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Abstract

We study the two membranes problem for different operators, possibly nonlocal. We prove a general result about the Hölder 
continuity of the solutions and we develop a viscosity solution approach to this problem. Then we obtain C1,γ regularity of the 
solutions provided that the orders of the two operators are different. In the special case when one operator coincides with the 
fractional Laplacian, we obtain the optimal regularity and a characterization of the free boundary.
© 2016 
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1. Introduction

In this paper we study the two membranes problem for different operators. Physically the problem consists in 
having two elastic membranes made of possibly different composite materials that are constrained one on top of 
the other. This is a double obstacle problem in which each membrane can be viewed as the obstacle for the other 
membrane, and the two obstacles interact at the same time.

The two membranes problem for the Laplacian was first considered by Vergara-Caffarelli [17] in the context of 
variational inequalities. In this case the situation can be reduced to the classical obstacle problem by looking at 
the vertical distance between the membranes. The two membranes problem for a nonlinear operator was studied 
by Silvestre [15]. He obtained the optimal C1,1 regularity of the solutions together with a characterization of the 
regularity of the free boundary of the coincidence set. The key step is to show that the difference between the two 
solutions solves an obstacle problem for the linearized operator.

We also mention that a more general version of the two membranes problem involving N membranes was consid-
ered by several authors (see for example [1,8,9]).
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The two membranes problem for different operators is more challenging mathematically. In the unconstrained 
parts the membranes solve different equations and therefore their difference solves a fourth order equation rather than 
a second order equation. For example even in the simplest case of two dimensions and two linear operators, say �
and �̃ := ∂xx + 2∂yy , the optimal regularity of the solutions seems to be a difficult problem.

In this paper we consider the two membranes problem for the large class of elliptic operators, possibly nonlocal, of 
order 2s ∈ (0, 2]. The interest in the nonlocal case comes from the applications. It is well known for example that the 
classical Signorini problem in elasticity which consists in finding the equilibrium position of an elastic body resting 
on a rigid surface, is modeled by an obstacle problem for the fractional Laplacian �1/2. In the case when the elastic 
body presses against a membrane, one obtains a two membranes obstacle problem involving a fractional Laplacian 
and a second order operator.

In the general case, we prove a result about the Hölder continuity of the solutions and we develop a viscosity 
solution approach. Then we obtain better regularity properties of the solutions provided that the orders of the two 
operators are different. Heuristically this situation corresponds to the case when one membrane, say the lower mem-
brane, is more sensitive to small infinitesimal changes. From this we can already deduce a certain initial regularity of 
the lower membrane. Then, the regularity of the upper membrane can be obtained by solving the obstacle problem in 
which the obstacle is given by the lower membrane. In order to obtain the optimal regularity we need to repeat these 
arguments several times. A large part of the paper is devoted to obtaining estimates for various obstacle problems 
which are optimal with respect to the smoothness of the obstacle. We first discuss the general case of operators that 
correspond to translation invariant kernels. Then we consider the special case of the fractional Laplacian. As men-
tioned above in the course of the paper we also treat the obstacle problem for translation invariant kernels which is of 
independent interest.

The paper is organized as follows. In Section 2 we formulate the two membranes problem and state precisely our 
results. In Section 3 we obtain the Hölder regularity of the minimizing pair. In Section 4 we develop the viscosity 
approach to the two membranes problem. In Section 5 we deal with the translation invariant kernels and finally in 
Section 6 we discuss the case of the fractional Laplacian. The Appendix is devoted to the proof of Schauder estimates 
for nonlocal equations.

2. Main results

2.1. Notation

Let s ∈ (0, 1) and let k(x, y) be a symmetric, measurable kernel proportional to |x − y|−n−2s , i.e.

0 < λ ≤ k(x, y)|x − y|n+2s ≤ �, k(x, y) = k(y, x).

Given a function u ∈ L2
loc we define its Hs seminorm in B1, the unit ball, as

‖u‖2
Hs(B1)

:= 1

2

ˆ ˆ

(Rn×Rn)\(CB1×CB1)

(u(x) − u(y))2

|x − y|n+2s
dxdy,

and if ‖u‖Hs(B1) < ∞ we write u ∈ Hs(B1). Here for any set E ⊂R
n, we denote by CE its complement in Rn.

It is not difficult to check that∥∥∥∥∥∥∥
u −

 

B1

u

∥∥∥∥∥∥∥
L2(Rn,dω)

≤ C‖u‖Hs(B1), dω := dx

1 + |x|n+2s
. (2.1)

Given two functions u, v ∈ Hs(B1) we define the “inner product” of u and v with respect to the kernel k as

Ek(u, v) := 1

2

ˆ ˆ

(Rn×Rn)\(CB1×CB1)

(u(x) − u(y))(v(x) − v(y)) k(x, y)dxdy. (2.2)
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If u minimizes the energy Ek(u, u) among all functions u ∈ Hs(B1) which are fixed outside B1, say u = u0 ∈
Hs(B1) outside B1, then

Ek(u,ϕ) = 0, ∀ϕ ∈ Hs(B1), with ϕ = 0 outside B1.

The last equality can be written in the sense of distributions as Lku = 0 in B1, with

< Lku,ϕ >:= −Ek(u,ϕ) ∀ϕ ∈ C∞
0 (B1),

and formally Lku can be written as the non-local operator

Lku(x) =
ˆ

(u(y) − u(x))k(y, x)dy.

We wish to include the case when k has order s = 1. In this case the quadratic form Ek(u, u) is given by

EA(u,u) =
ˆ

B1

(∇u)T A(x)∇udx, (2.3)

with A(x) a symmetric n × n matrix satisfying λI ≤ A(x) ≤ �I , and the linear operator associated to EA is

LA(u) = div(A(x)∇u).

Finally, we notice the following scaling property of Ek after space dilation. Let

ũ(x) = u(rx),

be the 1/r dilation of u in the space variable. Then

Ek(u, v) = rn−2s E
k̃
(ũ, ṽ)

where in the double integral on the right we remove the contribution coming from CB1/r × CB1/r and the kernel 
k̃(x, y) := rn+2sk(rx, ry) is the rescaling on k, and therefore satisfies the same growth conditions as k.

2.2. The two membranes problem – general case, Hölder continuity of the minimizers

We consider the two membranes obstacle problem in B1 for operators corresponding to two different kernels k1
and k2 as above, with the order s1 not necessarily equal to s2. We look for a pair of functions (u1, u2), with u2 ≤ u1
in B1 and u1, u2 prescribed outside B1, which minimizes the energy functional

F(u1, u2) := Ek1(u1, u1) + Ek2(u2, u2) +
ˆ

B1

u1f1 + u2f2 dx, (2.4)

among all (u1, u2) ∈ A.
Here fi ∈ L2(B1) and A represents the set of admissible pairs,

A=
{
(u1, u2)| u2 ≤ u1, ui ∈ Hsi (B1), ui = u0

i outside B1

}
,

with u0
i ∈ Hsi (B1), u0

2 ≤ u0
1 in B1, a given pair of functions.

With the convention in the Subsection above, we allow in the definition of the energy F also the cases when either 
one or both of the si’s equal to 1, and we need to replace the quadratic form accordingly.

Since F is strictly convex, and F(u0
1, u

0
2) < ∞, we obtain the existence and uniqueness of a minimizing pair 

(u1, u2) by the standard methods of the calculus of variations.

Proposition 2.1. There exists a unique minimizing pair (u1, u2) ∈ A for the functional F in (2.4). Moreover ui ∈
L2(Rn, dωi) and 

∑
i ‖ui‖L2(dω ) ≤ C for a constant C depending on the boundary data u0 and on the fi ’s.
i i
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We observe that to prove the L2 bound for the minimizing pair, one uses (2.1).
Notice that if ϕ ≥ 0 and ϕ ∈ C∞

0 (B1) then

(u1 + εϕ,u2) ∈ A and (u1, u2 − εϕ) ∈A,

which gives

Lk1u1 ≤ f1, Lk2u2 ≥ f2 in B1, (2.5)

in the sense of distributions, thus Lk1u1, Lk2u2 are Radon measures.
Moreover, if ϕ ∈ C∞

0 (B1) is not necessarily positive we still have

(u1 + εϕ,u2 + εϕ) ∈ A,

hence

Lk1u1 +Lk2u2 = f1 + f2 in B1. (2.6)

Equations (2.5)–(2.6) together with the inequality u2 ≤ u1, can be viewed as the Euler–Lagrange characterization of 
the minimizing pair.

In this paper we are concerned with the regularity of the minimizing pair (u1, u2) and some properties of the free 
boundary 
 which is defined as the boundary of the coincidence set, i.e.


 := ∂{u1 = u2} ∩ B1.

Our first result is the following interior Hölder regularity of the minimizing pair.

Theorem 2.2. Assume fi ∈ Lqi (B1) with qi > n
2si

. Let (u1, u2) be a minimizing pair. Then ui ∈ Cα(B1) and
∑

i

‖ui‖Cα(B1/2) ≤ C
∑

i

(‖ui‖L2(dωi)
+ ‖fi‖Lqi (B1)

)
,

with α and C depending on n, λ, �, si , qi .

To obtain better regularity properties of the minimizing pair we need to require that the kernels ki are more regular, 
as in the next subsection.

2.3. Translation invariant kernels – viscosity solutions and higher regularity

We consider the case when k is translation invariant, i.e.

k(x, y) = K(x − y), K(y) = K(−y),

and satisfies the natural growth condition of the gradient

|∇K(y)| ≤ �

|y|n+1+2s
.

The integro-differential operator associated to this kernel can be written as

LKw(x) := PV

ˆ

Rn

(w(y) − w(x))K(y − x)dy,

and the value LKw(x) is well-defined as long as w ∈ L1(Rn, dω) and w is C2s+ε at x.
In this case we show that the minimizing pair (u1, u2) satisfies

u1 ≥ u2, LK1u1 ≤ f1, LK2u2 ≥ f2 in B1, (2.7)

LKi
ui = fi on {u2 > u1},

∑
i

LKi
ui =

∑
i

fi in B1, (2.8)

in the viscosity sense, and moreover these inequalities determine uniquely the pair (u1, u2) (see Proposition 4.9).
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When the orders of the operators LKi
are different we improve the result of Theorem 2.2 and obtain the C1,γ

regularity of the pair (u1, u2). Notice that the two membranes may interact, that is {u1 = u2} ∩ B1 = ∅ independently 
of the sign of f1, f2. We obtain the following result.

Theorem 2.3. Assume s1 < s2 and ui satisfy (2.7)–(2.8) with fi ∈ C0,1(B1). Then ui ∈ Cαi (B1) with αi > 1,

α1 = max{1,2s1} + ε0, α2 = α1 + 2(s2 − s1)

and ∑
i

‖ui‖Cαi (B1/2) ≤ C
∑

i

(‖ui‖L1(dωi)
+ ‖fi‖C0,1(B1)

)
,

with ε0 and C depending on n, λ, �, si .

2.4. The obstacle problem for operators with translation invariant kernels

In order to obtain Theorem 2.3 we study the obstacle problem for the operator LK associated to a translation 
invariant kernel of order 2s. We obtain the following result, of independent interest. Assume that u, ϕ are continuous 
in B1, u ∈ L1(Rn, dω), and

u ≥ ϕ in B1, (2.9)

LKu ≤ f in B1, and LKu = f in {u > ϕ} ∩ B1, (2.10)

with K of order 2s as at the beginning of subsection 2.3.

Theorem 2.4. Let u be a solution to (2.9), (2.10), and assume that

‖u‖L1(Rn,dω),‖ϕ‖Cβ(B1)
,‖f ‖C0,1(B1)

≤ 1,

for some β = 2s.
Then u ∈ Cα(B1) for α = min{β, max{1, 2s} + ε0} and

‖u‖Cα(B1/2) ≤ C,

where ε0 depends on n, λ, �, s, and the constant C may depend also on β .

2.5. Fractional laplacian – optimal regularity and the geometry of the free boundary

In the special case when

K(y) = 1

|y|n+2s

the operator LK reduces to the fractional Laplacian �s and we obtain the optimal regularity of the solution. As usual, 
we can characterize the points on the free boundary


 := ∂{u = ϕ} ∩ B1.

Precisely the set  ⊂ 
 of singular points consists of those y ∈ 
 such that

(u − ϕ)(x) = o(|x − y|1+s),

and 
 \  is the set of regular points (or stable points) of the free boundary.

Theorem 2.5. Let u be a solution to (2.9), (2.10), with

‖u‖L1(Rn,dω),‖ϕ‖Cβ(B1)
,‖f ‖Cβ−2s (B1)

≤ 1, for some β > 1 + s.

Then u ∈ C1+s(B1) and
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‖u‖C1+s (B1/2)
≤ C.

Moreover, the free boundary 
 is a C1,γ surface in a neighborhood of each of its regular points. The constants C, γ
depend on n, s, and β .

Theorem 2.5 was obtained by Caffarelli, Salsa and Silvestre in [5]. The main tool in the proof is to establish a 
version of Almgren’s frequency formula for the “extension” of u to Rn+1. However, Theorem 2.5 is proved in [5] in 
the case when ϕ ∈ C2,1 (i.e. β = 3). When s = 1/2, Guillen proved Theorem 2.5 in [10]. In Section 6 we show that 
the Almgren’s monotonicity formula still holds when β > 1 + s and therefore sharpen the result in [5] and obtain 
Theorem 2.5.

Theorem 2.5 yields the following result for the two-membrane problem. When

K1(y) = 1

|y|n+2s1

we obtain the optimal regularity of the minimizing pair, i.e. u1 ∈ C1,s1 and u2 ∈ C1+2s2−s1 and we can characterize 
the points on the free boundary


 := ∂{u1 = u2} ∩ B1,

as in the obstacle problem.

Theorem 2.6 (Optimal regularity). Assume that the hypotheses of Theorem 2.3 hold and K1 is as above. Then the 
conclusion of Theorem 2.3 holds with α1 = 1 + s1. Moreover, the set of regular points of the free boundary 
 is locally 
a C1,γ surface.

3. The proof of Theorem 2.2

In this section we prove the Hölder regularity of the minimizing pair (u1, u2). The parameters λ, �, n, s1, s2 are 
called universal and any constant depending only on these parameters is called universal as well and it is usually 
denoted by C, c (though it may change from line to line).

Proof of Theorem 2.2. The proof follows from the standard De Giorgi iteration technique. For simplicity we sketch 
it for fi = 0 and si < 1, since the arguments carry on without difficulty to the case of nonzero fi’s and when one or 
both operators are local.

Assume that

s2 ≥ s1.

Step 1. Caccioppoli inequality. Let ϕ be a cutoff function supported in B1. The key observation is that for ε < 1,(
u1 + εϕ2u−

1 , u2 + εϕ2u−
2

)
∈ A.

Using the minimality of the pair (u1, u2), we let ε → 0 and obtain

Ek1(u1, ϕ
2u−

1 ) + Ek2(u2, ϕ
2u−

2 ) ≥ 0. (3.1)

Notice that

−Ek(u,ϕ2u−) = Ek(u
−, ϕ2u−) + Fk(u),

and

Fk(u) := −Ek(u
+, ϕ2u−) = 2

ˆ ˆ
ϕ2(x)u+(x)u−(y) k(x, y)dxdy ≥ 0.

We use the identity

(a − b)(p2a − q2b) = (ap − bq)2 − ab(p − q)2,
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thus

Ek(u
−, ϕ2u−) = Ek(ϕu−, ϕu−) − Ik(u)

with

Ik(u) =
ˆ ˆ

u−(x)u−(y)(ϕ(x) − ϕ(y))2k(x, y)dxdy ≥ 0.

The identities above give

Ek(ϕu−, ϕu−) + Fk(u) = −Ek(u,ϕ2u−) + Ik(u).

Next we bound above Ik(u).
Assume that ϕ is the usual cutoff function with ϕ = 1 in Br and ϕ = 0 outside Br+δ/2 for some r ∈ (0, 1 − δ]. 

When both x and y are in Br+δ we use that

u−(x)u−(y)(ϕ(x) − ϕ(y))2 ≤ Cδ−2[(u−(x))2 + (u−(y))2]|x − y|2.
When x ∈ Br+δ/2 and y lies outside Br+δ (and symmetrically the other case), we use that

k(x, y) ≤ Cδ−n−2sω(y).

Thus, we see that Ik(u) is bounded above by

Ik(u) ≤ Cδ−2
ˆ

Br+δ

(u−)2dx + C‖u−‖L2(dω)δ
−n−2s

ˆ

Br+δ

u−dx.

In this last inequality we used that ‖u−‖L1(dω) ≤ C‖u−‖L2(dω). We use these relations for u1 and u2 in the energy 
inequality (3.1) together with the fact that u−

2 ≥ u−
1 in B1. We obtain the desired Caccioppoli inequality for u−

2 :

Ek2(ϕu−
2 , ϕu−

2 ) + Fk2(u2) ≤ C0δ
−n−2

ˆ

Br+δ

[(u−
2 )2 + M0u

−
2 ] dx (3.2)

with

M0 := ‖u−
1 ‖L2(dω1)

+ ‖u−
2 ‖L2(dω2)

,

and C0 universal. More generally if vm = u2 + m, we have

Ek2(ϕv−
m,ϕv−

m) + Fk2(vm) ≤ C0δ
−n−2

ˆ

Br+δ

[(v−
m)2 + Amv−

m] dx, (3.3)

and

Mm = ‖(u1 + m)−‖L2(dω1)
+ ‖(u2 + m)−‖L2(dω2)

.

Moreover, for all constants m ≥ 0, Mm ≤ M0 hence

Ek2(ϕv−
m,ϕv−

m) + Fk2(vm) ≤ C0δ
−n−2

ˆ

Br+δ

[(v−
m)2 + M0v

−
m] dx. (3.4)

Remark 3.1. Since u2 is a subsolution for the Lk2 operator, v+
m := (u2 − m)+ satisfies the same inequality (3.3) with 

the constant Mm replaced by ‖(u2 − m)+‖L2(dω2)
.

Step 2. The first De Giorgi lemma. We write the first De Giorgi type lemma and provide a sketch of the proof (see 
also Lemma 3.1 in [3]).
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Lemma 3.2 (L∞ bound). Assume vm := u2 + m satisfies (3.4) for all 0 ≤ m ≤ 1 and some M0 > 0. There exists ε0
depending on the universal parameters and M0 such that if

‖u−
2 ‖L2(B1)

≤ ε0(M0),

then

u−
2 ≤ 1 in B1/2.

Proof. We apply (3.4), with (j ≥ 2)

m = mj := 1 − 2−j , r = rj := 1

2
+ 2−j , δ = δj := 2−j .

Using that Fk2(vmj
) ≥ 0 together with Sobolev inequality we get (1/2∗ = 1/2 − s2/n)⎛

⎜⎝
ˆ

Brj

(v−
mj

)2∗

⎞
⎟⎠

2/2∗

≤ C0δ
−n−2
j

ˆ

Brj +δj

[(v−
mj

)2 + M0v
−
mj

] dx (3.5)

:= Rj .

Call,

aj :=
ˆ

Brj

(v−
mj

)2

and

Aj := {vmj
< 0} ∩ Brj .

Applying Holder’s inequality to the left-hand-side of (3.5) and using the notation above we get

aj ≤ |Aj |
2s2
n Rj ≤ |Aj |

2s2
n (C02Mjaj−1 + M0a

1/2
j−1|Aj |1/2), (3.6)

for some large M . Since on Aj , vmj−1 < −2j , we easily obtain that

aj−1 ≥ |Aj |2−2j .

Thus, (3.6) gives (for some positive σ and with C̄ depending on the universal constants and M0)

aj ≤ C̄2Mja1+σ
j−1 .

Standard De Giorgi iteration gives that if a2 is small enough (depending on C̄) aj → 0 as j → ∞ and from this we 
deduce our claim. �

Our minimization problem remains invariant after multiplication with a constant. Thus, after multiplication with a 
small constant we may apply Lemma 3.2 and obtain the L∞ bound for u2 in B1/2.

Step 2. The second De Giorgi lemma and the Hölder continuity of u2. In order to obtain the Hölder continuity 
of u2, we need to iterate the next Lemma 3.3, and this is point where we need s2 ≥ s1.

Notice that in general the minimization problem is not invariant after a dilation in the space variable. Indeed, if 
ũi (x) = ui(ρx) then

(ũ1, ũ2) minimizes the energy ρ2(s2−s1)Ek1(ũ1, ũ1) + Ek2(ũ2, ũ2).

Thus if ρ ≤ 1 the arguments above apply and the Caccioppoli inequality (3.2) holds for ũ2 with

M̃ = ρ2(s2−s1)‖ũ−
1 ‖L2(dω1)

+ ‖ũ−
2 ‖L2(dω2)

≤ M̃0 := ‖ũ−
1 ‖L2(dω1)

+ ‖ũ−
2 ‖L2(dω2)

.

Notice also that

‖ũi‖L2(Rn\B1/ρ ,dωi)
∼ ρsi ‖ui‖L2(Rn\B1,dωi)

. (3.7)
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Lemma 3.3 (Oscillation decay). Assume that u2 satisfies (3.3), for all constants m. Suppose that for some R ≥ 1,

u1 ≥ u2 in BR ,

and

|u2| ≤ 1 in BR, ‖u−
1 ‖L2(Rn\BR,dω1)

≤ μ, ‖u−
2 ‖L2(Rn\BR,dω2)

≤ μ,

with μ universal. Then in B1 either u2 ≤ 1 − μ or u2 ≥ −1 + μ.

Proof. Let us assume first that

|u2| ≤ 1 in R
n.

Assume that

|{u2 > 0} ∩ B1| ≥ 1

2
|B1|. (3.8)

We will show that there is a universal constant η such that u2 ≥ −1 + η in B1. Let,

vj := 2j (u2 + (1 − 2−j )), Aj := {vj < 0} ∩ B1.

We aim to show that there is a large enough j such that

|Aj+1| ≤ δ0 (3.9)

with δ0 universal to be made precise later.
Assume by contradiction that

|Aj+1| > δ0

and let us choose δ << δ0 so that

|Aj+1 ∩ B1−δ| ≥ δ0

2
. (3.10)

By Caccioppoli inequality (3.2) for vj we obtain

Fk2(vj ) ≤ Cδ−n−2 (3.11)

where we have used that v−
j ≤ 1 in Rn, and that u1 ≥ u2, so that the corresponding constant Mj in (3.2) is bounded 

by a universal constant M̄ .
On the other hand,

Fk2(vj ) := 2
ˆ ˆ

ϕ2(x) v+
j (x) v−

j (y) k2(x, y)dxdy ≥

c

ˆ

B1

v+
j (y)dy

ˆ

Aj+1∩B1−δ

v−
j (x)dx ≥

c(2j − 1)|Aj+1 ∩ B1−δ||B1| ≥ 2j cδ0.

In the third inequality above we used that

v−
j ≥ 1

2
on Aj+1

and (3.8).
Thus, (3.10) is violated if j is large enough. Denote such j by j̄ .
Now we can apply Lemma 3.2 to vj̄+1 and choose δ0 = ε0(2M̄) where M̄ is the universal constant that bounds all 

the Mj ’s (as observed above). We obtain the conclusion with η = 2−(j̄+1).
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Now assume that |u2| ≤ 1 in BR and u1 ≥ u2 in BR , for R ≥ 1. Let also

‖u−
i ‖L2(Rn\BR,dωi)

≤ ε.

Then, for ε small enough the argument above still holds for the fixed j̄ . Indeed one can still guarantee that Mj̄ ≤ 2M̄

for ε small enough.
Finally, if (3.8) does not hold, then we can work with the Caccioppoli inequality for (u2 − m)+ and obtain that u2

separates from the top (see Remark 3.1). �
Finally we can iterate Lemma 3.3 and obtain the interior Cα Holder continuity of u2. Indeed, after a multiplication 

by a constant we may assume that ‖ui‖L2(dωi)
are sufficiently small and |u2| ≤ 1 in B1/2. Then we perform an initial 

dilation of size R0, and we may apply Lemma 3.3. Notice that the hypotheses are satisfied thanks to (3.7). Moreover 
it is easy to check that the hypotheses hold for the sequence of Hölder rescalings(

2

2 − μ

)m−1

u2(R
−m
0 x) + const, m = 1,2, ...

provided that R0 is chosen sufficiently large, and we may apply Lemma 3.3 indefinitely.

Step 3. The second De Giorgi lemma and the Holder continuity of u1. Next we obtain the Hölder continuity of u1
by thinking that u2 ∈ Cα is a fixed obstacle lying above, and u1 minimizes Ek1(u1, u1) among admissible functions.

Notice that since |u2| ≤ 1 and u1 ≥ u2 we can obtain an L∞ bound for u1 by applying the (standard) first De Giorgi 
lemma to (u1 − 1)+. Indeed in the set u1 > 1, u1 solves the equation Lk1u1 = 0.

The Hölder continuity of u1 follows by iterating the following version of the oscillation decay lemma.

Lemma 3.4. Assume that for some R ≥ 1

|u1| ≤ 1 in BR, ‖u1‖L2(Rn\BR,dω) ≤ μ, oscB1u2 ≤ 1/4.

Then in B1 either u1 ≤ 1 − μ or u1 ≥ −1 + μ.

The proof of Lemma 3.4 is a variation of the proof above. Indeed, if u2(0) ≥ − 1
2 then the conclusion is obvious 

since u1 ≥ u2 ≥ − 3
4 .

If u2(0) ≤ − 1
2 , we distinguish two cases. When |{u1 > 0} ∩ B1| > 1/2, we use that Lk1u1 ≤ 0 hence we apply De 

Giorgi technique to conclude that u1 ≥ −1 + μ.
Otherwise, since u2 ≤ − 1

4 in B1, u1 is not constrained in the set {u1 > 0} and Lk1u1 = 0 there. Again, we can 
apply De Giorgi technique and conclude u1 ≤ 1 − μ. �
4. Translation invariant kernels and viscosity solutions

In this section we investigate further properties of the minimizing pair (u1, u2) when the kernels ki are more regular. 
More precisely, from now on we assume that the kernel k used in the definition of the energy Ek in (2.2) is translation 
invariant i.e.

k(x, y) = K(x − y).

Here the kernel K satisfies K(y) = K(−y) and it is comparable to the kernel of (−�)s i.e.

λ

|y|n+2s
≤ K(y) ≤ �

|y|n+2s
, 0 < λ ≤ �. (4.1)

The integro-differential operator associated to this kernel can be written as

LKw(x) := PV

ˆ

Rn

(w(y) − w(x))K(y − x)dy. (4.2)

Notice that the value LKw(x) is well-defined as long as w ∈ L1(Rn, dω) and w is C1,1 at x.
In the case s = 1, of local operators defined in (2.3), we assume that the matrix A is constant, and therefore LA is 

a second order operator with constant coefficients.



L. Caffarelli et al. / Ann. I. H. Poincaré – AN 34 (2017) 899–932 909
4.1. Viscosity properties of the minimizing pair

To study further regularity of the minimizing pair, we adopt the point of view of viscosity solutions.

Definition 4.1. Given a function w : Rn → R, upper (lower) semicontinuous in B̄1 and a C2 function φ defined in a 
neighborhood N of a point x ∈ B1, we say that φ touches w by above (resp. below) at x if

φ(x) = w(x), φ(y) > w(y) (φ(y) < w(y)) for every y ∈ N \ {x}.

We remark that at any point x where w is touched by above or below, LKw(x) is well-defined, though it may be 
infinite. Indeed, say w is touched by below by φ at x then

LKw(x) =
∞̂

0

aw(r)r−1−2sdr ∈ (−∞,+∞]

where aw(r) represents the averages of w on ∂Br

aw(r) =
 

∂Br (x)

(w(y) − w(x))K(y − x)rn+2sdy

and for r small (since K is symmetric)

aw(r) ≥ aφ(r) ≥ −Cr2.

Definition 4.2. A function w : Rn → R, upper (lower) semicontinuous in B̄1, is said to be a viscosity subsolution 
(supersolution) to LKw = f , f continuous in B1, and we write LKw ≥ f (LKw ≤ f ), if at any point x ∈ B1 where 
w is touched by above (resp. below) by a quadratic polynomial P , we have

LKw(x) ≥ f (x), (LKw(x) ≤ f (x)).

A viscosity solution is a function w that is both a subsolution and a supersolution.
Next we show that distributional supersolutions (subsolutions) are also viscosity supersolutions (subsolutions). We 

sketch the proof since we will use the same argument in a slightly different context.

Lemma 4.3. Assume that LKw ≤ f in the distribution sense with w, f continuous functions in B1. Then LKw ≤ f

in the viscosity sense.

Proof. Assume for simplicity that f = 0. Let P be a quadratic polynomial touching w strictly by below at say 0. Let 
Pε := P + ε and denote by

wε := max{w,Pε}
and,

ϕε := wε − w ≥ 0.

From the hypothesis EK(ϕε, w) ≥ 0 thus

EK(ϕε,wε) = EK(ϕε,w) + EK(ϕε,ϕε) ≥ 0.

Since on the support of ϕε we have that wε is C1,1 by below, we can integrate by parts EK(ϕε, wε) and obtainˆ

Aε

ϕε(x)LKwε(x)dx ≤ 0, (4.3)

where Aε := {x : w < Pε}. Fix δ > 0, thus Aε ⊂ Bδ , for all ε small. We use that wε ≥ Pε in Bδ , wε = w outside Bδ , 
hence for x ∈ Aε ,
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LKwε(x) ≥
ˆ

Bδ

(Pε(y) − Pε(x))K(y − x)dy +
ˆ

Rn\Bδ

(w(y) − Pε(x))K(y − x)dy (4.4)

≥
ˆ

Rn\Bδ

(w(y) − w(0))K(y)dy + oε(1) + O(δ2−2s), as ε → 0,

with oε(1) → 0 as ε → 0. Combining this estimate with (4.3), and using that ϕε ≥ 0, we obtain that

LKw(0) ≤ 0,

after letting ε and then δ go to zero. �
By Lemma 4.3, if (u1, u2) is a minimizing pair and fi are continuous functions then (see (2.5)–(2.6))

LK1u1 ≤ f1, LK2u2 ≥ f2, in B1, (4.5)

LK1u1 = f1, LK2u2 = f2, in the open set {u1 > u2},
in the viscosity sense. Next we prove a similar statement in the closed set

E := {u1 = u2}. (4.6)

Lemma 4.4. Assume that u2 is touched by below at a point x0 ∈ {u1 = u2} ∩ B1 by a C2 function. Then

LK1u1(x0) +LK2u2(x0) ≤ f1(x0) + f2(x0).

We remark that, since u1 ≥ u2, u1 is touched by below at x0 by the same C2 function, thus LK1u1(x0) is well 
defined.

Proof. We argue as above. Assume for simplicity that f1 = 0, f2 = 0, x0 = 0, and let P be a quadratic polynomial 
touching u2 strictly by below at 0. Let Pε := P + ε and denote by

uε
i := max{ui,Pε}, ϕε

i := uε
i − ui.

By minimality,∑
i

(
EKi

(uε
i , u

ε
i ) − EKi

(ui, ui)
) ≥ 0,

thus ∑
i

EKi
(ϕε

i , u
ε
i ) ≥ 1

2

∑
i

EKi
(ϕε

i , ϕ
ε
i ) ≥ 0

After integrating by parts the terms EK(ϕε, uε) we get,
∑

i

ˆ

Aε
i

ϕε
i (LKi

uε
i ) dx ≤ 0,

where Aε
i := {ui < Pε}. Arguing as (4.4) in Lemma 4.3 we obtain that

∑
i

⎛
⎜⎝
ˆ

Aε
i

ϕε
i

⎞
⎟⎠(

LKi
ui(0) + oδ(1) + oε(1)

) ≤ 0,

with

oδ(1) → 0 as δ → 0, oε(1) → 0 as ε → 0.

Since we already know that LK1u1(0) ≤ 0 and also 0 < ϕε
1 ≤ ϕε

2 , we get the desired inequality after dividing by 
´

ϕε
2

and then letting ε → 0, δ → 0. �
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4.2. Viscosity formulation of the two membranes problem

Next we show that we can formulate the two membranes problem in a non-variational setting. With this approach 
we may consider the two membranes problem for nonlinear operators Iu or F(D2u) (instead of LK ) which do not 
have necessarily a variational structure.

Below we show that the following conditions in B1

u1 ≥ u2, LK1u1 ≤ f1, LK2u2 ≥ f2 (4.7)

LKi
ui = fi in {u2 < u1}, LK1u1 +LK2u2 = f1 + f2, (4.8)

determine the pair (u1, u2) uniquely.
We always assume that outside B1, ui = u0

i are prescribed with u0
i ∈ L1(Rn, dω) and continuous near ∂B1, and 

u0
1 ≥ u0

2 near ∂B1. Also we assume that fi’s are continuous and bounded in B1.

Definition 4.5. We say that (w1, w2) is a viscosity subsolution to (4.7)–(4.8) if wi are continuous in a neighborhood 
of B1, and in B1 we have w2 ≤ w1, and

LK2w2 ≥ f2, (4.9)

LK1w1 + χELK2w2 ≥ f1 + χEf2 with E := {w1 = w2}. (4.10)

Similarly, we define the notion of viscosity supersolution for the two membranes problem. Equation (4.10) is 
understood as a differential inequality for w1 which depends on w2. Notice that at a point x0 ∈ E where w1 has 
a tangent C2 function φ by above, the same function is tangent also to w2 at x0, and therefore (4.10) provides 
an integro-differential inequality involving φ at x0. Precisely we require that when we replace wi by φ in any δ
neighborhood of x0 the inequality (4.10) is satisfied at x0.

In the next lemma we show that even though the inequality (4.10) contains the discontinuous term χE , the notion 
of subsolution is preserved under uniform limits.

Lemma 4.6. Assume that (wk
1, w

k
2) is a sequence of subsolutions with right hand sides (f k

1 , f k
2 ). Assume that wk

i , f k
i

converge uniformly on compact sets of B1 to w̄i , f̄i and that wk
i → w̄i weakly in L1(Rn, dω). Then (w̄1, w̄2) is a 

subsolution.

Proof. Clearly w̄2 satisfies (4.9). Assume that φ ∈ C2 touches strictly by above w̄1 at some point x̄. Denote Ē :=
{w̄1 = w̄2}.

If x̄ /∈ Ē then we obtain as usual

LK1w̄1(x̄) ≥ f̄1(x̄), (4.11)

and we are done.
If x̄ ∈ Ē we need to show that∑

i

LKi
w̄i(x̄) ≥

∑
i

fi(x̄).

We slide the graph of φ by above till it touches wk
1 at xk , and then xk → x̄. We distinguish two cases: either xk ∈ Ek

or xk /∈ Ek for infinitely many k’s. In the first case we obtain the inequality above by writing it for the wk
i at xk and 

letting k → ∞. In the second case we obtain (4.11) which combined with (4.9) for w̄2 gives the desired inequality 
again. �
Lemma 4.7. Assume that (wk

1, w
k
2), k = 1, 2 are two pairs of subsolutions, and let w̄i = maxk wk

i , f̄i = mink f k
i . Then 

(w̄1, w̄2) is a subsolution.

Proof. Notice that Ē := {w̄1 = w̄2} ⊂ E1 ∪E2, Ek := {wk
1 = wk

2}, k = 1, 2, and then the rest of the proof it is straight-
forward to check. �
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In view of the lemma above we can use the standard method of sup-convolutions (see [2,6]) and approximate a 
subsolution (w1, w2) with right hand side (f1, f2) by a sequence of semiconvex subsolutions (wε

1, w
ε
2) and right hand 

side (f ε
1 , f ε

2 ).
Precisely, (wε

1, w
ε
2) satisfies:

a) has the same boundary data outside B1 as the original pair,
b) is a subsolution in B1−ε and each wε

i is uniformly C1,1 by below.
c) wε

i → wi , f ε
i → fi uniformly in B̄1 as ε → 0.

Next we prove the following comparison principle.

Lemma 4.8 (Maximum principle). Assume that (w1, w2) is a subsolution and (v1, v2) is a supersolution to (4.7)–(4.8)
and wi ≤ vi outside B1. Then wi ≤ vi also in B1.

Proof. We translate down the graphs of the pair (w1, w2) in B̄1 and then we move them up till either w1 touches v1
or w2 touches v2 for the first time.

Assume by contradiction that the first contact point occurs in the interior of B1. After regularizing the functions 
wi , vi as above and relabeling the translates by w1, w2 we may assume we are in the following situation:

wi ≤ vi, w2(x0) = v2(x0) for some x0 ∈ B1,

(w1, w2) is a strict subsolution and (v1, v2) is a strict supersolution at x0, and wi , vi are C1,1 at x0. If at least one of 
the operators is local then we may assume that all the functions are C2 at x0 after subtracting locally a small linear 
function from one of the pairs, see [2]. Let Ew := {w1 = w2}, Ev := {v1 = v2} and we distinguish 2 cases.

Case 1: x0 /∈ Ev . Then we contradict the inequalities for LK2w2 and LK2v2 at x0.
Case 2: x0 ∈ Ev . Then

w1(x0) ≤ v1(x0) = v2(x0) = w2(x0),

thus x0 ∈ Ew as well. Now we contradict the inequalities for the sum of the two operators at x0. �
Proposition 4.9 (Existence and uniqueness of viscosity solutions). Let u0

i ∈ L1(Rn, dωi) be continuous in a neighbor-
hood of ∂B1, and let fi be continuous and bounded in B1. Then there exists a unique viscosity solution pair (u1, u2)

to the two membranes problem (4.7)–(4.8).

Proof. The proof follows the standard Perron’s method and we will not sketch the details. We only mention that 
the continuity of u0

i in a neighborhood of ∂B1 allows us to construct continuous upper and lower barriers for the 
subsolutions and supersolutions (see [12]). Using this we can replace each subsolution by a larger subsolution with a 
fixed modulus of continuity in B̄1, and therefore the largest subsolution will have the same modulus of continuity. �
4.3. The case of different order operators

Next we establish the C2s2−ε interior regularity of u2 in the case when s2 > s1.
Let (u1, u2) be a viscosity solution in B2, and assume that

‖ui‖L1(dωi)
≤ 1, ‖fi‖L∞(B2) ≤ 1.

Since u2 is a subsolution, we use the weak Harnack inequality (see Lemma 5.2 below) and obtain that u2 ≤ C in 
B3/2. This means that u1 is a subsolution in the set {u1 > C} ∩ B3/2, hence we apply Lemma 5.2 one more time and 
bound u1 by above in B1. Similarly we bound ui by below and obtain

‖ui‖L∞(B1) ≤ C.

Let
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v := χB1u2 (4.12)

be the restriction of u2 to B1, and x ∈ E ∩ B1/2 (see (4.6)). Then, since v ≤ u1 in B1, and v(x) = u1(x) we find

LK1u1(x) ≥ LK1v(x) +
ˆ

CB1

(u1(y) − v(x))K(y − x)dy,

hence

LK1u1(x) ≥ LK1v(x) − C.

Moreover, for any x ∈ B1/2 we have

|LK2u2(x) −LK2v(x)| ≤ C,

in the viscosity sense. Combining the last two inequalities with the fact that u2 is a subsolution and (u1, u2) is a 
supersolution pair in the sense of Definition 4.5 we obtain the following corollary.

Corollary 4.10. The function v defined in (4.12) satisfies in B1/2

LK2v ≥ −M, (4.13)

LK2v + χELK1v ≤ M (4.14)

with M a constant depending on n, si , λ, �.

Inequality (4.14) contains the discontinuous term χE and it is understood in the viscosity sense. Precisely, if v
admits a tangent C2 function by below at a point x, then we satisfy two different inequalities depending whether or 
not x is in E.

Since s2 > s1 then the term χELK1v can be treated as a perturbation. Then (4.13)–(4.14) can be thought heuris-
tically as saying that LK2v ∈ L∞, and we can infer that v ∈ Cβ for any β < 2s2. We use the convention that when 
β ∈ (1, 2), the class Cβ denotes the class C1,β−1. We prove this statement rigorously in the next proposition.

Proposition 4.11. Assume s2 > s1, and that v is a continuous function supported in B1 which satisfies (4.13)–(4.14)
for some closed set E. Then v ∈ Cβ for any β < 2s2 and

‖v‖Cβ(B1/4)
≤ C(‖v‖L∞ + M),

with C a constant depending on n, si , λ, � and β .

Proof. The lemma can be deduced from the arguments of Caffarelli and Silvestre in [7]. Since their results do not 
apply directly to our setting, we will sketch the proof of the proposition for completeness.

After multiplication by a small constant we may assume that M = 1 and ‖v‖L∞(B1) is sufficiently small.
We need to show that if for all balls Br with r = 2−l , l = 0, 1, . . . , k for some k ≥ k0, we have

|v − lr | ≤ rβ in Br , (4.15)

with lr a constant if β < 1 or a linear function if β > 1, and l1 ≡ 0, then (4.15) holds also in Bρr for some lρr where 
ρ = 2−m0 . Here the constants m0, k0 depend on β and the universal constants. Then we can iterate (4.15) indefinitely 
and obtain the desired conclusion.

The existence of k0 is obtained by compactness. Indeed, assume that (4.15) holds up to r = rk for some large k. 
Notice that the coefficients of lr are bounded by a fixed constant, hence the rescaling

ṽ(x) = r−β(v − lr )(rx),

satisfies

‖ṽ‖L∞(B1) ≤ 1, |ṽ(x)| ≤ C0|x|β outside B1.

Next we write (4.13)–(4.14) in terms of ṽ. We have
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LK2v(x) = LK2

(
lr + rβ ṽ(

x

r
)
)

= rβ−2s2 L
K̃2

ṽ (
x

r
).

We estimate LK1v by writing

v(x) = χB1v(x) = χB1 lr (x) + χB1\B2r
rβ ṽ(

x

r
) + χB2r

rβ ṽ(
x

r
) =: v1 + v2 + v3.

We have |LK1v1| ≤ C in Br . Without loss of generality we may assume that β > 2s1 which, by the growth of ṽ outside 
B1 gives |LK1v2| ≤ C in Br . Also

LK1v3(x) = rβ−2s1 L
K̃1

(χB2 ṽ)(
x

r
).

In conclusion ṽ satisfies in B1 the following inequalities

L
K̃2

ṽ ≥ −Cr2s2−β, (4.16)

L
K̃2

ṽ + r2(s2−s1) χ
Ẽ
L

K̃1
(χB2 ṽ) ≤ Cr2s2−β. (4.17)

The function ṽ is both a subsolution and a supersolution for integro-differential equations with measurable kernels 
and bounded right hand side. Since r2(s2−s1) is small, the two operators above are bounded by two extremal Pucci 
operators of order 2s2. We apply the Harnack inequality for integro-differential equations from [6] and obtain that ṽ
is uniformly Hölder continuous in B3/4. This means that as r → 0 (or equivalently as k → ∞), the corresponding ṽ’s 
converge uniformly on a subsequence to a limit v̄. We claim that v̄ satisfies

|LK̄ (χB3/4 v̄)| ≤ C in B1/2,

where K̄ is the weak limit of the K̃2’s.
Indeed, let w̃ := χB3/4 ṽ, then (4.16)–(4.17) give

L
K̃2

w̃ ≥ −C, L
K̃2

w̃ + r2(s2−s1) χ
Ẽ
L

K̃1
w̃ ≤ C,

with r2(s2−s1) → 0. Now we can pass to the limit in these inequalities and use that L
K̃2

ψ(x) → LK̄ψ(x) for any test 
function ψ ∈ C2 near x, and obtain the claim.

The existence of lρr with ρ = 2−m0 universal, now follows from the Cβ+ε estimates, with β + ε < 2s2, of the 
solution v̄ above, see Proposition 7.1, part a). �
Remark 4.12. We are not concerned in obtaining estimates that remain uniform as the order of the operators ap-
proaches 2.

The Harnack inequality for ṽ can be checked also directly by using the methods of Silvestre in [16]. For this we 
slide parabolas by above and below till they touch the graph of ṽ. Then we use the equation only at these points and 
show that the oscillation of ṽ decays at a geometric rate as we restrict to dyadic balls. We will use this method more 
precisely in Section 5, see Step 1 in Proposition 5.6.

We remark the same argument works as well in the case when LK2 is a local operator, and then we need to use the 
ABP measure estimate, see [13] for example.

Proposition 4.11 provides the initial C2s2−ε interior regularity of the function u2. Now we can view the function u1
as the solution to the obstacle problem with obstacle u2. Therefore in our analysis it is important to obtain regularity 
of solutions to the obstacle problem with not necessarily C2 obstacle. In the next two sections we show that u1
is as regular as the obstacle up to Cmax{1,2s1}+ε regularity in the case of translation invariant kernels, and up to 
C1+s1 -regularity in the case of the fractional Laplacian.

Then we can successively improve the regularity of u2 and u1 and obtain Theorems 2.3 and 2.6.

Proof of Theorem 2.3. From Theorem 5.1 in Section 5 we have that u1 is as regular as u2 up to Cmax{1,2s1}+ε regular-
ity, and u2 ∈ C2s2−ε by Proposition 4.11. From the Schauder estimates for the equation LKu = f , see Proposition 7.1
in the Appendix, this implies that LK1u1 ∈ Cε . Thus LK2u2 ∈ Cε which gives u2 ∈ C2s2+ε . Now we can iterate this 
argument and obtain the desired conclusion. �
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5. The obstacle problem for translation invariant kernels

In this section we make a detour to provide two regularity results for the general obstacle problem in the case of 
symmetric, translation invariant operators LK as above. We then apply these results to the two membranes problem.

In addition to (4.1) we need to impose the extra regularity assumption on K , i.e.

|∇K(y)| ≤ �|y|−(n+1+2s). (5.1)

Assume that u is a solution of the obstacle problem in B1 with obstacle ϕ by below. Precisely we assume that u, ϕ
are continuous in B1, u ∈ L1(Rn, dω), and

u ≥ ϕ in B1, (5.2)

LKu ≤ f in B1, and LKu = f in {u > ϕ} ∩ B1. (5.3)

Our main result of this section says that up to C1,ε0 with ε0 universal, the solution u is as regular as the obstacle ϕ. 
Moreover, in the case s > 1

2 , the C1,ε0 regularity can be improved to C2s+ε0 .

Theorem 5.1. Let u is a solution to the obstacle problem (5.2), (5.3), with kernel K that satisfies (4.1), (5.1), and 
assume that

‖u‖L1(Rn,dω),‖ϕ‖Cβ(B1)
,‖f ‖C0,1(B1)

≤ 1,

for some β = 2s.
Then u ∈ Cα(B1) for α = min{β, max{1, 2s} + ε0} and

‖u‖Cα(B1/2) ≤ C,

where ε0 depends on n, λ, �, s, and the constant C may depend also on β .

Before we proceed with the proof of Theorem 5.1 we write two versions of Harnack inequality for nonlocal equa-
tions which deal with L∞ bounds for subsolutions.

Lemma 5.2. Assume that v is continuous in B1, ‖v+‖L1(Rn,dω) ≤ 1, and

LKv ≥ −1 in {v > 1} ∩ B1.

Then v ≤ C in B1/2 with C depending only on n, s, λ, �.

Proof. After multiplication with a small constant we may replace 1 by δ0 in the hypotheses above. We show that 
v ≤ ψ with

ψ(x) := (1 − |x|2)−n.

Assume by contradiction that when we slide the graph of ψ by above we touch the graph of v at some point (x0, v(x0))

above the original graph of ψ , i.e. there exists t > 0 such that v ≤ ψt in B1 and v(x0) = ψt(x0) for some x0, where 
ψt := ψ + t . Denote by

d := 1 − |x0|,
and by l the tangent plane of ψt at x0. Then for r ≤ d/2 we haveˆ

Br (x0)

(v(x) − v(x0))K(x − x0)dx ≤
ˆ

Br (x0)

(
�(v − l)+ − λ(v − l)−

) |x − x0|−n−2sdx

≤ Cd−n−2r2−2s − λr−n−2s

ˆ

Br(x0)

(v − l)−dx.

We use
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ˆ

Br(x0)

(v − l)−dx ≥
ˆ

Br (x0)

(l − v)dx ≥ ψt(x0)|Br | −
ˆ

B1

v+dx

≥ Cd−nrn − δ0,

which, by taking r = dc with c small, and δ0 � c sufficiently small, we obtain
ˆ

Br(x0)

(v(x) − v(x0))K(x − x0)dx ≤ −cr−n−2s .

On the other handˆ

CBr(x0)

(v(x) − v(x0))K(x − x0)dx ≤ �

ˆ

CBr(x0)

v+(x)|x − x0|−n−2sdx ≤ Cδ0r
−n−2s .

From the last two inequalities we find

LKv(x0) ≤ −c,

and we reached a contradiction, provided that δ0 is chosen sufficiently small. �
We remark that in the proof we did not use the translation invariant properties of K , and clearly the proof holds for 

truncated kernels χB2K as well. Also the assumption on the bound for the L1 norm of v+ in Rn can be weakened to 
an L1 bound for v+ only on CB3/4. This can be seen by appropriately modifying the comparison function ψ in the 
proof.

We provide a version of Harnack inequality that follows from Lemma 5.2.

Lemma 5.3. Assume that v ≥ 0 in B1, v(0) ≤ 1,

LKv ≤ σ in B1, LKv ≥ σ − 1 in {v > 1} ∩ B1,

for some σ , andˆ
|v|(max{1, |x|})−(n+1+2s) dx ≤ 1.

Then v ≤ C in B1/2 with C independent of σ .

Proof. Let KT = χB2K be the truncation of K , and we show that v and KT satisfy the hypotheses of Lemma 5.2. We 
slide the parabola xn+1 = −4|x|2 by below till it touches the graph of v at some point y0, and from our hypotheses 
above it follows that y0 ∈ B1/2, v(y0) ≤ 1, and

LKT
v(y0) ≥ −C.

For y ∈ B1 we have

LKv(y) −LKv(y0) ≤ LKT
v(y) −LKT

v(y0) +
ˆ

CB2

v(x)(K(x − y) − K(x − y0))dx + C,

and from (5.1) we have that

|K(x − y) − K(x − y0)| ≤ C|x|−(n+1+2s) if x ∈ CB2.

Thus

LKT
v(y) ≥ −C in {v > 1} ∩ B1,

and the conclusion follows from Lemma 5.2. �
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Remark 5.4. We remark that if we slide a parabola 4C|x|2 by above and it touches the graph of v at some point y1 for 
which LKv(y1) ≥ σ − 1 then by repeating the argument “upside-down” (i.e. for −v) we obtain LKT

v(y) ≤ C in B1.

We are now ready to prove Theorem 5.1, which is a direct consequence of Propositions 5.6 and 5.7 below. First we 
state the necessary Schauder estimates, which will be proved in the appendix.

Proposition 5.5 (Schauder estimates). Let K be a symmetric kernel that satisfies (4.1), and assume that v ∈
L1(Rn, dω) satisfies

LKv = f in B1, ‖v‖L∞(B1) ≤ 1.

a) If ‖f ‖L∞(B1) ≤ 1, ‖v‖L1(Rn,dω) ≤ 1 then

‖v‖Cα(B1/2) ≤ C(α), for any α < 2s.

b) Assume that K satisfies (5.1). If
ˆ

CB1

v |x|−(n+2s+1) dx ≤ 1, [f ]Cγ (B1) ≤ 1, for some γ ∈ (0,1)

then

‖v‖Cβ(B1/2)
≤ C(γ ), with β = 2s + γ ,

provided that 2s + γ is not an integer.
c) Conversely, if ‖v‖L1(Rn,dω) ≤ 1, ‖v‖Cβ(B1)

≤ 1 with β as above, then

‖f ‖Cγ (B1/2) ≤ C.

Proposition 5.5 can be easily deduced from the results of Serra in [14] where he obtained Schauder estimates for 
concave integro-differential equations with rough kernels (see also [11,7]). We will sketch the proof in the Appendix, 
since its statement is slightly different than it usually appears in the literature and our setting is simpler than in [14].

Next, we prove the statement in Theorem 5.1, valid for all s ∈ (0, 1), that is the following proposition.

Proposition 5.6. Let u satisfy (5.2), (5.3) and assume that

‖u‖L1(Rn,dω),‖ϕ‖Cβ(B1)
,‖f ‖C0,1(B1)

≤ 1.

Then u ∈ Cα(B1) for α = min{β, 1 + ε0} and ‖u‖Cα(B1/2) ≤ C.

Proof. We sketch the proof below. In view of Lemma 5.2, we can assume without loss of generality that ‖u‖L∞ ≤ 1
in B1. In fact, after multiplication with a small constant, we may assume that all the norms in our assumptions and 
‖u‖L∞ are bounded by δ0, sufficiently small to be made precise later.

Step 1: We show that u ∈ Cα0 for a small α0 > 0, by checking that the usual proof for Hölder continuity of solutions 
to nonlocal equations [16] still applies in our case. Let us assume for simplicity that 0 ∈ {u = ϕ}, u(0) = 0 and suppose 
that

u ≤ rα0 = (1 − δ)l in Br , with r = 2−l , for all l ≤ k, (5.4)

for some k ≥ k0. Then we need to show that (5.4) holds for l = k + 1 as well.
Indeed, the rescaling ũ(x) := r−α0u(rx) with r = 2−k satisfies in B1 (α0 ≤ β)

−δ0 ≤ ũ ≤ 1, L
K̃

ũ ≤ δ0, L
K̃

ũ ≥ −δ0 in {ũ > δ0}.
Moreover,
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ũ ≤ (1 − δ)j , in B2j , j = 1, . . . , k, (5.5)ˆ

Rn\B2k

ũdω ≤ (2−k)2s−α0δ0. (5.6)

In order to obtain the diminish of oscillation of ũ we compute LKũ at the two contact points x−
0 , x+

0 obtained by 
sliding two paraboloids of opening 2δ by below and above till they touch the graph of ũ.

Precisely, we slide Pt := 2δ|x|2 + t , t ≤ 1, from above. If no contact point occurs till t = 1 − 3
2δ, then

ũ ≤ 1 − δ in B1/2

and we obtain the desired diminish in oscillation. Let us consider then the case when the contact point x+
0 occurs for 

t > 1 − 3/2δ, that is near the top xn+1 = 1. Hence (say δ0 < 1/4, δ < 1/2)

u(x+
0 ) > δ0 and L

K̃
ũ(x+

0 ) ≥ −δ0.

Assume that

|{ũ >
1

2
} ∩ B1| < 1

2
|B1|. (5.7)

We show that

L
K̃

ũ(x+
0 ) ≤ −c (5.8)

for c universal, provided that δ (hence α0) is small enough. We thus reach a contradiction if δ0 is small enough.
Indeed, for δ small,

ũ ≤ Pt − 1

4
χ{ũ≤ 1

2 } in B1.

Hence,

L
K̃

ũ(x+
0 ) ≤

ˆ

B1

(Pt (x) − Pt (x
+
0 ))K̃(x − x+

0 )dx − 1

4

ˆ

{ũ≤ 1
2 }∩B1

K̃(x − x+
0 )

+
ˆ

Rn\B1

(ũ(x) − ũ(x+
0 ))K̃(x − x+

0 )dx := I1 + I2 + I3.

We first observe that x+
0 ∈ B3/4, since ũ ≤ 1 and t > 1 − 3/2δ.

It is easily seen that

I1 ≤ C1δ.

Moreover, from (5.7) we have

I2 ≤ −c2.

Finally, we estimate I3 as follows, and we recall that k ≥ k0 large.

I3 ≤
k∑

j=1

ˆ

B2j \B2j−1

(ũ(x) − ũ(x+
0 ))K̃(x − x+

0 )dx +
ˆ

Rn\B2k

ũdω = I 1
3 + I 2

3 .

To estimate I 1
3 we use (5.5) and get

I 1
3 ≤ C

k∑
j=1

((1 − δ)−j − 1 + 3

2
δ)2−2sj ≤ c(δ) → 0, as δ → 0.

Again, to estimate I 2 we use (5.5) and obtain
3
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I 2
3 ≤ (2−k)2s−α0 → 0 for k0 large enough and δ (hence α0) small.

Combining the estimates above, we obtain the claim in (5.8) and reach a contradiction.
This implies that either the contact point does not occur near the top, and we are done, or (5.7) does not hold and

|{ũ >
1

2
} ∩ B1| ≥ 1

2
|B1|. (5.9)

In this case, we slide −2δ|x2| − t by below, t ≥ δ0, and we work with the lower contact point x−
0 . Since ũ(0) = 0 we 

see that x−
0 occurs close to the bottom xn+1 = −δ0. With a similar computation as above, we obtain that

L
K̃

ũ(x−
0 ) ≥ c,

with c universal (δ chosen small). This contradicts that L
K̃

ũ(x−
0 ) ≤ δ0, if δ0 is small. This means that (5.7) must hold 

and x+
0 will occur far from the top, providing the diminish in the oscillation.

This establishes a uniform pointwise Cα0 -Holder continuity of u at all points on the contact set {u = ϕ} ∩B1/2. It is 
easy to extend this modulus of continuity at all x ∈ B1/4. We take the largest ball Bρ(x) included in {u > ϕ} which is 
tangent to {u = ϕ} at some point y, and then we apply the interior estimates in Proposition 5.5 to LKu = f in Bρ(x)

by using the modulus of continuity of u at y.
Step 2: We show that if u ∈ Cα for some α ≤ 1 then u ∈ Cα+ε0 for some ε0 universal, as long as α + ε0 ≤ β . Then 

we combine this claim and step 1, and obtain the desired conclusion.
The proof is similar to the one in Step 1, and uses the fact that the derivatives of u are “subsolutions”. Let us assume 

that the norms of the data are bounded by δ0 and that

u(0) = ϕ(0) = 0, ∇ϕ(0) = 0 if β > 1, and ‖u‖Cα(B1) ≤ δ0.

We consider the difference quotients

ue
h(x) := u(x + he) − u(x)

hα
,

where e is a unit vector and prove the following property.
Assume that for some k ≥ k0, we have for all r = 2−l with l ≤ k

ue
h ≤ rε0 = (1 − δ)l in Br , for all h ≤ r , |e| = 1. (5.10)

Then (5.10) holds for l = k + 1 as well.
Fix r = 2−k . The key observation is that

LKue
h ≥ f e

h ≥ −δ0 in {ue
h >

1

2
rε0} ∩ Br. (5.11)

Indeed, since u is a solution in the set {u > ϕ} and a supersolution in B1, we conclude that the only points where the 
inequality in (5.11) can fail are those with x + he ∈ {u = ϕ}. At these points

ue
h(x) ≤ ϕe

h(x) ≤ δ0h
β−α (or δ0r

β−1h1−α if β > 1) ≤ 1

2
rε0 .

Moreover, call KT = χB1/4K , then for a universal c > 0,

LKT
ue

h ≥ −c in {ue
h >

1

2
rε0} ∩ Br. (5.12)

Indeed for x in such set ue
h(x) > 0 and we have,

LKT
ue

h ≥ −δ0 −
ˆ

CB1/4(x)

ue
h(y)K(y − x)dy.

Call the second term E. Then, one easily sees that

|E| ≤ 1
α
(E1 + E2 + E3),
h
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with

E1 :=
ˆ

A1

|u(x + z)||K(z) − K(z − he)|dz, A1 = C(B1/4 ∪ B1/4(he));

E2 :=
ˆ

A2

|u(x + z)|K(z − he)dz, A2 := B1/4 \ B1/4(he);

E3 :=
ˆ

A3

|u(x + z)|K(z)dz, A3 := B1/4(he) \ B1/4.

Since h ≤ r = 2−k with k large, and u is bounded in B1, then E2, E3 ≤ Ch. To bound E1 we use that ‖u‖L1(dω) ≤ δ0
and assumption (5.1). We thus obtain E3 ≤ Ch as well and by collecting all these bounds we obtain the desired claim.

Now, let

ũ(x) := r−(α+ε0)u(rx),

be the rescaling of u and notice that from u ≥ ϕ and (5.10) applied with x = 0, he = ry, y ∈ B1 we find

−δ0 ≤ ũ(y) ≤ |y|α in B1. (5.13)

Let h ≤ r/2, and write h = rh̃, with h̃ ≤ 1/2. Then

v(x) := ũe

h̃
(x) = r−ε0ue

h(rx),

is the rescaling of ue
h from Br to the unit ball, and from (5.10), (5.12) in B1 we obtain that in B1

−2 ≤ v ≤ 1, L
K̃T

v ≥ −δ0 in {v > 1
2 },

where the lower bound on v follows from (5.10) applied for −e. Here

K̃T = χB1/4r
K.

Now we claim that |{v < 1 − c} ∩ B1| ≥ c for some fixed c small universal. The reason is that if v is close to 1
in almost all B1 then we contradict that ũ ≥ −δ0. Indeed, assume for simplicity that e = en and we integrate v in the 
cylinder

C :=
{
|x′| ≤ 1

8
, xn ∈ [−3

4
,

1

4
]
}

.

For each segment in the en direction lx′ = {(x′, xn)|xn ∈ [− 3
4 , 14 ]} of length 1 included in C we have (see (5.13))

ˆ

lx′

v dxn = h̃−α

⎛
⎜⎜⎝

1
4 +h̃ˆ

1
4

ũ dxn −
− 3

4 +h̃ˆ

− 3
4

ũ dxn

⎞
⎟⎟⎠

≤ h̃1−α

(
(
7

8
)α + δ0

)
≤ 1 − c,

and our claim follows.
Now the proof of diminish of oscillation for v follows as in Step 1. We remark that in bounding L

K̃T
ṽ at the contact 

point, we will not have a term as I 2
3 , since the kernel K̃ is truncated. All the other terms can be bounded with similar 

arguments as above.
In conclusion property (5.10) is proved and this implies that u ≤ rα+ε0 in Br for all dyadic balls, thus u is pointwise 

Cα+ε0 at 0. Now we can extend as above the pointwise regularity from the set {u = ϕ} to the whole B1/4, and obtain 
the desired conclusion. �

We show that when s > 1 , then the result of Proposition 5.6 can be improved.
2
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Proposition 5.7. Let u satisfy (5.2), (5.3) and assume s > 1/2,

‖u‖L1(Rn,dω),‖ϕ‖Cβ(B1)
,‖f ‖Cε0 (B1) ≤ 1,

for some β = 2s. Then u ∈ Cα(B1) for α = min{β, 2s + ε0} with

‖u‖Cα(B1/2) ≤ C.

Proof. Assume that ‖u‖L1(dω), ‖ϕ‖Cβ , ‖f ‖Cε0 are all smaller than δ0, and assume also that u(0) = ϕ(0) = 0, and 
∇ϕ(0) = 0 if β > 1. We treat the case when β ≥ 2s + ε0.

We prove by induction that there exists a sequence of radii 1 = r1 > r2 > ... with rk+1/rk ∈ [ρ0, 1/2) for some 
fixed ρ0 such thatˆ

|u|(max{r, |x|})−(n+1+2s)dx ≤ rε0−1. (5.14)

Assume that this holds for some r = rk . We let

ũ(x) = r−2s−ε0u(rx), ϕ̃(x) = r−2s−ε0ϕ(rx), f̃ (x) = r−ε0f (rx),

and we have

L
K̃

ũ ≤ f̃ in B1, L
K̃

ũ = f̃ in {ũ > ϕ̃} ∩ B1,

and

oscB1 f̃ ≤ δ0, |ϕ̃(x)| ≤ δ0|x|2s+ε0 in B1.

Moreover, (5.14) is equivalent to
ˆ

|ũ|(max{1, |x|})−(n+1+2s)dx ≤ 1. (5.15)

We want to show that there exists ρ ∈ [ρ0, 12 ) such that
ˆ

|ũ|(max{ρ, |x|})−(n+1+2s)dx ≤ ρε0−1, (5.16)

and then the induction hypothesis (5.14) is satisfied for rk+1 = ρrk .
Notice that ũ + δ0 satisfies the hypotheses of the Lemma 5.3 hence ũ ≤ C in B1/2. Now we distinguish two cases.

Case 1: ũ ≤ δ0 in B1/4. Then (5.16) is satisfied clearly satisfied for ρ = ρ0 small, provided that δ0 � ρ0 is chosen 
sufficiently small.
Case 2: ũ > δ0 for some point in B1/4. The according to Remark 5.4 we can slide a parabola of fixed opening by 
above and obtain a contact point in {ũ > δ0 > ϕ̃} thus

L
K̃T

ũ(0) ≤ C.

Since ϕ̃ is tangent by below to ũ at 0 the above inequality implies
ˆ

B1

|ũ||x|−n−2sdx ≤ C. (5.17)

On the other hand, if we assume by contradiction that (5.16) holds in the opposite direction for all ρ ∈ (ρ0, 1/2) then 
we can integrate this inequality in ρ and obtain

ˆ
|ũ|(min{1, |x|})|x|−(n+1+2s)dx ≥ η(ρ0, ε0),

with η(ρ0, ε0) → ∞ as ρ0, ε0 → 0. This contradicts (5.15), (5.17) by choosing ε0, ρ0 sufficiently small.
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In conclusion property (5.14) is proved, and from the argument above we obtain u(x) ≤ C|x|2s+ε0 in B1. This 
means that u is pointwise C2s+ε0 in the set {u = ϕ}, and this can be extended to the whole B1/2 as before.

When β ∈ (2s, 2s + ε0) the argument above applies with ε0 replaced by β − 2s.
Finally, when β < 2s the proof is simpler. The rescaling ũ(x) = r−βu(rx) satisfies ‖ũ‖L1(Rn,dω) ≤ C, (since now 

ϕ̃ is integrable at infinity) and we can apply Lemma 5.2 directly to obtain the pointwise Cβ estimate at the origin. In 
this case we only require f ∈ L∞. �
6. The case of the fractional Laplacian: free boundary regularity

In the special case when

K1(y) = 1

|y|n+2s1

the operator LK1 is the fractional Laplacian �s1 and we obtain the optimal regularity of the minimizing pair in the 
two membranes problem, see Theorem 2.6. This improvement is due to the fact that the optimal C1,s regularity in 
the obstacle problem for the fractional Laplacian is known. Precisely, assume that u is a solution of the thin obstacle 
problem in B1 with obstacle ϕ by below, that is u, ϕ are continuous in B1, u ∈ L1(Rn, dω), and

u ≥ ϕ in B1, (6.1)

�su ≤ f in B1, and �su = f in {u > ϕ} ∩ B1. (6.2)

The following result holds (see Section 1 for the notion of regular points).

Theorem 6.1 (Optimal regularity). Let u be a solution to (6.1), (6.2), with

‖u‖L1(Rn,dω),‖ϕ‖Cβ(B1)
,‖f ‖Cβ−2s (B1)

≤ 1, for some β > 1 + s.

Then u ∈ C1+s(B1) and

‖u‖C1+s (B1/2)
≤ C.

Moreover, the free boundary 
 := ∂{u = ϕ} is a C1,γ surface in a neighborhood of each of its regular points. The 
constants C, γ depend on n, s, and β .

Theorem 6.1 was obtained by Caffarelli, Salsa and Silvestre in [5]. The main tool in the proof is to establish a 
version of Almgren’s frequency formula for the “extension” of u to Rn+1. Theorem 6.1 is proved in [5] in the case 
when ϕ ∈ C2,1 (i.e. β = 3). Below we show that the Almgren’s monotonicity formula still holds when β > 1 + s. 
Since this is the only place in the proof in [5] where the regularity of the data is needed, we obtain the version of 
Theorem 6.1 above.

Finally we remark that in the case when β ∈ (2s, 1 + s) the C1,α regularity of u with α < β was obtained by 
Silvestre in [16].

6.1. Almgren’s monotonicity formula

In this section, Br will denote a ball in Rn+1 and Br := Br ∩ {xn+1 = 0}. Also, X = (x, xn+1) is a point in Rn+1

and often we call y = xn+1.
After subtracting an explicit function whose fractional Laplacian equals f , we may assume without loss of gener-

ality that f = 0. Let u be a solution in B2 to the thin obstacle problem

u ≥ ϕ in B2 ⊂R
n

�su = 0 in {u > ϕ} ∩ B2 (6.3)

�su ≤ 0 in B2

with ϕ : B2 →R a continuos function.
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Consider the equivalent (localized) problem obtained extending u to Rn+1, evenly in the y = xn+1 direction,

u(x,0) ≥ ϕ for x ∈ B2

u(x, y) = u(x,−y)

Lau = div(|y|a∇u(x, y)) = 0 in B2 \ {u(x,0) = ϕ(x)}
Lau ≤ 0 in B2 in the distributional sense

where

a := 1 − 2s, a ∈ (−1,1).

Assume ϕ ∈ C1,s+δ(B2), for some δ > 0 and ‖ϕ‖Cs+δ ≤ 1. We extend ϕ to B1 in the following way:

ϕ̃(x, y) := ϕ ∗ ρ|y|, (6.4)

with ρr(X) := r−n−1ρ(X/r), and ρ a symmetric mollifier supported in B1. Then it is easy to check that ϕ̃ ∈ C1,s+δ

is even in y and is smooth away from {y = 0}, and

‖D2ϕ̃‖ ≤ C|y|s+δ−1 ⇒ |y|−aLaϕ̃ ≤ C|y|s+δ−1. (6.5)

Define,

ũ(x, y) = u(x, y) − ϕ̃(x, y),

and let � := {ũ(x, 0) = 0}. Then ũ satisfies⎧⎪⎨
⎪⎩

ũ(x,0) ≥ 0 for x ∈ B1

ũ(x, y) = ũ(x,−y)

Laũ = −Laϕ̃ in B1 \ �

Denote by

F(r) := 1

rn+a

ˆ

∂Br

ũ2|y|adσ,

and notice that if for example ũ is homogenous of degree σ , then F(r) = c r2σ , hence 1
2r d

dr
logF = σ .

Theorem 6.2 (Almgren’s monotonicity formula). Let 0 ∈ � and α ∈ (s, s + δ). There exist constants C0 and r0 de-
pending on α, s n, and δ such that the function

�ũ(r) := 1

2
(r + C0r

1+ε)
d

dr
log

(
max{F(r), r2(1+α)}

)

is monotone increasing for all 0 < r ≤ r0, where ε > 0 is small so that s + δ ≥ α + ε.

For simplicity we also use the notation of the “averages” of a function g with respect to the measures |y|adσ and 
|y|adX: 

∂Br

g |y|adσ := 1

rn+a

ˆ

∂Br

g|y|adσ

and  

Br

g |y|adX := 1

rn+1+a

ˆ

Br

g|y|adX.

With this notation,
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F(r) :=
 

∂Br

ũ2|y|adσ,

and

F ′(r) = 2
 

∂Br

ũũν |y|adσ.

First, we prove the following preliminary lemma.

Lemma 6.3. Assume F(r) ≥ r2(1+α). Then, for r small 

Br

ũ2|y|adX ≤ CF(r).

r−1F ′(r) ∼
 

Br

|∇ũ|2|y|adX ≥ Cr−2F(r)

Proof. Assume for simplicity that u(0) = ϕ(0) = 0, ∇ϕ(0) = 0, hence

|ϕ̃| ≤ Cr1+s+δ ≤ r1+α+ε in Br,

hence the functions u and ũ are “the same” up to an error of r1+ε . Since F(r) ≥ r2(1+α) we obtain 

∂Br

u2|y|adσ ∼
 

∂Br

ũ2|y|adσ = F(r).

Since Lau = 0 in the set {|u| > r1+α+ε} we may apply the mean value inequality for the La-subharmonic function
(
(|u| − r1+α+ε)+

)2

and obtain that its average in Br is bounded by its average on ∂Br . This easily gives the first inequality above.
For the second inequality we have Lau ≤ 0 and u(0) = 0, hence the average of u on ∂Br is negative. From this and 

the version of Poincare inequality written for ∂Br (see Lemma 2.10 in [5]) we obtain

r2
 

Br

|∇u|2|y|adX ≥ c

 

∂Br

(u+)2|y|adσ.

Moreover, similarly to the quoted lemma, since a function v in the weighted Sobolev space W 2,1(B1, |y|a) has 
trace in L2(B1), we also have the following version of Poincare inequality:

r2
 

B+
r

|∇v|2|y|adX ≥ c

 

∂B+
r

(v − v̄)2|y|adσ

with

v̄ :=
 

Br

v(x,0)dx.

Hence, since u ≥ −r1+α+ε on Br , we deduce that

r2
 

Br

|∇u|2|y|adX ≥ c

 

∂Br

(u−)2|y|adX − Cr2(1+α+ε).

Using that ∇ũ = ∇u + O(r1+α+ε) we obtain
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Br

|∇ũ|2|y|adX ≥ Cr−2F(r).

Finally,ˆ

Br

(ũLaũ + |∇ũ|2|y|a)dX =
ˆ

Br

div(|y|aũ∇ũ)dX =
ˆ

∂Br

ũũν |y|adσ,

thus, since ũLaũ = −ũLaϕ̃ we have

1

2r
F ′(r) = 1

r

 

∂Br

ũũν |y|adσ =
 

Br

(|∇ũ|2 − |y|−aũLaϕ̃)|y|adX.

By Cauchy–Schwartz and the property (6.5) of ϕ̃ we have∣∣∣∣∣∣∣
 

Br

ũ(|y|−aLaϕ̃)|y|adσ

∣∣∣∣∣∣∣
≤

⎛
⎜⎝
 

Br

ũ2|y|adσ

⎞
⎟⎠

1/2 ⎛
⎜⎝
 

Br

(|y|−aLaϕ̃)2|y|adσ

⎞
⎟⎠

1/2

≤ Crα+ε−1F(r)1/2,

and we obtain the desired conclusion (using also that F(r) ≥ r2(1+α)). �
Proof of Theorem 6.2. It is enough to consider the case when

F(r) ≥ r2(1+α).

Then,

�ũ(r) = 1

2
(r + C0r

1+ε)
F ′(r)
F (r)

.

We compute its logarithmic derivative and show that it is non-negative. Precisely, we look at the quantity:

N(r) := 1

r
+ εC0r

ε−1

1 + C0rε
+ F ′′(r)

F ′(r)
− F ′(r)

F (r)
.

As in Lemma 6.3,ˆ

∂Br

ũũν |y|adσ =
ˆ

Br

(|∇ũ|2 + |y|−aũLaũ)|y|adX. (6.6)

Thus,

F ′′(r) = − (n + a)

r
F ′(r) + 2

 

∂Br

(|∇ũ|2 + |y|−aũLaϕ̃)|ya|dσ.

As in [5] we can estimate that 

∂Br

|∇ũ|2|y|adσ = 2
 

∂Br

(ũν)
2|y|adσ + n + a − 1

r

 

∂Br

ũũν |y|adσ

−
 

Br

((n + a − 1)ũ − 2X · ∇ũ)(|y|−aLaϕ̃)|y|adX.

Hence,

N(r) = εC0r
ε−1

ε
+ 4

ffl
∂Br

(ũν)
2|y|adσ

′ − F ′(r) + H(r)

′ ,

1 + C0r F (r) F (r) F (r)
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with

H(r) = 2
 

∂Br

ũ(|y|−aLaϕ̃)|y|adσ − (n + a − 1)

 

Br

ũ(|y|−aLaϕ̃)|y|adX

+ 4
 

Br

(X · ∇ũ)(|y|−aLaϕ̃)|y|adX

:= H1(r) + H2(r) + H3(r).

By Cauchy–Schwartz, we conclude that (for r small)

N(r) ≥ εC0r
ε−1

1 + C0rε
+ H(r)

F ′(r)
≥ ε

C0

2
rε−1 + H(r)

F ′(r)
. (6.7)

We now estimate H(r). As in Lemma 6.3 we use property (6.5) of ϕ̃ and conclude
∣∣∣∣∣∣∣
 

Br

ũ(|y|−aLaϕ̃)|y|adX

∣∣∣∣∣∣∣
≤ Crα+ε−1F(r)1/2,

and with a similar computation∣∣∣∣∣∣∣
 

∂Br

ũ(|y|−aLaϕ̃)|y|adσ

∣∣∣∣∣∣∣
≤ Crα+ε−1F(r)1/2.

In the same way,
∣∣∣∣∣∣∣
 

Br

(X · ∇ũ)(|y|−aLaϕ̃)|y|adX

∣∣∣∣∣∣∣
≤ r

⎛
⎜⎝
 

Br

|∇ũ|2|y|adX

⎞
⎟⎠

1/2 ⎛
⎜⎝
 

Br

(|y|−aLaϕ̃)2|y|adX

⎞
⎟⎠

1/2

≤ rα+ε

⎛
⎜⎝
 

Br

|∇ũ|2|y|adX

⎞
⎟⎠

1/2

,

hence by Lemma 6.3

|H1(r)|
F ′(r)

≤ Crε−1,
|H2(r)|
F ′(r)

≤ Crε−1,
|H3(r)|
F ′(r)

≤ Crε−1.

Combining these estimates with (6.7) we get that N(r) > 0 for C0 large and r small. �
Now the arguments in [5] apply, and they give that if 0 ∈ ∂� then the limit �(0+) can take only two values: 1 + s

and 1 + α, and this implies the C1,s regularity of u. If this limit �(0+) equals 1 + s we say that 0 is a regular point. 
Then the monotonicity formula allows us to perform the blow-up analysis at a regular point and to obtain the C1,γ

regularity of the free boundary. In view of this, we sharpen the regularity results of [5] for the thin obstacle problem, 
in the case when the obstacle ϕ ∈ C1,s+δ , and obtain Theorem 6.1.

6.2. An extension of Theorem 6.2

We consider here the case when the obstacle ϕ is C1+s+δ only in a certain pointwise sense and u has nearly optimal 
regularity. This case appears in [4] where we deal with the obstacle problem for non-local minimal surfaces. Precisely, 
we obtain the following proposition.
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Proposition 6.4. Let u ∈ C2s+ε solve the obstacle problem (6.1)–(6.2), 0 ∈ ∂�. Assume that ‖u‖L1(Rn,dω) ≤ 1 and 

∇u is pointwise Cs− δ
2 at the origin, i.e.

|∇u(x)| ≤ |x|s− δ
2 in B1. (6.8)

If ϕ ∈ C2s+ε , ∇ϕ is pointwise Cs+δ at the origin i.e., for all r < 1

|∇ϕ|L∞(Br ) ≤ rs+δ if s ∈ (0, 1
2 ) (6.9)

[∇ϕ]C2s+δ−1(Br )
≤ r1−s if s ∈ [ 1

2 ,1),

and f satisfies

[f ]Cγ (Br ) ≤ Crs+δ for some γ > 1 − 2s, if s ∈ (0,1/2), (6.10)

[f ]Cδ(Br )
≤ Cr1−s if s ∈ [1/2,1),

then u is pointwise C1,s at the origin i.e.

|u(x)| ≤ C|x|1+s in B1, (6.11)

for some C depending only on n, s and δ.

The Proposition above will follow if we show that the monotonicity formula can be applied under these hypotheses.
Assume first that the right hand side f equals 0. Since u, ϕ ∈ C2s+ε in B1, the integrations by parts performed 

in the monotonicity formula are justified. Now, using the boundary estimates for the equation Lau = 0 together with 
yauy(0, y) → 0 as y → 0 which is a consequence of 0 ∈ ∂�, we find that the extension u(X) satisfies in Br

|u| ≤ Cr1+s− δ
2 , |X · ∇u| ≤ Cr1+s− δ

2 . (6.12)

In view of (6.9), the extension ϕ̃ defined in (6.4) satisfies in Br

|ϕ̃| ≤ rs+δ+1, |∇ϕ̃| ≤ rs+δ,

and

|uy |
|y| , |D2ϕ̃| ≤ Crs+δ|y|−1 if s ∈ (0, 1

2 ) or,

|uy |
|y| , |D2ϕ̃| ≤ r1−s |y|2s+δ−2 if s ∈ [ 1

2 ,1).

Since a = 1 − 2s and

|y|−a |Laϕ̃| ≤ C

(
|D2ϕ̃| + |uy |

|y|
)

,

we see that |y|−aLaϕ̃ is integrable with respect to the measures |y|adX and |y|adσ , and its averages with respect to 
these measures in Br , respectively ∂Br are bounded by Crs+δ−1.

From these inequalities we see that ũ = u − ϕ̃ satisfies the same bounds in (6.12) and we can estimate the error 
terms H1, H2, H3 by

Cr1+s− δ
2 rs+δ−1 = Cr2s+δ/2 ≤ Cr2α+ε,

provided that α is taken sufficiently close to s and ε > 0 is small. The difference is that now we used the L∞L1 bound 
for the product between the ũ terms and |y|−aLaϕ̃ terms instead of the L2L2 as before.

In the general case when the right hand side f is not 0, then the potential whose fractional Laplacian equals f must 
satisfy (6.9) and we need to impose the conditions in (6.10).

We mention that similar arguments with the ones that we provide above were used by Guillen in [10] in a slightly 
different context.
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7. Appendix

Below we discuss the Schauder estimates for translation invariant integro-differential equations of the type

LKv(x) = P.V .

ˆ
(v(x + y) − v(x))K(y)dy,

with kernels K that satisfy

λ

|y|n+2s
≤ K(y) ≤ �

|y|n+2s
, 0 < λ ≤ �, (7.1)

|∇K(y)| ≤ �|y|−(n+1+2s). (7.2)

For convenience we state again the Schauder estimates used in Section 5.

Proposition 7.1. Let K be a symmetric kernel that satisfies (7.1), and assume that v ∈ L1(Rn, dω) satisfies

LKv = f in B1, ‖v‖L∞(B1) ≤ 1.

a) If ‖f ‖L∞(B1) ≤ 1, ‖v‖L1(Rn,dω) ≤ 1 then

‖v‖Cα(B1/2) ≤ C(α), for any α < 2s.

b) If K satisfies (7.2) andˆ

CB1

v |x|−(n+2s+1) dx ≤ 1, [f ]Cγ (B1) ≤ 1, for some γ ∈ (0,1)

then

‖v‖C2s+γ (B1/2)
≤ C(γ ),

provided that 2s + γ is not an integer.
c) Conversely, if K satisfies (7.2) and ‖v‖L1(Rn,dω) ≤ 1, ‖v‖C2s+γ (B1)

≤ 1, then

‖f ‖Cγ (B1/2) ≤ C.

We remark that the constant C(γ ) in part b) is independent on ‖f ‖L∞ and ‖v‖L1(Rn,dω).
We point out that by the results in [14], one could in fact relax the assumption (7.2) and require that it is satisfied 

only outside of a neighborhood of the origin.
We sketch the main steps in the proofs of parts a) and b) and use similar ideas as in Section 5. The proof of part c) 

is standard and we do not include it here.
First we obtain a Liouville type result for global solutions which have integrable decay at infinity.

Lemma 7.2. The only global solutions to the equation

LKv = 0 in R
n, ‖v‖L∞(BRk

) ≤ Rα
k , with Rk = 2k , k ≥ 0,

for some α < 2s, are constant if s ≤ 1
2 , or linear if s ∈ ( 1

2 , 1)

Proof. Since α < 2s we can apply the Hölder estimates from [16] (as in Section 5) and we obtain that

‖v‖Cε0 (B1/2) ≤ C, (7.3)

for some C, ε0 depending only on n, s, α. Since the function R−α
k v(Rkx) satisfies the same hypotheses as v, we can 

apply the estimate above for this function and obtain

‖v‖Cε0 (BRk/2) ≤ CR
α−ε0
k . (7.4)

This means that the discrete difference function
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ṽ := 1

C0

u(x + he) − u(x)

hε0
, |e| = 1, h ∈ [0,1],

also satisfies the hypotheses of v with α replaced by α − ε0.
We apply the estimates (7.4) for ṽ and we obtain (see Lemma 5.6 in [2])

‖v‖C2ε0 (BRk
) ≤ CR

α−2ε0
k .

We iterate this result and distinguish 2 cases, if α < 1 or α ≥ 1.
If α < 1 then we find

‖v‖
Cα′

(BR/2)
≤ CRα−α′

,

for some α′ ∈ (α, 1) and by letting R → ∞ we obtain that v is a constant.
If α ≥ 1 then we obtain

‖v‖C0,1(BRk
) ≤ CRα−1

k ,

hence the discrete difference quotient (v(x + he) − v(x))/h satisfies the hypotheses of the lemma with exponent 
α − 1 < 1 thus it must be constant, which gives that v is a linear function. �

Using compactness and Lemma 7.2 we obtain the following interior estimate.

Lemma 7.3. Let w be a solution to the truncated kernel equation

LKT
w = g in B1/2, KT := χB1/2K, (7.5)

‖g‖L∞(B1/2) ≤ 1, ‖w‖L∞(B1) ≤ 1.

Then, for any α < 2s we have

‖w‖Cα(B1/4) ≤ C(α).

Proof. We may assume that α = 1. We need to show that if w satisfies

|w − lk| ≤ rα
k in Brk , rk = 2−k, (7.6)

for k = 0, 1, ..., m for some m ≥ k0 sufficiently large, then the inequality above holds also for k = m + 1. Here lk
is either a constant (for α < 1) or a linear function (for α > 1). Indeed, as k0 → ∞, we may find a subsequence of 
rescalings

w̃ := r−αw(rx) r = rm

which converges uniformly on compact sets to a function v that satisfies the hypotheses of Lemma 7.2, and then 
(7.6) is clearly verified for k large. The uniform convergence on compact sets is once more guaranteed by Harnack 
inequality since w̃ satisfies

L
K̃T

w̃ = g̃(x) := r2s−αg(rx), K̃T = K̃χB
r−1/2

,

and, as k0 → ∞, we have g̃ → 0 uniformly on compact sets. �
The estimate in part a) of Proposition 7.1 follows from Lemma 7.3. We write the original equation in terms of the 

truncated kernel KT and obtain

LKT
v(x) = f (x) − h(x) in B1/2,

with

h(x) =
ˆ

CB

(v(x + y) − v(x))K(y)dy,
1/2
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and clearly

|h(x)| ≤ C(‖v‖L1(dω) + |v(x)|) ≤ C.

Next we apply Lemma 7.3 for difference quotients and obtain the C2s+γ , γ ∈ (0, 1), estimate.

Lemma 7.4. Assume that K satisfies (5.1) (only outside a neighborhood of the origin) and w satisfies

LKT
w = g + a w in B1/2, ‖w‖L∞(B1) ≤ 1,

for some constant a with |a| ≤ 1, and with

‖g‖C0,1(B1/2)
≤ 1. (7.7)

Then, if α < 2s we have

‖w‖C1+α(B1/4)
≤ C(α).

Proof. Since the right hand side is bounded, we obtain by Lemma 7.3 a Cα0 bound for w in B1/4 for some α0 ∈ (0, 2s). 
Then we iterate Lemma 7.3 a finite number of times for the discrete differences of w and successively estimate w in 
Cαk (Brk ) with rk = 4−k and α0 < α1 < α2 < ... < αm = 1. Then we iterate this argument one more time and obtain 
the desired conclusion.

Notice that in order to apply Lemma 7.3 in Brk instead of B1 we need to write the equation for the truncated kernel

KT,k := KT χBrk/2 .

Then the right hand side gets modified as follows

LKT,k
w(x) = g(x) − h1(x) + h2(x)

with

h1(x) =
ˆ

B1/2\Brk/2

w(x + y)K(y)dy =
ˆ

B1/2(x)\Brk/2(x)

w(y)K(x − y)dy,

h2(x) = aw(x) +
ˆ

B1/2\Brk/2

w(x)K(y)dy = (a + C(K))w(x).

From our hypothesis on K , arguing as in Step 2 of Proposition 5.6, we find ‖h1‖C0,1 ≤ C. Since ‖h2‖Cαk ≤
C‖w‖Cαk in Brk/2, we can apply Lemma 7.3 for the discrete difference

w(x + he) − w(x)

hαk
,

and obtain the Cαk+1 bound for w in Brk/4. �
Finally we prove part b) of Proposition 7.1.

Lemma 7.5. Assume that v satisfies the hypotheses of part b) in Proposition 7.1 with

‖v‖L∞(B1) ≤ δ0, [f ]Cγ (B1) ≤ δ0

for some small δ0. Then there exist polynomials pk of degree [β], and p0 ≡ 0, such that

|v − pk| ≤ r
β
k in Brk , rk = 2−k, β := 2s + γ,

for all k ≥ 0.
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Proof. We prove the lemma by induction by showing that if the conclusion holds up to some k large, then it holds 
also for k + m0 for some fixed m0.

By the induction hypothesis, the coefficients of the polynomials pk are uniformly bounded. Hence, if ψ is a cutoff 
function which is 1 in B1/2 and 0 outside B1, then pkψ is a C∞

0 function with a uniform L∞ bound and

LK(pkψ) = q with ‖q‖C0,1 ≤ C.

Now we write the equation for the rescaling ṽ of v − pkψ

ṽ(x) = r−β(v − pkψ)(rx), r = rk,

and obtain

L
K̃

ṽ(x) = g̃(x) := r−γ f (rx) + r−γ q(rx) in Br−1 .

Notice that [g̃]Cγ ≤ Cδ0 in B2 provided that r is sufficiently small, and by the induction hypothesis

|ṽ|L∞(B1) ≤ 1, |ṽ(x)| ≤ C|x|β in Br−1 \ B1,

which gives
ˆ

CB1

|ṽ| |x|−(n+2s+1) dx ≤ C0, (7.8)

for a fixed C0 depending only on γ and the universal constants.
As in Lemma 7.4 we write the equation for ṽ in B1/2 using the truncated kernel K̃T and obtain

L
K̃T

ṽ = g̃ − h + C(K)ṽ =: g0 + a ṽ,

with

h(x) =
ˆ

CB1/2(x)

ṽ(y)K̃(x − y)dy.

From the hypothesis on K and (7.8) we find

[h]C0,1(B2)
≤ C1.

We use the estimate on the Cγ seminorm of g0 and deduce that

‖g0‖Cγ (B1/2) ≤ C, (7.9)

by obtaining an L∞ bound for g0. We achieve this by sliding the paraboloid 4|x|2 by above till it touches the graph of 
ṽ at some x0 ∈ B1. Then LKT

v(x0) ≤ C hence g0(x0) ≤ C, and similarly we find a point x1 such that g0(x1) ≥ −C, 
and this proves (7.9).

By Lemma 7.3 the function ṽ is uniformly Hölder continuous in B1. Moreover, g0 is the sum of a Lipschitz function 
(with bounded Lipschitz norm) and a function with Cγ norm bounded by Cδ0. By compactness and Lemma 7.4 we 
find that as δ0 → 0 we can approximate ṽ uniformly in B1 by a function with bounded C1+α norm in B1/4 (with 
1 + 2s > 1 + α > β). Thus we can find m0 universal such that

|ṽ − p̃| ≤ ρβ in Bρ, ρ = 2−m0 .

This means that the induction hypothesis holds for k + m0, and the lemma is proved. �
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