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Abstract

We study the two membranes problem for different operators, possibly nonlocal. We prove a general result about the Holder
continuity of the solutions and we develop a viscosity solution approach to this problem. Then we obtain C Ly regularity of the
solutions provided that the orders of the two operators are different. In the special case when one operator coincides with the
fractional Laplacian, we obtain the optimal regularity and a characterization of the free boundary.
© 2016 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study the two membranes problem for different operators. Physically the problem consists in
having two elastic membranes made of possibly different composite materials that are constrained one on top of
the other. This is a double obstacle problem in which each membrane can be viewed as the obstacle for the other
membrane, and the two obstacles interact at the same time.

The two membranes problem for the Laplacian was first considered by Vergara-Caffarelli [17] in the context of
variational inequalities. In this case the situation can be reduced to the classical obstacle problem by looking at
the vertical distance between the membranes. The two membranes problem for a nonlinear operator was studied
by Silvestre [15]. He obtained the optimal C!! regularity of the solutions together with a characterization of the
regularity of the free boundary of the coincidence set. The key step is to show that the difference between the two
solutions solves an obstacle problem for the linearized operator.

We also mention that a more general version of the two membranes problem involving N membranes was consid-
ered by several authors (see for example [1,8,9]).
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The two membranes problem for different operators is more challenging mathematically. In the unconstrained
parts the membranes solve different equations and therefore their difference solves a fourth order equation rather than
a second order equation. For example even in the simplest case of two dimensions and two linear operators, say A
and A == 9, + 20yy, the optimal regularity of the solutions seems to be a difficult problem.

In this paper we consider the two membranes problem for the large class of elliptic operators, possibly nonlocal, of
order 2s € (0, 2]. The interest in the nonlocal case comes from the applications. It is well known for example that the
classical Signorini problem in elasticity which consists in finding the equilibrium position of an elastic body resting
on a rigid surface, is modeled by an obstacle problem for the fractional Laplacian A!/2. In the case when the elastic
body presses against a membrane, one obtains a two membranes obstacle problem involving a fractional Laplacian
and a second order operator.

In the general case, we prove a result about the Holder continuity of the solutions and we develop a viscosity
solution approach. Then we obtain better regularity properties of the solutions provided that the orders of the two
operators are different. Heuristically this situation corresponds to the case when one membrane, say the lower mem-
brane, is more sensitive to small infinitesimal changes. From this we can already deduce a certain initial regularity of
the lower membrane. Then, the regularity of the upper membrane can be obtained by solving the obstacle problem in
which the obstacle is given by the lower membrane. In order to obtain the optimal regularity we need to repeat these
arguments several times. A large part of the paper is devoted to obtaining estimates for various obstacle problems
which are optimal with respect to the smoothness of the obstacle. We first discuss the general case of operators that
correspond to translation invariant kernels. Then we consider the special case of the fractional Laplacian. As men-
tioned above in the course of the paper we also treat the obstacle problem for translation invariant kernels which is of
independent interest.

The paper is organized as follows. In Section 2 we formulate the two membranes problem and state precisely our
results. In Section 3 we obtain the Holder regularity of the minimizing pair. In Section 4 we develop the viscosity
approach to the two membranes problem. In Section 5 we deal with the translation invariant kernels and finally in
Section 6 we discuss the case of the fractional Laplacian. The Appendix is devoted to the proof of Schauder estimates
for nonlocal equations.

2. Main results
2.1. Notation

Let s € (0, 1) and let k(x, y) be a symmetric, measurable kernel proportional to |x — Yy e
0<A<kC,Vx—y"™¥ <A,  k(x,y)=k(y,x).
Given a function u € leo . We define its H® seminorm in Bj, the unit ball, as

1 (u(x) —u(y)?
2 —
||M||HS(B]) = E/ / |X — y|n+2s dxdy,

(R" xR\ (C B xCBy)

and if ||u|| gs(B,) < oo we write u € H*(Bj). Here for any set E C R", we denote by CE its complement in R”.
It is not difficult to check that

dx
M—][I/l SC“M”HS(Bl)a dw = W (21)
B 2R dw)

Given two functions u, v € H*(B;) we define the “inner product” of u and v with respect to the kernel k as

1
Ek(u,v) == 5/ / (u(x) —u(y)((x) —v(y) k(x, y)dxdy. 2.2)

(R" xR\ (CB xCBy)
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If u minimizes the energy & (u, u) among all functions u € H*(B;) which are fixed outside By, say u = ul e
HS(By) outside Bj, then
Ex(u, ) =0, Vo € H(B1), with ¢ =0 outside B;.
The last equality can be written in the sense of distributions as Lxu = 0 in Bj, with
< Lyu, ¢ >:=—&(u,¢) Vo e Ci°(B),
and formally L;u can be written as the non-local operator
Lru(x) = / ((y) — u(x)k(y, x)dy.
We wish to include the case when k has order s = 1. In this case the quadratic form & (u, u) is given by
Ealu,u) = /(VM)TA(x)Vu dx, (2.3)

B
with A(x) a symmetric n X n matrix satisfying Al < A(x) < A, and the linear operator associated to £, is
L) =div(A(x)Vu).

Finally, we notice the following scaling property of & after space dilation. Let

u(x) =u(rx),

be the 1/r dilation of u in the space variable. Then

Exu, v) = r""% E (i, D)

where in the double integral on the right we remove the contribution coming from CBj,, x CB1,, and the kernel
k(x, y) :=r"t2k(rx, ry) is the rescaling on k, and therefore satisfies the same growth conditions as k.

2.2. The two membranes problem — general case, Holder continuity of the minimizers

We consider the two membranes obstacle problem in Bj for operators corresponding to two different kernels &
and k; as above, with the order s; not necessarily equal to s». We look for a pair of functions (i1, u3), with us < u
in By and u1, u; prescribed outside Bj, which minimizes the energy functional

Fuy, uz) 3=5k1(1/ll,14])+5k2(u27’/12)+/le] +us fo dx, (2.4)
By

among all (uy, up) € A.
Here f; € L?(B;) and A represents the set of admissible pairs,

A:{(ul,u2)| uy) <uy, uj€ H%(By), u[:u? outside Bl},

with u? € H% (By), ug < “(1) in By, a given pair of functions.

With the convention in the Subsection above, we allow in the definition of the energy JF also the cases when either
one or both of the s;’s equal to 1, and we need to replace the quadratic form accordingly.

Since F is strictly convex, and F (u?, ug) < 00, we obtain the existence and uniqueness of a minimizing pair
(u1, up) by the standard methods of the calculus of variations.

Proposition 2.1. There exists a unique minimizing pair (uy, uz) € A for the functional F in (2.4). Moreover u; €
L*(R", dw;) and Do il L2(dw;) < C for a constant C depending on the boundary data u? and on the f;’s.
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We observe that to prove the L? bound for the minimizing pair, one uses (2.1).
Notice that if ¢ > 0 and ¢ € C§°(B1) then

(u) +ep,up) e A and (u,uy —ep) €A,
which gives
Liur < f1, Li,up> fo in By, (2.5)

in the sense of distributions, thus Ly, u1, Ly, u> are Radon measures.
Moreover, if ¢ € C5°(B)) is not necessarily positive we still have

(u1+ep,ur+ep) e A,
hence
Liqui + Liguz = fi+ fo in By. (2.6)

Equations (2.5)—(2.6) together with the inequality u» < u1, can be viewed as the Euler—Lagrange characterization of
the minimizing pair.

In this paper we are concerned with the regularity of the minimizing pair (#1, u2) and some properties of the free
boundary I" which is defined as the boundary of the coincidence set, i.e.

I':=0d{u; =ur} N By.

Our first result is the following interior Holder regularity of the minimizing pair.
Theorem 2.2. Assume f; € L9 (By) with q; > 2% Let (u1, up) be a minimizing pair. Then u; € C*(B1) and
> luillcxy < €Y (lill 2w + 1 fillLa s))) -
i i
with o and C depending on n, A, A, s;, g;.

To obtain better regularity properties of the minimizing pair we need to require that the kernels k; are more regular,
as in the next subsection.

2.3. Translation invariant kernels — viscosity solutions and higher regularity

We consider the case when £ is translation invariant, i.e.
k(x,y)=K(x—y), K(y)=K(=y),
and satisfies the natural growth condition of the gradient
A
IVK(y)| = Iyanr—st

The integro-differential operator associated to this kernel can be written as

Lrw(x):= PV/(w(y) —wx)K(y —x)dy,
RVL

and the value Lgw(x) is well-defined as long as w € L'(R", dw) and w is C*€ at x.
In this case we show that the minimizing pair (u1, u2) satisfies

Ui >uo, Lgur < fi, Lg,uz > fr in By, 2.7

Lrui=fi onf{ux>uy}, ZEKi”iZZfi in Bj, (2.8)

in the viscosity sense, and moreover these inequalities determine uniquely the pair (11, u2) (see Proposition 4.9).
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When the orders of the operators L, are different we improve the result of Theorem 2.2 and obtain the C-¥
regularity of the pair (11, u2). Notice that the two membranes may interact, that is {u; = u2} N B| # ¢ independently
of the sign of f1, f>. We obtain the following result.

Theorem 2.3. Assume s\ < so and u; satisfy (2.7)—(2.8) with f; € Co’l(Bl). Then u; € C% (By) with a; > 1,
o) =max{l1, 251} + €, ay =ay +2(s2 —s1)
and

D luilicar gy < € (il L gy + 1fillcor zy) -
i i

with €y and C depending on n, A, A, s;.
2.4. The obstacle problem for operators with translation invariant kernels

In order to obtain Theorem 2.3 we study the obstacle problem for the operator Lx associated to a translation
invariant kernel of order 2s. We obtain the following result, of independent interest. Assume that u, ¢ are continuous
in B, u € L'(R", dw), and

u>¢ in By, 2.9)
Lxu<f inBj, and Lxu=f in {u>¢}N By, (2.10)

with K of order 2s as at the beginning of subsection 2.3.

Theorem 2.4. Let u be a solution to (2.9), (2.10), and assume that

Nl L1 e dawys @B pyys 1 o gy < 1.

for some B # 2s.
Then u € C*(By) for « = min{B, max{1, 2s} + €o} and

lullces, ) = C,
where €y depends on n, A, A, s, and the constant C may depend also on B.

2.5. Fractional laplacian — optimal regularity and the geometry of the free boundary

In the special case when

K=o

the operator Lk reduces to the fractional Laplacian A* and we obtain the optimal regularity of the solution. As usual,
we can characterize the points on the free boundary

I':=d{u=¢}NB;.
Precisely the set ¥ C I' of singular points consists of those y € I" such that

U —@)(x) =o(jx — y|'™),

and I' \ X is the set of regular points (or stable points) of the free boundary.

Theorem 2.5. Let u be a solution to (2.9), (2.10), with

lull Lt dwy: N@lcs s 1 les-25p)y <1, for some > 1+s.

Then u € C'*5(By) and
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||u||C1+5(Bl/2) < C.
Moreover; the free boundary T is a CYY surface in a neighborhood of each of its regular points. The constants C,y

depend on n, s, and B.

Theorem 2.5 was obtained by Caffarelli, Salsa and Silvestre in [5]. The main tool in the proof is to establish a
version of Almgren’s frequency formula for the “extension” of u to R"*!. However, Theorem 2.5 is proved in [5] in
the case when ¢ € C>! (i.e. B =3). When s = 1/2, Guillen proved Theorem 2.5 in [10]. In Section 6 we show that
the Almgren’s monotonicity formula still holds when > 1 4 s and therefore sharpen the result in [5] and obtain
Theorem 2.5.

Theorem 2.5 yields the following result for the two-membrane problem. When

Ki) = [

we obtain the optimal regularity of the minimizing pair, i.e. u; € C'*1 and u, € C'*22751 and we can characterize
the points on the free boundary

I':=90{u; =ur} N By,

as in the obstacle problem.

Theorem 2.6 (Optimal regularity). Assume that the hypotheses of Theorem 2.3 hold and K is as above. Then the
conclusion of Theorem 2.3 holds with a1 = 1+ s1. Moreover, the set of regular points of the free boundary T is locally
a CYY surface.

3. The proof of Theorem 2.2

In this section we prove the Holder regularity of the minimizing pair (u1, u). The parameters A, A, n, sy, s» are
called universal and any constant depending only on these parameters is called universal as well and it is usually
denoted by C, ¢ (though it may change from line to line).

Proof of Theorem 2.2. The proof follows from the standard De Giorgi iteration technique. For simplicity we sketch
it for f; =0 and s; < 1, since the arguments carry on without difficulty to the case of nonzero f;’s and when one or
both operators are local.

Assume that

§2 > 81.
Step 1. Caccioppoli inequality. Let ¢ be a cutoff function supported in By. The key observation is that for € < 1,
(ul + erpzul_, up + e<p2u2_) e A
Using the minimality of the pair (u1, uz), we let € — 0 and obtain
Ery (w1, 9*uy) + Exy (u2, p*uy) > 0. 3.1)
Notice that
— &, *u™) = Eu™, *u7) + Fr(w),
and
— o2y 2 + -
Fie(u) :==&u™, ¢u") = 2//§0 () uT(x)u(y) k(x, y)dxdy = 0.
We use the identity

(a — b)(p*a — g*b) = (ap — bg)* — ab(p — q)*,
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thus

™, 9*u™) = Elpu™, pu™) — Ix(u)
with

1w = [ [0 ()60 = ¢ 0)ir. y)dndy 20,
The identities above give

Elpu™, ou™) + Fr(u) = —E (u, *u™) + L ().

Next we bound above I (u).
Assume that ¢ is the usual cutoff function with ¢ =1 in B, and ¢ = 0 outside B, s> for some r € (0, 1 — §].
When both x and y are in B,s we use that

™ (u” () (9(x) — () < C87 (™ (x)* + @™ () 1lx — y I,
When x € B,15/2 and y lies outside B, s (and symmetrically the other case), we use that
k(x,y) <C8 " Sw(y).
Thus, we see that I; (1) is bounded above by
I(u) < C8™2 / W)?dx + Cllu™ | 2(gwyd "> / u=dx.
Brys Brys

In this last inequality we used that [lu™ || ;144 < Cllu™ Il 12(4e)- We use these relations for u; and u, in the energy
inequality (3.1) together with the fact that u, > u, in B;. We obtain the desired Caccioppoli inequality for u :

€1 (@it . o) + Fio (uz) < Cos ™2 / w5 + Mouy ] dx (3.2)
Byrys
with
Mo = g 12wy T+ 145 1 22(d0y)s

and Co universal. More generally if v,, = uy + m, we have

Eky @V @V + Fiey () < Co8 7" 72 / [(vp)* + Ay, dx, (3.3)
Byys
and
My = |1 +m) " 12(gey) + 12 +m) "1 1240,y
Moreover, for all constants m > 0, M,, < My hence

€1 (U 9U) + Fio (um) < Co8 "2 / [(0)? + Mov] dix. (3.4)

Brys

Remark 3.1. Since u; is a subsolution for the Ly, operator, v;g := (up —m) ™ satisfies the same inequality (3.3) with
the constant M,, replaced by || (uy —m)™ I 22 (dasn)-

Step 2. The first De Giorgi lemma. We write the first De Giorgi type lemma and provide a sketch of the proof (see
also Lemma 3.1 in [3]).
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Lemma 3.2 (L*° bound). Assume vy, := uy + m satisfies (3.4) for all 0 <m < 1 and some My > 0. There exists €
depending on the universal parameters and My such that if

luy llz2¢m,) < €0(Mo),
then

u, < 1 in Byp.

Proof. We apply (3.4), with (j > 2)

. 1 . ,
m=mj:=1=-277 r=r; :=§+2_f, §=68;:=277.

Using that F, (vi;) > 0 together with Sobolev inequality we get (1/2* =1/2 —s2/n)

2/2%
/ W ) < Cps" / [(vy,)* + Mov,, 1 dx (3.5)
Br; Brjvs;
= Rj.
Call,
aj = /(v,,:j)2
B,
J
and

Aj:={vm; <0}NB,,.

Applying Holder’s inequality to the left-hand-side of (3.5) and using the notation above we get
22 ki) j 1/2

aj <|Aj|I " R <AjI 7 (Co2™a; -y + Moa; % A1), (3.6)
for some large M. Since on A, U, < —2J, we easily obtain that

aj_ > |A;127%.
Thus, (3.6) gives (for some positive o and with C depending on the universal constants and M)

aj < C_’ZMjajl.J_”l’.
Standard De Giorgi iteration gives that if a, is small enough (depending on C) a j — 0as j — oo and from this we
deduce our claim. O

Our minimization problem remains invariant after multiplication with a constant. Thus, after multiplication with a

small constant we may apply Lemma 3.2 and obtain the L® bound for u; in By 2.

Step 2. The second De Giorgi lemma and the Holder continuity of uy. In order to obtain the Holder continuity
of uy, we need to iterate the next Lemma 3.3, and this is point where we need s, > s7.
Notice that in general the minimization problem is not invariant after a dilation in the space variable. Indeed, if
i; (x) = u;(px) then
(i1, ;) minimizes the energy p> 27V E (i1, 1) + E, (2, ii2).
Thus if p <1 the arguments above apply and the Caccioppoli inequality (3.2) holds for ity with
M = >N oy + 1 L2y < Mo = 15 122 dwr + 185 122 ) -

Notice also that

llti ||L2(R"\Bl/p,dw,-) ~ 0% |lu; ||L2(R"\Bl,dw,~)' (3.7)
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Lemma 3.3 (Oscillation decay). Assume that us satisfies (3.3), for all constants m. Suppose that for some R > 1,
up >uy in Bg,
and
luz] <1 in Bg, Ny 2@ Be.doy < M Ny 2@ Bg.dan) < H
with w universal. Then in By either up <1 —porus > —1+ u.
Proof. Let us assume first that
lup] <1 inR"
Assume that
I{u2>0}ﬂ31|Z%|31|~ (3.8)
We will show that there is a universal constant 1 such that u, > —1 4 n in Bj. Let,
vj =2+ (1-277)), Aj:={v; <0}NB.
We aim to show that there is a large enough j such that

[Aj1] < 8o (3.9)

with 8o universal to be made precise later.
Assume by contradiction that

|[Ajr1] > do

and let us choose § << §¢g so that

3o
|Aj1 N Bl = 3. (3.10)
By Caccioppoli inequality (3.2) for v; we obtain
Fip(vj) < €872 3.11)

where we have used that v; < 1in RR", and that u; > u», so that the corresponding constant M; in (3.2) is bounded

by a universal constant M.
On the other hand,

Fip (v)) =2 / / 9> ()] (W) v ) ka(x, y)dxdy =

c[uroar [ vearz

B Aj+1NB1_s
2/ = D)|Aj41 N Bi_s||Bi| = 2/ cdp.
In the third inequality above we used that
_ 1
vy =3
and (3.8).

Thus, (3.10) is violated if j is large enough. Denote such j by_f. B
Now we can apply Lemma 3.2 to v i+l and choose 8y = €9(2M) where M is the universal constant that bounds all

on Aj+1

the M;’s (as observed above). We obtain the conclusion with n = 2-G+D),
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Now assume that |us| < 1in Bg and u1 > up in Bg, for R > 1. Let also

ot Il 2 e\ B deoy) = €

Then, for € small enough the argument above still holds for the fixed j. Indeed one can still guarantee that M ;< 2M
for € small enough.

Finally, if (3.8) does not hold, then we can work with the Caccioppoli inequality for (#; — m)™ and obtain that u»
separates from the top (see Remark 3.1). 0O

Finally we can iterate Lemma 3.3 and obtain the interior C* Holder continuity of u;. Indeed, after a multiplication
by a constant we may assume that [|u; |24, are sufficiently small and |u2| <1 in Bj 2. Then we perform an initial
dilation of size R(, and we may apply Lemma 3.3. Notice that the hypotheses are satisfied thanks to (3.7). Moreover
it is easy to check that the hypotheses hold for the sequence of Holder rescalings

m—1
(—) uz(Ry"x) + const, m=1,2, ...
2—p

provided that Ry is chosen sufficiently large, and we may apply Lemma 3.3 indefinitely.

Step 3. The second De Giorgi lemma and the Holder continuity of u;. Next we obtain the Holder continuity of u
by thinking that u, € C“ is a fixed obstacle lying above, and ¥ minimizes &, (41, #1) among admissible functions.

Notice that since |u3| < 1 and u > up we can obtain an L bound for u#| by applying the (standard) first De Giorgi
lemma to (11 — 1)*. Indeed in the set u; > 1, u solves the equation L, u1 =0.

The Holder continuity of u; follows by iterating the following version of the oscillation decay lemma.

Lemma 3.4. Assume that for some R > 1

lu1]| <1 in Bg, ||”1||L2(R"\BR,dw) <um, oscpux=<1/4

Then in By eitheruy <1 —poruy > —1+ u.

The proof of Lemma 3.4 is a variation of the proof above. Indeed, if u;(0) > —% then the conclusion is obvious
since u| > up > —%.

If ur(0) < —1, we distinguish two cases. When [{u > 0} N B| > 1/2, we use that £, u < 0 hence we apply De
Giorgi technique to conclude that u; > —1 4 u.

Otherwise, since uy < —% in By, up is not constrained in the set {u1 > 0} and Ly, u; = O there. Again, we can
apply De Giorgi technique and conclude u; <1 —pu. 0O

4. Translation invariant kernels and viscosity solutions

In this section we investigate further properties of the minimizing pair (11, u;) when the kernels k; are more regular.
More precisely, from now on we assume that the kernel & used in the definition of the energy & in (2.2) is translation
invariant i.e.

k(x,y)=K(x —y).
Here the kernel K satisfies K (y) = K (—y) and it is comparable to the kernel of (—A)* i.e.

A A
WSK()’)SW, 0<A=<A. 4.1)

The integro-differential operator associated to this kernel can be written as

Lxw(x) = PV / (W) — wE)K (& — x)dy. 4.2)
Rn

Notice that the value £ g w(x) is well-defined as long as w € L' (R", dw) and w is C!-! at x.
In the case s = 1, of local operators defined in (2.3), we assume that the matrix A is constant, and therefore L4 is
a second order operator with constant coefficients.
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4.1. Viscosity properties of the minimizing pair
To study further regularity of the minimizing pair, we adopt the point of view of viscosity solutions.

Definition 4.1. Given a function w : R” — R, upper (lower) semicontinuous in By and a C? function ¢ defined in a
neighborhood N of a point x € By, we say that ¢ touches w by above (resp. below) at x if

@) =wx), o) >wly) (@) <w(y) foreveryyeN\{x}.

We remark that at any point x where w is touched by above or below, Lgw(x) is well-defined, though it may be
infinite. Indeed, say w is touched by below by ¢ at x then

o0
Lxw(x)= /aw(r)rflfzsdr € (=00, +00]
0
where a,, () represents the averages of w on d B,

() = f (W) — w)K (y — )"+ dy
dB,(x)

and for r small (since K is symmetric)

ay(r) > agp(r) > —Cr2.

Definition 4.2. A function w : R” — R, upper (lower) semicontinuous in By, is said to be a viscosity subsolution
(supersolution) to Lxw = f, f continuous in By, and we write Lxw > f (Lxw < f), if at any point x € B where
w is touched by above (resp. below) by a quadratic polynomial P, we have

Lgwx) = f(x), (Lxw(x) = fx).

A viscosity solution is a function w that is both a subsolution and a supersolution.
Next we show that distributional supersolutions (subsolutions) are also viscosity supersolutions (subsolutions). We
sketch the proof since we will use the same argument in a slightly different context.

Lemma 4.3. Assume that Lxw < f in the distribution sense with w, f continuous functions in By. Then Lxw < f
in the viscosity sense.

Proof. Assume for simplicity that f = 0. Let P be a quadratic polynomial touching w strictly by below at say 0. Let
P. := P + € and denote by

We := max{w, P}
and,
Qe = We —w > 0.
From the hypothesis Ex (¢e, w) > 0 thus
Ek (@e, we) = Eg (pe, w) + Ek (ge, @) = 0.

Since on the support of ¢ we have that w, is cl! by below, we can integrate by parts Ex (¢e, we) and obtain

/(pe (x)Lxwe(x)dx <0, 4.3)
Ac

where A¢ ;= {x : w < P¢}. Fix § > 0, thus A C Bs, for all € small. We use that w. > P¢ in Bs, we = w outside Bs,
hence for x € A,
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Lgwe(x) > /(Pe(y) — Pe(x))K(y —x)dy + / (w(y) — Pe(x)K(y — x)dy
Bs R"\Bs
> / w(y) — wO) K (dy +0e(1) + 0(**), ase— 0,
R™\Bs
with 0. (1) — 0 as € — 0. Combining this estimate with (4.3), and using that ¢, > 0, we obtain that
Lgw(0) <0,

after letting € and then § go to zero. O

By Lemma 4.3, if (11, u3) is a minimizing pair and f; are continuous functions then (see (2.5)—(2.6))
Liuy < fi, Lkgyu2> fr, inBy,
Lrui = fi, Lg,uz= fr, intheopenset{u; > us},
in the viscosity sense. Next we prove a similar statement in the closed set

E :={u; =us}.

Lemma 4.4. Assume that uy is touched by below at a point xog € {u; =u} N\ By by a C? function. Then

Lk, ui(xo) + Lx,uz(xo) < f1(xo) + f2(x0).

(4.4)

(4.5)

(4.6)

We remark that, since u| > us, u; is touched by below at x¢ by the same C 2 function, thus Lk ui(xp) is well

defined.

Proof. We argue as above. Assume for simplicity that fj =0, f> =0, xo =0, and let P be a quadratic polynomial

touching u; strictly by below at 0. Let P. := P + € and denote by
ui :=max{u;, P}, ¢ ==uj —u;.
By minimality,

> (Ex, wf uf) — Ex, (i ui)) = 0,
i

thus
1
DSk u) = 5 ) Exi (o, 9)) 2 0
i i
After integrating by parts the terms Ex (¢€, u€) we get,

Z/wf (Lx,uf)dx <0,
L pe

i

where Af :={u; < Pc}. Arguing as (4.4) in Lemma 4.3 we obtain that

Z /sof (Lk;ui(0) +05(1) +0c(1)) <0,
i Af

with

0s(1) >0 asd—>0, o0(1) >0 ase—0.

Since we already know that Lx,u1(0) <0 and also 0 < ¢} < ¢5, we get the desired inequality after dividing by / ®5

and then lettinge — 0,6 — 0. O
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4.2. Viscosity formulation of the two membranes problem

Next we show that we can formulate the two membranes problem in a non-variational setting. With this approach
we may consider the two membranes problem for nonlinear operators /u or F (D%u) (instead of Lx) which do not
have necessarily a variational structure.

Below we show that the following conditions in B

Ui >uo, Lgur < fi, Lg,uz > fo 4.7)
Lgui=fi in{uz <uy}, Lxui + Lx,ur = f1+ f2, 4.8)

determine the pair (11, uz) uniquely.
We always assume that outside By, u; = u? are prescribed with u? elL! (R", dw) and continuous near 9 B;, and
0 0

u] > u; near 9 B1. Also we assume that f;’s are continuous and bounded in Bj.

Definition 4.5. We say that (w;, w2) is a viscosity subsolution to (4.7)—(4.8) if w; are continuous in a neighborhood
of Bi, and in By we have wy < wy, and

Ly, wr > fr, 4.9)
Lgwy+xelg,w2> fi+xefa with E:={w;=ws}. (4.10)

Similarly, we define the notion of viscosity supersolution for the two membranes problem. Equation (4.10) is
understood as a differential inequality for w; which depends on wj. Notice that at a point xo € E where wj has
a tangent C? function ¢ by above, the same function is tangent also to wy at xo, and therefore (4.10) provides
an integro-differential inequality involving ¢ at x(. Precisely we require that when we replace w; by ¢ in any §
neighborhood of x( the inequality (4.10) is satisfied at xg.

In the next lemma we show that even though the inequality (4.10) contains the discontinuous term yg, the notion
of subsolution is preserved under uniform limits.

Lemma 4.6. Assume that (wll‘, w12‘) is a sequence of subsolutions with right hand sides (flk, ka) Assume that wf, fik
converge uniformly on compact sets of By to w;, f; and that wl].‘ — w; weakly in L'(R", dw). Then (1, ) is a
subsolution.

Proof. Clearly w; satisfies (4.9). Assume that ¢ € C? touches strictly by above w at some point ¥. Denote E :=
{w =wy}.
If x ¢ E then we obtain as usual

L, w1 (%) > fi(%), 4.11)

and we are done.
If x € E we need to show that

D Lkwi(®) =) fi®).

We slide the graph of ¢ by above till it touches wll‘ at xy, and then x; — x. We distinguish two cases: either x; € Ej
or xj ¢ Ey for infinitely many &’s. In the first case we obtain the inequality above by writing it for the wf‘ at xx and
letting K — oo. In the second case we obtain (4.11) which combined with (4.9) for w, gives the desired inequality
again. O

Lemma 4.7. Assume that (wlf, wé), k =1, 2 are two pairs of subsolutions, and let w; = maxy wf, fl = ming fl-k. Then
(w1, wy) is a subsolution.

Proof. Notice that E := {wi =wy} C ETUE, E = {w]f = wé}, k =1, 2, and then the rest of the proof it is straight-
forward to check. 0O
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In view of the lemma above we can use the standard method of sup-convolutions (see [2,6]) and approximate a
subsolution (w1, wy) with right hand side ( f1, f>) by a sequence of semiconvex subsolutions (wf, wg) and right hand

side (ff, f3)-

Precisely, (w§, w5) satisfies:

a) has the same boundary data outside Bj as the original pair,
b) is a subsolution in Bj_¢ and each w¢ is uniformly C!:! by below.

¢) wi — wj, f — fi uniformly in Bj as € — 0.
Next we prove the following comparison principle.

Lemma 4.8 (Maximum principle). Assume that (w1, wy) is a subsolution and (vy, v2) is a supersolution to (4.7)—(4.8)
and w; < v; outside By. Then w; < v; also in Bj.

Proof. We translate down the graphs of the pair (wy, wp) in B and then we move them up till either w touches v
or w» touches v, for the first time.

Assume by contradiction that the first contact point occurs in the interior of Bj. After regularizing the functions
wj, v; as above and relabeling the translates by w;, wy we may assume we are in the following situation:

w; <v;, wa(xg) =va(xg) forsome xg € By,

(w1, wy) is a strict subsolution and (v1, vp) is a strict supersolution at xg, and w;, v; are Ch1 at xp. If at least one of
the operators is local then we may assume that all the functions are C? at xq after subtracting locally a small linear
function from one of the pairs, see [2]. Let Ey, := {w1 = w3}, E, := {v] = v2} and we distinguish 2 cases.

Case 1: xo ¢ E,. Then we contradict the inequalities for £, w> and Lg,v; at xo.
Case 2: xo € E,. Then
wi(x0) < v1(x0) = v2(x0) = wa(x0),

thus xg € E, as well. Now we contradict the inequalities for the sum of the two operators at xo. O

Proposition 4.9 (Existence and uniqueness of viscosity solutions). Let u? e L' (R", dw;) be continuous in a neighbor-
hood of By, and let f; be continuous and bounded in B. Then there exists a unique viscosity solution pair (41, us)
to the two membranes problem (4.7)—(4.8).

Proof. The proof follows the standard Perron’s method and we will not sketch the details. We only mention that
the continuity of u? in a neighborhood of 9B allows us to construct continuous upper and lower barriers for the
subsolutions and supersolutions (see [12]). Using this we can replace each subsolution by a larger subsolution with a
fixed modulus of continuity in By, and therefore the largest subsolution will have the same modulus of continuity. O

4.3. The case of different order operators

Next we establish the C%2~¢€ interior regularity of u; in the case when s, > s1.
Let (u1, up) be a viscosity solution in By, and assume that
”"‘i”L‘(dwi) <lI, Il fillLoo(By) < 1.
Since u; is a subsolution, we use the weak Harnack inequality (see Lemma 5.2 below) and obtain that u» < C in
Bj3/>. This means that u; is a subsolution in the set {#; > C} N B3>, hence we apply Lemma 5.2 one more time and
bound u1 by above in Bj. Similarly we bound u; by below and obtain

luillLop,) <C.

Let
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v iz X (4.12)

be the restriction of u to By, and x € E N B2 (see (4.6)). Then, since v < uy in By, and v(x) = u(x) we find

Lgui(x) > Lk v(x)+ /(u1(y) —v(x)) K(y —x)dy,
CB
hence
Lgui(x) > Lgvx)—C.
Moreover, for any x € By, we have
[Lxyuz(x) — Lg,vx)| <C,

in the viscosity sense. Combining the last two inequalities with the fact that u, is a subsolution and (uy,u>) is a
supersolution pair in the sense of Definition 4.5 we obtain the following corollary.

Corollary 4.10. The function v defined in (4.12) satisfies in By 2
Lk,v>—M, (4.13)
L, v+ xeLg V<M (4.14)

with M a constant depending on n, s;, A, A.

Inequality (4.14) contains the discontinuous term y g and it is understood in the viscosity sense. Precisely, if v
admits a tangent C2 function by below at a point x, then we satisfy two different inequalities depending whether or
not x isin E.

Since s, > 51 then the term xgLg, v can be treated as a perturbation. Then (4.13)—(4.14) can be thought heuris-
tically as saying that Lg,v € L, and we can infer that v € C# for any B < 2s». We use the convention that when
B € (1,2), the class C# denotes the class C'*#~!. We prove this statement rigorously in the next proposition.

Proposition 4.11. Assume s, > s1, and that v is a continuous function supported in By which satisfies (4.13)—(4.14)
for some closed set E. Then v € CP for any B < 2s, and

lvllca s, g = CUIVIILe 4 M),
with C a constant depending on n, s;, A, A and B.
Proof. The lemma can be deduced from the arguments of Caffarelli and Silvestre in [7]. Since their results do not
apply directly to our setting, we will sketch the proof of the proposition for completeness.

After multiplication by a small constant we may assume that M =1 and ||v|| (g, is sufficiently small.
We need to show that if for all balls B, with r = 271 1=0,1,...,k for some k > ko, we have

lv—1|<r? inB,, (4.15)

with [ a constant if 8 < 1 or a linear function if 8 > 1, and /; =0, then (4.15) holds also in B, for some [, where
p =270 _Here the constants mg, ko depend on 8 and the universal constants. Then we can iterate (4.15) indefinitely
and obtain the desired conclusion.

The existence of kg is obtained by compactness. Indeed, assume that (4.15) holds up to » = r; for some large k.
Notice that the coefficients of /, are bounded by a fixed constant, hence the rescaling

5(x)=rP—1)(rx),
satisfies
1Dl <1, [5(0)] < Colx|”  outside By.

Next we write (4.13)—(4.14) in terms of v. We have
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£K2U()C) = ‘CKZ (lr +rﬂ{;(£)> — rﬂ—2s2 ‘C]E 5 (f)
r 2 r
We estimate Lg, v by writing

- X . X
v(x) = x5 V() = X5, 1 (X) + XB,\By, rﬂv<;> + XBy, rﬂv(;) =: v 4 vy + 3.

We have |Lg,vi| < C in B,. Without loss of generality we may assume that 8 > 2s; which, by the growth of ¥ outside
By gives |Lk,v2| < C in B,. Also

_ X
Liyo3) =rP"21 Lg (x5, D) ().
In conclusion v satisfies in Bj the following inequalities

‘CI?Z{J > _Cr2S2—/3’ (4.16)

L 042027 xp Lp (x,0) < Cr22F, (4.17)

The function v is both a subsolution and a supersolution for integro-differential equations with measurable kernels
and bounded right hand side. Since 22751 is small, the two operators above are bounded by two extremal Pucci
operators of order 2s,. We apply the Harnack inequality for integro-differential equations from [6] and obtain that v
is uniformly Holder continuous in B3/4. This means that as » — 0 (or equivalently as k — oo), the corresponding v’s
converge uniformly on a subsequence to a limit v. We claim that v satisfies

|£[€(XB3/4I_})| EC in B1/27

where K is the weak limit of the I?z’s.
Indeed, let w := X33/45’ then (4.16)—(4.17) give

ﬁIgZﬁ)Z—C, Ekzﬁ)—l-rz(sz_sl) XEﬁkleCv

with #262751) s (. Now we can pass to the limit in these inequalities and use that £ LY &) — Lz (x) for any test

function ¢ € C 2 near x, and obtain the claim.
The existence of [, with p = 27" universal, now follows from the CP+¢ estimates, with B + € < 2s7, of the
solution v above, see Proposition 7.1, parta). O

Remark 4.12. We are not concerned in obtaining estimates that remain uniform as the order of the operators ap-
proaches 2.

The Harnack inequality for v can be checked also directly by using the methods of Silvestre in [16]. For this we
slide parabolas by above and below till they touch the graph of v. Then we use the equation only at these points and
show that the oscillation of v decays at a geometric rate as we restrict to dyadic balls. We will use this method more
precisely in Section 5, see Step 1 in Proposition 5.6.

We remark the same argument works as well in the case when L, is a local operator, and then we need to use the
ABP measure estimate, see [13] for example.

Proposition 4.11 provides the initial C22~€ interior regularity of the function u>. Now we can view the function i
as the solution to the obstacle problem with obstacle u,. Therefore in our analysis it is important to obtain regularity
of solutions to the obstacle problem with not necessarily C? obstacle. In the next two sections we show that u;
is as regular as the obstacle up to C™{1L.2s1}+€ regylarity in the case of translation invariant kernels, and up to
C!*51 regularity in the case of the fractional Laplacian.

Then we can successively improve the regularity of u; and u; and obtain Theorems 2.3 and 2.6.

Proof of Theorem 2.3. From Theorem 5.1 in Section 5 we have that u1 is as regular as u, up to C™{1.2511+€ regylar-
ity, and up € C%27¢ by Proposition 4.11. From the Schauder estimates for the equation Lxu = f, see Proposition 7.1
in the Appendix, this implies that Lx,u; € C¢. Thus Lk,us € C¢ which gives u; € C 2s2t€ Now we can iterate this
argument and obtain the desired conclusion. 0O
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5. The obstacle problem for translation invariant kernels

In this section we make a detour to provide two regularity results for the general obstacle problem in the case of
symmetric, translation invariant operators L as above. We then apply these results to the two membranes problem.
In addition to (4.1) we need to impose the extra regularity assumption on K, i.e.

IVK (y)] < Aly|~rF1+29), (5.1)

Assume that u is a solution of the obstacle problem in B with obstacle ¢ by below. Precisely we assume that u, ¢
are continuous in By, u € Ll(R", dw), and

u>¢ in By, 5.2)
Lxu<f in By, and Lxu=f in {u>¢}N By. (5.3)
Our main result of this section says that up to C€0 with €y universal, the solution u is as regular as the obstacle .

Moreover, in the case s > %, the C1-€0 regularity can be improved to C27<0,

Theorem 5.1. Let u is a solution to the obstacle problem (5.2), (5.3), with kernel K that satisfies (4.1), (5.1), and
assume that

”u”Ll(R”,da))’ ||§0||cﬂ(31), ||f||0011(31) <1,

for some B # 2s.
Then u € C*(By) for « = min{B, max{1, 2s} 4+ €o} and

||M ||Ca(31/2) =< C1
where €y depends on n, A, A, s, and the constant C may depend also on f.
Before we proceed with the proof of Theorem 5.1 we write two versions of Harnack inequality for nonlocal equa-
tions which deal with L* bounds for subsolutions.
Lemma 5.2. Assume that v is continuous in B, ||U+||L1(Rn’dw) <1, and
Lgv>—1 in {v>1}NBy.
Then v < C in By, with C depending only on n, s, A, A.
Proof. After multiplication with a small constant we may replace 1 by §¢ in the hypotheses above. We show that
v < with

Yx) = (1—|xH)™".

Assume by contradiction that when we slide the graph of 1 by above we touch the graph of v at some point (xg, v(xp))
above the original graph of ¥, i.e. there exists ¢ > 0 such that v < v in By and v(xg) = ¥;(xo) for some xp, where
Y := ¥ +t. Denote by

d:=1—xol,
and by / the tangent plane of v, at xo. Then for r < d /2 we have
/ (v(x) — v(x0) K (x — x)dx < / (A =D —r—=D7)|x —xo| " dx
By (x0) B, (x0)
<Cd™"TEETE _pps / (v—10"dx.

By (xo0)

We use
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/ (w—1D"dx> / (l—v)dxzw,(x0)|Br|—/v+dx

B, (x0) B, (x0) By
>Cd """ =8,

which, by taking r = dc with ¢ small, and 6y < ¢ sufficiently small, we obtain

((x) — v(x0)) K (x — xp)dx < —cr "7,
By (x0)

On the other hand

/ (v(x) —v(xp) K (x —x0)dx < A / v () |x — x0T dx < CSor .
CBy(x0) CB,(x0)
From the last two inequalities we find
Lgv(xo) < —c,

and we reached a contradiction, provided that g is chosen sufficiently small. O

We remark that in the proof we did not use the translation invariant properties of K, and clearly the proof holds for
truncated kernels xp, K as well. Also the assumption on the bound for the L! norm of v* in R” can be weakened to
an L' bound for v* only on CB;3 /4. This can be seen by appropriately modifying the comparison function v in the
proof.

We provide a version of Harnack inequality that follows from Lemma 5.2.

Lemma 5.3. Assume that v>0in By, v(0) <1,
Lxkv<o inB, Lgxgv>c-1 in{v>1}NBABy,

for some o, and
/ |vl(max{1, [x[})~ "+ dx < 1.
Then v < C in By, with C independent of o.

Proof. Let K7 = xp, K be the truncation of K, and we show that v and K7 satisfy the hypotheses of Lemma 5.2. We
slide the parabola x,,+| = —4|x|? by below till it touches the graph of v at some point yo, and from our hypotheses
above it follows that yo € B1,2, v(yo) < 1, and

EKTU()’O) 2 _C
For y € By we have
Liv(y) — Lkv(yo) < Lx,v(y) — Lk v(y0) + / v(x)(K(x —y) — K(x — yo))dx + C,
CB;
and from (5.1) we have that
|K(x—y) — K(x —yo)| < Clx|""H1*2)if x eCBy.
Thus
Lx,v(»)=—C in{v>1}NBy,

and the conclusion follows from Lemma 5.2. O
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Remark 5.4. We remark that if we slide a parabola 4C|x|? by above and it touches the graph of v at some point y; for
which Lxv(y1) > o — 1 then by repeating the argument “upside-down” (i.e. for —v) we obtain Lg,v(y) < C in By.

We are now ready to prove Theorem 5.1, which is a direct consequence of Propositions 5.6 and 5.7 below. First we
state the necessary Schauder estimates, which will be proved in the appendix.

Proposition 5.5 (Schauder estimates). Let K be a symmetric kernel that satisfies (4.1), and assume that v €
L'(R", dw) satisfies
Lgv=f inBy, lvllzee(p)) < 1.
) If | flleey < L vl L1 ge go) < 1 then
lvllcas, ) < Cla), foranya <2s.

b) Assume that K satisfies (5.1). If

/v x|~ D gy <1, [flergy <1, for somey € (0,1)
CBy

then

Wlico s, <CW),  withf=2s+y,
provided that 2s + y is not an integer.
c) Conversely, if”v”Ll(R",dw) <1, |lvlicsp,) <1 with B as above, then

Il fllcr sy < C.

Proposition 5.5 can be easily deduced from the results of Serra in [14] where he obtained Schauder estimates for
concave integro-differential equations with rough kernels (see also [11,7]). We will sketch the proof in the Appendix,
since its statement is slightly different than it usually appears in the literature and our setting is simpler than in [14].

Next, we prove the statement in Theorem 5.1, valid for all s € (0, 1), that is the following proposition.

Proposition 5.6. Let u satisfy (5.2), (5.3) and assume that

el L1 e dwys 1@t pyys 1f o gy < 1.
Then u € C*(By) for « = min{B, 1 + €0} and ||u||ca(31/2) <C.

Proof. We sketch the proof below. In view of Lemma 5.2, we can assume without loss of generality that |lu|z e <1
in Bj. In fact, after multiplication with a small constant, we may assume that all the norms in our assumptions and
|lu|| Lo are bounded by &, sufficiently small to be made precise later.

Step 1: We show that u € C*° for a small g > 0, by checking that the usual proof for Holder continuity of solutions
to nonlocal equations [ 16] still applies in our case. Let us assume for simplicity that 0 € {u = ¢}, #(0) = 0 and suppose
that

u<r®=1-5" inB,,with r=2"" foralll <k, (5.4)

for some k > kg. Then we need to show that (5.4) holds for / =k + 1 as well.
Indeed, the rescaling @i (x) := r~u(rx) with r = 27 satisfies in B (ag < )

—5051251, Ekﬁf&), ﬁkﬁz—(;()in {ft>50}.

Moreover,
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i<(1—=8), inB,, j=1,... k, (5.5)
/ fido < (27F)25—0g. (5.6)
R"\sz

In order to obtain the diminish of oscillation of # we compute Lk at the two contact points x , x(;“ obtained by
sliding two paraboloids of opening 25 by below and above till they touch the graph of .
Precisely, we slide P, :=24|x |2 +1t,t <1, from above. If no contact point occurs till r =1 — %8, then

#<1-6 inBjp

and we obtain the desired diminish in oscillation. Let us consider then the case when the contact point x(‘)Ir occurs for
t > 1 —3/24, that is near the top x,+; = 1. Hence (say §p < 1/4,8 < 1/2)

u(xy)>38 and Lgi(xd) > —5.
Assume that
{u 1}ﬂBI lIBI (5.7)
u> = <= . .
5 1 5 1P
We show that
ﬁkﬁ(xg') <-—c (5.8)

for ¢ universal, provided that § (hence ) is small enough. We thus reach a contradiction if &g is small enough.
Indeed, for § small,

. 1 .
MSPI_ZX{IZE%} in By.

Hence,

Lei(x)) < /(P,(x) — P(x{))K (x — x)dx — % / K(x —x0)
Bi {i<3)NBi
+ / @(x) —a(eNK (x —xdx =1 + L + L.

R"\ B}

We first observe that xar € B3y, sinceu <landt>1-3/24.
It is easily seen that

I < Cy6.
Moreover, from (5.7) we have
I, < —cy.

Finally, we estimate /3 as follows, and we recall that k > kg large.

k
<) / (@(x) — (K (x — xg)dx + / ido=1) + I3
jleZ./ \sz,] Rn\sz
To estimate I?} we use (5.5) and get

k
. 3 g
H<c 2;((1 —8 -1+ 53)2*2” <c(8) >0, asd— 0.
j=

Again, to estimate 132 we use (5.5) and obtain
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132 <27HZ0 50 forkg large enough and § (hence &) small.

Combining the estimates above, we obtain the claim in (5.8) and reach a contradiction.
This implies that either the contact point does not occur near the top, and we are done, or (5.7) does not hold and

.1 1
|{u>§}031|2§|31|. (5.9)

In this case, we slide —268 |x2| — t by below, > §p, and we work with the lower contact point Xy - Since ©#(0) =0 we
see that x, occurs close to the bottom x;, 41 = —3¢p. With a similar computation as above, we obtain that

Ekﬁ(xa) >c,

with ¢ universal (§ chosen small). This contradicts that £ kﬁ(xa ) < &9, if 8¢ is small. This means that (5.7) must hold
and xa' will occur far from the top, providing the diminish in the oscillation.

This establishes a uniform pointwise C*°-Holder continuity of u at all points on the contact set {u = ¢} N By 2. Itis
easy to extend this modulus of continuity at all x € By/4. We take the largest ball B,(x) included in {u > ¢} which is
tangent to {# = ¢} at some point y, and then we apply the interior estimates in Proposition 5.5 to Lgu = f in B,(x)
by using the modulus of continuity of u at y.

Step 2: We show that if u € C* for some o < 1 then u € C*T for some € universal, as long as @ + €p < B. Then
we combine this claim and step 1, and obtain the desired conclusion.

The proof is similar to the one in Step 1, and uses the fact that the derivatives of u are “subsolutions”. Let us assume
that the norms of the data are bounded by §p and that

u(0) =¢(0) =0, Ve0)=0 ifg>1, and |ulcem,) <do-
We consider the difference quotients
u(x + he) —u(x)
h® ’

where e is a unit vector and prove the following property.
Assume that for some k > kg, we have for all r = 27l with I <k

uj (x) 1=

uf <ro=(1-25)" inB,, forallh<r,le|=1. (5.10)

Then (5.10) holds for I =k + 1 as well.
Fix r = 27%. The key observation is that

1
Lxup > fy =—=8  in {uj> Ere"} N B;. (.11

Indeed, since u is a solution in the set {# > ¢} and a supersolution in B, we conclude that the only points where the
inequality in (5.11) can fail are those with x 4 he € {u = ¢}. At these points

1
ul () <@f(x) < SohP™* (or SorPTWITY ifp>1) < ErEO.
Moreover, call K7 = xp,, K, then for a universal ¢ > 0,

1
Lgyup > —c in  {uj, > Ereo} N B,. (5.12)

Indeed for x in such set “2 (x) > 0 and we have,

Lpup > —380 — / uj (K (y —x)dy.
CB1/4(x)

Call the second term E. Then, one easily sees that

1
|E| < h_a(El + E> + E3),
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with
E; :=/|u(x+z)||K(z)—K(z—he)ldz, A1 =C(B1j4 U Byja(he));
Ay
E, :=/|u(x+z)|K(Z—he)dZ, A = By4\ Byja(he);
Ay
E; :=/|u(x+z)|1((z)dz, A3 = Bjj4(he) \ Bys.
A3

Since h <r =27% with k large, and u is bounded in By, then E>, E3 < Ch. To bound E| we use that ||u||L1<dw) < dop
and assumption (5.1). We thus obtain E3 < Ch as well and by collecting all these bounds we obtain the desired claim.
Now, let

Tty (rx),

ux):=r
be the rescaling of u and notice that from u > ¢ and (5.10) applied with x =0, he =ry, y € By we find
—80 <u(y) <|y|* in B. (5.13)
Let h <r/2, and write h = rfz, with & < 1/2. Then
v(x) = ﬁ%(x) =r"uy (rx),

is the rescaling of ”Z from B, to the unit ball, and from (5.10), (5.12) in By we obtain that in B;

—-2<wv<l, Lz

: 1
V= —dp in {v > 5},

where the lower bound on v follows from (5.10) applied for —e. Here

I%T = XBI/4rK‘

Now we claim that |[{v < 1 — ¢} N By| > ¢ for some fixed ¢ small universal. The reason is that if v is close to 1
in almost all B then we contradict that u > —4§y. Indeed, assume for simplicity that e = ¢, and we integrate v in the
cylinder

1 31
C:=1|x"| <=, el—-,-1¢.
{|x | < 3 xp €[ 2 4]}

For each segment in the e, direction I,» = {(x’, x,)|x, € [—%, %]} of length 1 included in C we have (see (5.13))

|-

z7th —3th
/vdx,,:hf‘)‘ /ﬁdx,,— / i dx,
X : =

~ 7
<h'™ ((§>“+ao) <l-c,

and our claim follows.

Now the proof of diminish of oscillation for v follows as in Step 1. We remark that in bounding £ &r v at the contact
point, we will not have a term as 132, since the kernel K is truncated. All the other terms can be bounded with similar
arguments as above.

In conclusion property (5.10) is proved and this implies that u < %7€ in B, for all dyadic balls, thus u is pointwise
Co*€ at 0. Now we can extend as above the pointwise regularity from the set {u = ¢} to the whole Bj 4, and obtain
the desired conclusion. 0O

We show that when s > %, then the result of Proposition 5.6 can be improved.
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Proposition 5.7. Let u satisfy (5.2), (5.3) and assume s > 1/2,

||u||L1(]Rn,dw), ||§0||cﬂ(31), I fllceos) <1,
for some B # 2s. Then u € C*(By) for « = min{B, 2s + €o} with

lullce () < C.

Proof. Assume that [[u]l11 (44, @llcs, | fllceo are all smaller than &, and assume also that u(0) = ¢(0) =0, and
Ve(0) =0if 8 > 1. We treat the case when 8 > 2s + €.

We prove by induction that there exists a sequence of radii 1 =r) > rp > ... with ri41/r¢ € [po, 1/2) for some
fixed pg such that

/ |u|(max{r, |x|}) " T1F2) gy < peo=l, (5.14)

Assume that this holds for some r = r;. We let

—2s—¢€p

ux)=r u(rx), ¢kx)= r_2S_€°(p(rx), Ffx)=r"%f(rx),

and we have

Lgi<f inBy, Lzii=f inf{i>@}NBy,
and

oscg, f <80, |@(x)| <olx/*TO  inB.

Moreover, (5.14) is equivalent to
/ Jii| (max{1, |x|) =T dx < 1. (5.15)
We want to show that there exists p € [pp, %) such that

/ lit|(max{p, |x|}) " F1T2) gy < peo1, (5.16)

and then the induction hypothesis (5.14) is satisfied for ry41 = prg.
Notice that it 4- 8o satisfies the hypotheses of the Lemma 5.3 hence i < C in Bj,>. Now we distinguish two cases.

Case 1: it < 8¢ in Bjs4. Then (5.16) is satisfied clearly satisfied for p = pg small, provided that o < pp is chosen
sufficiently small.

Case 2: u > §o for some point in Bj/4. The according to Remark 5.4 we can slide a parabola of fixed opening by
above and obtain a contact point in {it > 89 > ¢} thus

L i(0) <C.

Since ¢ is tangent by below to u at 0 the above inequality implies

/|ﬂ||x|_"_2sdx <C. (5.17)
By

On the other hand, if we assume by contradiction that (5.16) holds in the opposite direction for all p € (pg, 1/2) then
we can integrate this inequality in p and obtain

/ || (min{1, [x[}) x|~ 129 dx > (oo, €0),

with n(po, €9) = 00 as pg, €9 — 0. This contradicts (5.15), (5.17) by choosing €q, po sufficiently small.
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In conclusion property (5.14) is proved, and from the argument above we obtain u(x) < C|x|2s+60 in Bi. This
means that u is pointwise C2T<0 in the set {u = ¢}, and this can be extended to the whole B /2 as before.

When B € (2s, 25 + €p) the argument above applies with € replaced by g — 2s.

Finally, when 8 < 25 the proof is simpler. The rescaling it (x) = r —Pu(rx) satisfies ||ii|| LR de) < C, (since now
@ is integrable at infinity) and we can apply Lemma 5.2 directly to obtain the pointwise C# estimate at the origin. In
this case we only require f € L>*°. O

6. The case of the fractional Laplacian: free boundary regularity

In the special case when

Ki) = [

the operator Lk, is the fractional Laplacian A®! and we obtain the optimal regularity of the minimizing pair in the
two membranes problem, see Theorem 2.6. This improvement is due to the fact that the optimal C'* regularity in
the obstacle problem for the fractional Laplacian is known. Precisely, assume that u is a solution of the thin obstacle
problem in By with obstacle ¢ by below, that is u, ¢ are continuous in By, u € L! (R", dw), and

u>¢ inBj, (6.1)
Au<f inBj, and Au=f in {u>¢}NBj. (6.2)

The following result holds (see Section | for the notion of regular points).

Theorem 6.1 (Optimal regularity). Let u be a solution to (6.1), (6.2), with

||M||L1(Rn,dw), lellcss,ys ||f||cﬁ—2x(31) <1, for some > 1+s.

Then u € C'*5(By) and
||M||Cl+s(31/2) < C.

Moreover; the free boundary T = d3{u = ¢} is a C"7 surface in a neighborhood of each of its regular points. The
constants C, y depend on n, s, and B.

Theorem 6.1 was obtained by Caffarelli, Salsa and Silvestre in [5]. The main tool in the proof is to establish a
version of Almgren’s frequency formula for the “extension” of u to R"*!. Theorem 6.1 is proved in [5] in the case
when ¢ € C*>! (i.e. B =3). Below we show that the Almgren’s monotonicity formula still holds when g > 1 + s.
Since this is the only place in the proof in [5] where the regularity of the data is needed, we obtain the version of
Theorem 6.1 above.

Finally we remark that in the case when 8 € (25,1 + s) the C'® regularity of u with & < 8 was obtained by
Silvestre in [16].

6.1. Almgren’s monotonicity formula

In this section, B, will denote a ball in R"*! and B, := B, N {xn+1 =0}. Also, X = (x, x,,41) is a point in Rr+!
and often we call y = x,,41.

After subtracting an explicit function whose fractional Laplacian equals f, we may assume without loss of gener-
ality that f = 0. Let u be a solution in B, to the thin obstacle problem

u>g in B, C R"?
A'u=0 infu>¢}NB, (6.3)
A’u <0 inB;

with ¢ : B — R a continuos function.
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Consider the equivalent (localized) problem obtained extending u to R+, evenly in the y = x4 direction,
u(x,0)>¢ forxe B,
ux,y) =ulx,—y)
Lou =div(ly|"Vu(x, ) =0 in By \ {u(x,0) = ¢(x)}
L,u <0 in B; in the distributional sense

where
a:=1-2s, ae(—1,1).
Assume ¢ € C151%(B,), for some § > 0 and llollcs+s < 1. We extend ¢ to Bj in the following way:
P(x,y) =@ *pjy, (6.4)

with p,(X) :=r~""1p(X/r), and p a symmetric mollifier supported in B;. Then it is easy to check that € C!5+?
is even in y and is smooth away from {y = 0}, and

ID*@l < ClyF~! = |y “Lag < Cly[FH L (6.5)
Define,
u(x,y)=ulx,y) —ox,y),
and let A := {ui(x, 0) = 0}. Then u satisfies
iu(x,0)>0 forxe B

i(x,y)=ulx,—y)
Lyii=—L.¢ inBi\A

Denote by

. 1 ~2 . 1a
F(r):= T /u ly|“do,
B,

and notice that if for example @ is homogenous of degree o, then F(r) = cr%°, hence %r % logF =o.

Theorem 6.2 (Almgren’s monotonicity formula). Let 0 € A and o € (s, s + 8). There exist constants Co and ro de-
pending on «, s n, and 8 such that the function

1 d
By (1) = 5 (r + Cor' 7)< log (max(F (), 12(1+})
2 dr
is monotone increasing for all 0 < r <ro, where € > 0 is small so that s + 6§ > o + €.

For simplicity we also use the notation of the “averages” of a function g with respect to the measures |y|*do and
lyl“dX:

1
][ g Iyl'do =~ / ¢lylido

B, B,
and
1
Fewrax =2 [ebiax.
B, B,

With this notation,
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F(r) = ][ i*|y|*do,
B,

and
F'(ry=2 ][ i, |y|%do.
B,
First, we prove the following preliminary lemma.
Lemma 6.3. Assume F(r) > r2149 Then, for r small
][ﬁ2|y|“dX < CF(r).
B,
r V() ~ ][ \Vii|?|y|“dX > Cr=2F(r)
B,
Proof. Assume for simplicity that #(0) = ¢(0) =0, V¢ (0) =0, hence
] < CrITst0 <pltete in g,
hence the functions u and @ are “the same” up to an error of r!7¢. Since F(r) > r>1+®) we obtain
21,14 ~2\..1a _
][u Iy|“do ~ ][u |y|“do = F(r).
3B, B,

Since Lqu = 0 in the set {|u| > r't®+€} we may apply the mean value inequality for the L,-subharmonic function

((|M| _ r1+a+e)+>2

and obtain that its average in 3, is bounded by its average on d15,. This easily gives the first inequality above.
For the second inequality we have L,u <0 and u(0) = 0, hence the average of u on 35, is negative. From this and
the version of Poincare inequality written for 3, (see Lemma 2.10 in [5]) we obtain

r2][|w|2|y|“dx >c f<u+>2|y|“da.
B, B,

Moreover, similarly to the quoted lemma, since a function v in the weighted Sobolev space W1 (By, |y|*) has
trace in L%(B1), we also have the following version of Poincare inequality:

r2][|w|2|y|”dx >c 7[ (v —0)?|y|"do
B BT
with
v ::fv(x, 0)dx.
B,
Hence, since u > —r!T**€ on B, we deduce that
7’2][|VM|2|y|adX Z c ][(u*)zb)'adx _ Cr2(1+01+€)'
B, 0B,

Using that Vii = Vu + O (r' 7%+€) we obtain
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][|Vﬁ|2|y|“dX > Cr 2F(r).
B,
Finally,

/(ﬁLaﬂ+|Vﬁ|2|y|”)dX=/div(|y|“ﬁVzZ)dX=/ﬁﬁv|y|“d0,

B, B, a8,
thus, since L i = —uL,p we have
1 1 o ~ Ca~r ~
;F/(F) == ][ iity|y|*do = ][(IVMI2 —IyITaLa@)lyldX.
B, B,
By Cauchy—Schwartz and the property (6.5) of ¢ we have
1/2 1/2
][ﬂ(lyl_“La@IyI“dG < ][ﬁ2|y|”do ][(Iyl_”La@zlyl“dfI
Br Br Bi”

S Cra+€71F(f")1/2,

and we obtain the desired conclusion (using also that F(r) > r2(79))

Proof of Theorem 6.2. It is enough to consider the case when
F(r) > r?1%®),
Then,
F'(r)

O;(r) = %(r+Cor1+€)m.

We compute its logarithmic derivative and show that it is non-negative. Precisely, we look at the quantity:

e—1 " /
NG = l n eCor F’(r) B F (r).
r 14+ Core F'(r) F(r)

As in Lemma 6.3,

/ ity |y]*do = / (IVal? + |y Loi)|y|“dX.

B, B,
Thus,

(n+a)

r

F/(r) = — Fl(r) +2 f (Va2 + |y iLad))y" |do.
B,
As in [5] we can estimate that
—1
][ VaPlyl"do =2 f(ﬁv>2|y|“do prta-l ][ ity |y|*do
r
B B B,
- f((n = Dii —2X - Vi) (1| Lo@)|y]*dX.
B,

eCor™! | A4fyp,@)*y1%do F'(r)  H(r)
1+ Core F'(r) F(r) F'(r)’

925

(6.6)
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with

H(r) =2 ][ F(1y1™ Lo y|°do — (n +a — 1)][ﬁ<|y|—“La¢)|y|“dX

o5, B,
+4][(X Vi) (Iy| T La@)|y1d X

B,
= Hi(r) + Ha(r) + H3(r).

By Cauchy—Schwartz, we conclude that (for  small)

€Cor™" H(@) _ Co oy, H®)

N = e TP 72 Fir)’ ©D

We now estimate H (r). As in Lemma 6.3 we use property (6.5) of ¢ and conclude
Fay Laplyldx| < Crete )12

B,

and with a similar computation

][a<|y|—“Lu¢>|y|“da < Cr e B2,
B,

In the same way,

1/2 172
FocviaLapiytax| <r | fivatirax | | oz
Br Br Br
12

<rote ][|Vﬁ|z|y|“dx ,

B,
hence by Lemma 6.3
|Hi(r)] < el |Hy(r)] —crel, |H3(r)| <ol
F'(r) F'(r) F'(r)

Combining these estimates with (6.7) we get that N (r) > 0 for Cg large and r small. O

Now the arguments in [5] apply, and they give that if 0 € d A then the limit ®(0+) can take only two values: 1 + s
and 1 + «, and this implies the C!* regularity of u. If this limit ®(0+) equals 1 4 s we say that 0 is a regular point.
Then the monotonicity formula allows us to perform the blow-up analysis at a regular point and to obtain the C-¥
regularity of the free boundary. In view of this, we sharpen the regularity results of [5] for the thin obstacle problem,
in the case when the obstacle ¢ € C'**?, and obtain Theorem 6.1.

6.2. An extension of Theorem 6.2
We consider here the case when the obstacle ¢ is C'T5+% only in a certain pointwise sense and u has nearly optimal

regularity. This case appears in [4] where we deal with the obstacle problem for non-local minimal surfaces. Precisely,
we obtain the following proposition.
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Proposition 6.4. Let u € C 2st€ golve the obstacle problem (6.1)—(6.2), 0 € dA. Assume that ||u|| LR dw) < 1 and
Vu is pointwise CS_% at the origin, i.e.
Vu@)| < xI'"2 i B, (6.8)
If ¢ € C*5%€, Vg is pointwise C*+° at the origin i.e., for all r < 1
IVolrom,) <t ifse(0, 1) (6.9)
[Volcawsig, <r'™ ifsels, D),
and f satisfies
[flcrs,) < Cr't®  forsomey >1—2s, if s €(0,1/2), (6.10)
[flessy <Cr'™ ifsell/2, 1),
then u is pointwise C* at the origin i.e.
)| < ClxI"**in By, ©6.11)
for some C depending only on n, s and §.
The Proposition above will follow if we show that the monotonicity formula can be applied under these hypotheses.
Assume first that the right hand side f equals 0. Since u, ¢ € C**€ in By, the integrations by parts performed

in the monotonicity formula are justified. Now, using the boundary estimates for the equation L,u = 0 together with
y¢uy (0, y) — 0 as y — 0 which is a consequence of 0 € d A, we find that the extension u(X) satisfies in B,

| < Cri™=%, |X.Vu|<Cr'™3, (6.12)
In view of (6.9), the extension ¢ defined in (6.4) satisfies in B,

@l <P Vg <
and

u

%, ID*@| < Critely|" ifs e (0, 1) or,
y

Iy
Iyl

Since a =1 — 25 and

DG <! y[B T ifs e [4, D).

YI™“ILadl < C <|DZ¢| + @> ,
Iyl
we see that |y| %L, ¢ is integrable with respect to the measures |y|“d X and |y|%do, and its averages with respect to
these measures in B, respectively 38, are bounded by C psHe-1
From these inequalities we see that 1 = u — ¢ satisfies the same bounds in (6.12) and we can estimate the error
terms Hi, H>, H3 by

CriFs=5ps+=1 _ 0, 2548/2 _ o) 20+e

provided that « is taken sufficiently close to s and & > 0 is small. The difference is that now we used the L>L' bound
for the product between the i terms and |y|~*L,@ terms instead of the L>L? as before.

In the general case when the right hand side f is not 0, then the potential whose fractional Laplacian equals f must
satisfy (6.9) and we need to impose the conditions in (6.10).

We mention that similar arguments with the ones that we provide above were used by Guillen in [10] in a slightly
different context.
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7. Appendix
Below we discuss the Schauder estimates for translation invariant integro-differential equations of the type

Lgv(x)= P-V-/(v(x +y) —v(x)K(y)dy,
with kernels K that satisfy

s KO = Thm 0<As<A (7.1)

VK (y)] < Aly|~rH1+29), (7.2)

For convenience we state again the Schauder estimates used in Section 5.

Proposition 7.1. Let K be a symmetric kernel that satisfies (7.1), and assume that v € L' (R", dw) satisfies
Lgv=f inBy, lvllzee (s < 1.
a)If I flles) <1 L1 Re go) < 1 then
lvllce(s, ) < Cla), forany a <2s.

b) If K satisfies (7.2) and

/v |2 D gy <1, [flerwy <1, forsomey € (0, 1)
CB
then

”U”C2S+V(Bl/2) =< C()/),

provided that 2s + y is not an integer.
c) Conversely, if K satisfies (7.2) and |[v|lp1(gr gy < 1, IVl c254r () < 1, then

Il fllcr sy < C.

We remark that the constant C(y) in part b) is independent on || f || Lo and [[v]l 11 gr g4)-

We point out that by the results in [14], one could in fact relax the assumption (7.2) and require that it is satisfied
only outside of a neighborhood of the origin.

We sketch the main steps in the proofs of parts a) and b) and use similar ideas as in Section 5. The proof of part c)
is standard and we do not include it here.

First we obtain a Liouville type result for global solutions which have integrable decay at infinity.

Lemma 7.2. The only global solutions to the equation
Lxkv=0 inR", |vlrepy) <R, with Ry = 2k k>0,

. 1 . . 1
Jor some a < 2s, are constant if s < 5, or linear if s € (3, 1)

Proof. Since o < 2s we can apply the Holder estimates from [16] (as in Section 5) and we obtain that
lvllceo s, ) = C, (7.3)

for some C, €y depending only on n, s, . Since the function R,:“U(ka) satisfies the same hypotheses as v, we can
apply the estimate above for this function and obtain

Ivllceo(Bg, 2 < CR™. (7.4)

This means that the discrete difference function
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1 u(x+he) —u(x)
Vi=—
Co heo

also satisfies the hypotheses of v with « replaced by o — €.
We apply the estimates (7.4) for v and we obtain (see Lemma 5.6 in [2])

; lel=1,h€[0, 1],

a—2¢€p
1Vl 2003,y < CRE T

We iterate this result and distinguish 2 cases, if ¢ < 1 or o > 1.
If o < 1 then we find

< a—ao
||U||Ca’(BR/2) _CR s

for some o’ € (a, 1) and by letting R — 0o we obtain that v is a constant.
If @« > 1 then we obtain

-1
||U||C0’1(3Rk) <CR;™",
hence the discrete difference quotient (v(x + he) — v(x))/h satisfies the hypotheses of the lemma with exponent
a — 1 < 1 thus it must be constant, which gives that v is a linear function. O

Using compactness and Lemma 7.2 we obtain the following interior estimate.

Lemma 7.3. Let w be a solution to the truncated kernel equation
Lxg,w=g inBip, Kr:=xp,K, (7.5)
lgllLoosy ) < 1, lwllLesy) < 1.

Then, for any a < 2s we have
lwlices, .y = Cla).

Proof. We may assume that @ # 1. We need to show that if w satisfies
lw—I| <rd inB,, re=27% (7.6)

for k=0, 1, ...,m for some m > kg sufficiently large, then the inequality above holds also for k = m + 1. Here I
is either a constant (for & < 1) or a linear function (for @ > 1). Indeed, as kyp — 0o, we may find a subsequence of
rescalings

wi=r *w(rx) r=rp

which converges uniformly on compact sets to a function v that satisfies the hypotheses of Lemma 7.2, and then
(7.6) is clearly verified for k large. The uniform convergence on compact sets is once more guaranteed by Harnack
inequality since w satisfies

S Gy 25 = >
Lgw=8x):=r""%(rx),  Kr=Kxp_,,

and, as kg — oo, we have g — 0 uniformly on compact sets. O

The estimate in part a) of Proposition 7.1 follows from Lemma 7.3. We write the original equation in terms of the
truncated kernel K7 and obtain

Lgrv(x)=f(x)—h(x)  inByp,

with

h(x) = / ((x +y) —v(x)K(y)dy,

CB]/2
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and clearly
lh() = CIvliL1 o) + 10D = C.

Next we apply Lemma 7.3 for difference quotients and obtain the C***7, y € (0, 1), estimate.

Lemma 7.4. Assume that K satisfies (5.1) (only outside a neighborhood of the origin) and w satisfies

Lx,w=g+aw inBjp, lwllLesy) <1,
for some constant a with |a| < 1, and with
lgllcorp, =1 (7.7)

Then, if « < 2s we have
||U)||Cl+a(Bl/4) < C(a)

Proof. Since the right hand side is bounded, we obtain by Lemma 7.3 a C*® bound for w in B4 for some g € (0, 2s).
Then we iterate Lemma 7.3 a finite number of times for the discrete differences of w and successively estimate w in
C%(By,) with ry = 4 % and oy < ] <y < ... < @y, = 1. Then we iterate this argument one more time and obtain
the desired conclusion.
Notice that in order to apply Lemma 7.3 in B,, instead of By we need to write the equation for the truncated kernel
K7k =K1 XB, )>-

Then the right hand side gets modified as follows

‘CKT,kw(x) =gMx) —h1(x) +ha(x)
with
hi(x) = / w(x + y)K(y)dy = / w(y)K (x — y)dy,
Bi/2\By /2 B1/2(x)\ By j2(x)
ha(x) = aw(x) + / wx) K (y)dy = (a + C(K))w(x).
B12\By, 12
From our hypothesis on K, arguing as in Step 2 of Proposition 5.6, we find ||h]|co1 < C. Since ||ha|lcu <
Cllw|lcu in By, 2, we can apply Lemma 7.3 for the discrete difference
w(x + he) — w(x)
hok

and obtain the C%+! bound for w in By, /4. O

)

Finally we prove part b) of Proposition 7.1.

Lemma 7.5. Assume that v satisfies the hypotheses of part b) in Proposition 7.1 with

lvllLoe(By) < o, [flcr ) <o
for some small &g. Then there exist polynomials py of degree [B], and po =0, such that

w—pl<rl inB,, n=27"%  Bi=2s+y,

forall k > 0.
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Proof. We prove the lemma by induction by showing that if the conclusion holds up to some k large, then it holds
also for k + mg for some fixed my.

By the induction hypothesis, the coefficients of the polynomials pj are uniformly bounded. Hence, if ¥ is a cutoff
function which is 1 in By > and 0 outside By, then pyr is a C§° function with a uniform L° bound and

Lk(pry)=q with |iglicor =C.
Now we write the equation for the rescaling v of v — pryr
W) =rP—p)ox),  r=n,
and obtain
Lev(x)=8x):=r"Yf(rx)+r7q(rx) in B.—1.
Notice that [g]cry < Cép in B, provided that r is sufficiently small, and by the induction hypothesis
By <1, B[ =<Clxl’ in B, \Bi,

which gives

/ 151 x|~ g < ¢, (1.8)
CB

for a fixed Cy depending only on y and the universal constants. ;
As in Lemma 7.4 we write the equation for ¥ in By, using the truncated kernel K7 and obtain

L=

KTﬁ:g—h+C(K)ﬁ=:go+a v,

with
hx) = / 5K (x — y)dy.
CB(x)

From the hypothesis on K and (7.8) we find
[h]cO.l (B>) S C] .
We use the estimate on the C?” seminorm of gg and deduce that
”gOHCV(B]/z) = C7 (79)

by obtaining an L bound for go. We achieve this by sliding the paraboloid 4|x|? by above till it touches the graph of
v at some xo € By. Then Lk, v(xp) < C hence go(xop) < C, and similarly we find a point x; such that go(x;) > —C,
and this proves (7.9).

By Lemma 7.3 the function v is uniformly Holder continuous in Bj. Moreover, gg is the sum of a Lipschitz function
(with bounded Lipschitz norm) and a function with C¥ norm bounded by C§y. By compactness and Lemma 7.4 we
find that as 8p — 0 we can approximate ¥ uniformly in B by a function with bounded C'** norm in By /4 (with
1 +2s > 14« > B). Thus we can find m( universal such that

1o — p| < p? inB,, p=27"0

This means that the induction hypothesis holds for k + mg, and the lemma is proved. O
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