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Abstract

For a general open set, we characterize the compactness of the embedding for the homogeneous Sobolev space D1,p
0 ↪→ Lq in 

terms of the summability of its torsion function. In particular, for 1 ≤ q < p we obtain that the embedding is continuous if and only 
if it is compact. The proofs crucially exploit a torsional Hardy inequality that we investigate in detail.
© 2016 
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1. Introduction

1.1. Foreword

Let 1 < p < +∞ and let � ⊂R
N be an open set. We denote by D1,p

0 (�) the homogeneous Sobolev space, defined 
as the completion of C∞

0 (�) with respect to the norm

u �→
⎛⎝∫

�

|∇u|p dx

⎞⎠
1
p

.

We recall that this space naturally occurs in the study of Dirichlet boundary value problems for (quasi)linear operators 
in general open sets. Classical references for the Hilbertian case p = 2 are [11] and [15], to which we refer the reader.

The aim of the present paper is to investigate the interplay between the continuity (and compactness) of the em-
bedding D1,p

0 (�) ↪→ Lq(�) for 1 ≤ q ≤ p and the integrability properties of the p-torsion function of �, w�. The 
latter is the formal solution of
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−�p w� = 1, in �, w� = 0, on ∂�, (1.1)

where �p u = div(|∇u|p−2 ∇u) is the p-Laplacian operator. The reader is referred to Section 2 for the precise defini-
tion of p-torsion function.

An important contribution in this direction has been recently given by Bucur and Buttazzo, in a different setting. 
Let us denote by W 1,p(�) the usual Sobolev space

W 1,p(�) = {u ∈ Lp(�) : ∇u ∈ Lp(�;RN)},
equipped with the norm

u �→
⎛⎝∫

�

|∇u|p dx

⎞⎠
1
p

+
⎛⎝∫

�

|u|p dx

⎞⎠
1
p

.

In [8] these two authors considered the Sobolev space W 1,p

0 (�) obtained as the closure of C∞
0 (�) in W 1,p(�) with 

respect to the previous norm and they characterized the compactness of the embeddings

W
1,p

0 (�) ↪→ L1(�) and W
1,p

0 (�) ↪→ Lp(�),

in terms of the summability of the formal solution u� of

−�p u� + u
p−1
� = 1, in �, u� = 0, on ∂�.

Namely, in [8, Theorems 6.1 & 6.2] they proved that

W
1,p

0 (�) ↪→ L1(�) is continuous ⇐⇒ u� ∈ L1(�) ⇐⇒ W
1,p

0 (�) ↪→ L1(�) is compact,

and

W
1,p

0 (�) ↪→ Lp(�) is compact ⇐⇒ for every ε > 0, there exists R > 0
such that ‖u�‖L∞(�\BR) < ε.

We stress that in general D1,p

0 (�) = W
1,p

0 (�), unless � supports a Poincaré inequality of the type

1

C

∫
�

|u|p dx ≤
∫
�

|∇u|p, for every u ∈ C∞
0 (�).

Indeed, while by construction W 1,p

0 (�) ↪→ Lp(�), in general the elements of our space D1,p

0 (�) are not Lp functions. 
This point deserves a further precision.

Remark 1.1. We recall that for a general open set � ⊂ R
N , the completion D1,p

0 (�) may not be a functional space, 

nor a space of distributions, see for example [11, Remark 4.1]. For 1 < p < N , we have that D1,p

0 (�) is a functional 
space continuously embedded in LN p/(N−p)(�) for every open set, thanks to Sobolev inequality

∫
�

|∇u|p dx ≥ 1

C

⎛⎝∫
�

|u| N p
N−p dx

⎞⎠
N−p

N

, u ∈ C∞
0 (�).

The latter guarantees that every family {un}n∈N ⊂ C∞
0 (�) which forms a Cauchy sequence with respect to the Lp

norm of the gradient, is in turn a Cauchy sequence in the Banach space LNp/(N−p)(�).
The same can be said for every open set � ⊂R

N which supports an inequality of the type

∫
�

|∇u|p dx ≥ 1

C

⎛⎝∫
�

|u|q dx

⎞⎠
p
q

, for every u ∈ C∞
0 (�),

for some q ≥ 1 and C > 0. In this case D1,p

0 (�) is a functional space continuously embedded in Lq(�).
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1.2. Main results

In order to present our contribution, for every 1 ≤ q ≤ p we introduce the Poincaré constant

λp,q(�) := inf
u∈C∞

0 (�)

⎧⎨⎩
∫
�

|∇u|p dx :
∫
�

|u|q dx = 1

⎫⎬⎭ .

We remark that the continuity of the embedding D1,p

0 (�) ↪→ Lq(�) is equivalent to the condition λp,q(�) > 0. We 
then have the following results. For ease of presentation, we find it useful to distinguish between the cases 1 ≤ q < p

and q = p.

Theorem 1.2 (Case 1 ≤ q < p). Let 1 < p < +∞ and 1 ≤ q < p. Let � ⊂ R
N be an open set. Then the following 

equivalences hold true

λp,q(�) > 0 ⇐⇒ w� ∈ L
p−1
p−q

q
(�) ⇐⇒ D1,p

0 (�) ↪→ Lq(�) is compact.

Moreover, we have

1 ≤ λp,q(�)

⎛⎝∫
�

w

p−1
p−q

q

� dx

⎞⎠
p−q

q

≤ 1

q

(
p − 1

p − q

)p−1

. (1.2)

In the case p = q , the equivalence

λp,q(�) > 0 ⇐⇒ D1,p

0 (�) ↪→ Lq(�) is compact,

ceases to be true, as shown by simple examples. In this case, by relying on a result by van den Berg and Bucur [4], we 
obtain the following.

Theorem 1.3 (Case q = p). Let 1 < p < +∞ and let � ⊂R
N be an open set. The following equivalence holds true

λp,p(�) > 0 ⇐⇒ w� ∈ L∞(�),

and we have the double-sided estimate

1 ≤ λp,p(�)‖w�‖p−1
L∞(�) ≤ DN,p, (1.3)

for some constant DN,p > 1. Moreover, we have

D1,p

0 (�) ↪→ Lp(�) is compact ⇐⇒ for every ε > 0, there exists R > 0
such that ‖w�‖L∞(�\BR) < ε.

(1.4)

Remark 1.4. For p = 2 and q = 1, the result of Theorem 1.2 is essentially contained in [9, Theorem 2.2]. The lower 
bound in (1.3) generalizes to p = 2 the estimate of van den Berg in [3, Theorem 5]. For � smooth and bounded, 
this was proved in [10, Proposition 6] with a different argument. As for the upper bound, an explicit expression for 
the constant DN,p is not given in [4, Theorem 9]. However, a closer inspection of their proof reveals that it could be 
possible to produce an explicit value for DN,p (which is very likely not optimal). In the particular case p = 2, van den 
Berg and Carroll in [5, Theorem 1] produced the value

DN,2 = 4 + 3N log 2.

1.3. A comment on the proofs

Before entering into the mathematical details of the paper, the reader may find it useful to have an idea on some key 
ingredients of the proofs. In this respect, we wish to mention that a prominent role is played by the torsional Hardy 
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inequality for general open sets, which is introduced and proved in this paper. The latter is an Hardy-type inequality 
where the distance function is replaced by the p-torsion function. A particular instance is given by∫

�

|u|p
w

p−1
�

dx ≤
∫
�

|∇u|p dx, for every u ∈ C∞
0 (�), (1.5)

though we refer the reader to Theorem 4.3 and Proposition 4.5 below for a more precise statement and some general-
izations. From (1.5) it is then easy to infer for example the lower bounds in (1.2) and (1.3), when w� has the required 
integrability. We also point out that (1.5) holds with constant 1 and this happens to be optimal. Observe that inequality 
(1.5) is dimensionally correct, since equation (1.1) entails that w� scales like a length to the power p/(p − 1).

1.4. Plan of the paper

In Section 2 we define the p-torsion function of a set and state some general results needed in the sequel. The 
subsequent Section 3 proves some properties of the p-torsion function that will be used throughout the whole paper. 
The above mentioned torsional Hardy inequality is stated and proved in Section 4. Then the proofs of Theorems 1.2
and 1.3 are contained in Section 5. Finally, we conclude the paper by addressing the sharpness issue for the torsional 
Hardy inequality, which is indeed the content of Section 6. For completeness, some known convexity inequalities used 
in Section 6 are stated in Appendix A, mainly without proofs.

2. Preliminaries

Definition 2.1 (Torsion function: variational construction). Let 1 < p < +∞ and assume that � is such that we have 
the compact embedding D1,p

0 (�) ↪→ L1(�). Then the following variational problem admits a unique solution

min

⎧⎨⎩ 1

p

∫
�

|∇u|p dx −
∫
�

udx : u ∈D1,p

0 (�)

⎫⎬⎭ . (2.1)

We denote by w� such a solution. The function w� is called p-torsion function of �. By optimality, it solves{−�pw� = 1, in �.

w� = 0, in ∂�,

where �p is the p-Laplacian operator, i.e. �pu := div(|∇u|p−2 ∇u).

The previous boundary value problem is intended in the usual weak sense that is∫
�

〈
|∇w�|p−2 ∇w�,∇φ

〉
dx =

∫
�

φ dx, for any φ ∈ D1,p

0 (�). (2.2)

The definition of w� is linked to an optimal Poincaré constant, through the relation⎛⎝ p

p − 1
max

u∈D1,p
0 (�)

⎧⎨⎩
∫
�

udx − 1

p

∫
�

|∇u|p dx

⎫⎬⎭
⎞⎠p−1

= max
u∈D1,p

0 (�)\{0}

( ∫
�

|u|dx
)p∫

�
|∇u|p dx

=: Tp(�).

In analogy with the quadratic case, the quantity Tp(�) is called p-torsional rigidity of �. By using the equation (2.2), 
one can see that the following relation holds

Tp(�) =
⎛⎝∫ w� dx

⎞⎠p−1

.

�
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We recall that among open sets with given measure, the quantity Tp is maximal on balls. In other words, we have the 
scaling invariant Saint-Venant inequality

Tp(�)

|�| p+N (p−1)
N

≤ Tp(B)

|B| p+N (p−1)
N

, (2.3)

where B is any N -dimensional ball. Inequality (2.3) can be proved by using standard rearrangement arguments and 
the variational definition of Tp.

When the embedding D1,p

0 (�) ↪→ L1(�) fails to be compact, the p-torsion function of � is defined as follows 
(see also [4,8]). By BR we note the open ball centered at the origin and of radius R > 0.

Definition 2.2 (Torsion function: general construction). Let us define

R� := inf{R > 0 : |� ∩ BR| > 0}.
Then for every R > R�, we take w�,R ∈D1,p

0 (� ∩BR) to be the p-torsion function of the bounded open set1 � ∩BR , 
extended by 0 outside. By the comparison principle, we get that w�,R ≥ w�,R′ whenever R ≥ R′, thus is well posed 
the definition

w�(x) := lim
R→∞w�,R(x). (2.4)

The limit is intended in the pointwise sense.

Remark 2.3. Of course, in many situations we could have |{x : w�(x) = +∞}| > 0. This is the case for example of 
� =R

N , since

wRN ,R = wBR
=
(
R

p
p−1 − |x| p

p−1

)
+

AN,p

, where AN,p = p

p − 1
N

1
p−1 ,

and thus in this case wRN is the trivial function which is everywhere +∞.

The first simple result shows that Definition 2.2 is coherent with the compact case. Indeed in this case (2.4) boils 
down to the usual torsion function given by Definition 2.1.

Lemma 2.4. Let 1 < p < +∞ and assume that the embedding D1,p

0 (�) ↪→ L1(�) is compact. Then the function 
defined by (2.4) is the unique solution of (2.1).

Proof. The first observation is that compactness of the embedding D1,p

0 (�) ↪→ L1(�) entails

Tp(�) < +∞.

Then we extend each w�,R to 0 in � \ BR , so that w�,R ∈D1,p

0 (�). By using the equation we obtain∫
�

|∇w�,R|p dx =
∫
�

w�,R dx.

On the other hand, the definition of p-torsion implies that

∫
�

w�,R dx ≤
⎛⎝∫

�

|∇w�,R|p dx

⎞⎠
1
p

Tp(�)
1
p ,

since w�,R is admissible for the variational problem defining Tp(�). By keeping the two information together, we 
get

1 This is well-defined, since � ∩ BR is a bounded open set and thus in this case D1,p
0 (� ∩ BR) ↪→ L1(� ∩ BR) is compact.
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∫
�

|∇w�,R|p dx ≤ Tp(�)
1

p−1 , for every R > R�.

This implies that (up to a subsequence) w�,R converges weakly in D1,p

0 (�). Since we have also L1(�) strong conver-
gence (by compactness of the embedding), the limit function has to be the function w� defined by (2.4). This shows 
in particular that w� ∈D1,p

0 (�) ∩ L1(�).
In order to show that w� coincides with the torsion function, we take φ ∈ C∞

0 (�) and R1 > R� large enough so 
that spt(φ) � � ∩ BR for every R ≥ R1. By minimality of w�,R we get

1

p

∫
�

|∇w�,R|p dx −
∫
�

w�,R dx ≤ 1

p

∫
�

|∇φ|p dx −
∫
�

φ dx, for every R ≥ R1.

By passing to the limit as R goes to +∞ in the left-hand side, we get

1

p

∫
�

|∇w�|p dx −
∫
�

w� dx ≤ 1

p

∫
�

|∇φ|p dx −
∫
�

φ dx.

For the gradient term, we used the weak lower semicontinuity of the norm in D1,p

0 (�). Finally, by arbitrariness of 
φ ∈ C∞

0 (�) the previous inequality shows that w� is the (unique) solution of (2.1). �
Remark 2.5 (Heat-based definition). In the case p = 2, the torsion function of an open set � ⊂R

N can also be defined 
through the heat equation. We briefly recall the construction, by referring for example to [2,3,5] for more details. One 
considers the initial boundary value problem⎧⎨⎩

∂tu = �u, in � ×R,

u = 0, on ∂� ×R,

u = 1, for t = 0.

If U� denotes the solution of this problem, we set

W�(x) =
∞∫

0

U�(t, x) dt, x ∈ �.

It is not difficult to see that W� solves (2.2). For p = 2 such a definition is not available.

In what follows, for p = N we define

p∗ =
⎧⎨⎩

N p

N − p
, if 1 < p < N,

+∞, if p > N.

For 1 < p < N we set

SN,p = sup
φ∈C∞

0 (RN)

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎝ ∫

RN

|φ|p∗
dx

⎞⎟⎠
p

p∗

:
∫
RN

|∇φ|p dx = 1

⎫⎪⎪⎬⎪⎪⎭ . (2.5)

We recall that SN,p < +∞, since by Sobolev inequality we have the continuous embedding D1,p

0 (RN) ↪→ Lp∗
(RN). 

Moreover, the supremum above is indeed attained in D1,p

0 (RN). We will need the following particular family of 
Gagliardo–Nirenberg inequalities.

Proposition 2.6 (Gagliardo–Nirenberg inequalities). Let 1 < p < +∞ and 1 ≤ q ≤ p, then for every u ∈ C∞
0 (RN)

we have:
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• for p = N and q < r ≤ p∗

⎛⎜⎝ ∫
RN

|u|r dx

⎞⎟⎠
1
r

≤ C1

⎛⎜⎝ ∫
RN

|u|q dx

⎞⎟⎠
1−ϑ

q
⎛⎜⎝ ∫

RN

|∇u|p dx

⎞⎟⎠
ϑ
p

, (2.6)

for some C1 = C1(N, p, q, r) > 0 and

ϑ =
(

1 − q

r

) N p

N p + p q − N q
;

• for p = N and q < r < ∞⎛⎜⎝ ∫
RN

|u|r dx

⎞⎟⎠
1
r

≤ C2

⎛⎜⎝ ∫
RN

|u|q dx

⎞⎟⎠
1
r
⎛⎜⎝ ∫

RN

|∇u|N dx

⎞⎟⎠
r−q
N r

, (2.7)

for some C2 = C2(N, q, r) > 0.

Proof. Inequality (2.6) for 1 < p < N is well-known and nowadays can be found in many textbooks on Sobolev 
spaces. It can be obtained by combining Sobolev inequality⎛⎜⎝ ∫

RN

|u|p∗
dx

⎞⎟⎠
p

p∗

≤ SN,p

∫
RN

|∇u|p dx,

and interpolation in Lebesgue spaces.
The case p > N follows from the well-known Morrey’s inequality (see [7, Théorème IX.12])

‖u‖L∞(RN) ≤ C
(‖u‖Lp(RN) + ‖∇u‖Lp(RN)

)
,

combined with a standard homogeneity argument and interpolation in Lebesgue spaces.
On the contrary, the conformal case (2.7) seems to be more difficult to find in the literature. We provide a simple 

proof, which is essentially the same as that of the so-called Ladyzhenskaya inequality (see [16, Lemma 1, page 10]), 
corresponding to q = p = N = 2 and r = 4. For every t > 1 we have

|u|t ≤ t

+∞∫
−∞

|u|t−1 |uxi
|dxi, i = 1, . . . ,N,

and thus

|u| N t
N−1 ≤ t

N
N−1

N∏
i=1

⎛⎝ +∞∫
−∞

|u|t−1 |uxi
|dxi

⎞⎠
1

N−1

.

By integrating over RN we get

∫
RN

|u| N t
N−1 dx ≤ t

N
N−1

∫
RN

N∏
i=1

⎛⎝ +∞∫
−∞

|u|t−1 |uxi
|dxi

⎞⎠
1

N−1

dx ≤ t
N

N−1

N∏
i=1

⎡⎢⎣ ∫
RN−1

+∞∫
−∞

|u|t−1 |uxi
|dxi dx̂i

⎤⎥⎦
1

N−1

,

where dx̂i denotes integration with respect to all variables but xi . The second inequality is the classical Gagliardo 
Lemma, see [14, Lemma 3.3]. From the previous estimate, with some elementary manipulations and an application of 
Hölder inequality we get



824 L. Brasco, B. Ruffini / Ann. I. H. Poincaré – AN 34 (2017) 817–843
∫
RN

|u| N t
N−1 dx ≤ t

N
N−1

⎛⎜⎝ ∫
RN

|u|(t−1) N
N−1 dx

⎞⎟⎠
⎛⎜⎝ ∫

RN

|∇u|N dx

⎞⎟⎠
1

N−1

. (2.8)

We now observe that if we take t > N and recall that q ≤ p = N , then

q < (t − 1)
N

N − 1
< t

N

N − 1
,

so that by interpolation in Lebesgue spaces

∫
RN

|u|(t−1) N
N−1 dx ≤

⎛⎜⎝ ∫
RN

|u|q dx

⎞⎟⎠
1−α
q

(t−1) N
N−1

⎛⎜⎝ ∫
RN

|u| N t
N−1 dx

⎞⎟⎠
t−1
t

α

,

where

α = t

t − 1

(
1 − N

N (t − q) + q

)
.

By inserting this estimate in (2.8), we get for t > N⎛⎜⎝ ∫
RN

|u| N t
N−1 dx

⎞⎟⎠
1− t−1

t
α

≤ t
N

N−1

⎛⎜⎝ ∫
RN

|u|q dx

⎞⎟⎠
1−α
q

(t−1) N
N−1

⎛⎜⎝ ∫
RN

|∇u|N dx

⎞⎟⎠
1

N−1

. (2.9)

By arbitrariness of t > N , this proves (2.7) for exponents r > N2/(N − 1). When q < r ≤ N2/(N − 1), it is sufficient 
to use once again interpolation in Lebesgue spaces, together with (2.9). We leave the details to the reader. �
3. Properties of the p-torsion function

3.1. Compact case

We present some basic properties of the p-torsion function when this can be defined variationally, i.e. when the 
embedding D1,p

0 (�) ↪→ L1(�) holds and is compact.

Proposition 3.1. Let 1 < p < +∞ and suppose that D1,p

0 (�) ↪→ L1(�) is compact. Then w� ∈ L∞(�). Moreover, 
for 1 < p < N we have

‖w�‖L∞(�) ≤ C

⎛⎝∫
�

w� dx

⎞⎠
p′

N+p′

, with C = N + p′

p′ S
N

N (p−1)+p

N,p , (3.1)

and the constant SN,p is defined in (2.5).

Proof. For p > N , the result follows directly from (2.6) with q = 1 and r = +∞.
Let us focus on the case 1 < p < N . We take k > 0 and test (2.2) with φ = (w� − k)+. This gives∫

�

|∇(w� − k)+|p dx =
∫
�

(w� − k)+ dx. (3.2)

We introduce the notation μ(k) := |{x ∈ � : w�(x) > k}| and observe that μ(k) < +∞ for almost every k > 0, since 
w� ∈ L1(�). By combining Sobolev and Hölder inequalities, we get∫

|∇(w� − k)+|p dx ≥ S−1
N,p μ(k)1−p− p

N

⎛⎝∫ (w� − k)+ dx

⎞⎠p

.

� �
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Thus from (3.2) we obtain⎛⎝ +∞∫
k

μ(t) dt

⎞⎠p−1

≤ SN,p μ(k)p+ p
N

−1.

If we set

M(k) =
+∞∫
k

μ(t) dt,

the previous estimate can be written as the differential inequality

M(k)
N

N+p′ ≤ C (−M ′(k)), with C := S
N

N (p−1)+p

N,p ,

where p′ = p/(p − 1). If we fix k0 ≥ 0, this implies that we have

M(k)
p′

N+p′ ≤ M(k0)
p′

N+p′ + p′

N + p′
1

C (k0 − k), for every k ≥ k0.

The previous inequality implies that

M(k) ≡ 0, for k ≥ N + p′

p′ CM(k0)
p′

N+p′ + k0,

and thus

μ(k) ≡ 0, for k ≥ N + p′

p′ CM(k0)
p′

N+p′ + k0.

This finally gives

0 ≤ w�(x) ≤ N + p′

p′ CM(k0)
p′

N+p′ + k0 = k0 + N + p′

p′ C

⎛⎝∫
�

(w� − k0)+ dx

⎞⎠
p′

N+p′

.

By arbitrariness of k0 we thus get the L∞ − L1 estimate (3.1), as desired.
Finally, for the case p = N , we start again by testing the equation with (w� − k)+. Then to estimate the right-hand 

side of (3.2), we now use inequality (2.7) with q = 1 and r = 2 N . This gives⎛⎝∫
�

(w� − k)2 N+ dx

⎞⎠
1

2 N

≤ C2

⎛⎝∫
�

|∇(w� − k)+|N dx

⎞⎠
2 N−1
2 N2

⎛⎝∫
�

(w� − k)+ dx

⎞⎠
1

2 N

= C2

⎛⎝∫
�

(w� − k)+ dx

⎞⎠
3 N−1
2 N2

,

thanks to (3.2), too. Similarly as before, after some manipulations we get⎛⎝∫
�

(w� − k)+ dx

⎞⎠
N−1
N

≤ C2 μ(k).

Then the proof goes as in the previous case. �
We list some composition properties of w� that will be used many times.
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Lemma 3.2. Let 1 < p < +∞ and suppose that D1,p

0 (�) ↪→ L1(�) is compact. Then:

(i) for every 0 < β ≤ (p − 1)/p, we have wβ
� /∈ W 1,p(�);

(ii) logw� /∈ W 1,p(�);
(iii) for every (p − 1)/p < β < 1, we have wβ

� ∈ D1,p

0 (�), provided wβ p−p+1
� ∈ L1(�);

(iv) for every β ≥ 1, we have wβ
� ∈D1,p

0 (�).

Proof. We treat each case separately.
(i) Case 0 < β ≤ (p − 1)/p. Let us first assume that

0 < β <
p − 1

p
.

In this case, let us define the function

ϕε = (w� + ε)β p−p+1 − εβ p−p+1, (3.3)

for ε > 0. Notice that ϕε ∈D1,p

0 (�), since this is the composition of w� with the C1 function

ψε(t) = (t + ε)β p−p+1 − εβ p−p+1, t ≥ 0,

which is globally Lipschitz continuous on [0, +∞) and such that ψε(0) = 0. Plugging ϕε as a test function in (2.2)
we get

(β p − p + 1)

∫
�

|∇w�|p (w� + ε)β p−p dx =
∫
�

εp−1−β p − (w� + ε)p−1−β p

εp−1−β p (w� + ε)p−1−β p
dx,

that is

(p − 1 − β p)

∫
�

|∇w�|p
(w� + ε)p−β p

dx = 1

εp−1−β p

∫
�

(w� + ε)p−1−β p − εp−1−β p

(w� + ε)p−1−β p
dx. (3.4)

From Proposition 3.1, we already know that w� ∈ L∞(�), then we take

τ = ‖w�‖L∞(�)

2
, so that A := |{x ∈ � : w� > τ }| > 0.

Then from (3.4) we get

(p − 1 − β p)

∫
�

|∇w�|p
(w� + ε)p−β p

dx = 1

εp−1−β p

∫
�

[
1 −

(
ε

w� + ε

)p−1−β p
]

dx

≥ 1

εp−1−β p

∫
{w�>τ }

[
1 −

(
ε

τ + ε

)p−1−β p
]

dx

=
[

1 −
(

ε

τ + ε

)p−1−β p
]

A

εp−1−β p
.

By taking the limit as ε goes to 0 in the previous estimate and using the Monotone Convergence Theorem, we get∫
�

|∇w�|p
w

p−β p
�

dx = +∞.

This finally shows that ∇w
β
� /∈ Lp(�) for 0 < β < (p − 1)/p.

To treat the borderline case β = (p − 1)/p, we insert in (2.2) the test function

φ = log(w� + ε) − log ε,

for ε > 0. In this case we obtain



L. Brasco, B. Ruffini / Ann. I. H. Poincaré – AN 34 (2017) 817–843 827
∫
�

|∇w�|p
w� + ε

dx =
∫
�

log
(

1 + w�

ε

)
dx,

and reasoning as before we get again the desired conclusion.
(ii) The logarithm. To prove that logw� /∈ W 1,p(�), it is sufficient to reproduce the proof above with β = 0.
(iii) Case (p − 1)/p < β < 1. We test once again (2.2) with ϕε defined in (3.3). In this case we get the equality

(β p − p + 1)

∫
�

|∇w�|p (w� + ε)β p−p dx =
∫
�

(
(w� + ε)β p−p+1 − εβ p−p+1

)
dx.

From the previous, with simple manipulations and using the subadditivity of τ �→ τβ p−p+1 we get for every ε > 0∫
�

∣∣∇ ((w� + ε)β − εβ
)∣∣p dx ≤ βp

β p − p + 1

∫
�

(
(w� + ε)β p−p+1 − εβ p−p+1

)
dx

≤ βp

β p − p + 1

∫
�

w
β p−p+1
� dx,

and the latter is finite by hypothesis. Thus the net{
(w� + ε)β − εβ

}
ε>0 ,

is uniformly bounded in D1,p

0 (�). Since the latter is a weakly closed space, we get that wβ
� ∈D1,p

0 (�) as desired.

(iv) Case β ≥ 1. This is the simplest case. By Proposition 3.1 w� ∈ L∞(�), then wβ
� is just the composition of a 

C1 function vanishing at 0 with a function in D1,p

0 (�) ∩ L∞(�). This gives wβ
� ∈ D1,p

0 (�). �
Remark 3.3. The requirement wβ p−p+1

� ∈ L1(�) in point (iii) of the previous Lemma is necessary. Indeed, for every 

(p − 1)/p < β < 1, it is possible to construct an open set � ⊂ R
N such that D1,p

0 (�) ↪→ L1(�) is compact, but 

w
β p−p+1
� /∈ L1(�) and wβ

� /∈D1,p

0 (�). An instance of such a set is presented in Remark 5.3 below.

3.2. General case

We already said that in general w� could reduce to the trivial function which is +∞ everywhere on �. The 
following elegant and simple result, suggested to us by Guido De Philippis [12], gives a sufficient condition to avoid 
this trivial situation. It asserts that finiteness in a point entails finiteness in the whole connected component containing 
the point.

Lemma 3.4 (Propagation of finiteness). Let 1 < p < +∞ and let � ⊂ R
N be an open set. Let us suppose that there 

exist R0 > R�, x0 ∈ � ∩ BR0 and M > 0 such that

w�,R(x0) ≤ M, for every R ≥ R0. (3.5)

Then w� ∈ L∞
loc(�x0), where �x0 is the connected component of � containing x0.

Proof. We first observe that the pointwise condition (3.5) does make sense, since each function w�,R is indeed 
C

1,α
loc (� ∩BR) for some 0 < α < 1, thanks to standard regularity results for the p-Laplacian. In this respect, a classical 

reference is [13].
Let K � �x0 be a compact set, then there exists a larger compact set K ⊂ K ′ � �x0 such that x0 ∈ K ′. We take 

R1 ≥ R0 large enough, so that � ∩ BR1 contains K ′. By Harnack inequality (see [14, Theorem 7.10]), we have

sup
K

w�,R ≤ sup
K ′

w�,R ≤ CK ′
(

inf
K ′ w�,R + |K ′| 1

N
p

p−1

)
≤ CK ′ w�,R(x0) + CK ′ |K ′| 1

N
p

p−1 ≤ C, for R ≥ R1,

where C = C(N, p, K ′, M) > 0. This ends the proof. �
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In general it is not true that (3.5) implies w� ∈ L∞
loc(�), unless � is connected as shown in the next simple 

counterexample.

Example 3.5. Let us consider

� = B1 ∪ {x ∈ R
N : xN > 2}.

In this case we have

w�(0) = p − 1

p
N

− 1
p−1 and w� = +∞ on {x ∈ R

N : xN > 2}.

We present now a sufficient condition for the function w� defined by (2.4) to be a (local) weak solution of

−�pw = 1.

Proposition 3.6. Let 1 < p < +∞ and let � ⊂R
N be an open set. Let us suppose that w� ∈ L1

loc(�). Then

∇w� ∈ L
p

loc(�;RN). (3.6)

Moreover, w� is a local weak solution of (2.2), i.e. for every �′ � � and every φ ∈ C∞
0 (�′) there holds∫ 〈

|∇w�|p−2 ∇w�,∇φ
〉
dx =

∫
φ dx.

Proof. To prove (3.6) it suffices to show that for every open set �′ � �, there exists a constant C�′ > 0 such that

‖∇w�,R‖Lp(�′) ≤ C�′ , for every R > ρ�′ := min{ρ ∈ [0,∞) : �′ � Bρ}. (3.7)

Indeed, if this were true, the gradients would weakly converge (up to a subsequence) in Lp(�′; RN) to V ∈
Lp(�′; RN). On the other hand, for every φ ∈ C∞

0 (�′) we would get∫
�′

Vj φ dx = lim
R→∞

∫
�′

(
w�,R

)
xj

φ dx = − lim
R→∞

∫
�′

w�,R φxj
dx = −

∫
�′

w� φxj
dx, j = 1, . . . ,N,

which implies that ∇w� = V ∈ Lp(�′; RN). Observe that we used 0 ≤ w�,R ≤ w� and w� ∈ L1
loc(�) to pass to the 

limit in the last equation.
To show the uniform bound (3.7), we choose �′ � �′′ �� and a positive cut-off function η ∈ C∞

0 (�′′) such that

0 ≤ η ≤ 1, η ≡ 1 on �′, |∇η| ≤ C

dist(�′, ∂�′′)
.

Then, for a fixed R ≥ ρ�′′ , we insert the test function φ = w�,R ηp in the weak formulation of the equation solved by 
w�,R . Observe that this is an admissible test function, since it is supported in �′′ � � ∩ BR . With simple manipula-
tions, we get∫

�

|∇w�,R|p ηp dx ≤
∫
�

ηpw�,R dx + p

∫
�

ηp−1|∇w�,R|p−1 |∇η|w�,R dx

≤
∫
�′′

w� dx + ε1−p

∫
�

|w�|p |∇η|p dx + (p − 1) ε

∫
�

|∇w�,R|p ηp dx,

(3.8)

where we also used that w�,R ≤ w� by construction. The last term can be absorbed in the left-hand side of (3.8) by 
taking ε > 0 small enough. Thus we end up with∫

′
|∇w�,R|p dx ≤ C

∫
′′

w� dx + C

dist(�′, ∂�′′)p

∫
′′

|w�|p dx, (3.9)
� � �
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for some C = C(N, p) > 0, where we also used the bound on |∇η|. In order to conclude, we need to show that 
the right-hand side of (3.9) is finite. Since we are assuming w� ∈ L1

loc(�), then we can apply Lemma 3.4 in each 
connected component of � and obtain w� ∈ L∞

loc(�). Thus the right-hand side of (3.9) is finite and we get (3.7).
In order to show that w� is a local weak solution of (2.2), we need to pass to the limit in the equation∫

〈|∇w�,R|p−2 ∇w�,R,∇φ〉dx =
∫

φ dx, (3.10)

where φ ∈ C∞(�′) and �′ � �. We first observe that for p = 2 the local weak convergence of the gradients already 
gives the result, by linearity of (3.10).

In the case p = 2 we need to improve this weak convergence into a stronger one. For this, we can use the higher 
differentiability of solutions of the p-Laplacian. Namely, it is sufficient to observe that for every (smooth) open sets 
�′ � �′′ � �, we have

‖D2w�,R‖Lp(�′) ≤ C

dist(�′, ∂�′′)
‖∇w�,R‖Lp(�′′), for 1 < p < 2, (3.11)

and ∥∥∥∇ (|∇w�,R| p−2
2 ∇w�,R

)∥∥∥2

L2(�′)
≤ C

dist(�′, ∂�′′)2
‖∇w�,R‖p

Lp(�′′), for p > 2, (3.12)

again for R > ρ�′′ , so that �′′ � � ∩ BR . These estimates are nowadays well-known: the first one comes from [1, 
Proposition 2.4], while the second one can be found for example in [6, Theorem 4.2]. Observe that the right-hand 
sides of (3.11) and (3.12) are uniformly bounded, thanks to the first part of the proof.

For 1 < p < 2, from (3.11) by Rellich–Kondrašov Theorem we have strong convergence (up to a subsequence) in 
Lp(�′; RN) of ∇w�,R to ∇w�. If one then uses the elementary inequality2

∫
�′

∣∣∣|∇w�,R|p−2 ∇w�,R − |∇w�|p−2 ∇w�

∣∣∣p′
dx ≤ C

∫
�′

∣∣∇w�,R − ∇w�

∣∣p dx,

we obtain strong convergence in Lp′
(�′; RN) of |∇w�,R|p−2 ∇w�,R to |∇w�|p−2 ∇w�. Thus it is possible to pass 

to the limit in (3.10) for 1 < p < 2.
For p > 2, we observe that (3.12), Rellich–Kondrašov Theorem and the elementary inequality3

∫
�′

∣∣∣|∇w�,R| p−2
2 ∇w�,R − |∇w�,R′ | p−2

2 ∇w�,R′
∣∣∣2 dx ≥ C

∫
�′

∣∣∇w�,R − ∇w�,R′
∣∣p dx,

imply again that we can extract a sequence such that the gradients strongly converge in Lp(�′; RN). The limit is of 
course ∇w�,R , since this has to coincide with the weak limit. In order to conclude, we can observe that for every 
φ ∈ C∞

0 (�′) we have

2 This follows from the fact that z �→ |z|p−2 z is (p − 1)-Hölder continuous, for 1 < p < 2.

3 Observe that z �→ |z|
2−p
p z is 2/p-Hölder continuous, i.e.

∣∣∣∣|z| 2−p
p z − |ξ |

2−p
p ξ

∣∣∣∣≤ C |z − ξ | 2
p .

The desired inequality is obtained by choosing

z = |∇w�,R | p−2
2 w�,R and ξ = |∇w�,R′ | p−2

2 w�,R′ .
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∣∣∣ ∫ 〈|∇w�,R|p−2 w�,R − |∇w�|p−2 w�,∇φ〉dx

∣∣∣
≤ ‖∇φ‖L∞

∫
�′

∣∣∣|∇w�,R|p−2 ∇w�,R − |∇w�|p−2 ∇w�

∣∣∣dx

≤ C ‖∇φ‖L∞
∫
�′

(|∇w�,R|p−2 + |∇w�|p−2) |∇w�,R − ∇w�|dx.

From the strong convergence of the gradients in Lp

loc, we get that the last integral tends to 0, as R goes to +∞. This 
yields the desired result. �
Remark 3.7. Though we will not need this, we notice that once we obtained that w� ∈ W

1,p

loc (�) is a local weak 
solution of the equation, then we have w� ∈ C

1,α
loc (�) for some 0 < α < 1, by classical regularity results (see for 

example [13]).

Lemma 3.8. Let � ⊂R
N be an open set such that |�| < +∞. Then w� ∈ L1(�).

Proof. For every R > R� we have⎛⎜⎝ ∫
�∩BR

w�,R dx

⎞⎟⎠
p−1

= Tp(� ∩ BR).

By using the Saint-Venant inequality (2.3), we obtain for every R > R�

Tp(� ∩ BR) ≤
( |� ∩ BR|

|B|
) p+N (p−1)

N

Tp(B) ≤
( |�|

|B|
) p+N (p−1)

N

Tp(B).

Thus we obtain a uniform L1 bound on the functions w�,R . By taking the limit as R goes to +∞ and using the 
Monotone Convergence Theorem, we get the result. �
4. The torsional Hardy inequality

In this section we are going to prove a Hardy-type inequality, which contains weights depending on w�. The proof 
of its sharpness is postponed to Section 6.

4.1. Compact case

We start with the following slightly weaker result.

Proposition 4.1. Let 1 < p < +∞ and let � ⊂ R
N be an open set such that the embedding D1,p

0 (�) ↪→ L1(�) is 

compact. Then for every u ∈D1,p

0 (�) we have(
p − 1

p

)p ∫
�

[∣∣∣∣∇w�

w�

∣∣∣∣p + p

(p − 1)

1

w
p−1
�

]
|u|p dx ≤

∫
�

|∇u|p dx. (4.1)

Proof. We first observe that it is sufficient to prove inequality (4.1) for positive functions. Let u ∈ C∞
0 (�) be positive. 

We recall that∫ 〈
|∇w�|p−2 ∇w�,∇φ

〉
dx =

∫
φ dx, (4.2)
� �
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for any φ ∈D1,p

0 (�). Let ε > 0, by taking in (4.2) the test function

φ = up (w� + ε)1−p,

we get∫
�

[
(p − 1) |∇w�|p + (w� + ε)

(w� + ε)p

]
up dx = p

∫
�

up−1
〈 |∇w�|p−2 ∇w�

(w� + ε)p−1
,∇u

〉
dx. (4.3)

By Young inequality, for any ξ, z ∈ R
N it holds

〈ξ, z〉 ≤ 1

p
|z|p + p − 1

p
|ξ | p

p−1 . (4.4)

By applying such an inequality to (4.3), with

z =
(

p

p − 1

) p−1
p ∇u, and ξ =

(
p − 1

p

) p−1
p

up−1 |∇w�|p−2 ∇w�

(w� + ε)p−1
,

we get that∫
�

[
(p − 1) |∇w�|p + (w� + ε)

(w� + ε)p

]
up dx ≤

(
p

p − 1

)p−1 ∫
�

|∇u|p dx + (p − 1)
p − 1

p

∫
�

up |∇w�|p
(w� + ε)p

dx.

The previous inequality gives(
p − 1

p

)p ∫
�

[ |∇w�|p
(w� + ε)p

+ p

(p − 1) (w� + ε)p−1

]
up dx ≤

∫
�

|∇u|p dx.

Finally we let ε go to 0, then Fatou’s Lemma gives the inequality (4.1) for u ∈ C∞
0 (�) positive. The case of a general 

u ∈ D1,p

0 (�) follows by density. �
As a consequence of the torsional Hardy inequality, we record the following integrability properties of functions in 

D1,p

0 (�). This will be useful in a while.

Corollary 4.2. Under the assumptions of Proposition 4.1, for every u ∈D1,p

0 (�) we have∫
�

∣∣∣∣∇w�

w�

∣∣∣∣p |u|p dx < +∞ and
∫
�

|u|p
w

p−1
�

dx < +∞.

Moreover, if {un}n∈N ⊂D1,p

0 (�) converges strongly to u ∈D1,p

0 (�), then

lim
n→∞

∫
�

∣∣∣∣∇w�

w�

∣∣∣∣p |un − u|p dx = 0 and lim
n→∞

∫
�

|un − u|p
w

p−1
�

dx = 0.

The following functional inequality is the main result of this section.

Theorem 4.3 (Torsional Hardy inequality). Under the assumptions of Proposition 4.1, for every δ > 0 and every 
u ∈ D1,p

0 (�) we have

p − 1

δ

∫
�

[(
1 − δ

− 1
p−1

) ∣∣∣∣∇w�

w�

∣∣∣∣p + 1

(p − 1)w
p−1
�

]
|u|p dx ≤

∫
�

|∇u|p dx. (4.5)
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Proof. The proof is the same as that of Proposition 4.1. The main difference is that now we use Young inequality 
(4.4) with the choices

z = δ
1
p ∇u and ξ = δ

− 1
p up−1 |∇w�|p−2 ∇w�

(w� + ε)p−1
,

where δ > 0 is a free parameter. Thus this time we get∫
�

[
(p − 1) |∇w�|p + (w� + ε)

(w� + ε)p

]
|u|p dx ≤ δ

∫
�

|∇u|p dx + (p − 1) δ
− 1

p−1

∫
�

|u|p |∇w�|p
(w� + ε)p

dx.

We can now pass to the limit on both sides. By using Corollary 4.2 and the Monotone Convergence Theorem we get

∫
�

[
(p − 1) |∇w�|p + w�

w
p
�

]
|u|p dx ≤ δ

∫
�

|∇u|p dx + (p − 1) δ
− 1

p−1

∫
�

|u|p
∣∣∣∣∇w�

w�

∣∣∣∣p dx.

This gives the conclusion for u smooth and positive. A density argument and Corollary 4.2 gives again the general 
result. �
Remark 4.4. Observe that one could optimize (4.5) with respect to δ > 0. This leads to the following stronger form 
of the torsional Hardy inequality

(
p − 1

p

)p

⎛⎝∫
�

[∣∣∣∣∇w�

w�

∣∣∣∣p + 1

(p − 1)w
p−1
�

]
|u|p dx

⎞⎠p

⎛⎝∫
�

∣∣∣∣∇w�

w�

∣∣∣∣p |u|p dx

⎞⎠p−1
≤
∫
�

|∇u|p dx.

We leave the details to the interested reader.

4.2. General case

Finally, we consider the case of a general open set � ⊂ R
N . We will need the following version of the torsional 

Hardy inequality.

Proposition 4.5. Let � ⊂R
N be an open set. Then for every u ∈ C∞

0 (�) we have∫
{x∈� : w�(x)<+∞}

|u|p
w

p−1
�

dx ≤
∫
�

|∇u|p dx. (4.6)

Proof. Let u ∈ C∞
0 (�), then we take as always R1 > R� large enough so that the support of u is contained in � ∩BR , 

for every R ≥ R1. We can then use Theorem 4.3 with δ = 1 and obtain∫
�

|u|p
w

p−1
�,R

dx ≤
∫
�

|∇u|p dx, R ≥ R1.

If we now take the limit as R goes to +∞ and use Fatou’s Lemma once again, we get the desired conclusion by 
appealing to the definition of w�. �
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5. Proofs of the main results

5.1. Proof of Theorem 1.2

For ease of notation, we set

γ := p − 1

p − q
q.

We start by proving the first equivalence, i.e.

λp,q(�) > 0 ⇐⇒ w� ∈ Lγ (�).

Let us assume that λp,q(�) > 0. We recall that w�,R satisfies∫
�∩BR

〈|∇w�,R|p−2 ∇w�,R,∇φ〉dx =
∫

�∩BR

φ dx,

for every φ ∈ D1,p

0 (� ∩ BR). By Lemma 3.2, the function φ = w
β
�,R is a legitimate test function for every β ≥ 1, 

since � ∩ BR is an open bounded set and thus D1,p

0 (�) ↪→ L1(�) is compact. By using this, we get with simple 
manipulations

β

(
p

β + p − 1

)p ∫
�∩BR

∣∣∣∣∇w

β+p−1
p

�,R

∣∣∣∣p dx =
∫

�∩BR

w
β
�,R dx. (5.1)

We now observe that (β + p − 1)/p ≥ 1, thus w(β+p−1)/p
�,R ∈D1,p

0 (� ∩BR), still thanks to Lemma 3.2. Moreover, the 
inclusion � ∩ BR ⊂ � implies

0 < λp,q(�) ≤ λp,q(� ∩ BR).

Then we can apply the relevant Poincaré inequality in the left-hand side of (5.1) and get

β

(
p

β + p − 1

)p

λp,q(�)

⎛⎜⎝ ∫
�∩BR

w

β+p−1
p

q

�,R dx

⎞⎟⎠
p
q

≤
∫

�∩BR

w
β
�,R dx.

This is valid for a generic β ≥ 1. In order to obtain the desired estimate, we now choose

β = γ = p − 1

p − q
q so that

β + p − 1

p
q = β,

which is feasible, since γ ≥ 1. By using that p/q > 1, after a simplification we get

λp,q(�)

⎛⎜⎝ ∫
�∩BR

w
γ

�,R dx

⎞⎟⎠
p−q

q

≤ 1

q

(
p − 1

p − q

)p−1

.

We now take the limit as R goes to +∞, then Fatou’s Lemma gives that w� ∈ Lγ (�), together with the upper bound 
in (1.2).

Let us now assume w� ∈ Lγ (�). The latter entails |{x ∈ � : w�(x) < +∞}| = |�|. Then for every u ∈ C∞
0 (�)

with unit Lq norm, by combining Hölder inequality and the torsional Hardy inequality (4.6), we get
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1 =
∫
�

|u|q dx ≤
⎛⎝∫

�

|u|p
w

p−1
�

dx

⎞⎠
q
p
⎛⎝∫

�

w
γ
� dx

⎞⎠
p−q

p

≤
⎛⎝∫

�

|∇u|p dx

⎞⎠
q
p
⎛⎝∫

�

w
γ
� dx

⎞⎠
p−q

p

.

By taking the infimum over admissible u, we get λp,q(�) > 0. The result comes with the lower bound in (1.2).
In order to complete the proof, we are now going to prove the equivalence

λp,q(�) > 0 ⇐⇒ D1,p

0 (�) ↪→ Lq(�) is compact.

The implication “⇐=” is straightforward, we thus focus on the converse implication. Let us assume that

λp,q(�) > 0. (5.2)

From the first part of the proof, we already know that this implies (and is indeed equivalent to) w� ∈ Lγ (�). By 
recalling Remark 1.1, we also observe that (5.2) implies that D1,p

0 (�) is a functional space, thus we can extend by 
density both the Poincaré inequality

λp,q(�)

⎛⎝∫
�

|u|q dx

⎞⎠
p
q

≤
∫
�

|∇u|p dx, (5.3)

and the torsional Hardy inequality (4.6) to the whole D1,p

0 (�). Let {un} ⊂D1,p

0 (�) be a bounded sequence, i.e.

‖∇un‖Lp(�) ≤ L, for every n ∈N. (5.4)

By (5.3) we have that {un}n∈N is bounded also in Lq(�). Thanks to the Gagliardo-Nirenberg inequalities of Propo-
sition 2.6 applied with r = p, we thus get that {un}n∈N is bounded in Lp(�) as well. By uniform convexity of 
D1,p

0 (�) and Lp(�), we get that {un}n∈N converges weakly (up to a subsequence) in D1,p

0 (�) and Lp(�) to a func-

tion u ∈D1,p

0 (�) ∩ Lp(�). Finally, we observe that we also have u ∈ Lq(�).
Let us take the new sequence

Un := un − u ∈D1,p

0 (�) ∩ Lq(�),

that we consider extended by 0 outside �. From the previous discussion, this is a bounded sequence in W 1,p(RN). 
From Rellich–Kondrašov Theorem we thus obtain that {Un}n∈N strongly converges (up to a subsequence) in 
Lq(BR+1), for every R > 0, and the limit is 0. Thus for every ε > 0 and every R > 0 there exists nε,R ∈ N such 
that ∫

BR+1

|Un|q dx < ε, for every n ≥ nε,R. (5.5)

In order to control the integral on RN \BR+1 uniformly, we use again the torsional Hardy inequality. For every R > 0, 
we take a positive function ηR ∈ C∞(RN \ BR) such that

ηR ≡ 1 in R
N \ BR+1, ηR ≡ 0 in BR, 0 ≤ ηR ≤ 1, |∇ηR| ≤ C,

for some universal constant C > 0. Each function Un ηR belongs to D1,p

0 (�), then by combining Hölder inequality 
and (4.6) as before, we have

∫
RN\BR+1

|Un|q dx ≤
⎛⎝∫

�

|Un ηR|p
w

p−1
�

dx

⎞⎠
q
p

⎛⎜⎝ ∫
�\BR

w
γ
� dx

⎞⎟⎠
p−q

p

≤
⎛⎝∫

�

|∇(Un ηR)|p dx

⎞⎠
q
p

⎛⎜⎝ ∫
�\B

w
γ
� dx

⎞⎟⎠
p−q

p

.

(5.6)
R
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In the first inequality we used the properties of ηR , which imply in particular that Un ηR ≡ 0 on BR . We now observe 
that the first term in the right-hand side of (5.6) is bounded uniformly. Indeed, by (5.4) and the triangle inequality⎛⎝∫

�

|∇(Un ηR)|p dx

⎞⎠
1
p

≤ ‖∇Un‖Lp(�) + C ‖Un‖Lp(�),

which is bounded, as showed before.
On the other hand, since w� ∈ Lγ (�), by the absolute continuity of the integral for every ε > 0 there exists Rε > 0

such that⎛⎜⎝ ∫
�\BRε

w
γ
� dx

⎞⎟⎠
p−q

p

≤ ε.

By spending these information in (5.6), we finally get∫
RN\BRε+1

|Un|q dx < C̃ ε, for every n ∈N, (5.7)

for some C̃ > 0 independent of n and ε. By collecting (5.5) and (5.7), we proved that for every ε > 0 there exist
Rε > 0 and nε ∈N such that∫

RN

|Un|q dx =
∫

BRε+1

|Un|q dx +
∫

RN\BRε+1

|Un|q dx < (1 + C̃) ε, for every n ≥ nε.

This finally shows that Un = un − u strongly converges to 0 in Lq(�).

5.2. Proof of Theorem 1.3

The fact that w� ∈ L∞(�) implies λp,p(�) > 0 follows as before by using the torsional Hardy inequality (4.6). 
Indeed, for every u ∈ C∞

0 (�) with unit Lp norm we have

1 =
∫
�

|u|p dx ≤ ‖w�‖p−1
L∞

∫
�

|u|p
w

p−1
�

dx ≤ ‖w�‖p−1
L∞

∫
�

|∇u|p dx.

This also shows the first inequality in (1.3). The converse implication is exactly the van den Berg–Bucur estimate of 
[4, Theorem 9].

As for the characterization (1.4) of the compact embedding D1,p

0 (�) ↪→ Lp(�), we first observe that when this 
holds, then λp,p(�) > 0 and this in turn implies w� ∈ L∞(�). The proof of the implication “=⇒” can now be proved 
exactly as in [8, Theorem 6.1] by Bucur and Buttazzo.

The implication “⇐=” can be proved by appealing again to the torsional Hardy inequality. Indeed, the hypothesis 
on w� implies that bounded sequences {un}n∈N ⊂ D1,p

0 (�) are bounded in Lp(�) as well, since w� ∈ L∞(�) and 
thus λp,p(�) > 0. Moreover, the bound on the Lp norms of the gradients guarantees that translations converge to 0 in 
Lp(�) uniformly in n, i.e.

lim|h|→0

⎛⎜⎝sup
n∈N

∫
RN

|un(x + h) − un(x)|p dx

⎞⎟⎠= 0.

In order to exclude loss of mass at infinity for the sequence {|un|p}n∈N, we observe that with an argument similar to 
that of (5.6), by (4.6) we have
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∫
RN\BR+1

|un|p dx ≤
⎛⎝∫

�

|∇(un ηR)|p dx

⎞⎠ ‖w�‖p−1
L∞(�\BR)

,

where ηR is as in the proof of Theorem 1.2. Thus the loss of mass at infinity is excluded, by using the hypothe-
sis on the decay at infinity of w�. This yields strong convergence in Lp(�) (up to a subsequence), thanks to the 
Riesz–Fréchet–Kolmogorov Theorem.

Remark 5.1. Differently from the case 1 ≤ q < p, the fact that λp,p(�) > 0 does not entail in general that the 
embedding D1,p

0 (�) ↪→ Lp(�) is compact. A simple counterexample is given by any rectilinear wave-guide � =
ω × R ⊂ R

N , where ω ⊂ R
N−1 is a bounded open set. Indeed, it is well-known that λp,p(�) > 0 in this case, while 

every sequence of the form

un(x
′, xN) = u(x′, xN + n), (x′, xN) ∈ ω ×R, n ∈ N,

with u ∈ C∞
0 (ω ×R) \ {0}, is bounded in D1,p

0 (ω ×R) but do not admit subsequences strongly converging in Lp(ω ×
R).

Example 5.2. For simplicity we focus on the case p = 2, but the very same example works for every 1 < p < +∞, 
with the necessary modifications. Let {ri}i∈N ⊂R be a sequence of strictly positive numbers, such that

∞∑
i=0

rN
i = +∞.

We then define the sequence of points {xi}i∈N ⊂R
N by{

x0 = (0, . . . ,0),

xi+1 = (ri + ri+1,0, . . . ,0) + xi,

and the set

� =
∞⋃
i=0

Bri (xi), (5.8)

which by construction is a disjoint union of open balls, with |�| = +∞. On each ball Bri (xi) the torsion function is 
given by

wBri
(xi ) = (r2

i − |x − xi |2)+
2N

,

thus we have the explicit expression for the torsion function of �

w�(x) =
∞∑
i=0

wBri
(xi ) =

∞∑
i=0

(r2
i − |x − xi |2)+

2N
.

We start with the case q = 2. We notice that w� ∈ L∞
loc(�) and we have (see Fig. 1)

w� ∈ L∞(�) ⇐⇒ lim sup
i→∞

ri < +∞.

In this case λ2,2(�) > 0 by Theorem 1.3. We also observe that

for every ε > 0, there exists R > 0
such that ‖w�‖L∞(�\BR) < ε

⇐⇒ lim
i→∞ ri = 0,

and when the latter is verified D1,2
(�) ↪→ L2(�) is compact.
0
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Fig. 1. The set of Example 5.2 when ri ↗ +∞. The relevant torsion function is in L∞
loc(�) but not in L∞(�) and thus λ2,2(�) = 0.

For 1 ≤ q < 2, by observing that∫
�

w

q
2−q

� dx �
∞∑
i=1

∫
Bri

(r2
i − |x|2) q

2−q dx �
∞∑
i=1

r

2 q
2−q

+N

i ,

we have

w� ∈ L
q

2−q (�) ⇐⇒
∞∑
i=1

r

2 q
2−q

+N

i < +∞. (5.9)

In this case λ2,q(�) > 0 and D1,2
0 (�) ↪→ Lq(�) is compact by Theorem 1.2.

Remark 5.3. By exploiting Example 5.2, it is not difficult to show that for every 0 < s < 1 there exists an open set 
� ⊂ R

N such that w� ∈ L1(�) \ Ls(�) (this in particular means that the embedding D1,2
0 (�) ↪→ L1(�) is compact, 

by Theorem 1.2). Indeed, with the notations of the previous example in force, by taking � as in (5.8) we only have to 
show that there exists a sequence {ri}i∈N such that

∞∑
i=1

r2+N
i < +∞ and

∞∑
i=1

r2 s+N
i = ∞.

Thanks to (5.9), this would entail that w� ∈ L1(�), while w� /∈ Ls(�) (observe that s = q/(2 − q) implies 2 q/(2 −
q) = 2 s). As a straightforward computation shows, an example of such a sequence is offered by the choice ri =
i−1/(2 s+N).

6. Sharpness of the torsional Hardy inequality

Since the essential ingredient of the lower bounds in (1.2) and (1.3) is the torsional Hardy inequality (4.5), it is 
natural to address the question of its sharpness. Though sharpness of (4.5) is not a warranty of optimality of the 
estimates (1.2) and (1.3), we believe this question to be of independent interest. As we will see, the following value 
of the parameter δ > 0 in (4.5)

δ =
(

p

p − 1

)p−1

,

will play a crucial role.
We warn the reader that for simplicity in this section we will make the stronger assumption |�| < +∞. In this case, 

it is well-known that we have the compact embedding D1,p

0 (�) ↪→ L1(�). Observe that this can also be obtained by 
joining Lemma 3.8 and Theorem 1.2.

We start with a standard consequence of the Harnack inequality.

Lemma 6.1. Let 1 < p < +∞ and let � ⊂ R
N be an open connected set with finite measure. Let δ ≥ 1 and suppose 

that u ∈D1,p
(�) is a nontrivial function attaining the equality in (4.5). Then |u| still attains equality in (4.5) and for
0
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every compact set K � � there exists a constant C > 0 such that

|u| ≥ 1

C
, on K. (6.1)

Proof. If u ≡ 0 is an optimal function, then u minimizes in D1,p

0 (�) the functional

F(ϕ) =
∫
�

|∇ϕ|p dx −
∫
�

g |ϕ|p dx,

where

g(x) = p − 1

δ

[(
1 − δ

− 1
p−1

) ∣∣∣∣∇w�

w�

∣∣∣∣p + 1

(p − 1)w
p−1
�

]
.

Since δ ≥ 1, we have g > 0. Then v = |u| ∈ D1,p

0 (�) is still a minimizer and it is of course positive. The relevant 
Euler–Lagrange equation associated with this minimization problem is given by{−�pv = g vp−1, in �,

v = 0, on ∂�.

In particular, v is a nontrivial positive local weak solution of

−�pv = g vp−1,

and observe that g ∈ L∞
loc(�). Then v satisfies Harnack inequality (see for instance [18, Theorem 1.1]) and thus it 

verifies (6.1). �
Proposition 6.2 (Existence of extremals). Let 1 < p < +∞ and let � ⊂ R

N be an open set with finite measure. 
Assume that

0 < δ <

(
p

p − 1

)p−1

, (6.2)

then functions of the type

u = cwδ
− 1

p−1

� , c ∈ R, (6.3)

give equality in (4.5).

Proof. We first observe that hypothesis (6.2) implies that

δ
− 1

p−1 >
p − 1

p
,

so that by Lemma 3.2, functions of the type (6.3) are in D1,p

0 (�). Then the proof is by direct verification. Indeed, let 
us take for simplicity c = 1, then we get∫

�

|∇u|p = δ
− p

p−1

∫
�

|∇w�|p w
p δ

− 1
p−1 −p

� dx, (6.4)

and

p − 1

δ

∫
�

[(
1 − δ

− 1
p−1

) ∣∣∣∣∇w�

w�

∣∣∣∣p + 1

(p − 1)w
p−1
�

]
|u|p dx

= p − 1

δ

(
1 − δ

− 1
p−1

)∫
|∇w�|p w

p δ
− 1

p−1 −p
� dx + 1

δ

∫
w

p δ
− 1

p−1 −p+1
� dx.

(6.5)
� �



L. Brasco, B. Ruffini / Ann. I. H. Poincaré – AN 34 (2017) 817–843 839
We now have to distinguish two cases:

0 < δ <

(
p2

p2 − 1

)p−1

or

(
p2

p2 − 1

)p−1

≤ δ <

(
p

p − 1

)p−1

. (6.6)

In the first case, we can insert in (2.2) the test function4

φ = w
p δ

− 1
p−1 −p+1

� , (6.7)

then we get

1

δ

∫
�

w
p δ

− 1
p−1 −p+1

� dx =
[
−p − 1

δ

(
1 − δ

− 1
p−1

)
+ δ

− p
p−1

] ∫
�

|∇w�|p w
p δ

− 1
p−1 −p

� dx. (6.8)

By using this in (6.5) and comparing with (6.4), we get the conclusion.
If on the contrary the second condition in (6.6) is verified, some care is needed. Indeed, now the choice (6.7) is not 

feasible for the equation (2.2). We thus need to replace it by

φn = (w� + εn)
p δ

− 1
p−1 −p+1 − ε

p δ
− 1

p−1 −p+1
n ,

where {εn}n∈N ⊂ (0, +∞) is an infinitesimal strictly decreasing sequence. Then from (2.2) we get

1

δ

∫
�

[
(w� + εn)

p δ
− 1

p−1 −p+1 − ε
p δ

− 1
p−1 −p+1

n

]
dx

=
[
−p − 1

δ

(
1 − δ

− 1
p−1

)
+ δ

− p
p−1

] ∫
�

|∇w�|p (w� + εn)
p δ

− 1
p−1 −p dx.

If we now use the Dominated Convergence Theorem on both sides, we obtain as before (6.8) and thus we get again 
the desired conclusion. �
Proposition 6.3 (Lack of extremals). Let 1 < p < +∞ and let � ⊂R

N be an open connected set with finite measure. 
If

δ ≥
(

p

p − 1

)p−1

, (6.9)

equality in (4.5) is not attained in D1,p

0 (�) \ {0}.

Proof. We first notice that by using the quantitative version of Young inequality (see Propositions A.2 and A.4 below) 
in place of (4.4), we can show the following stronger version of (4.5)

p − 1

δ

∫
�

[(
1 − δ

− 1
p−1

) ∣∣∣∣∇w�

w�

∣∣∣∣p + 1

(p − 1)w
p−1
�

]
|u|p + C

δ
Rp,�(u) ≤

∫
�

|∇u|p dx.

Here C = C(p) > 0 is a constant and the remainder term Rp,�(u) is given by

4 This is a legitimate test function by Lemma 3.2, since

p δ
− 1

p−1 − p + 1 >
p − 1

p
⇐⇒ 0 < δ <

(
p2

p2 − 1

)p−1

,

and the latter is true by hypothesis.
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Rp,�(u) =
∫
�

∣∣∣∣δ 1
p ∇u − δ

− 1
p (p−1) u

∇w�

w�

∣∣∣∣p dx, if p ≥ 2,

or

Rp,�(u) =
∫
�

[
δ

2
p |∇u|2 + δ

− 2
p (p−1) u2

∣∣∣∣∇w�

w�

∣∣∣∣2
] p−2

2 ∣∣∣∣δ 1
p ∇u − δ

− 1
p (p−1) u

∇w�

w�

∣∣∣∣2 dx, if 1 < p < 2.

Let u ∈ D1,p

0 (�) \ {0} be such that equality holds in (4.5), by Lemma 6.1 we can assume that it is positive (by 
assumption we have δ > 1). From the discussion above, then necessarily Rp,�(u) = 0. This yields

∇u

u
= δ

− 1
p−1

∇w�

w�

,

and observe that it is possible to divide by u thanks to (6.1) of Lemma 6.1. Then we arrive at

logu = δ
− 1

p−1 logw� + c, a. e. in �.

From the previous identity we obtain

u = c′ wδ
− 1

p−1

� , (6.10)

almost everywhere in � for some constant c′ = 0. Observe that the hypothesis (6.9) on δ implies that δ−1/(p−1) ≤
(p − 1)/p. Thus thanks to Lemma 3.2 we get a contradiction with the fact that u ∈D1,p

0 (�). �
Remark 6.4. We recall that the weaker information “u > 0 almost everywhere” could not be sufficient to conclude 
(6.10). Indeed, one can find functions u and v such that

∇u = u
∇v

v
, for a.e. x ∈ � and u,v > 0 for a.e. x ∈ �,

but u and v are not proportional. A nice example of this type is in [17, page 84]. In the proof above we used the 
stronger property (6.1).

Finally, let us give a closer look at the borderline case

δ =
(

p

p − 1

)p−1

.

In this case (4.5) reduces to (4.1). From the previous result, we already know that equality can not be attained. 
Nevertheless, the inequality is sharp.

Proposition 6.5 (Borderline case). Let 1 < p < +∞ and let � ⊂R
N be an open set with finite measure. There exists 

a sequence {un}n∈N ⊂D1,p

0 (�) \ {0} such that

lim
n→∞

∫
�

|∇un|p dx

∫
�

[∣∣∣∣∇w�

w�

∣∣∣∣p + p

(p − 1)w
p−1
�

]
|un|p dx

=
(

p − 1

p

)p

. (6.11)

Proof. Let us consider the sequence of functions in D1,p

0 (�) given by

un = w

p−1
p

+ 1
n

� , n ∈N \ {0}.
Observe that these functions belong to D1,p

0 (�) thanks to5 Lemma 3.2. We have

5 Observe again that the assumption |�| < +∞ guarantees that w� ∈ Lq(�), for every q > 0.
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u
p
n = w

p−1+ p
n

� and |∇un|p =
(

p − 1

p
+ 1

n

)p

w
−1+ p

n

� |∇w�|p.

So by (4.1) we get

(
p − 1

p

)p

≤
(

p − 1

p
+ 1

n

)p
⎛⎝∫

�

|∇w�|p
w

1− p
n

�

dx

⎞⎠⎛⎝∫
�

[∣∣∣∣∇w�

w�

∣∣∣∣p + p

(p − 1)w
p−1
�

]
w

p−1+ p
n

� dx

⎞⎠−1

=
(

p − 1

p
+ 1

n

)p
⎛⎝∫

�

|∇w�|p
w

1− p
n

�

dx

⎞⎠⎛⎝∫
�

|∇w�|p
w

1− p
n

�

dx +
∫
�

p

p − 1
w

p
n

� dx

⎞⎠−1

<

(
p − 1

p
+ 1

n

)p

.

By taking the limit as n goes to ∞, we conclude (6.11). �
Remark 6.6. Actually, we are not able to decide whether sharpness holds in the whole range

δ ≥
(

p

p − 1

)p−1

.

We leave this as an interesting open question.
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Appendix A. Convexity inequalities

In order to make the paper self-contained, we recall some results about uniform convexity of power functions. The 
proofs are well-known, thus we mainly omit them.

A.1. Case p ≥ 2

Lemma A.1. Let p ≥ 2. For every z, w ∈R
N we have

1

2
|z|p + 1

2
|w|p ≥

∣∣∣∣z + w

2

∣∣∣∣p + C
(
|z|2 + |w|2

) p−2
2 |z − w|2, (A.1)

for some constant C = C(p) > 0.
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Proposition A.2 (Young inequality with remainder term). Let p ≥ 2. For every z, ξ ∈R
N we have

〈ξ, z〉 ≤ 1

p
|z|p + 1

p′ |ξ |p′ − 2

p
C
(
|z|2 + |ξ | 2

p−1

) p−2
2
∣∣∣z − |ξ |p′−2 ξ

∣∣∣2 , (A.2)

where C = C(p) > 0 is the constant appearing in (A.1). In particular, we also have

〈ξ, z〉 ≤ 1

p
|z|p + 1

p′ |ξ |p′ − C

∣∣∣z − |ξ |p′−2 ξ

∣∣∣p , (A.3)

possibly with a different C = C(p) > 0.

Proof. By using the “above tangent property” of a convex function in (A.1), we get

〈|w|p−2 w,z〉 ≤ 1

p
|z|p +

(
1 − 1

p

)
|w|p − 2

p
C (|z|2 + |w|2) p−2

2 |z − w|2.

If we now make the choice w = |ξ |p′−2 ξ in the previous inequality, we get the desired conclusion (A.2).
In order to prove (A.3), it is sufficient to observe that by using the concavity of t �→ √

t and monotonicity of 
t �→ tp−2, we get(

|z|2 + |ξ | 2
p−1

) p−2
2 ≥ 2

2−p
2

(
|z| + |ξ | 1

p−1

)p−2
.

On the other hand, by triangle inequality∣∣∣z − |ξ |p′−2 ξ

∣∣∣p ≤
(
|z| + |ξ | 1

p−1

)p−2 ∣∣∣z − |ξ |p′−2 ξ

∣∣∣2 .

By using these two inequalities in (A.2), we get (A.3). �
A.2. Case 1 < p < 2

Lemma A.3. Let 1 < p < 2. For every z, w ∈ R
N such that |z|2 + |w|2 = 0 we have

1

2
|z|p + 1

2
|w|p ≥

∣∣∣∣z + w

2

∣∣∣∣p + C
(
|z|2 + |w|2

) p−2
2 |z − w|2, (A.4)

for some constant C = C(p) > 0.

Proposition A.4 (Young inequality with remainder term). Let 1 < p < 2. For every z, ξ ∈ R
N such that |z|2 +|ξ |2 = 0

we have

〈ξ, z〉 ≤ 1

p
|z|p + 1

p′ |ξ |p′ − 2

p
C
(
|z|2 + |ξ | 2

p−1

) p−2
2
∣∣∣z − |ξ |p′−2 ξ

∣∣∣2 , (A.5)

where C = C(p) > 0 is the constant appearing in (A.4).

Proof. The proof of (A.5) is exactly the same as that of (A.2) and we omit it. �
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