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Abstract

We analyze an equation that is gradient flow of a functional related to Hardy–Littlewood–Sobolev inequality in whole Euclidean 
space Rd , d ≥ 3. Under the hypothesis of integrable initial data with finite second moment and energy, we show local-in-time 
existence for any mass of “free-energy solutions”, namely weak solutions with some free energy estimates. We exhibit that the 
qualitative behavior of solutions is decided by a critical value. Actually, there is a critical value of a parameter in the equation 
below which there is a global-in-time energy solution and above which there exist blowing-up energy solutions.
© 2016 
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1. Introduction

There has been recent interest in introducing a higher-dimensional analog of Patlak–Keller–Segel (PKS) system; 
see [3,10,19,22,23] and the references therein. The original model is a simplified version of the model that describes 
the collective motion of cells that are attracted by a self-emitted chemical substance. There are many proposed mathe-
matical models for chemotaxis. As far as we know, the first mathematical model was introduced by Patlak in [21] and 
later by Keller and Segel in [15]. Further simplification has been proposed later, in which case the equations take the 
following form which we call the PKS system:⎧⎨

⎩
∂f
∂t

(t, x) = �f (t, x) − χ∇ · (f (t, x)∇c(t, x)), t > 0, x ∈R
2,

−�c(t, x) = f (t, x), t > 0, x ∈ R
2,

f (0, x) = f0(x) ≥ 0.

(1.1)

Here, (t, x) �→ f (t, x) is the cell density, and (t, x) �→ c(t, x) is the concentration of chemoattractant. The first equa-
tion in (1.1) takes into account that the motion of cells is driven by the steepest increase in the concentration of 
chemoattractant while following a Brownian motion due to external interactions. The second equation in (1.1) takes 
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into account that the cells are producing the chemoattractant themselves and while this is diffusing into the environ-
ment.

χ > 0 is the sensitivity of the bacteria to the chemoattractant, assumed to be a constant; which measures the 
nonlinearity of the system.

The existence of solutions, critical mass phenomena, blow-up of solutions, qualitative behavior of solutions for 
equation (1.1) and similar equations have been attracting many researchers recently. See [4,5,11] and some of the 
references cited therein. In fact in [3] and [10] a higher-dimensional analog of (1.1) was proposed and analyzed.

The sharp form of Hardy–Littlewood–Sobolev (HLS) inequality is due to Lieb [16]. It states that for a nonnegative 
measurable function f on Rd , and all 0 < λ < d ,∫

Rd

∫
Rd

f (x)f (y)

|x−y|λ dx dy

||f ||2p
≤
∫
Rd

∫
Rd

h(x)h(y)

|x−y|λ dx dy

||h||2p
, (1.2)

where

h(x) :=
(

1

1 + |x|2
) 2d−λ

2

, (1.3)

and p = 2d
2d−λ

. Moreover, there is equality in (1.2) if and only if for some x0 ∈R
d and s ∈ R+, f is a nonzero multiple 

of h(x
s

− x0). The λ = d − 2 cases of the sharp HLS inequality (1.2) are particularly interesting since they express the 
Lp smoothing properties of (−�)−1 on Rd . For d ≥ 3, one has∫

Rd

f (x)
[
(−�)−1f

]
(x) dx = C̃

∫
Rd

∫
Rd

f (x)f (y)

|x − y|d−2
dx dy. (1.4)

We note that the integrals on the right hand side of (1.2) can be computed explicitly in terms of �-functions and after 
some calculation with constants one sees that for λ = d −2, (1.2) can be rewritten F [f ] ≥ 0 for all f ∈ L2d/(d+2)(Rd), 
where

F [f ] := CHLS ||f ||22d
d+2

−
∫
Rd

f (x)
[
(−�)−1f

]
(x) dx. (1.5)

We refer to this functional F on L2d/(d+2)(Rd) as the HLS functional. Throughout the paper, we shall use ||f ||p to 
denote the usual Lp norms with respect to the Lebesgue measure:

||f ||p :=
⎛
⎜⎝∫
Rd

|f |p dx

⎞
⎟⎠

1/p

, for 1 ≤ p < ∞.

1.1. The proposed model

Gradient flow approach of certain functionals results in interesting equations. This idea started with the seminal 
work [14] which analyzes the Fokker–Planck equation as a gradient flow with respect to the Wasserstein distance 
using the Boltzmann entropy. Later on Otto used this approach for the porous medium equation in [20] and this led
to the very nice books [1] and [26], which can be referred to for further details of the optimal mass transportation 
theory. We mention here also the very interesting paper [12] which introduces the gradient flow equation of the Fisher 
information and this gives the quantum drift-diffusion equation. Thin-film equation can also be viewed as a gradient 
flow with respect to the Wasserstein distance and [6] and [17] use this approach to analyze the equation. On the other 
hand, the PKS system (1.1) can also be written as a gradient flow with respect to the Wasserstein distance using the 
log–HLS functional

FPKS[f ] :=
∫

2

f (x) logf (x)dx + 1

4π

∫∫
2 2

f (x) log(|x − y|)f (y) dx dy. (1.6)
R R ×R
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Motivated by some of these works and observing that in the 2-dimensional case the steady state solutions of PKS 
model (1.1) have infinite support, in this paper we propose to consider the formal gradient flow of the following 
energy functional:

E[f ] := ||f ||22d
d+2

− κ

∫
Rd

f (x)
[
(−�)−1f

]
(x) dx, (1.7)

where κ = α
CHLS

with CHLS being the optimal constant in the d − 2 case of the HLS inequality (1.2).

Definition 1.1. The parameter α appearing in (1.7) will be a critical parameter in analyzing the global existence versus 
blow up of solutions for our proposed model.

Writing down the formal gradient flow for E, that is plugging E into the following equation

∂f

∂t
= div

(
f ∇

(
δE

δf

))
, (1.8)

where δE
δf

is the first variation of the energy with respect to the L2-metric, we obtain

∂f

∂t
=
(

d − 2

d

)
||f ||

4
d+2
2d

d+2

{
�
(
f

2d
d+2

)
− div (f ∇c)

}
, (1.9)

where ∇c is given by

∇c = dκ

(d − 2)||f ||
4

d+2
2d

d+2

∇
([

(−�)−1f
]
(x)

)
. (1.10)

The equation (1.9) is complemented by the initial data

f (t = 0, x) = f0(x), (1.11)

where

0 ≤ f0(x), (1 + |x|2)f0(x) ∈ L1(Rd), E[f0] < ∞. (1.12)

Definition 1.2 (Weak and free energy solutions). Let f0 be an initial condition satisfying (1.12) and T ∈ (0, ∞].

(D.1) A weak solution to (1.9) on [0, T ) with initial condition f0 is a non-negative function f ∈ C([0, T ); L1(Rd))

such that f ∈ L∞((0, t) ×R
d), f 2d/(d+2) ∈ L2(0, t; H 1(Rd)) for each t ∈ [0, T ) and

∫
Rd

f0(x)ψ(0, x) dx = −
T∫

0

∫
Rd

f (t, x)∂tψ(t, x) dx dt

+
T∫

0

∫
Rd

f (t, x)∇
(

2||f ||
4

d+2
2d

d+2
f

d−2
d+2 − 2κ

[
(−�)−1f

])
· ∇ψ(t, x) dx dt,

(1.13)

for any test function ψ ∈ D([0, T ) ×R
d).

(D.2) A free energy solution to (1.9) on [0, T ) with initial condition f0 is a weak solution f to (1.9) on [0, T ) with 
initial condition f0 satisfying additionally

E[f (t)] +
t∫

0

∫
Rd

f (t, x)

∣∣∣∣2||f ||
4

d+2
2d

d+2
f

d−2
d+2 − 2κ

[
(−�)−1f

]∣∣∣∣2 dx dt ≤ E[f0], (1.14)

for all t ∈ (0, T ).
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Note that both (1.13) and (1.14) are well-defined. In addition, it follows from (1.9) that

||f ||1 =
∫
Rd

f (t, x) dx =
∫
Rd

f0(x) dx = ||f0||1 =: M for t ∈ [0, T ). (1.15)

Indeed, to see (1.15) take a sequence of functions ψR in D([0, T ) ×R
d) such that ψR → 1[0,t] almost everywhere and 

0 ≤ ψr ≤ 1. Writing (1.13) with ψ = ψR , the integrability properties of f, ∇f and ∇c allow us to pass to the limit as 
R → ∞ and deduce (1.15).

Recently, there have been various studies on problems involving functionals of the form

H [f ] :=
∫
Rd

U(f (x)) dx +
∫
Rd

V (x)f (x) dx

+
∫∫

Rd×Rd

W(x − y)f (x)f (y) dx dy,

with the basic assumption U : R+ → R is a density of internal energy, V : Rd → R is a convex smooth confinement 
potential and W : Rd → R is a symmetric convex smooth interaction potential [1,3,8,9,18]. The internal energy U
should satisfy the following condition, due to McCann [18]

λ �→ λdU(λ−d), is convex non-increasing on R+.

The local part of the free energy functional E is not exactly in this form. Nevertheless, we consider a formal gradient 
flow of the energy functional E. The free energy functional E plays a central role for the equation (1.9) since it can 
be formally considered as a gradient flow of the energy functional E with respect to the Wasserstein distance like for 
the porous medium equation [20]. See also [1] and [26].

Although we introduce the formal gradient flow for the non-displacement convex functional E, we analyze the 
resulting equation using purely PDE techniques in this introductory paper. Use of the optimal gradient flow techniques 
to analyze the equation for further properties, and the critical case α = 1, will require the use of some functionals that 
are displacement convex and some new ideas and this will be done in a follow-up paper [7], see [2] for such a study 
for the PKS system (1.1).

In this paper we recover the critical value to be α = 1 for the blow-up scenarios unlike the usual PKS model (1.1)
where the mass is the critical value for such a phenomena. The reason for this is that in the log–HLS inequality the 
mass appears as a parameter but in the HLS inequality it does not.

Similar arguments as in this paper have been used in the literature before. In particular, proofs of existence via virial 
identity for a different equation have been provided in [13] and [24]. The technique for obtaining the rate of blow up 
has been considered in [25]. Our contribution in this paper is to provide a model for higher dimensional analog of two 
dimensional Patlak–Keller–Segel model. It is still an active field of research to provide alternative models that share 
the same and similar properties as the two dimensional Patlak–Keller–Segel model. Our paper can be regarded as one 
of these efforts.

2. Existence criterion

Following the ideas of previous papers, in order to show the existence of free-energy solutions we regularize (1.9)
and consider⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂fε

∂t
(t, x) = (

d − 2

d
)||fε||4/(d+2)

2d/(d+2)︸ ︷︷ ︸
=:C1

div
{
∇(ψε ◦ fε) − fε∇cε

}
, t > 0, x ∈ R

d,

cε(t, x) = − κ
C1
K ∗ fε, t > 0, x ∈R

d ,

fε(0, x) = f ε
0 (x) ≥ 0, x ∈R

d

(2.1)

where ψε : [0, ∞) → R is given by ψε(s) := (s + ε)2d/(d+2) − ε2d/(d+2). Here f ε
0 is the convolution of f0 with a 

sequence of mollifiers and ||f ε
0 ||1 = ||f0|| = M . As the solution of the Poisson equation −�cε = κ

C1
fε is given up to 

a harmonic function, we choose the one given by cε(t, x) = − κ K ∗ fε with

C1
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K(x) = cd

1

|x|d−2
and cd := 1

(d − 2)σd

where σd := 2πd/2/γ (d/2) is the surface area of the sphere Sd−1 in Rd .
Such regularized problems have been considered in the literature. See [3,23] and some of the references therein. 

Following these references we can safely deduce that the regularized problem (2.1) has global in time smooth solutions 
and this approximation is convergent.

Precisely, as in Section 4 of [23], see also the remarks in [3], if

sup
0<t<T

||fε||L∞ ≤ K̃, (2.2)

where K̃ is independent of ε, then there is a subsequence εn → 0 such that

fεn → f strongly in C([0, T ];Lp

loc) and almost everywhere in (0, T ) ×R
d,

∇(f 2d/(d+2)
ε ) ⇀ ∇(f 2d/(d+2)) weakly- ∗ in L∞(0, T ;L2(Rd)),

cεn → c(t) strongly in Lr
loc(R

d) and almost everywhere in (0, T ),

∇cεn → ∇c(t) strongly in Lr
loc(R

d) and almost everywhere in (0, T ),

(2.3)

for any p ∈ (1, ∞) and r ∈ (1, ∞], and f is a weak solution of (1.9) on [0, T ) with c = − κ
C1
K ∗ f ; free-energy, 

similarly to Proposition 6.1 in [3], satisfies E[f (t)] ≤ E[f0] for almost every t ≥ 0. In fact, f is a free energy solution 
of (1.9).

Theorem 2.1. Under the assumption (1.12) on initial data and (2.2) on the approximating sequence, there exists a 
free energy solution of (1.9) on [0, T ).

Theorem 2.1 can be proved by following [22] and the proof of Proposition 2.1 in [3].

Lemma 2.2. For any η > 0 there exists a τη > 0 depending only on d, M and η such that if

sup
ε∈(0,1)

||fε(t
∗)|| 2d

(d+2)
≤ η

for some t∗ ∈ [0, ∞), then

• the family (fε)ε is bounded in L∞(t∗, t∗ + τη; L2d/(d+2)(Rd)).
• Moreover, if (fε(t

∗))ε is also bounded in Lp(Rd) for some p ∈ ( 2d
d+2 , ∞], then (fε)ε is bounded in L∞(t∗, t∗+τη;

Lp(Rd)).

Proof. Step 1: L
2d

d+2 -estimate: An easy calculation yields that

d

dt
||fε||2d/d+2

2d
d+2

= 2d

(d + 2)

∫
f

d−2
d+2

ε ∇ · (fε∇ c̃ε) dx

− 2
(d − 2)2

(d + 2)2
||fε||4/d+2

2d
d+2

∫
f −4/d+2

ε (
2d

d + 2
)(fε + ε)(d−2)/(d+2)|∇fε|2 dx

≤ − 16d(d − 2)2

(d + 2)(3d + 2)2
||fε||4/d+2

2d
d+2

∫ ∣∣∣∣∇
(

f
3d−2

2(d+2)
ε

)∣∣∣∣2 dx

+ κ
(d − 2)

(d + 2)

∫
f

3d+2
d+2

ε dx,

(2.4)

where �c̃ε = −κfε and recall that κ = α/CHLS . Hence, we obtain

d

dt
||fε||2d/d+2

2d
d+2

≤ −16
d(d − 2)2

(d + 2)(3d + 2)2
||fε||4/d+2

2d
d+2

∫ ∣∣∣∇(f (3d−2)/2(d+2)
ε )

∣∣∣2 dx

+ κ

(
d − 2

)
||fε||(3d+2)/(d+2)

(3d+2)/(d+2).

(2.5)
d + 2
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We have the following Gagliardo–Nirenberg inequality:

||u||p ≤ Kopt||∇u||θ2||u||1−θ
q , 1 < q < p <

2d

d − 2
, (2.6)

where

θ = 2d(p − q)

p(2d − q(d − 2))
∈ (0,1). (2.7)

We apply the Gagliardo–Nirenberg inequality (2.6) with

u = f (3d−2)/2(d+2)
ε , p = 2(3d + 2)

3d − 2
and q = 4d

3d − 2
,

and then the Young inequality to deduce

||fε||(3d+2)/(d+2)

(3d+2)/(d+2) ≤ δ||fε||4/d+2
2d

d+2
||∇(f (3d−2)/2(d+2)

ε )||22 + Cδ||fε||4d2/(d−2)(d+2)

2d/(d+2) , (2.8)

with δ > 0 is small.
Plugging this back into (2.5) we obtain

d

dt
||fε||2d/d+2

2d
d+2

≤
[
κ(

d − 2

d + 2
)δ − 16

d(d − 2)2

(d + 2)(3d + 2)2

]
||fε||4/d+2

2d
d+2

×
∫
Rd

∣∣∣∇(f (3d−2)/(2(d+2))
ε )

∣∣∣2 dx

+ Cδκ(
d − 2

d + 2
)||fε||

4d2

d2−4
2d

d+2
.

(2.9)

We now choose δ so that the expression in the bracket in (2.9) is non-positive, and let us denote this non-positive 
number by −C(δ). Thus, we have that

d

dt
||fε||2d/(d+2)

2d
d+2

+ C(δ)||fε||4/(d+2)
2d

d+2

∫
Rd

∣∣∣∇(f (3d−2)/(2(d+2))
ε )

∣∣∣2 dx

≤ Cδκ(
d − 2

d + 2
)||fε||4d2/(d−2)(d+2)

2d
d+2

.

(2.10)

From this we obtain for any t2 ≥ t1 ≥ 0,

||fε(t2)||2d/(d+2)
2d

d+2
≤
[
||fε(t1)||−2d/(d−2)

2d
d+2

− C(t2 − t1)

]−( d−2
d+2 )

. (2.11)

Taking t1 = t∗ in (2.11), we deduce that

||fε(t)||2d/(d+2)
2d

d+2
≤
[
η−2d/(d+2) − C(t − t∗)

]−( d−2
d+2 )

(2.12)

for t ∈ [t∗, t∗ + 2τη) with τη = 1
2C

η−(2d/(d−2)). Consequently,

||fε(t)||2d/(d+2)
2d

d+2
≤ (

Cτη

)−( d−2
d+2 )

, (2.13)

for t ∈ [t∗, t∗ + τη] and the proof of the first assertion is complete. We further deduce, by integration, that

t∗+τη∫
∗

||fε||2d/(d+2)
2d

d+2
||∇

(
f 3d−2/(2(d+2))

ε

)
||22 dt ≤ C(t∗, η). (2.14)
t
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Step 2: Lp-estimates, p ∈
(

2d
d+2 , ∞

)
: For t ∈ [t∗, t∗ + τη], K ≥ 1 and p > 2d

d+2 , we infer from (2.1) that

d

dt
||(fε − K)+||pp

≤ −p(p − 1)

(
d − 2

d + 2

)
||fε||4/(d+2)

2d
d+2

∫
Rd

(fε − K)
p−2+ d−2

d+2+ |∇fε|2 dx

+ p(p − 1)

∫
Rd

[
(fε − K)

p−1
+ + K(fε − K)

p−2
+

]
∇fε · ∇ c̃ε dx.

(2.15)

We denote the second term on the right hand side of (2.15) by B . First, by an integration by parts, we rewrite it as 
follows:

B = p(p − 1)κ

∫
Rd

[
(fε − K)

p
+

p
+ K

(fε − K)
p−1
+

(p − 1)

]
fε dx,

from which a simple observation fε ≤ (fε − K)+ + K implies

B ≤ κpK2||(fε − K)+||p−1
p−1

+ κ(2p − 1)K||(fε − K)+||pp
+ κ(p − 1)||(fε − K)+||p+1

p+1.

(2.16)

From Gagliardo–Nirenberg–Sobolev inequality we get

||w||p+1
p+1 ≤ C(p)||∇

(
w

(
p+ (d−2)

(d+2

)
/2
)

||
2dp
d−2
2 ||w||

(p+1)(d−2)−2dp
d−2

1 . (2.17)

Using the Hölder’s inequality we get

κpK2||(fε − K)+||p−1
p−1 ≤ κ(p − 1)K2||(fε − K)+||pp

+ κK2|{x : fε(t, x) ≥ K}|.
(2.18)

We recall that

d

dt
||(fε − K)+||pp =

−(
d − 2

d + 2
)

4p(p − 1)

p + (d − 2)/(d + 2)
||fε||4/(d+2)

2d
d+2︸ ︷︷ ︸

=: -Coeff

∫
Rd

|∇
[
(fε − K)

p+(d−2)/(d+2)
2+

]
|2 dx + B.

(2.19)

By Step 1, we may choose K = K∗ large enough so that ||(fε − K)+||1 is sufficiently small for all t ∈ [t∗, t∗ + τη]
and ε ∈ (0, 1). Here we also use the inequality in (2.17) with w = (fε −K)+, the inequality in (2.18) and the Young’s 
inequality to deduce that

B ≤ (Coeff)||∇
(

(fε − K∗)
p+(d−2)/(d+2)

2+
)

||22
+ C(p, t∗, η)

[
1 + ||(fε − K∗)||pp

]
.

(2.20)

Thus, we conclude that

d

dt
||(fε − K∗)+||pp ≤ C(p, t∗, η)

[
1 + ||(fε − K∗)||pp

]
, (2.21)

and from this we deduce that

||(fε − K)+||pp ≤ C(p, t∗, η), for t ∈ [t∗, t∗ + τη] and ε ∈ (0,1). (2.22)
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Now, since p > 2d
d+2 we have

||fε||pp ≤ C(p)

[
||(fε − K∗)+||pp + K

p−2d/(d+2)∗ ||fε||2d/(d+2)
2d

d+2

]
.

This and the previous inequality, combined with Step 1, imply that

||fε||p ≤ C(p, t∗, η), for t ∈ [t∗, t∗ + τη] and ε ∈ (0,1). (2.23)

Step 3: L∞-estimate: As a direct consequence of Step 2 with p = d + 1 and Morrey’s embedding theorem (∇cε)ε
is bounded in L∞((t∗, t∗ + τη) ×R

d ; Rd). This in turn implies that (fε)ε is bounded in L∞((t∗, t∗ + τη) ×R
d). See 

[3] and the references therein for a similar argument. One can refer to [22] and [23] for alternative arguments. �
As a consequence of the previous lemma, we can construct a free energy solution defined on a maximal existence 

time.

Theorem 2.3. Under the assumption (1.12) on the initial data there are Tmax ∈ (0, ∞] and a free energy solution 
f (t, x) to (1.9) on [0, Tmax) with the following alternative: either Tmax = ∞ or Tmax < ∞ and ||f (t)|| 2d

d+2
→ ∞ as 

t → Tmax. Furthermore, there exists a positive constant C0 depending only on d such that f satisfies

||f (t2)||2d/(d+2)
2d

d+2
≤
[
||f (t1)||−2d/(d−2)

2d
d+2

− C0(t2 − t1)

]−( d−2
d+2 )

, (2.24)

for t1 ∈ [0, Tmax) and t2 ∈ (t1, Tmax).

Proof. Put ξp(t) := supε∈(0,1) ||fε(t)||p ∈ (0, ∞] for t ≥ 0 and p ∈ [ 2d
d+2 , ∞] and

T1 := {T > 0 : ξ 2d
d+2

∈ L∞(0, T )}.

Clearly, by the definition of the sequence (f ε
0 )ε and (1.12) ξp(0) is finite for all p ∈ [ 2d

d+2 , ∞]. By Lemma 2.2, there 
exists t1 > 0 such that ξp is bounded on [0, t1] for all p ∈ [ 2d

d+2 , ∞]. Then, (2.2) is fulfilled for T = t1 and there exists 
a free energy solution to (1.9) on [0, t1) by Theorem 2.1 and (2.14). This ensures in particular that T1 ≥ t1 > 0. We 
now claim that

ξ∞ ∈ L∞(0, T ), for any T ∈ [0, T1). (2.25)

To prove (2.25), consider T ∞
1 := sup{T ∈ (0, T1) : ξ∞ ∈ L∞(0, T )} and assume on the contrary that T ∞

1 < T1. Then, 
ξ 2d

d+2
∈ L∞(0, T ∞

1 ) and we put η = ||ξ 2d
d+2

||L∞(0,T ∞
1 ) and t∗ = T ∞

1 − (
τη

2 ), where τη is defined in Lemma 2.2. As 

ξ 2d
d+2

(t∗) ≤ η and ξ∞(t∗) is finite we may apply Lemma 2.2 to deduce both ξ 2d
d+2

and ξ∞ belong to L∞(t∗, t∗ + τη), 

and the latter property contradicts the definition of T ∞
1 as t∗ + τη = T ∞

1 + (
τη

2 ). By (2.25), (2.2) is fulfilled for any 
T ∈ [0, T1) and the existence of the free energy solution f of (1.9) on [0, T1) follows from Theorem 2.1 and (2.14). 
Moreover, either T1 = ∞ or T1 < ∞ and ||f (t)|| 2d

d+2
→ ∞ as t → T1, and the proof of Theorem 2.3 is complete with 

Tmax = T1. Or T1 < ∞ and lim inf t→T1
||f (t)|| 2d

d+2
< ∞. For this case, there are η > 0 and an increasing sequence 

of real numbers (sj )j≥1 such that sj → T1 as j → ∞ and ||f (sj )|| 2d
d+2

≤ η. Fix j0 ≥ 1 such that sj0 ≥ T1 − (
τη

2 )

with τη defined as in Lemma 2.2 and put f̃ = f (sj0). According to Definition 1.2 and (2.2) f̃0 fulfills (1.12) and we 
may proceed as above to obtain a free energy solution f̃ to (1.9) on [0, T2) for some T2 ≥ τη. Setting f̄ (t) = f (t)

for t ∈ [0, sj0 ] and f̄ (t) = f̃ (t − sj0) for t ∈ [sj0 , sj0 + T2), we first note that f̄ is a free energy solution to (1.9) on 
[0, sj0 + T2) and a true extension of f as sj0 + T2 ≥ T1 − (

τη

2 ) + τη = T1 + τη

2 . We note that this construction can be 
iterated as long as the alternative stated in Theorem 2.3 is not fulfilled to complete the proof. (2.24) follows as in the 
proof of Lemma 2.2 by the regularity of weak solutions. �
Corollary 2.4 (Lower bound on the blow-up rate). Let f be a free energy solution to (1.9) on [0, Tmax) constructed in 
Theorem 2.3 with the initial condition satisfying (1.12). If Tmax is finite, then
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||f (t)||2d/(d+2)
2d

d+2
≥ [C0(Tmax − t)]−( d−2

d+2 ) , (2.26)

where C0 is defined in Theorem 2.3.

Proof. Let t ∈ (0, Tmax) and t2 ∈ (t, Tmax). By (2.24)

||f (t2)||−( 2d
d−2 )

2d
d+2

≥ ||f (t)||−( 2d
d−2 )

2d
d+2

− C0(t2 − t1).

Letting t2 → Tmax we deduce that

0 ≥ ||f (t)||−( 2d
d−2 )

2d
d+2

− C0(t2 − t1).

This implies (2.26). �
Remark 2.5. No uniqueness result for (1.9) seems to be available. We thus note that, from now on, all the results refer 
to the solutions constructed in Theorem 2.3.

Lemma 2.6 (Virial Identity). Let 0 ≤ f0 ∈ L1(Rd ; (1 + |x|2) dx) ∩ L∞(Rd) with E[f0] < ∞. Let f = f (t, x) be a 
free energy solution of (1.9) on [0, T ) with initial condition f0 for some T in(0, ∞], constructed in Theorem 2.3. 
Then,

d

dt

∫
Rd

|x|2f (t, x) dx = 2(d − 2)E[f (t)], t ∈ [0, T ). (2.27)

Proof. Here we show only the formal calculations; the passing to the limit from the approximated problem (2.1) can 
be done by adapting the arguments in Lemma 6.2 of [22] or Lemma 2.1 of [5] without any further complication. We 
have by integration by parts and symmetry that

d

dt

∫
Rd

|x|2f (t, x) dx =
∫
Rd

|x|2 ∂

∂t
f (t, x) dx

=
∫
Rd

|x|2
(

d − 2

d

)
||f ||4/(d+2)

2d
d+2

{
�(f 2d/(d+2)) − ∇ · (f ∇c)

}
dx

= 2(d − 2)||f ||4/(d+2)
2d

d+2

∫
Rd

f
2d

d+2 dx

−
∫
Rd

|x|2
(

d − 2

d

)
||f ||4/(d+2)

2d
d+2

∇ · (f ∇c) dx

= 2(d − 2)||f ||4/(d+2)
2d

d+2

∫
Rd

f
2d

d+2 dx

− 2(d − 2)κC̃

∫∫
Rd×Rd

(x − y) · ∇K(x − y)f (t, x)f (t, y) dy dx

= 2(d − 2)E[f (t)]. �
Remark 2.7. We note that, in our case, the second moment is always concave in time since its second time derivative 
is given by the dissipation of the free energy functional,

d

dt
E[f (t)] =

∫
d

f (t, x)

[
δE

δf

]2

dx ≤ 0.
R
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We also emphasize that the evolution of the second moment in our case is more complicated than the classical PKS 
system (1.1) corresponding to d = 2 case. Note that in that case the time derivative of the second moment is a constant.

Remark 2.8. The following result indicates that α is the critical value instead of mass in our case. The reason is that 
in our functional unlike the log–HLS functional the mass is not a parameter. Depending on the value of the α there 
are different situations regarding the global existence and blow-up of solutions.

Proposition 2.9 (Blowing-up solutions). If α > 1, then there are initial data satisfying the (1.12) with a negative free 
energy E[f0]. Moreover, if f0 is such an initial condition and f denotes a free energy solution to (1.9) on [0, Tmax)

with initial condition f0, constructed in Theorem 2.3 then Tmax < ∞ and the L2d/(d+2)-norm of f blows up in finite 
time.

Proof. The proof follows the ideas of Weinstein [27]. Take f̃ to be a minimizer of the functional F . This means 
F [f̃ ] = 0. Now,

E[f̃ ] = F [f̃ ] + (1 − α)

CHLS

C̃

∫∫
Rd×Rd

f̃ (x)f̃ (y)

|x − y|d−2
dy dx

= (1 − α)

CHLS

C̃

∫∫
Rd×Rd

f̃ (x)f̃ (y)

|x − y|d−2
dy dx.

We recall that the minimizers are of the form h(
x−x0

s
) for all s > 0 and x0 ∈ R

d with h(x) =
(

1
1+|x|2

) d+2
2

, and they 
are positive.

Let us now consider an initial data f0 to be a cut-off of the minimizer f̃ at a sufficiently large radius so that f0 has 
a finite second moment and satisfies E[f0] < 0 with α > 1. Denote by f the corresponding free energy solution to 
(1.9) on [0, T ). (Note that we have the existence result for such an initial data in Theorem 2.3.) We deduce from the 
time monotonicity of E and Lemma 2.6 that

d

dt

∫
Rd

|x|2f (t, x) dx = 2(d − 2)E[f (t)] ≤ 2(d − 2)E[f0] < 0.

This implies that the second moment of f (t, x) will become negative after some time and this contradicts the non-
negativity of f . Therefore, Tmax is finite and ||f || 2d

d+2
blows-up in finite time. �

Proposition 2.10. For α < 1 under the assumption (1.12), there exists a free energy solution to (1.9) on [0, ∞) with 
initial condition f0.

Proof. By Theorem 2.3 there exists a number Tmax and a free energy solution to (1.9) in [0, Tmax) with initial condi-
tion f0. We have(

1 − α

CHLS

)
||f (t)||22d

d+2
≤ E[f (t)] ≤ E[f0] < ∞.

Since α < 1 we deduce from this inequality that

f lies in L∞(0,min{T ,Tmax};L2d/(d+2)(Rd)) for every T > 0,

which implies that Tmax = ∞ by Theorem 2.3. �
Conflict of interest statement

There is no conflict of interest.



S. Ulusoy / Ann. I. H. Poincaré – AN 34 (2017) 961–971 971
Acknowledgements

The author thanks the referee for the valuable suggestions to improve the presentation of the original manuscript. 
The author thanks E.A. Carlen for several valuable discussions. This work is partially supported by BAGEP 2015 
award.

References

[1] L.A. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures Math., Birkhäuser, 
2005.

[2] A. Blanchet, J.A. Carrillo, E.A. Carlen, Functional inequalities, thick tails and asymptotics for the critical mass Patlak–Keller–Segel model, 
J. Funct. Anal. 262 (2012) 2142–2230.

[3] A. Blanchet, J.A. Carrillo, P. Laurençot, Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions, Calc. 
Var. Partial Differ. Equ. 35 (2009) 133–168.

[4] A. Blanchet, J.A. Carrillo, N. Masmoudi, Infinite time aggregation for for the critical two-dimensional Patlak–Keller–Segel model, Commun. 
Pure Appl. Math. 61 (2008) 1449–1481.

[5] A. Blanchet, J. Dolbeault, B. Perthame, Two dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions, 
Electron. J. Differ. Equ. 44 (2006), 32 pp.

[6] E.A. Carlen, S. Ulusoy, Localization, smoothness, and convergence to equilibrium for a thin film equation, Discrete Contin. Dyn. Syst., Ser. 
A 34 (11) (2014) 4537–4553.

[7] E.A. Carlen, S. Ulusoy, Dissipation for a non-convex gradient flow problem of a Patlak–Keller–Segel type for densities on Rn , n ≥ 3, in 
preparation.

[8] J.A. Carrillo, R.J. McCann, C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass 
transportation estimates, Rev. Mat. Iberoam. 19 (2003) 1–48.

[9] J.A. Carrillo, R.J. McCann, C. Villani, Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. 
Mech. Anal. 179 (2006) 217–263.

[10] L. Chen, J.G. Liu, J. Wang, Multidimensional degenerate Keller–Segel system with critical diffusion exponent 2n/(n + 2), SIAM J. Math. 
Anal. 44 (2) (2012) 1077–1102.

[11] J. Dolbeault, B. Perthame, Optimal critical mass in two-dimensional Keller–Segel model in R2, C. R. Math. Acad. Sci. Paris 339 (2004) 
611–616.

[12] U. Gianazza, G. Savaré, G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation, Arch. 
Ration. Mech. Anal. 194 (2009) 133–220.

[13] R.T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys. 18 (9) (1977) 
1794–1797.

[14] R. Jordan, D. Kinderlehrer, F. Otto, The variational formulation of the Fokker–Planck equation, SIAM J. Math. Anal. 29 (1) (1998) 1–17.
[15] E.F. Keller, L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399–415.
[16] E.H. Lieb, Sharp cocntants in the Hardy–Littlewood–Sobolev and related inequalities, Ann. Math. 118 (2) (1983) 349–374.
[17] D. Matthes, R.J. McCann, G. Savaré, A family of nonlinear fourth order equations of gradient flow type, Commun. Partial Differ. Equ. 

34 (10–12) (2009) 1352–1397.
[18] R.J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1) (1997) 153–179.
[19] T. Ogawa, Decay and asymptotic behavior of solutions of the Keller–Segel system of degenerate and nondegenerate type, in: Self-Similar 

Solutions of Nonlinear PDE, vol. 74, Banach Center Publ., Polish Acad. of Sci., Warsaw, 2006, pp. 161–184.
[20] F. Otto, The geometry of dissipative evolution equations: the porous medium equation, Commun. Partial Differ. Equ. 26 (2001) 101–174.
[21] C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15 (1953) 311–338.
[22] Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel system, Differ. 

Integral Equ. 19 (2006) 841–876.
[23] Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller–Segel models, Adv. Differ. Equ. 12 (2007) 

121–144.
[24] M. Tsutsumi, Periodic linear systems and a class of nonlinear evolution equations, Mem. School Sci. Engrg. Waseda Univ. 41 (1978) 73–94.
[25] Y. Tsutsumi, Rate of L2 concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal. 15 (8) 

(1990) 719–724.
[26] C. Villani, Topics in Optimal Transportation, American Mathematical Society, 2003.
[27] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys. 87 (1983) 567–576.

http://refhub.elsevier.com/S0294-1449(16)30048-8/bib31s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib31s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib424343s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib424343s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib42434Cs1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib42434Cs1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib36s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib36s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib37s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib37s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4355s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4355s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3131s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3131s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3132s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3132s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4C6975s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4C6975s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3137s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3137s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib475354s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib475354s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib476C6173733737s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib476C6173733737s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4A4B4Fs1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3232s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3234s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4D4D53s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4D4D53s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4D63s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3330s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3330s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib4F74746Fs1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3332s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3334s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3334s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3335s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3335s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib5473757473693738s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib5473757473693930s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib5473757473693930s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib56696C6C616E69s1
http://refhub.elsevier.com/S0294-1449(16)30048-8/bib3339s1

	A Keller-Segel type system in higher dimensions
	1 Introduction
	1.1 The proposed model

	2 Existence criterion
	Conﬂict of interest statement
	Acknowledgements
	References


