G :W 1,p(Ω;Rm) ×
Lp(Ω;Rd×n) ×A(Ω) → [0,+∞) be defined by

G(ũ, ṽ,U) := F(u + ũ, v + ṽ,U).

Since G satisfies the same properties as F , there exists a Carathéodory function g :Ω × Rm×n × Rd×n → [0,+∞)

such that for every (ũ, ṽ) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) and every U ∈ A(Ω), with U ⊂⊂ Ω , we have that

G(ũ, ṽ,U) �
∫
U

g(x,∇ũ, ṽ) dx, (2.13)

with equality whenever ũ and ṽ are piecewise affine and piecewise constant, respectively.
Let (uh, vh) be the approximating functions considered above; then∫

U

g(x,0,0) dx = G(0,0,U) = F(u, v,U) �
∫
U

f (x,∇u,v) dx

= lim
h→∞

∫
U

f (x,∇uh, vh) dx = lim
h→∞F(uh, vh,U) = lim

h→∞G(uh − u,vh − v,U)

� lim
h→∞

∫
g
(
x,∇(uh − u), vh − v

)
dx =

∫
g(x,0,0) dx.
U U
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Hence all inequalities are actually equalities, and in particular

F(u, v,U) =
∫
U

f (x,∇u,v) dx, (2.14)

for all (u, v) ∈ W 1,p(Ω;Rm)×Lp(Ω;Rd×n) and U ∈A(Ω), with U ⊂⊂ Ω . Finally, the above equality holds for all
U ∈A(Ω) since F is the restriction to A(Ω) of a Borel measure. �
Remark 2.4. The functional F is lower semicontinuous with respect to the distance d defined by (1.5), then we can
apply [14, Theorem 3.6] to obtain that for a.e. x ∈ Ω the function (ξ, η) �→ f (x, ξ, η) is A-quasiconvex according to
[14, Definition 3.1] where

A(ψ, v) := (curlψ,divv)

for every (ψ, v) ∈ Lp(Ω;Rm×n ×Rd×n). More precisely, we say that f (x, ·, ·) is (curl,div)-quasiconvex if

f (x, ξ, η) �
∫
Q

f
(
x, ξ + ψ(y), η + v(y)

)
dy

for all (ξ, η) ∈ Rm×n × Rd×n and all (ψ, v) ∈ C∞(Rn;Rm×n × Rd×n), Q-periodic, such that curlψ = 0, divv = 0,∫
Q

ψ dy = 0,
∫
Q

v dy = 0. In view of (2.4) and (2.5) in the above definition we may replace C∞(Rn;Rm×n ×Rd×n)

by Lp(Rn;Rm×n ×Rd×n) (see [14, Remark 3.3]).

We consider now the special case of quadratic functionals depending on the gradient of a scalar function u and on
a vector field v. In Corollary 2.5 and Proposition 2.6 we choose m = d = 1 and p = 2.

Corollary 2.5. Let Σk ∈ L∞(Ω;R2n×2n) be symmetric matrices such that for a.e. x ∈ Ω , and for every w ∈R2n

c0|w|2 � Σk(x)w · w � c1|w|2 (2.15)

for some 0 < c0 � c1 independent of k, where the dot denotes the scalar product. Let Qk :W 1,2(Ω) × L2(Ω;Rn) ×
A(Ω) → [0,+∞) be the sequence of quadratic forms defined as follows

Qk(u, v,U) :=
∫
U

Σk(x)

(∇u

v

)
·
(∇u

v

)
dx. (2.16)

Then, there exist a subsequence Qkj
and a matrix Σ ∈ L∞(Ω;R2n×2n) satisfying (2.15), such that for every U ∈

A(Ω) the quadratic forms Qkj
(·, ·,U) Γ (d)-converge to the quadratic form Q(·, ·,U) :W 1,2(Ω) × L2(Ω;Rn) →

[0,+∞) given by

Q(u,v,U) :=
∫
U

Σ(x)

(∇u

v

)
·
(∇u

v

)
dx. (2.17)

Proof. By Theorem 2.3 and [12, Theorem 11.10] we have that for every U ∈ A(Ω) the quadratic forms Qkj
(·, ·,U)

Γ (d)-converge to the quadratic form Q(·, ·,U) given by

Q(u,v,U) =
∫
U

f (x,∇u,v) dx.

By (2.9) and [12, Proposition 11.9] on the characterization of the quadratic forms, we get that for every x ∈ Ω also
f (x, ·, ·) : Rn ×Rn → [0,+∞) is a quadratic form. Therefore, there exists a matrix Σ ∈ L∞(Ω;R2n×2n) satisfying
(2.15) such that

f (x, ξ, η) = Σ(x)

(
ξ

η

)
·
(

ξ

η

)
,

for every (x, ξ, η) ∈ Ω ×Rn ×Rn. �
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For future applications (see, e.g., [1]) it is useful to highlight the following fact.

Proposition 2.6. Let Σk,Σ ∈ L∞(Ω;R2n×2n) be symmetric matrices satisfying conditions (2.15). Let Qk(u, v,U)

and Q(u,v,U) be quadratic forms defined as in (2.16), (2.17), and let Qk(u, v) := Qk(u, v,Ω), Q(u,v) :=
Q(u,v,Ω). If Qk Γ (d)-converges to Q then for every U ∈ A(Ω) the quadratic forms Qk(·, ·,U) Γ (d)-converge
to the quadratic form Q(·, ·,U).

Proof. Following the argument of [3, Theorem 4.6] we may prove that the matrix Σ is independent of the set U . �
We now prove that the convergence in measure of the integrands fk together with (curl,div)-quasiconvexity implies

Γ (d)-convergence of the corresponding integral functionals Fk .

Theorem 2.7. Let fk be a sequence of Borel functions satisfying (2.1) and such that fk(x, ·, ·) is (curl,div)-quasiconvex
for a.e. x ∈ Ω . Assume that

fk(·, ξ, η) → f (·, ξ, η) in measure on Ω (2.18)

for every ξ ∈Rm×n and η ∈ Rd×n. Then f is a Borel function, it satisfies (2.4), and f (x, ·, ·) is (curl,div)-quasiconvex
for a.e. x ∈ Ω . Let Fk and F be the functionals defined by (2.2) and (2.3). Then Fk Γ (d)-converges to F .

Proof. The first statement is a straightforward consequence of (2.18). Since fk(x, ·, ·) and f (x, ·, ·) are (curl,div)-
quasiconvex, by [14, Proposition 3.4] fk(x, ·, η) and f (x, ·, η) are rank-1 convex on Rm×n for a.e. x ∈ Ω and every
η ∈Rd×n, while fk(x, ξ, ·) and f (x, ξ, ·) are rank-(n−1) convex on Rd×n for a.e. x ∈ Ω and every ξ ∈Rm×n. Hence,
they are separately convex with respect to the scalar components of ξ and η. This property, together with the growth
assumptions (2.1) and (2.4), implies that fk and f satisfy the continuity estimates (2.5) uniformly with respect to k

(see also Step 3 of the proof of Theorem 2.3).
Under our hypotheses we can prove that there exists a subsequence of fk , not relabeled, such that fk(x, ξ, η) →

f (x, ξ, η) for a.e. x ∈ Ω , for every ξ ∈ Qm×n, η ∈ Qd×n where Q denotes the set of rational numbers. By (2.5) and
a diagonal argument the same property holds for a.e. x ∈ Ω , for every ξ ∈ Rm×n, η ∈ Rd×n. Taking into account
the growth conditions (2.1), this implies that Fk(u, v) → F(u, v) for every (u, v) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n).
Therefore to achieve the Γ -convergence result it is enough to prove the Γ -liminf inequality. To this end let (u, v) ∈
W 1,p(Ω;Rm) × Lp(Ω;Rd×n) and let (uk, vk) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) be a sequence such that (uk, vk) →
(u, v) in the distance d and such that Fk(uk, vk) converges to a finite number. We want to prove that

F(u, v) � lim
k→∞Fk(uk, vk). (2.19)

From the convergence in the distance d and the boundedness of Fk(uk, vk) we deduce that uk ⇀ u weakly in
W 1,p(Ω;Rm) and vk ⇀ v weakly in Lp(Ω;Rd×n). Up to subsequence we may assume that (∇uk, vk) generates
a Young measure ν : Ω → M(Rm×n × Rd×n). We refer to [14, Section 2] for the properties of Young measures we
use in this proof. For a general treatment of this subject we refer to [5,7,18].

We now prove that∫
Ω

( ∫
Rm×n×Rd×n

f (x, ξ, η) dνx(ξ, η)

)
dx � lim

k→∞

∫
Ω

fk(x,∇uk, vk) dx. (2.20)

Arguing as in [12, Theorem 5.14] for every ε > 0 we find a measurable set Aε ⊂ Ω , with |Aε| < ε, such that for every
M > 0 we have

fk(x, ξ, η) → f (x, ξ, η) uniformly on (Ω \ Aε) × BM, (2.21)

where BM is the ball in Rm×n × Rd×n with center (0,0) and radius M . We can easily construct a sequence ϕM of
Carathéodory functions such that
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ϕM(x, ξ, η) → f (x, ξ, η) as M → +∞ for a.e. x ∈ Ω and for every (ξ, η) ∈ Rm×n ×Rd×n, (2.22a)

ϕM(x, ξ, η) = 0 for a.e. x ∈ Ω and for every (ξ, η) /∈ BM, (2.22b)

0 � ϕM(x, ξ, η) �
(

f (x, ξ, η) − 1

M

)+
for a.e. x ∈ Ω and for every (ξ, η) ∈ Rm×n ×Rd×n, (2.22c)

where (t)+ denotes the positive part of t ∈ R. By (2.21) and (2.22) there exists kM ∈ N such that for every k � kM we
have ϕM(x, ξ, η) � fk(x, ξ, η) for a.e. x ∈ Ω \Aε and for every (ξ, η) ∈ Rm×n ×Rd×n. Integrating this inequality we
obtain ∫

Ω\Aε

ϕM(x,∇uk, vk) dx �
∫
Ω

fk(x,∇uk, vk) dx (2.23)

for every k � kM . By the Fundamental Theorem on Young Measures (see e.g. [14, Theorem 2.2])∫
Ω\Aε

( ∫
Rm×n×Rd×n

ϕM(x, ξ, η) dνx(ξ, η)

)
dx � lim inf

k→∞

∫
Ω\Aε

ϕM(x,∇uk, vk) dx.

Taking into account (2.23) and passing to the limit first as M → ∞ and then as ε → 0, thanks to (2.22a) we ob-
tain (2.20).

To prove (2.19) it remains to show that

f
(
x,∇u(x), v(x)

)
�

∫
Rm×n×Rd×n

f (x, ξ, η) dνx(ξ, η)

for a.e. x ∈ Ω . Since f (x, ·, ·) is (curl,div)-quasiconvex, this can be done arguing as in the proof of [14, Theo-
rem 3.7]. This concludes the proof of the Γ -liminf inequality and therefore shows that the selected subsequence of Fk

Γ (d)-converges to F . Finally, since the Γ -limit F does not depend on the subsequence, we may conclude thanks to
the Urysohn property of Γ -convergence [12, Proposition 8.3]. �

We now prove that under suitable assumptions the integrand f of the Γ (d)-limit F is continuously differentiable
with respect to (ξ, η). Similar results have been proved in [15] for the convex case and in [4,6] for quasiconvex
envelopes.

Theorem 2.8. Let fk : Ω × Rm×n × Rd×n → [0,+∞) be Borel functions satisfying (2.1). Assume that for every k,
for a.e. x ∈ Ω , and for every ξ1, ξ2 ∈ Rm×n, η1, η2 ∈Rd×n

(ξ, η) �→ fk(x, ξ, η) belongs to C1(Rm×n ×Rd×n
)
, (2.24a)∣∣∂ξfk(x, ξ1, η) − ∂ξfk(x, ξ2, η)

∣∣� a|ξ1 − ξ2|α
(|ξ1| + |ξ2| + |η| + b(x)

)p−1−α
, (2.24b)∣∣∂ηfk(x, ξ, η1) − ∂ηfk(x, ξ, η2)

∣∣� a|η1 − η2|α
(|ξ | + |η1| + |η2| + b(x)

)p−1−α
, (2.24c)

where a > 0, b ∈ Lp(Ω)+, and 0 < α < min{1, (p − 1)} are independent of k.
Let f : Ω × Rm×n × Rd×n → [0,+∞) be a Borel functions satisfying (2.4), (2.5), and let Fk and F be the

functionals defined by (2.6) and (2.8). Assume that for every U ∈A(Ω)

Fk(·, ·,U) Γ (d)-converges to F(·, ·,U). (2.25)

Then,

(ξ, η) �→ f (x, ξ, η) belongs to C1(Rm×n ×Rd×n
)

(2.26)

for a.e. x ∈ Ω .
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Proof. Given x ∈ Ω and 0 < ρ < dist(x, ∂Ω) we define

F
x,ρ
k (u, v) :=

∫
B1

f
x,ρ
k

(
y,∇u(y), v(y)

)
dy, F x,ρ(u, v) :=

∫
B1

f x,ρ
(
y,∇u(y), v(y)

)
dy,

where B1 is the open ball in Rn with center 0 and radius 1 and

f
x,ρ
k (y, ξ, η) := fk(x + ρy, ξ, η), f x,ρ(y, ξ, η) := f (x + ρy, ξ, η).

By (2.25) and by a change of variables we obtain that F
x,ρ
k Γ (d)-converges to Fx,ρ , where now the distance d is

defined using B1 instead of Ω . Thanks to the continuity assumptions (2.5) there exists a negligible set N ⊂ Ω such
that every x ∈ Ω \ N is a Lebesgue point of f (·, ξ, η) for every (ξ, η) ∈ Rm×n × Rd×n, as well a Lebesgue point of
the function b0 and b1 in (2.4). It follows that for every x ∈ Ω \ N , f x,ρ(·, ξ, η) → f (x, ξ, η) in measure on B1 as
ρ → 0. Moreover, there exist a sequence ρi → 0, possibly depending on x, and two functions bx

0 and bx
1 such that

b0(x + ρiy) � bx
0 (y), b1(x + ρiy)� bx

1 (y)

for every i and for a.e. y ∈ B1. By Remark 2.4 for a.e. x ∈ Ω the functions f x,ρi (y, ·, ·) are (curl,div)-quasiconvex
for a.e. y ∈ B1. Therefore for every x ∈ Ω \ N we can apply Theorem 2.7 and obtain that

Fx,ρi Γ (d)-converges to Fx

as ρi → 0, where

Fx(u, v) :=
∫
B1

f
(
x,∇u(y), v(y)

)
dy.

By diagonal argument we find a sequence ki such that F
x,ρi

ki
Γ (d)-converges to Fx .

We can now apply the arguments of the proof of [15, Proposition 2.5] using Lemma 4.4 in place of [15, Lemma 2.4]
and we obtain the existence of the partial derivatives of f with respect to the components of (ξ, η). The continuity
with respect to (ξ, η) of these partial derivatives is a consequence of the convexity in each components which, in its
turn, follows from the (curl,div)-quasiconvexity. �
3. Boundary condition and divergence constraint

In this section we study functionals with a Dirichlet boundary condition u = ψ and divergence constraint divv = g.
We begin with the case of boundary conditions.

Theorem 3.1 (Γ -convergence with boundary data). Let Fk be the sequence of functionals defined in (2.2) with
fk satisfying (2.1). Assume that Fk Γ (d)-converges to F satisfying (2.3)–(2.5). Let ψ ∈ W 1,p(Ω;Rm) and let
F

ψ
k :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞] be the functionals defined as

F
ψ
k (u, v) :=

{
Fk(u, v) if u − ψ ∈ W

1,p

0 (Ω;Rm),

+∞ otherwise.
(3.1)

Then, the functionals F
ψ
k Γ (d)-converge to

Fψ(u, v) :=
{

F(u, v) if u − ψ ∈ W
1,p

0 (Ω;Rm),

+∞ otherwise.

Proof. Clearly, we have to deal only with the u variable. Then, the proof exactly follows that of [12, Theorem 21.1].
Indeed, the Γ -liminf inequality is a straightforward consequence of (2.1), of the Poincaré inequality, and of the fact
that W

1,p

0 (Ω;Rm)+ψ is closed in the weak topology of W 1,p(Ω;Rm). To prove the Γ -limsup inequality we have to

exhibit a recovery sequence such that uk −ψ ∈ W
1,p

0 (Ω;Rm), for every k. To this end, we suitably modify a recovery
sequence for Fk as in [12, Theorem 21.1]. Then the fundamental estimate allows us to show that the error introduced
in the energy goes to zero as k → +∞. �
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Remark 3.2. Let f0 :Ω ×Rm×n ×Rd×n → [0,+∞) be a Borel function satisfying the growth assumption (2.1) and
let F0 be defined as in (2.2). Applying Theorem 2.1 with Fk = F0 for every k and using [12, Proposition 3.6], we find
that there exists a Borel function f̄0 satisfying (2.4) and (2.5) such that the d-lower semicontinuous envelope F 0 of
F0 can be represented as

F 0(u, v) :=
∫
Ω

f̄0(x,∇u,v) dx. (3.2)

Given ψ ∈ W 1,p(Ω;Rm), we can consider the functional F
ψ

0 defined in (3.1). Then, applying Theorem 3.1 with

Fk = F0 for every k we obtain that the d-lower semicontinuous envelope of F
ψ

0 coincides with

F
ψ

0 (u, v) :=
{

F 0(u, v) if u − ψ ∈ W
1,p

0 (Ω;Rm),

+∞ otherwise.

In the following theorem we consider the case of prescribed divergence.

Theorem 3.3 (Γ -convergence with prescribed divergence). Let Fk be the sequence of functionals defined in (2.2)
with fk satisfying (2.1). Assume that Fk Γ (d)-converges to F satisfying (2.3)–(2.5) and that fk(x, ·, ·) is contin-
uous on Rm×n × Rd×n for every k and for a.e. x ∈ Ω . Let ψ ∈ W 1,p(Ω;Rm), let g ∈ W−1,p(Ω;Rd), and let
F

ψ,g
k :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) → [0,+∞] be the functionals defined by

F
ψ,g
k (u, v) :=

{
Fk(u, v) if u − ψ ∈ W

1,p

0 (Ω;Rm) and divv = g,

+∞ otherwise.
(3.3)

Then, the functionals F
ψ,g
k Γ -converge to

Fψ,g(u, v) :=
{

F(u, v) if u − ψ ∈ W
1,p

0 (Ω;Rm) and divv = g,

+∞ otherwise,
(3.4)

with respect to the weak topology of W 1,p(Ω;Rm) × Lp(Ω;Rd×n).

Proof. Γ -liminf. Let (uk, vk) ∈ W 1,p(Ω;Rm)×Lp(Ω;Rd×n) be such that uk −ψ ∈ W
1,p

0 (Ω;Rm) and divvk = g,
and suppose that uk ⇀ u weakly in W 1,p(Ω;Rm) and vk ⇀ v weakly in Lp(Ω;Rd×n). Then, uk → u strongly
in Lp(Ω;Rm), vk → v strongly in W−1,p(Ω;Rd×n), and divvk → divv strongly in W−1,p(Ω;Rd). Therefore,
(uk, vk) → (u, v) with respect to the distance d and the Γ -liminf inequality follows immediately from Theorem 3.1.

Γ -limsup. By Theorem 3.1, Remark 3.2, and [12, Proposition 6.11] the sequence F
ψ
k Γ (d)-converges to Fψ . Let

(u, v) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) be such that u − ψ ∈ W
1,p

0 (Ω;Rm) and divv = g; by the Γ (d)-limsup in-

equality there exists a sequence (uk, vk) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) such that uk − ψ ∈ W
1,p

0 (Ω;Rm),

uk → u in Lp
(
Ω;Rm

)
, vk → v in W−1,p

(
Ω;Rd×n

)
, divvk → g in W−1,p

(
Ω;Rd

)
, (3.5)

lim
k→∞F

ψ
k (uk, vk) = Fψ(u, v) = Fψ,g(u, v) < +∞. (3.6)

Now we need to modify vk in order to get a new recovery sequence wk for F
ψ
k satisfying the divergence constraint

divwk = g. To this end, for every k ∈ N let ϕk be the solution to the following Dirichlet problem{−�qϕk = g − divvk,

ϕk ∈ W
1,q

0

(
Ω;Rd

)
,

(3.7)

where �qϕk := div(|∇ϕk|q−2∇ϕk) and 1/p + 1/q = 1. We define v̂k := |∇ϕk|q−2∇ϕk with the convention v̂k = 0 if
q < 2 and |∇ϕk| = 0. Then using (3.7) we obtain
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∫
Ω

|v̂k|p dx =
∫
Ω

|∇ϕk|q dx � ‖g − divvk‖W−1,p(Ω;Rd )‖∇ϕk‖Lq(Ω;Rd×n),

hence,

‖v̂k‖Lp(Ω;Rd×n) � ‖g − divvk‖W−1,p(Ω;Rd ). (3.8)

Therefore, v̂k ∈ Lp(Ω;Rd×n), div v̂k = divvk − g, and by (3.5) and (3.8) we have that

v̂k → 0 strongly in Lp
(
Ω;Rd×n

)
. (3.9)

Thus, wk := vk − v̂k converges to v weakly in Lp(Ω;Rd×n) and divwk = g. By Remark 3.2 the integrands corre-
sponding to F

ψ
k satisfy the local Lipschitz condition (2.5) with a2 and b2 independent of k. Therefore, (3.6) and (3.9)

yield

lim
k→∞F

ψ
k (uk,wk) = lim

k→∞F
ψ
k (uk, vk) = Fψ,g(u, v). (3.10)

Starting from the sequence (uk,wk) we want to construct a recovery sequence for the Γ -limit of F
ψ
k , still satisfying

the divergence constraint. To this end we fix k and we consider a sequence (u
j
k ,w

j
k ) d-converging to (uk,wk) such

that u
j
k − ψ ∈ W

1,p

0 (Ω;Rm) and

lim
j→∞F

ψ
k

(
u

j
k,w

j
k

) = F
ψ
k (uk,wk). (3.11)

Reasoning as above, we may modify w
j
k in order to get a new sequence z

j
k converging to wk weakly in Lp(Ω;Rd×n)

and with div z
j
k = g. Indeed, it is enough to take z

j
k = w

j
k − |∇ϕ

j
k |q−2∇ϕ

j
k , where ϕ

j
k is solution to the Dirichlet

problem (3.7), with vk replaced by w
j
k . Since fk is a Carathéodory function, (u

j
k ,w

j
k ) is bounded in Lp(Ω;Rm ×

Rd×n), and (z
j
k − w

j
k ) → 0 strongly in Lp(Ω;Rd×n), by [13, Lemma 4.9] we have that

lim
j→∞

(
Fk

(
u

j
k,w

j
k

) − Fk

(
u

j
k, z

j
k

)) = 0.

Therefore, by (3.11), for every fixed k we get

lim
j→∞F

ψ
k

(
u

j
k, z

j
k

) = F
ψ
k (uk,wk).

Hence, there exists jk such that d((u
jk

k , z
jk

k ), (uk,wk)) < 1/k and

∣∣Fψ
k

(
u

jk

k , z
jk

k

) − F
ψ
k (uk,wk)

∣∣ < 1/k. (3.12)

We may assume that the sequence jk is increasing and we set ūk := u
jk

k and z̄k := z
jk

k . Then (ūk, z̄k) d-converges to

(u, v), div z̄k = g, ūk − ψ ∈ W
1,p

0 (Ω;Rm), and by (3.10) and (3.12)

lim
k→∞F

ψ,g
k (ūk, z̄k) = lim

k→∞F
ψ
k (uk,wk) = Fψ,g(u, v) < +∞.

Therefore, the growth condition (2.1) yields

ūk ⇀ u weakly in W 1,p
(
Ω;Rm

)
and v̄k ⇀ v weakly in Lp

(
Ω;Rd×n

)
.

This concludes the proof of the Γ -limsup inequality with respect to the weak topology of W 1,p(Ω;Rm) ×
Lp(Ω;Rd×n). �
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4. Convergence of momenta

In this section we prove the convergence of the momenta for minimizers of the functionals F
ψ,g
k as in (3.3). This

result is a generalization of [13, Lemma 4.11] to the case of sequences of functionals.
Here we assume that the functions fk satisfy a local Lipschitz property, uniformly in k. More precisely, we suppose

that there exist a2 > 0 and a nonnegative function b2 ∈ Lp(Ω) such that for almost every x ∈ Ω

∣∣fk(x, ξ1, η1) − fk(x, ξ2, η2)
∣∣ � a2

(|ξ1 − ξ2| + |η1 − η2|
)(|ξ1| + |ξ2| + |η1| + |η2| + b2(x)

)p−1 (4.1)

for every k ∈N, x ∈ Ω , ξ1, ξ2 ∈ Rm×n, and η1, η2 ∈Rd×n.

Remark 4.1. If the functionals F
ψ,g
k are lower semicontinuous with respect to the weak topology of W 1,p(Ω;Rm) ×

Lp(Ω;Rd×n), then by [14, Theorem 3.6] the functions (ξ, η) �→ fk(x, ξ, η) are (curl,div)-quasiconvex for a.e. x ∈ Ω .
As already observed in the proof of Theorem 2.7 we have in particular that the functions fk satisfy (4.1) with a2 and
b2 depending only on a0, a1, b0, b1.

We need the following preliminary Γ -convergence result.

Theorem 4.2 (Γ -convergence of the perturbed functionals). Let Fk be the sequence of functionals defined in (2.6)
with fk satisfying (2.1) and (4.1). Assume that for every U ∈ A(Ω) the functionals Fk(·, ·,U) Γ (d)-converge to a
functional F(·, ·,U) given by (2.8), with f satisfying (2.4) and (2.5). Let Φ ∈ Lp(Ω;Rm×n), w ∈ Lp(Ω;Rd×n), and
let G

Φ,w
k :W 1,p(Ω;Rm) × Lp(Ω;Rd×n) ×A(Ω) → [0,+∞) be the functional defined as

G
Φ,w
k (u, v,U) :=

∫
U

fk(x,∇u + Φ,v + w)dx. (4.2)

Then, for every U ∈A(Ω) the functionals G
Φ,w
k (·, ·,U) Γ (d)-converge to

GΦ,w(u, v,U) :=
∫
U

f (x,∇u + Φ,v + w)dx.

Proof. For every x ∈ Ω , ξ ∈Rm×n, η ∈Rd×n, and k ∈ N set

g
Φ,w
k (x, ξ, η) := fk(x, ξ + Φ,η + w). (4.3)

Notice that, by definition, g
Φ,w
k satisfies conditions of type (2.1) and (4.1) with b0, b1, b2 replaced respectively by

α0(b0 + |Φ|p + |w|p), α0(b1 + |Φ|p + |w|p) and α0(b2 + |Φ| + |w|), for a suitable constant α0 > 0 depending only
on a0, a1, a2 and p. Therefore, by Theorem 2.3, for every U ∈ A(Ω) the functionals G

Φ,w
k (·, ·,U) Γ (d)-converge,

up to subsequences (not relabeled), to a functional of the form

GΦ,w(u, v,U) =
∫
U

gΦ,w(x,∇u,v) dx,

for some Borel function gΦ,w :Ω × Rm×n × Rd×n → [0,+∞) satisfying (2.4) and (2.5) with the same values of
b0, b1 considered above and a possibly different b2. We want to prove that

GΦ,w(u, v,U) =
∫
U

f (x,∇u + Φ,v + w)dx, (4.4)

for every u,v,U . We divide the proof into four main steps.
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Step 1. Φ = ξ = constant. Let ξ ∈ Rm×n and let uξ := ξx. By definition, we have G
ξ,w
k (u, v,U) = Fk(u + uξ ,

v + w,U), hence Gξ,w(u, v,U) = F(u + uξ , v + w,U) so that

Gξ,w(u, v,U) =
∫
U

f (x,∇u + ξ, v + w)dx

for every (u, v,U) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) ×A(Ω).

Step 2. Φ piecewise constant. Let ξ1, . . . , ξN ∈ Rm×n and consider the piecewise constant function

Φ(x) :=
N∑

i=1

χUi
(x)ξ i,

with Ui pairwise disjoint open sets such that |Ω \ ⋃N
i=1 Ui | = 0.

Since GΦ,w(u, v, ·) is a measure, by additivity on pairwise disjoint sets and by locality we have

GΦ,w(u, v,U) =
N∑

i=1

GΦ,w(u, v,Ui ∩ U) =
N∑

i=1

Gξi,w(u, v,Ui ∩ U),

hence by Step 1

GΦ,w(u, v,U) =
N∑

i=1

∫
Ui∩U

f
(
x,∇u + ξ i, v + w

)
dx =

∫
U

f (x,∇u + Φ,v + w)dx.

Step 3. Continuity estimates. Let Φ1,Φ2 ∈ Lp(Ω;Rm×n), let U ∈ A(Ω), and let (u, v) ∈ W 1,p(Ω;Rm) ×
Lp(Ω;Rd×n). By the definition of Γ (d)-limit there exists (uk, vk) d-converging to (u, v) such that

G
Φ2,w
k (uk, vk,U) → GΦ2,w(u, v,U). (4.5)

Appealing to (4.1) and to the Hölder inequality, we find that for every k ∈N

G
Φ1,w
k (uk, vk,U) − G

Φ2,w
k (uk, vk,U)

�
∫
U

∣∣fk(x,∇uk + Φ1, vk + w) − fk(x,∇uk + Φ2, vk + w)
∣∣dx

� α1‖Φ1 − Φ2‖Lp

(‖∇uk‖Lp + ‖vk‖Lp + ‖w‖Lp + ‖Φ1‖Lp + ‖Φ2‖Lp + 1
)p−1

� α2‖Φ1 − Φ2‖Lp

(
G

Φ2,w
k (uk, vk,U)1/p + ‖w‖Lp + ‖Φ1‖Lp + ‖Φ2‖Lp + 1

)p−1
,

for some α1, α2 > 0 depending only on p, a0, a1, a2, b0, b1, b2, and where all the norms above refer to the set U .
Therefore, (4.5) and the Γ -liminf inequality give

GΦ1,w(u, v,U) − GΦ2,w(u, v,U)

� α2‖Φ1 − Φ2‖Lp

(
GΦ2,w(u, v,U)1/p + ‖w‖Lp + ‖Φ1‖Lp + ‖Φ2‖Lp + 1

)p−1
.

Using the upper bounds in (2.4) and exchanging the roles of Φ1 and Φ2 we then obtain∣∣GΦ1,w(u, v,U) − GΦ2,w(u, v,U)
∣∣

� α3‖Φ1 − Φ2‖Lp

(‖∇u‖Lp + ‖v‖Lp + ‖w‖Lp + ‖Φ1‖Lp + ‖Φ2‖Lp + 1
)p−1

,

for some constant α3 > 0 depending only on p, a0, a1, a2, b0, b1, b2.
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Step 4. General case. Let Φ ∈ Lp(Ω;Rm×n) and let Φj be a sequence of piecewise constant functions converging
to Φ strongly in Lp(Ω;Rm×n). Thanks to the continuity estimate proved in Step 3 we have

GΦj ,w(u, v,U) → GΦ,w(u, v,U),

for every (u, v,U) ∈ W 1,p(Ω;Rm) × Lp(Ω;Rd×n) ×A(Ω). Moreover, by Step 2 we find

GΦj ,w(u, v,U) =
∫
U

f (x,∇u + Φj , v + w)dx →
∫
U

f (x,∇u + Φ,v + w)dx,

where the convergence follows from (2.4) and (2.5). Then, equality (4.4) is accomplished. �
The following result turns out to be useful in the applications (see, e.g., [1]).

Proposition 4.3. Let Fk be the sequence of functionals defined in (2.2), with fk satisfying (2.1) and (4.1). Assume
that Fk Γ (d)-converges to F satisfying (2.3)–(2.5). Let ψ ∈ W 1,p(Ω;Rm), g ∈ W−1,p(Ω;Rd), Φ ∈ Lp(Ω;Rm×n),
w ∈ Lp(Ω;Rd×n), and let G

ψ,g,Φ,w
k :W 1,p(Ω;Rm×n) × Lp(Ω;Rd×n) → [0,+∞] be the functional defined as

G
ψ,g,Φ,w
k (u, v) :=

{∫
Ω

fk(x,∇u + Φ,v + w)dx if u − ψ ∈ W
1,p

0 (Ω;Rm), divv = g,

+∞ otherwise.

Then, the functionals G
ψ,g,Φ,w
k Γ -converge to the functional

Gψ,g,Φ,w(u, v) :=
{∫

Ω
f (x,∇u + Φ,v + w)dx if u − ψ ∈ W

1,p

0 (Ω;Rm), divv = g,

+∞ otherwise,

with respect to the weak topology of W 1,p(Ω;Rm) × Lp(Ω;Rd×n).

Proof. Thanks to Theorem 4.2 it is enough to apply Theorem 3.3 with fk replaced by the functions g
Φ,w
k defined

in (4.3). �
The following lemma is an easy variant of [13, Lemma 4.9] (see also [15, Lemma 2.4]) and it will be used in the

proof of the main result of this section. We give here the proof for the reader’s convenience.

Lemma 4.4. Let (X,A ,μ) be a finite measure space, let p > 1, let l, s � 1, and let Hk :X ×Rs → Rl be a sequence
of Carathéodory functions. Let 0 � α � min{1, (p − 1)}; assume that there exist a constant a > 0 and a nonnegative
function b ∈ Lp(X), such that∣∣Hk(x, ζ1) − Hk(x, ζ2)

∣∣� a|ζ1 − ζ2|α
(|ζ1| + |ζ2| + b(x)

)p−1−α (4.6)

for every k ∈ N, x ∈ X, ζ1, ζ2 ∈ Rs . Let Φk and Ψk be two sequences in Lp(X;Rs) such that Φk is bounded in
Lp(X;Rs) and Ψk → 0 in Lp(X;Rs). Then,∫

X

(
Hk(x,Φk + Ψk) − Hk(x,Φk)

)
Φdμ → 0,

for every Φ ∈ Lp(X;Rl).

Proof. By (4.6) we have∣∣Hk(x,Φk + Ψk) − Hk(x,Φk)
∣∣|Φ| � a|Ψk|α

(|Ψk| + 2|Φk| + b(x)
)p−1−α|Φ|,

for every x ∈ X. Since Φ ∈ Lp(X;Rs), to conclude it is enough to show that

|Ψk|α
(|Ψk| + 2|Φk| + b(x)

)p−1−α → 0 in Lq(X), (4.7)

with q = p/(p − 1).
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To this end, we first apply Hölder’s inequality with exponents (p, q) and then with r = (p −1)/α and s = (p −1)/

(p − 1 − α); we find∫
X

|Ψk|
pα

p−1
(|Ψk| + 2|Φk| + b(x)

) p(p−1−α)
p−1 dμ

� C

(∫
X

|Ψk|pdμ

) α
p−1

(∫
X

|Ψk|p dμ +
∫
X

|Φk|p dμ +
∫
X

b(x)pdμ

) p−1−α
p−1

.

Hence, the thesis follows as ‖Ψk‖Lp(X;Rs ) → 0 and Φk is bounded in Lp(X;Rs). �
Let f :Ω ×Rm×n ×Rd×n → [0,+∞) be a Borel function satisfying (2.4), (2.5), and (2.26). In view of (2.5) we

immediately deduce that∣∣∂ξf (x, ξ, η)
∣∣ � a2

(
2|ξ | + 2|η| + b2(x)

)p−1
,

∣∣∂ηf (x, ξ, η)
∣∣ � a2

(
2|ξ | + 2|η| + b2(x)

)p−1
,

for every x ∈ Ω , ξ ∈ Rm×n, η ∈ Rd×n. Therefore the functional F :Lp(Ω;Rm×n) × Lp(Ω;Rd×n) → [0,+∞) de-
fined by

F(Φ,v) :=
∫
Ω

f (x,Φ,v)dx (4.8)

is C1 and its partial differentials ∂ΦF :Lp(Ω;Rm×n) × Lp(Ω;Rd×n) → Lq(Ω;Rm×n) and ∂vF :Lp(Ω;Rm×n) ×
Lp(Ω;Rd×n) → Lq(Ω;Rd×n) are given by

∂ΦF(Φ,v) = ∂ξf (x,Φ,v) and ∂vF(Φ,v) = ∂ηf (x,Φ,v). (4.9)

In the next theorem we consider functions fk satisfying (2.1), (4.1), (2.24), and the corresponding functionals Fk

defined by (4.8).
We are now in the position to prove the result concerning the convergence of momenta. Note that in the next theorem

we do not assume that (uk, vk) is a minimizer. We only suppose that (uk, vk) → (u, v) and that Fk(∇uk, vk) →
F(∇u,v). We shall see in Corollary 4.6 below that these properties are always satisfied, up to subsequence, if (uk, vk)

is a solution of a suitable minimization problem for Fk .

Theorem 4.5. Let Fk be the sequence of functionals defined in (2.6) with fk satisfying (2.1), (4.1), and (2.24). As-
sume that for every U ∈ A(Ω) the functionals Fk(·, ·,U) Γ (d)-converge to a functional F(·, ·,U). Then F can be
represented as in (2.8), with f satisfying (2.4), (2.5), and (2.26). Let (uk, vk), (u, v) ∈ W 1,p(Ω;Rm)×Lp(Ω;Rd×n).
Assume that (uk, vk) → (u, v) with respect to the distance d and that Fk(∇uk, vk) → F(∇u,v). Then,

∂ΦFk(∇uk, vk) ⇀ ∂ΦF(∇u,v) weakly in Lq
(
Ω;Rm×n

)
, (4.10a)

∂vFk(∇uk, vk) ⇀ ∂vF(∇u,v) weakly in Lq
(
Ω;Rd×n

)
, (4.10b)

where q = p/(p − 1).

Proof. Properties (2.4) and (2.5) are proved in Theorem 2.3, while (2.26) is proved in Theorem 2.8. The proof
of (4.10) follows the lines of that of [13, Lemma 4.11]. We repeat it here for the reader’s convenience. We prove
only (4.10a). It is enough to show that〈

∂ΦF(∇u,v),Ψ
〉
� lim inf

k→∞
〈
∂ΦFk(∇uk, vk),Ψ

〉
(4.11)

for every Ψ ∈ Lp(Ω;Rm×n). Let ti be a sequence of positive numbers converging to 0. By virtue of Theorem 4.2, for
every i we obtain

F(∇u + tiΨ, v) −F(∇u,v) � lim inf
Fk(∇uk + tiΨ, vk) −Fk(∇uk, vk)

.

ti k→∞ ti
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Therefore there exists an increasing sequence of integers ki such that

F(∇u + tiΨ, v) −F(∇u,v)

ti
− 1

i
� Fk(∇uk + tiΨ, vk) −Fk(∇uk, vk)

ti
(4.12)

for every k � ki . Setting εk := ti for ki � k < ki+1, from (4.12) we deduce

lim inf
k→∞

F(∇uk + εkΨ,v) −F(∇u,v)

εk

� lim inf
k→∞

Fk(∇uk + εkΨ,vk) −Fk(∇uk, vk)

εk

.

Since Fk and F are C1, we have

〈
∂ΦF(∇u,v),Ψ

〉 = lim
k→∞

F(∇uk + εkΨ,v) −F(∇u,v)

εk

and by Mean Value Theorem there exists τk ∈ [0, εk] such that

Fk(∇uk + εkΨ,vk) −Fk(∇uk, vk)

εk

= 〈
∂ΦFk(∇uk + τkΨ, vk),Ψ

〉
.

By Lemma 4.4, with Hk = ∂ξfk and Ψk = τkΨ , we have

lim inf
k→∞

〈
∂ΦFk(∇uk + τkΨ, vk),Ψ

〉 = lim inf
k→∞

〈
∂ΦFk(∇uk, vk),Ψ

〉
which concludes the proof of (4.11). Similarly we can prove (4.10b). �
Corollary 4.6. Assume that Fk , fk , F , and f satisfy the hypotheses of Theorem 4.5. Let ψ ∈ W 1,p(Ω;Rm), let
g ∈ W−1,p(Ω;Rd), and let F

ψ,g
k and Fψ,g be defined by (3.3) and (3.4). Assume that for every k the pair (uk, vk) is

a minimizer of F
ψ,g
k . Then, there exist a subsequence of (uk, vk), not relabeled, and a minimum point (u, v) of Fψ,g

such that uk ⇀ u weakly in W 1,p(Ω;Rm), vk ⇀ v weakly in Lp(Ω;Rd×n), and (4.10) hold true.

Proof. By Theorem 3.3 the functionals F
ψ,g
k Γ -converge to Fψ,g with respect to the weak topology of

W 1,p(Ω;Rm) × Lp(Ω;Rd×n). Let (uk, vk) be a minimizer of F
ψ,g
k , then in particular uk − ψ ∈ W

1,p

0 (Ω;Rm)

and divvk = g. By the coerciveness condition (2.1) there exists a subsequence of (uk, vk), not relabeled, such that
uk ⇀ u weakly in W 1,p(Ω;Rm) and vk ⇀ v weakly in Lp(Ω;Rd×n), hence, (uk, vk) → (u, v) with respect to the
distance d . By a general property of Γ -convergence (see, e.g., [12, Corollary 7.17]) the pair (u, v) is a minimizer of
Fψ,g and Fk(∇uk, vk) = F

ψ,g
k (uk, vk) → Fψ,g(u, v) =F(∇u,v). Then the conclusion follows by Theorem 4.5. �
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