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Abstract

We consider the inverse problem of determining a time-dependent potential q, appearing in the wave equation ∂2
t u − �xu +

q(t, x)u = 0 in Q = (0, T ) × � with T > 0 and � a C2 bounded domain of Rn, n � 2, from partial observations of the solutions 
on ∂Q. More precisely, we look for observations on ∂Q that allows to recover uniquely a general time-dependent potential q
without involving an important set of data. We prove global unique determination of q ∈ L∞(Q) from partial observations on ∂Q. 
Besides being nonlinear, this problem is related to the inverse problem of determining a semilinear term appearing in a nonlinear 
hyperbolic equation from boundary measurements.
© 2016 
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1. Introduction

1.1. Statement of the problem

We fix � a C2 bounded domain of Rn, n � 2, and we set � = (0, T ) × ∂�, Q = (0, T ) × � with 0 < T < ∞. We 
consider the wave equation

∂2
t u − �xu + q(t, x)u = 0, (t, x) ∈ Q, (1.1)

where q ∈ L∞(Q) is real valued. We study the inverse problem of determining q from observations of solutions of 
(1.1) on ∂Q = � ∪ ({0} × �) ∪ ({T } × �).

It is well known that for T > Diam(�) the data

Aq = {(u|�, ∂νu|�) : u ∈ L2(Q), �u + qu = 0, u|t=0 = ∂tu|t=0 = 0} (1.2)
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determines uniquely a time-independent potential q (e.g. [27]). Here ν denotes the outward unit normal vector to ∂�, 
∂ν = ν ·∇x the normal derivative and from now on � denotes the differential operator ∂2

t −�x . It has been even proved 
that partial knowledge of Aq determines a time-independent potential q (e.g. [9]). In contrast to time-independent 
potentials, we can not recover the restriction of a general time-dependent potential q to the set

D = {(t, x) ∈ Q : 0 < t < Diam(�)/2, dist(x, ∂�) > t}
from the data Aq . Indeed, assume that � = {x ∈Rn : |x| < R}, T > R > 0. Now let u solve

�u = 0, u|� = f, u|t=0 = ∂tu|t=0 = 0

with f ∈ H 1(�) satisfying f|t=0 = 0. Since u|t=0 = ∂tu|t=0 = 0, the finite speed of propagation implies that u|D = 0. 
Therefore, for any q ∈ C∞

0 (D), we have qu = 0 and u solves

�u + qu = 0, u|� = f, u|t=0 = ∂tu|t=0 = 0.

This last result implies that for any q ∈ C∞
0 (D) we have Aq =A0 where A0 stands for Aq when q = 0.

Facing this obstruction to uniqueness, it appears that four different approaches have been considered so far to solve 
this problem:

1) Considering the equation (1.1) for any time t ∈R instead of 0 < t < T (e.g. [28,29]).
2) Recovering the restriction on a subset of Q of a time-dependent potential q from the data Aq (e.g. [26]).
3) Recovering a time-dependent potential q from the extended data Cq (e.g. [13]) given by

Cq = {(u|�,u|t=0, ∂tu|t=0, ∂νu|�,u|t=T , ∂tu|t=T ) : u ∈ L2(Q), (∂2
t − �x + q)u = 0}. (1.3)

4) Recovering time-dependent coefficients that are analytic with respect to the t variable (e.g. [10]).

Therefore, it seems that the only results of unique global determination of a time-dependent potential q proved 
so far (at finite time) involve strong smoothness assumptions such as analyticity with respect to the t variable or the 
important set of data Cq . In the present paper we investigate some conditions that guaranty unique determination of 
general time-dependent potentials without involving an important set of data. More precisely, our goal is to prove 
unique global determination of a general time-dependent potential q from partial knowledge of the set of data Cq .

1.2. Physical and mathematical interest

Physically speaking, our inverse problem can be stated as the determination of physical properties such as the 
time evolving density of an inhomogeneous medium by probing it with disturbances generated on some parts of the 
boundary and at initial time. The data is the response of the medium to these disturbances, measured on some parts 
of the boundary and at the end of the experiment, and the purpose is to recover the function q which measures the 
property of the medium. Note also that the determination of time-dependent potentials can be associated with models 
where it is necessary to take into account the evolution in time of the perturbation.

We also precise that the determination of time-dependent potentials can be an important tool for the more difficult 
problem of determining a non-linear term appearing in a nonlinear wave equation from observations of the solutions 
on ∂Q. Indeed, in [15] Isakov applied such results for the determination of a semilinear term appearing in a semilinear 
parabolic equation from observations of the solutions on ∂Q.

1.3. Existing papers

In recent years the determination of coefficients for hyperbolic equations from boundary measurements has been 
growing in interest. Many authors have considered this problem with observations given by the set Aq defined by 
(1.2). In [27], Rakesh and Symes proved that Aq determines uniquely a time-independent potential q and [14] proved 
unique determination of a potential and a damping coefficient. The uniqueness by partial boundary observations has 
been considered in [9]. For sake of completeness we also mention that the stability issue related to this problem has 
been treated in [2,16,19,24,31,32]. Note that [19] extended the results of [27] to time-independent coefficients of order 
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zero in an unbounded cylindrical domain. It has been proved that measurements on a bounded subset determine some 
classes of coefficients including periodic coefficients and compactly supported coefficients.

All the above mentioned results are concerned with time-independent coefficients. Several authors considered 
the problem of determining time-dependent coefficients for hyperbolic equations. In [30], Stefanov proved unique 
determination of a time-dependent potential for the wave equation from the knowledge of scattering data which is 
equivalent to the problem with boundary measurements. In [28], Ramm and Sjöstrand considered the determination of 
a time-dependent potential q from the data (u|R×∂�, ∂νu|R×∂�) of forward solutions of (1.1) on the infinite time–space 
cylindrical domain Rt × � instead of Q (t ∈ R instead of 0 < t < T < ∞). Rakesh and Ramm [26] considered this 
problem at finite time on Q, with T > Diam(�), and they determined uniquely q restricted to some subset of Q
from Aq . Isakov established in [13, Theorem 4.2] unique determination of general time-dependent potentials on the 
whole domain Q from the extended data Cq given by (1.3). Applying a result of unique continuation borrowed from 
[33], Eskin [10] proved that the data Aq determines time-dependent coefficients analytic with respect to the time 
variable t . Salazar [29] extended the result of [28] to more general coefficients. Finally, [34] stated stability in the 
recovery of X-ray transforms of time-dependent potentials on a manifold and [3] proved log-type stability in the 
determination of time-dependent potentials from the data considered by [26] and [13].

We also mention that [5–7,11] examined the determination of time-dependent coefficients for parabolic and 
Schrödinger equations and proved stability estimate for these problems.

1.4. Main result

In order to state our main result, we first introduce some intermediate tools and notations. For all ω ∈ S
n−1 = {y ∈

R
n : |y| = 1} we introduce the ω-shadowed and ω-illuminated faces

∂�+,ω = {x ∈ ∂� : ν(x) · ω � 0}, ∂�−,ω = {x ∈ ∂� : ν(x) · ω � 0}
of ∂�. Here, for all k ∈N∗, · denotes the scalar product in Rk defined by

x · y = x1y1 + . . . + xkyk, x = (x1, . . . , xk) ∈ R
k, y = (y1, . . . , yk) ∈R

k.

We consider also the parts of the lateral boundary � given by

�+,ω = {(t, x) ∈ � : ν(x) · ω > 0}, �−,ω = {(t, x) ∈ � : ν(x) · ω � 0}.
From now on we fix ω0 ∈ S

n−1 and we consider F = [0, T ] × F ′ (resp. G = (0, T ) × G′) with F ′ (resp. G′) an open 
neighborhood of ∂�+,ω0 (resp. ∂�−,ω0 ) in ∂�.

The main purpose of this paper is to prove the unique global determination of a time-dependent and real valued 
potential q ∈ L∞(Q) from the data

C∗
q = {(u|�, ∂tu|t=0, ∂νu|G,u|t=T ) : u ∈ L2(Q), �u + qu = 0, u|t=0 = 0, suppu|� ⊂ F }.

See also Section 2 for a rigorous definition of this set. Our main result can be stated as follows.

Theorem 1.1. Let q1, q2 ∈ L∞(Q). Assume that

C∗
q1

= C∗
q2

. (1.4)

Then q1 = q2.

Note that our uniqueness result is stated for bounded potentials with, roughly speaking, half of the data (1.3)
considered in [13, Theorem 4.2] which seems to be, with [3], the only result of unique global determination of general 
time-dependent coefficients for the wave equation, at finite time, in the mathematical literature. More precisely, we 
consider u ∈ L2(Q) solutions of (∂2

t − � + q)u = 0, in Q, with initial condition u|t=0 = 0 and Dirichlet boundary 
condition u|� supported on F (which, roughly speaking, corresponds to half of the boundary). Moreover, we exclude 
the data ∂tu|t=T and we consider the Neumann data ∂νu only on G (which, roughly speaking, corresponds to the other 
half of the boundary). We also mention that in contrast to [10], we do not use results of unique continuation where 
the analyticity of the coefficients with respect to t is required. To our best knowledge condition (1.4) is the weakest 
condition that guaranties global uniqueness of general time-dependent potentials.
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Let us also mention that, according to the obstruction to uniqueness given by domain of dependence arguments 
(see Subsection 1.1), there is no hope to remove all the information on {t = 0} and {t = T } for the global recovery of 
general time-dependent coefficients. Thus, for our problem the data ∂tu|t=0 and u|t=T , of solutions u of (1.1), can not 
be removed.

The main tools in our analysis are geometric optics (GO in short) solutions and Carleman estimates. Following an 
approach used for elliptic equations (e.g. [4,8,18,25]) and for determination of time-independent potentials by [2], we 
construct two kind of GO solutions: GO solutions lying in H 1(Q) without condition on ∂Q (see Section 3) and GO 
solutions associated with (1.1) that vanish on parts of ∂Q (see Section 5). With these solutions and some Carleman 
estimates with linear weight (see Section 4), we prove Theorem 1.1.

Let us observe that in the present paper we consider the recovery of a time-dependent potential q in the flat case 
for operators whose principal part is characterized by constant coefficients. This allows us to conclude through an 
argument using the Fourier transform of the potential q . The same problem stated on a manifold with boundaries 
should be carry out differently. In some recent work [20] studied this problem on simple Riemannian manifolds, but 
the recovery of a time-dependent potential q on more general Riemannian manifolds, that may not be simple, is still 
an open problem.

1.5. Outline

This paper is organized as follows. In Section 2 we give a suitable definition of the set of data C∗
q and we define 

the associated boundary operator. In Section 3, using some results of [5] and [12], we build suitable GO solutions 
associated with (1.1) without conditions on ∂Q. In Section 4, we establish a Carleman estimate for the wave equation 
with linear weight. In Section 5, we use the Carleman estimate introduced in Section 4 to build GO solutions associated 
with (1.1) that vanish on parts of ∂Q. More precisely, we build GO u which are solutions of (1.1) with u|t=0 = 0 and 
suppu|� ⊂ F . In Section 6 we combine all the results of the previous sections in order to prove Theorem 1.1. We 
prove also some auxiliary results in the appendix.

2. Preliminary results

The goal of this section is to give a suitable definition to the set of data C∗
q and to introduce some properties of the 

solutions of (1.1) for any q ∈ L∞(Q). We first introduce the space

J = {u ∈ L2(Q) : (∂2
t − �x)u = 0}

and topologize it as a closed subset of L2(Q). We work with the space

H�(Q) = {u ∈ L2(Q) : �u = (∂2
t − �x)u ∈ L2(Q)},

with the norm

‖u‖2
H�(Q) = ‖u‖2

L2(Q)
+

∥∥∥(∂2
t − �x)u

∥∥∥2

L2(Q)
.

Repeating some arguments of [22, Chapter 2, Theorem 6.4] we prove in the appendix (see Theorem A.1) that H�(Q)

is embedded continuously into the closure of C∞(Q) in the space

K�(Q) = {u ∈ H−1(0, T ;L2(�)) : �u = (∂2
t − �x)u ∈ L2(Q)}

topologized by the norm

‖u‖2
K�(Q) = ‖u‖2

H−1(0,T ;L2(�))
+

∥∥∥(∂2
t − �x)u

∥∥∥2

L2(Q)
.

Then, following [22, Chapter 2, Theorem 6.5], we prove in the appendix that the maps

τ0w = (w|�,w|t=0, ∂tw|t=0), τ1w = (∂νw|�,w|t=T , ∂tw|t=T ), w ∈ C∞(Q),
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can be extended continuously to τ0 : H�(Q) → H−3(0, T ; H− 1
2 (∂�)) × H−2(�) × H−4(�), τ1 : H�(Q) →

H−3(0, T ; H− 3
2 (∂�)) × H−2(�) × H−4(�) (see Proposition A.1). Here for all w ∈ C∞(Q) we set

τ0w = (τ0,1w,τ0,2w,τ0,3w), τ1w = (τ1,1w,τ1,2w,τ1,3w),

where

τ0,1w = w|�, τ0,2w = w|t=0, τ0,3w = ∂tw|t=0, τ1,1w = ∂νw|�, τ1,2w = w|t=T , τ1,3w = ∂tw|t=T .

Therefore, we can introduce

H(∂Q) = {τ0u : u ∈ H�(Q)} ⊂ H−3(0, T ;H− 1
2 (∂�)) × H−2(�) × H−4(�).

Following [4] and [25], in order to define an appropriate topology on H(∂Q) we consider the restriction of τ0 to the 
space J .

Proposition 2.1. The restriction of τ0 to J , that maps J onto H(∂Q), is one to one and onto.

Proof. Let v1, v2 ∈ J with τ0v1 = τ0v2. Then, in light of the theory introduced in [22, Chapter 3, Section 8], there 
exists F ∈ H�(Q) such that, for j = 1, 2, we have vj = F + wj with wj ∈ C1([0, T ]; L2(�)) ∩ C([0, T ]; H 1

0 (�))

solving⎧⎨
⎩

∂2
t wj − �xwj = −�F, (t, x) ∈ Q,

wj |t=0 = ∂twj |t=0 = 0,

wj |� = 0.

Then, the uniqueness of solutions of this initial boundary value problem (IBVP in short) implies that v1 = v2. Thus, the 
restriction of τ0 to J is one to one. Now let (g, v0, v1) ∈ H(∂Q). There exists S ∈ H�(Q) such that τ0S = (g, v0, v1). 
Consider the initial boundary value problem⎧⎨

⎩
∂2
t v − �xv = −�S, (t, x) ∈ Q,

v|t=0 = ∂tv|t=0 = 0,

v|� = 0.

Since −�S ∈ L2(Q), we deduce that this IBVP admits a unique solution v ∈ C1([0, T ]; L2(�)) ∩ C([0, T ]; H 1
0 (�)). 

Then, u = v + S ∈ L2(Q) satisfies (∂2
t − �x)u = 0 and τ0u = τ0v + τ0S = (g, v0, v1). Thus, τ0 is onto. �

From now on, we set P0 the inverse of τ0 : J →H(∂Q) and define the norm of H(∂Q) by

‖(g, v0, v1)‖H(∂Q) = ‖P0(g, v0, v1)‖L2(Q) , (g, v0, v1) ∈ H(∂Q).

In the same way, we introduce the space HF (∂Q) defined by

HF (∂Q) = {(τ0,1h, τ0,3h) : h ∈ H�(Q), τ0,2h = 0, suppτ0,1h ⊂ F }
with the associated norm given by

‖(g, v1)‖HF (∂Q) = ‖(g,0, v1)‖H(∂Q) , (g, v1) ∈ HF (∂Q).

One can easily check that the space HF (∂Q) is embedded continuously into H(∂Q). Let us consider the IBVP⎧⎨
⎩

∂2
t u − �xu + q(t, x)u = 0, in Q,

u(0, ·) = 0, ∂tu(0, ·) = v1, in �,

u = g, on �.

(2.1)

We are now in position to state existence and uniqueness of solutions of this IBVP for (g, v1) ∈ HF (∂Q).
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Proposition 2.2. Let (g, v1) ∈ HF (∂Q) and q ∈ L∞(Q). Then, the IBVP (2.1) admits a unique weak solution u ∈
L2(Q) satisfying

‖u‖L2(Q) � C ‖(g, v1)‖HF (∂Q) (2.2)

and the boundary operator Bq : (g, v1) �→ (τ1,1u|G, τ1,2u) is a bounded operator from HF (∂Q) to H−3(0, T ;
H− 3

2 (G′)) × H−2(�).

Proof. We split u into two terms u = v +P0(g, 0, v1) where v solves⎧⎨
⎩

∂2
t v − �xv + qv = −qP0(g,0, v1), (t, x) ∈ Q,

v|t=0 = ∂tv|t=0 = 0,

v|� = 0.

(2.3)

Since P0(g, 0, v1) ∈ L2(Q), the IBVP (2.3) admits a unique solution v ∈ C1([0, T ]; L2(�)) ∩ C([0, T ]; H 1
0 (�)) (e.g. 

[22, Chapter 3, Section 8]) satisfying

‖v‖C1([0,T ];L2(�)) + ‖v‖C([0,T ];H 1
0 (�)) � C ‖−qP0(g,0, v1)‖L2(Q) � C ‖q‖L∞(Q) ‖P0(g,0, v1)‖L2(Q) . (2.4)

Therefore, u = v + P0(g, 0, v1) is the unique solution of (2.1) and estimate (2.4) implies (2.2). Now let us show the 
last part of the proposition. For this purpose fix (g, v1) ∈ HF (∂Q) and consider u the solution of (2.1). Note first that 
u ∈ L2(Q) and (∂2

t − �x)u = −qu ∈ L2(Q). Thus, u ∈ H�(Q) and τ1,1u ∈ H−3(0, T ; H− 3
2 (∂�)), τ1,2u ∈ H−2(�)

with ∥∥τ1,1u
∥∥2 + ∥∥τ1,2u

∥∥2 � C2 ‖u‖2
H�(Q) = C2(‖u‖2

L2(Q)
+ ‖qu‖2

L2(Q)
) � C2(1 + ‖q‖2

L∞(Q))‖u‖2
L2(Q)

.

Combining this with (2.2) we deduce that Bq is a bounded operator from HF (∂Q) to H−3(0, T ; H− 3
2 (G′)) ×

H−2(�). �
From now on we consider the set C∗

q to be the graph of the boundary operator Bq given by

C∗
q = {(g, v1,Bq(g, v1)) : (g, v1) ∈HF (∂Q)}.

3. Geometric optics solutions without boundary conditions

In this section we build geometric optics solutions u ∈ H 1(Q) associated with the equation

∂2
t u − �xu + q(t, x)u = 0 on Q. (3.1)

More precisely, for λ > 1, ω ∈ S
n−1 = {y ∈ R

n : |y| = 1} and ξ ∈ R
1+n satisfying ξ · (1, −ω) = 0, we consider 

solutions of the form

u(t, x) = e−λ(t+x·ω)(e−iξ ·(t,x) + w(t, x)), (t, x) ∈ Q. (3.2)

Here w ∈ H 1(Q) fulfills

‖w‖L2(Q) �
C

λ

with C > 0 independent of λ. For this purpose, for all s ∈R and all ω ∈ S
n−1, we consider the operators Ps,ω defined 

by Ps,ω = e−s(t+x·ω)�es(t+x·ω). One can check that

Ps,ω = ps,ω(Dt ,Dx) = � + 2s(∂t − ω · ∇x)

with Dt = −i∂t , Dx = −i∇x and ps,ω(μ, η) = −μ2 + |η|2 + 2si(μ − ω · η), μ ∈ R, η ∈ Rn. Applying some results 
of [5] and [12] about solutions of PDEs with constant coefficients we obtain the following.
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Lemma 3.1. For every λ > 1 and ω ∈ S
n−1 there exists a bounded operator Eλ,ω : L2(Q) → L2(Q) such that:

P−λ,ωEλ,ωf = f, f ∈ L2(Q), (3.3)∥∥Eλ,ω

∥∥
B(L2(Q))

� Cλ−1, (3.4)

Eλ,ω ∈ B(L2(Q);H 1(Q)) and
∥∥Eλ,ω

∥∥
B(L2(Q);H 1(Q))

� C (3.5)

with C > depending only on T and �.

Proof. In light of [5, Theorem 2.3] (see also [12, Theorem 10.3.7]), there exists a bounded operator Eλ,ω : L2(Q) →
L2(Q), defined from a fundamental solution associated with P−λ,ω (see Section 10.3 of [12]), such that (3.3) is 
fulfilled. In addition, fixing

p̃−λ,ω(μ,η) :=
(∑

k∈N

∑
α∈Nn

|∂k
μ∂α

η p−λ,ω(μ,η)|2
) 1

2

, μ ∈ R, η ∈ R
n,

for all differential operator S(Dt , Dx) with S(μ,η)
p̃−λ,ω(μ,η)

a bounded function, we have S(Dt, Dx)Eλ,ω ∈ B(L2(Q)) and 
there exists a constant C depending only on �, T such that∥∥S(Dt ,Dx)Eλ,ω

∥∥
B(L2(Q))

� C sup
(μ,η)∈R1+n

|S(μ,η)|
p̃−λ,ω(μ,η)

. (3.6)

Note that p̃−λ,ω(μ, η) �
∣∣I∂μp−λ,ω(μ,η)

∣∣ = 2λ. Therefore, (3.6) implies

∥∥Eλ,ω

∥∥
B(L2(Q))

� C sup
(μ,η)∈R1+n

1

p̃−λ,ω(μ,η)
� Cλ−1

and (3.4) is fulfilled. In a same way, we have p̃−λ,ω(μ, η) �
∣∣R∂μp−λ,ω(μ,η)

∣∣ = 2|μ| and p̃−λ,ω(μ, η) �∣∣R∂ηj
p−λ,ω(μ,η)

∣∣ = 2|ηj |, j = 1, . . . , n and η = (η1, . . . , ηn). Therefore, in view of [5, Theorem 2.3], we have 
Eλ,ω ∈ B(L2(Q); H 1(Q)) with

∥∥Eλ,ω

∥∥
B(L2(Q);H 1(Q))

� C sup
(μ,η)∈R1+n

|μ| + |η1| + . . . + |ηn|
p̃−λ,ω(μ,η)

+ Cλ−1 � C(n + 2)

and (3.5) is proved. �
Applying this result, we can build geometric optics solutions of the form (3.2).

Proposition 3.1. Let q ∈ L∞(Q), ω ∈ S
n−1. Then, there exists λ0 > 1 such that for λ � λ0 the equation (3.1) admits 

a solution u ∈ H 1(Q) of the form (3.2) with

‖w‖Hk(Q) � Cλk−1, k = 0,1, (3.7)

where C and λ0 depend on �, ξ , T , M � ‖q‖L∞(Q).

Proof. We start by recalling that, for every (t, x) ∈ Q, we have

�e−λ(t+x·ω)e−iξ ·(t,x) = e−λ(t+x·ω)
(�e−iξ ·(t,x) + 2iλξ · (1,−ω)e−iξ ·(t,x)

)
= e−λ(t+x·ω)�e−iξ ·(t,x).

Thus, w should be a solution of

∂2
t w − �xw − 2λ(∂t − ω · ∇x)w = −

(
(� + q)e−iξ ·(t,x) + qw

)
. (3.8)

Therefore, according to Lemma 3.1, we can define w as a solution of the equation

w = −Eλ,ω

(
(� + q)e−iξ ·(t,x) + qw

)
, w ∈ L2(Q)
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with Eλ,ω ∈ B(L2(Q)) given by Lemma 3.1. For this purpose, we will use a standard fixed point argument associated 
with the map

G : L2(Q) → L2(Q),

h �→ −Eλ,ω

[
(� + q)e−iξ ·(t,x) + qh

]
.

Indeed, in view of (3.4), fixing M1 > 0, there exists λ0 > 1 such that for λ � λ0 the map G admits a unique fixed 
point w in {u ∈ L2(Q) : ‖u‖L2(Q) � M1}. In addition, condition (3.4)–(3.5) imply that w ∈ H 1(Q) fulfills (3.7). This 
completes the proof. �
4. Carleman estimates

This section is devoted to the proof of Carleman estimates similar to [2] and [4]. More precisely, we fix ω ∈ S
n−1

and we consider the following estimates.

Theorem 4.1. Let q ∈ L∞(Q) and u ∈ C2(Q). If u satisfies the condition

u|� = 0, u|t=0 = ∂tu|t=0 = 0 (4.1)

then there exists λ1 > 1 depending only on �, T and M � ‖q‖L∞(Q) such that the estimate

λ
∫
�

e−2λ(T +ω·x) |∂tu(T , x)|2 dx + λ
∫
�+,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)|dσ(x)dt + λ2
∫
Q

e−2λ(t+ω·x) |u|2 dxdt

� C
(∫

Q
e−2λ(t+ω·x)

∣∣(∂2
t − �x + q)u

∣∣2
dxdt + λ3

∫
�

e−2λ(T +ω·x) |u(T , x)|2 dx
)

+C
(
λ

∫
�

e−2λ(T +ω·x) |∇xu(T , x)|2 dx + λ
∫
�−,ω

e−2λ(t+ω·x) |∂νu|2 |ω · ν(x)|dσ(x)dt
)

(4.2)

holds true for λ � λ1 with C depending only on �, T and M � ‖q‖L∞(Q). If u satisfies the condition

u|� = 0, u|t=T = ∂tu|t=T = 0 (4.3)

then the estimate

λ
∫
�

e2λω·x ∣∣∂tu|t=0
∣∣2

dx + λ
∫
�−,ω

e2λ(t+ω·x) |∂νu|2 |ω · ν(x)|dσ(x)dt + λ2
∫
Q

e2λ(t+ω·x) |u|2 dxdt

� C
(∫

Q
e2λ(t+ω·x)

∣∣(∂2
t − �x + q)u

∣∣2
dxdt + λ3

∫
�

e2λω·x |u(0, x)|2 dx + λ
∫
�

e2λω·x |∇xu(0, x)|2 dx
)

+Cλ
∫
�+,ω

e2λ(t+ω·x) |∂νu|2 |ω · ν(x)|dσ(x)dt

(4.4)

holds true for λ � λ1.

In order to prove these estimates, we fix u ∈ C2(Q) satisfying (4.1) (resp. (4.3)) and we set v = e−λ(t+ω·x)u (resp.
v = eλ(t+ω·x)u) in such a way that

e−λ(t+ω·x)�u = Pλ,ωv,
(

resp. eλ(t+ω·x)�u = P−λ,ωv
)

. (4.5)

Then, we consider the following estimates associated with the weighted operators P±λ,ω.

Lemma 4.1. Let v ∈ C2(Q) and λ > 1. If v satisfies the condition

v|� = 0, v|t=0 = ∂tv|t=0 = 0 (4.6)

then the estimate

λ
∫
�

|∂tv(T , x)|2 dx + 2λ
∫
�+,ω

|∂νv|2 ω · ν(x)dσ (x)dt + cλ2
∫
Q

|v|2 dxdt

�
∫ ∣∣Pλ,ωv

∣∣2
dxdt + 14λ

∫ |∇xv(T , x)|2 dx + 2λ
∫ |∂νv|2 |ω · ν(x)|dσ(x)dt

(4.7)

Q � �−,ω
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holds true for c > 0 depending only on � and T . If v satisfies the condition

v|� = 0, v|t=T = ∂tv|t=T = 0 (4.8)

then the estimate

λ
∫
�

|∂tv(0, x)|2 dx + 2λ
∫
�−,ω

|∂νv|2 |ω · ν(x)|dσ(x)dt + cλ2
∫
Q

|v|2 dxdt

�
∫
Q

∣∣P−λ,ωv
∣∣2

dxdt + 14λ
∫
�

|∇xv(0, x)|2 dx + 2λ
∫
�+,ω

|∂νv|2 ω · ν(x)dσ (x)dt
(4.9)

holds true.

Proof. We start with (4.7). For this purpose we fix v ∈ C2(Q) satisfying (4.6) and we consider

Iλ,ω =
∫
Q

|Pλ,ωv|2dtdx.

Without lost of generality we assume that v is real valued. Repeating some arguments of [2] (see the formula 2 lines 
before (2.4) in page 1225 of [2] and formula (2.5) in page 1226 of [2]) we obtain the following

Iλ,ω �
∫
Q

|�v|2dtdx + cλ2
∫
Q

|v|2 dxdt + 2λ

∫
�

|∂νv|2 ω · ν(x)dσ (x)dt

+2λ

∫
�

|∂tv(T , x)|2 dx + 2λ

∫
�

|∇xv(T , x)|2 dx − 4λ

∫
�

(∂tv(T , x))(ω · ∇xv(T , x))dx.

On the other hand, an application of the Cauchy–Schwarz inequality yields

4λ

∣∣∣∣∣∣
∫
�

(∂tv(T , x))(ω · ∇xv(T , x))dx

∣∣∣∣∣∣�
λ

4

∫
�

|∂tv(T , x)|2 dx + 16λ

∫
�

|∇xv(T , x)|2 dx

and we deduce that

Iλ,ω + 14λ
∫
�

|∇xv(T , x)|2 dx

�
∫
Q

|�v|2dtdx + cλ2
∫
Q

|v|2 dxdt + 2λ
∫
�

|∂νv|2 ω · ν(x)dσ (x)dt + λ
∫
�

|∂tv(T , x)|2 dx.

From this last estimate we deduce easily (4.7). Now let us consider (4.9). For this purpose note that for v satisfy-
ing (4.8), w defined by w(t, x) = v(T − t, x) satisfies (4.6). Thus, applying (4.7) to w with ω replaced by −ω we 
obtain (4.9). �

In light of Lemma 4.1, we are now in position to prove Theorem 4.1.

Proof of Theorem 4.1. Let us first consider the case q = 0. Note that for u satisfying (4.1), v = e−λ(t+ω·x)u satis-
fies (4.6). Moreover, we have (4.5) and (4.1) implies ∂νv|� = e−λ(t+ω·x)∂νu|� . Finally, using the fact that

∂tu = ∂t (e
λ(t+ω·x)v) = λu + eλ(t+ω·x)∂t v, ∇xv = e−λ(t+ω·x)(∇xu − λuω),

we obtain∫
�

e−2λ(T +ω·x) |∂tu(T , x)|2 dx � 2
∫
�

|∂tv(T , x)|2 dx + 2λ2
∫
�

e−2λ(T +ω·x) |u(T , x)|2 dx,

∫
�

|∇xv(T , x)|2 dx � 2λ2
∫
�

e−2λ(T +ω·x) |u(T , x)|2 dx + 2
∫
�

e−2λ(T +ω·x) |∇xu(T , x)|2 dx.

Thus, applying the Carleman estimate (4.7) to v, we deduce (4.2). For q = 0, we have∣∣∣∂2
t u − �xu

∣∣∣2 =
∣∣∣∂2

t u − �xu + qu − qu

∣∣∣2
� 2

∣∣∣(∂2
t − �x + q)u

∣∣∣2 + 2‖q‖2
L∞(Q) |u|2
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and hence if we choose λ1 > 2C ‖q‖2
L∞(Q), replacing C by

C1 = Cλ2
1

λ2
1 − 2C ‖q‖2

L∞(Q)

,

we deduce (4.2) from the same estimate when q = 0. Using similar arguments, we prove (4.4). �
Remark 4.1. Note that, by density, estimate (4.2) can be extended to any function u ∈ C1([0, T ]; L2(�)) ∩
C([0, T ]; H 1(�)) satisfying (4.6), (∂2

t − �x)u ∈ L2(Q) and ∂νu ∈ L2(�).

5. Geometric optics solutions vanishing on parts of the boundary

In this section we fix q ∈ L∞(Q). From now on, for all y ∈ S
n−1 and all r > 0, we set

∂�+,r,y = {x ∈ ∂� : ν(x) · y > r}, ∂�−,r,y = {x ∈ ∂� : ν(x) · y � r}
and �±,r,y = (0, T ) × ∂�±,r,y . Here and in the remaining of this text we always assume, without mentioning it, that 
y and r are chosen in such way that ∂�±,r,±y contain a non-empty relatively open subset of ∂�. Without lost of gen-
erality we assume that there exists 0 < ε < 1 such that for all ω ∈ {y ∈ S

n−1 : |y − ω0| � ε} we have ∂�−,ε,−ω ⊂ F ′. 
The goal of this section is to use the Carleman estimate (4.4) in order to build solutions u ∈ H�(Q) to⎧⎨

⎩
(∂2

t − �x + q(t, x))u = 0 in Q,

u|t=0 = 0,

u = 0, on �+,ε/2,−ω,

(5.1)

of the form

u(t, x) = eλ(t+ω·x) (1 + z(t, x)) , (t, x) ∈ Q. (5.2)

Here ω ∈ {y ∈ S
n−1 : |y − ω0| � ε}, z ∈ e−λ(t+ω·x)H�(Q) fulfills: z(0, x) = −1, x ∈ �, z = −1 on �+,ε/2,−ω and

‖z‖L2(Q) � Cλ− 1
2 (5.3)

with C depending on F ′, �, T and any M � ‖q‖L∞(Q). Since � \ F ⊂ � \ �−,ε,−ω = �+,ε,−ω and since �+,ε/2,−ω

is a neighborhood of �+,ε,−ω in �, it is clear that condition (5.1) implies (τ0,1u, τ0,3u) ∈ HF (∂Q) (recall that for 
v ∈ C∞(Q), τ0,1v = v|� , τ0,3v = ∂tv|t=0).

The main result of this section can be stated as follows.

Theorem 5.1. Let q ∈ L∞(Q), ω ∈ {y ∈ S
n−1 : |y − ω0| � ε}. For all λ � λ1, with λ1 the constant of Theorem 4.1, 

there exists a solution u ∈ H�(Q) of (5.1) of the form (5.2) with z satisfying (5.3).

In order to prove existence of such solutions of (5.1) we need some preliminary tools and an intermediate result.

5.1. Weighted spaces

In this subsection we give the definition of some weighted spaces. We set s ∈ R, we fix ω ∈ {y ∈ S
n−1 : |y −

ω0| � ε} and we denote by γ the function defined on ∂� by

γ (x) = |ω · ν(x)| , x ∈ ∂�.

We introduce the spaces Ls(Q), Ls(�), and for all non-negative measurable function h on ∂� the spaces Ls,h,±
defined respectively by

Ls(Q) = e−s(t+ω·x)L2(Q), Ls(�) = e−sω·xL2(�), Ls,h,± = {f : es(t+ω·x)h
1
2 (x)f ∈ L2(�±,ω)}
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with the associated norm

‖u‖s =
⎛
⎜⎝∫

Q

e2s(t+ω·x) |u|2 dxdt

⎞
⎟⎠

1
2

, u ∈ Ls(Q),

‖u‖s,0 =
⎛
⎝∫

�

e2sω·x |u|2 dx

⎞
⎠

1
2

, u ∈ Ls(�),

‖u‖s,h,± =
⎛
⎜⎝ ∫

�±,ω

e2s(t+ω·x)h(x) |u|2 dσ(x)dt

⎞
⎟⎠

1
2

, u ∈ Ls,h,±.

5.2. Intermediate result

We set the space

D = {v ∈ C2(Q) : v|� = 0, v|t=T = ∂tv|t=T = v|t=0 = 0}
and, in view of Theorem 4.1, applying the Carleman estimate (4.4) to any f ∈D we obtain

λ‖f ‖λ + λ
1
2
∥∥∂tf|t=0

∥∥
λ,0 + λ

1
2 ‖∂νf ‖λ,γ,− � C(

∥∥∥(∂2
t − �x + q)f

∥∥∥
λ
+ ‖∂νf ‖λ,λγ,+), λ � λ1. (5.4)

We introduce also the space

M = {((∂2
t − �x + q)v, ∂νv|�+,ω ) : v ∈D}

and think of M as a subspace of Lλ(Q) × Lλ,λγ,+. We consider the following intermediate result.

Lemma 5.1. Given λ � λ1, with λ1 the constant of Theorem 4.1, and

v ∈ L−λ(Q), v− ∈ L−λ,γ −1,−, v0 ∈ L−λ(�),

there exists u ∈ L−λ(Q) such that:

1) (∂2
t − �x + q)u = v in Q,

2) u|�−,ω = v−, u|t=0 = v0,

3) ‖u‖−λ � C
(
λ−1 ‖v‖−λ + λ− 1

2 ‖v−‖−λ,γ −1,− + λ− 1
2 ‖v0‖−λ,0

)
with C depending on �, T , M � ‖q‖L∞(Q).

Proof. In view of (5.4), we can define the linear function S on M by

S[((� + q)f, ∂νf|�+,ω )] = 〈f, v〉L2(Q) − 〈∂νf, v−〉L2(�−,ω) − 〈
∂tf|t=0, v0

〉
L2(�)

, f ∈D.

Then, using (5.4), for all f ∈D, we obtain∣∣S[((� + q)f, ∂νf|�+,ω )]∣∣
� ‖f ‖λ ‖v‖−λ + ‖∂νf ‖λ,γ,− ‖v−‖−λ,γ −1,− + ∥∥∂tf|t=0

∥∥
λ,0 ‖v0‖−λ,0

� λ−1 ‖v‖−λ

(
λ‖f ‖λ

) + λ− 1
2 ‖v−‖−λ,γ −1,−

(
λ

1
2 ‖∂νf ‖λ,γ,−

)
+ λ− 1

2 ‖v0‖−λ,0

(
λ

1
2
∥∥∂tf|t=0

∥∥
λ,0

)
� C

(
λ−1 ‖v‖−λ + λ− 1

2 ‖v−‖−λ,γ −1,− + λ− 1
2 ‖v0‖−λ,0

)(‖(� + q)f ‖λ + ‖∂νf ‖λ,λγ,+
)

� 2C
(
λ−1 ‖v‖−λ + λ− 1

2 ‖v−‖−λ,γ −1,− + λ− 1
2 ‖v0‖−λ,0

)∥∥((� + q)f, ∂νf|�+,ω )
∥∥

Lλ(Q)×Lλ,λγ,+

with C the constant of (5.4). Applying the Hahn Banach theorem we deduce that S can be extended to a continuous 
linear form, also denoted by S, on Lλ(Q) × Lλ,λγ,+ satisfying
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‖S‖� C
(
λ−1 ‖v‖−λ + λ− 1

2 ‖v−‖−λ,γ −1,− + λ− 1
2 ‖v0‖−λ,0

)
. (5.5)

Thus, there exists

(u,u+) ∈ L−λ(Q) × L−λ,(λγ )−1,+

such that for all f ∈ D we have

S[((� + q)f, ∂νf|�+,ω )] = 〈(� + q)f,u〉L2(Q) − 〈∂νf,u+〉L2(�+,ω) .

Therefore, for all f ∈ D we have

〈(� + q)f,u〉L2(Q) − 〈∂νf,u+〉L2(�+,ω)

= 〈f, v〉L2(Q) − 〈∂νf, v−〉L2(�−,ω) − 〈
∂tf|t=0, v0

〉
L2(�)

.
(5.6)

Note first that, since L±λ(Q) is embedded continuously into L2(Q), we have u ∈ L2(Q). Therefore, taking f ∈
C∞

0 (Q) shows 1). For condition 2), using the fact that L±λ(Q) is embedded continuously into L2(Q) we deduce that 
u ∈ H�(Q). Thus, we can define the trace u|� , u|t=0 and allowing f ∈ D to be arbitrary shows that u|�−,ω = v−, 
u|t=0 = v0 and u|�+,ω = −u+. Here we use the fact that �+,ω ∩ �−,ω = ∅. Finally, condition 3) follows from the fact 
that

‖u‖−λ � ‖S‖� C
(
λ−1 ‖v‖−λ + λ− 1

2 ‖v−‖−λ,γ −1,− + λ− 1
2 ‖v0‖−λ,0

)
. �

Armed with this lemma we are now in position to prove Theorem 5.1.

5.3. Proof of Theorem 5.1

Note first that z must satisfy⎧⎪⎪⎨
⎪⎪⎩

z ∈ L2(Q)

(∂2
t − �x + q)(eλ(t+ω·x)z) = −qeλ(t+ω·x) in Q

z(0, x) = −1, x ∈ �,

z = −1 on �+,ε/2,−ω.

(5.7)

Let ψ ∈ C∞
0 (Rn) be such that suppψ ∩ ∂� ⊂ {x ∈ ∂� : ω · ν(x) < −ε/3} and ψ = 1 on {x ∈ ∂� : ω · ν(x) <

−ε/2} = ∂�+,ε/2,−ω . Choose v−(t, x) = −eλ(t+ω·x)ψ(x), (t, x) ∈ �−,ω. Since v−(t, x) = 0 for t ∈ (0, T ), x ∈ {x ∈
∂� : ω · ν(x) � −ε/3} we have v− ∈ L−λ,γ −1,−. Fix also v(t, x) = −qeλ(t+ω·x) and v0(x) = −eλω·x , (t, x) ∈ Q. 
From Lemma 5.1, we deduce that there exists w ∈ H�(Q) such that⎧⎨

⎩
(∂2

t − �x + q)w = v(t, x) = −qeλ(t+ω·x) in Q,

w(0, x) = v0(x) = −eλx·ω, x ∈ �,

w(t, x) = v−(t, x) = −eλ(t+ω·x)ψ(x), (t, x) ∈ �−,ω.

Then, for z = e−λ(t+ω·x)w condition (5.7) will be fulfilled. Moreover, condition 3) of Lemma 5.1 implies

‖z‖L2(Q) = ‖w‖−λ � C
(
λ−1 ‖v‖−λ + λ− 1

2 ‖v−‖−λ,γ −1,− + λ− 1
2 ‖v0‖−λ,0

)
� C

(
λ−1 ‖q‖L2(Q) + λ− 1

2

∥∥∥ψγ −1/2
∥∥∥

L2(�−,ω)
+ λ− 1

2 ‖1‖L2(�)

)
� Cλ− 1

2

with C depending only on �, T and ‖q‖L∞(Q). Therefore, estimate (5.3) holds. Using the fact that eλ(t+ω·x)z = w ∈
H�(Q), we deduce that u defined by (5.2) is lying in H�(Q) and is a solution of (5.1). This completes the proof of 
Theorem 5.1.
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6. Uniqueness result

This section is devoted to the proof of Theorem 1.1. From now on we set q = q2 − q1 on Q and we assume 
that q = 0 on R1+n \ Q. Without lost of generality we assume that for all ω ∈ {y ∈ S

n−1 : |y − ω0| � ε} we have 
∂�−,ε,ω ⊂ G′ with ε > 0 introduced in the beginning of the previous section. Let λ > max(λ1, λ0) and fix ω ∈ {y ∈
S

n−1 : |y − ω0| � ε}. According to Proposition 3.1, we can introduce

u1(t, x) = e−λ(t+ω·x)
(
e−iξ ·(t,x) + w(t, x)

)
, (t, x) ∈ Q,

where u1 ∈ H 1(Q) satisfies ∂2
t u1 − �xu1 + q1u1 = 0, ξ · (1, −ω) = 0 and w satisfies (3.7). Moreover, in view of 

Theorem 5.1, we consider u2 ∈ H�(Q) a solution of (5.1) with q = q2 of the form

u2(t, x) = eλ(t+ω·x) (1 + z(t, x)) , (t, x) ∈ Q

with z satisfying (5.3), such that suppτ0,1u2 ⊂ F and τ0,2u2 = 0 (we recall that τ0,j , j = 1, 2, are the extensions on 
H�(Q) of the operators defined by τ0,1v = v|� and τ0,2v = v|t=0, v ∈ C∞(Q)). In view of Proposition 2.2, there exists 
a unique solution w1 ∈ H�(Q) of{

∂2
t w1 − �xw1 + q1w1 = 0 in Q,

τ0w1 = τ0u2.
(6.1)

Then, u = w1 − u2 solves⎧⎨
⎩

∂2
t u − �xu + q1u = (q2 − q1)u2 in Q,

u(0, x) = ∂tu(0, x) = 0 on �,

u = 0 on �

(6.2)

and since (q2 − q1)u2 ∈ L2(Q), in view of [1, Theorem A.2] (see also [21, Theorem 2.1] for q = 0), we deduce that 
u ∈ C1([0, T ]; L2(�)) ∩ C([0, T ]; H 1

0 (�)) ∩ H�(Q) ⊂ H 1(Q) ∩ H�(Q) with ∂νu ∈ L2(�). Using the fact that u1 ∈
H 1(Q) ∩ H�(Q), we deduce that (∂tu1, −∇xu1) ∈ Hdiv(Q) = {F ∈ L2(Q; Cn+1) : div(t,x)F ∈ L2(Q)}. Therefore, 
in view of [17, Lemma 2.2], we can apply the Green formula to get∫

Q

u(�u1)dxdt = −
∫
Q

(∂tu∂tu1 − ∇xu · ∇xu1)dxdt + 〈(∂tu1,−∇xu1) · n, u〉
H

− 1
2 (∂Q),H

1
2 (∂Q)

with n the outward unit normal vector to ∂Q. In the same way, we find∫
Q

u1(�u)dxdt = −
∫
Q

(∂tu∂tu1 − ∇xu · ∇xu1)dxdt + 〈(∂tu,−∇xu) · n, u1〉
H

− 1
2 (∂Q),H

1
2 (∂Q)

.

From these two formulas we deduce that∫
Q

(q2 − q1)u2u1dxdt =
∫
Q

u1(�u + q1u)dxdt −
∫
Q

u(�u1 + q1u1)dxdt

= 〈(∂tu,−∇xu) · n, u1〉
H

− 1
2 (∂Q),H

1
2 (∂Q)

− 〈(∂tu1,−∇xu1) · n, u〉
H

− 1
2 (∂Q),H

1
2 (∂Q)

.

On the other hand we have u|t=0 = ∂tu|t=0 = u|� = 0 and condition (1.4) implies that u|t=T = ∂νu|G = 0. Combining 
this with the fact that u ∈ C1([0, T ]; L2(�)) and ∂νu ∈ L2(�), we obtain∫

qu2u1dxdt = −
∫

∂νuu1dσ(x)dt +
∫

∂tu(T , x)u1(T , x)dx. (6.3)
Q �\G �
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Applying the Cauchy–Schwarz inequality to the first expression on the right hand side of this formula, we get∣∣∣∣∣∣∣
∫

�\G
∂νuu1dσ(x)dt

∣∣∣∣∣∣∣�
∫

�+,ε,ω

∣∣∣∂νue−λ(t+ω·x)(e−iξ ·(t,x) + w)

∣∣∣dσ(x)dt

� C

⎛
⎜⎝ ∫

�+,ε,ω

∣∣∣e−λ(t+ω·x)∂νu

∣∣∣2
dσ(x)dt

⎞
⎟⎠

1
2

for some C independent of λ. Here we have used both (3.7) and the fact that (� \ G) ⊂ �+,ε,ω . In the same way, we 
have ∣∣∣∣∣∣

∫
�

∂tu(T , x)u1(T , x)dx

∣∣∣∣∣∣�
∫
�

∣∣∣∂tu(T , x)e−λ(T +ω·x)
(
e−iξ ·(T ,x) + w(T ,x)

)∣∣∣dx

� C

⎛
⎝∫

�

∣∣∣e−λ(T +ω·x)∂tu(T , x)

∣∣∣2
dx

⎞
⎠

1
2

.

Combining these estimates with the Carleman estimate (4.2), the fact that u|t=T = ∂νu|�−,ω = 0, ∂�+,ε,ω ⊂ ∂�+,ω, 
we find∣∣∣∣∣∣∣

∫
Q

(q2 − q1)u2u1dxdt

∣∣∣∣∣∣∣
2

� 2C

⎛
⎜⎝ ∫

�+,ε,ω

∣∣∣e−λ(t+ω·x)∂νu

∣∣∣2
dσ(x)dt +

∫
�

∣∣∣e−λ(T +ω·x)∂tu(T , x)

∣∣∣2
dx

⎞
⎟⎠

� 2ε−1C

⎛
⎜⎝ ∫

�+,ω

∣∣∣e−λ(t+ω·x)∂νu

∣∣∣2
ω · ν(x)dσ (x)dt +

∫
�

∣∣∣e−λ(T +ω·x)∂tu(T , x)

∣∣∣2
dx

⎞
⎟⎠

� ε−1C

λ

⎛
⎜⎝∫

Q

∣∣∣e−λ(t+ω·x)(∂2
t − �x + q1)u

∣∣∣2
dxdt

⎞
⎟⎠

� ε−1C

λ

⎛
⎜⎝∫

Q

∣∣∣e−λ(t+ω·x)qu2

∣∣∣2
dxdt

⎞
⎟⎠ = ε−1C

λ

⎛
⎜⎝∫

Q

|q|2 (1 + |z|)2dxdt

⎞
⎟⎠ . (6.4)

Here C > 0 stands for some generic constant independent of λ. It follows that

lim
λ→+∞

∫
Q

qu2u1dxdt = 0. (6.5)

On the other hand, we have∫
Q

qu1u2dxdt =
∫

R1+n

q(t, x)e−iξ ·(t,x)dxdt +
∫
Q

Z(t, x)dxdt

with Z(t, x) = q(t, x)(z(t, x)e−iξ ·(t,x) + w(t, x) + z(t, x)w(t, x)). Then, in view of (3.7) and (5.3), an application of 
the Cauchy–Schwarz inequality yields
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∣∣∣∣∣∣∣
∫
Q

Z(t, x)dxdt

∣∣∣∣∣∣∣� Cλ− 1
2

with C independent of λ. Combining this with (6.5), we deduce that for all ω ∈ {y ∈ S
n−1 : |y − ω0| � ε} and all 

ξ ∈R1+n orthogonal to (1, −ω), the Fourier transform F(q) of q satisfies

F(q)(ξ) = (2π)−
n+1

2

∫
R1+n

q(t, x)e−iξ ·(t,x)dxdt = 0.

On the other hand, since q ∈ L∞(R1+n) is supported on Q which is compact, F(q) is analytic and it follows that 
q = 0 and q1 = q2. This completes the proof of Theorem 1.1.
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Appendix A

In this appendix we prove that the space C∞(Q) is dense in H�(Q) in some appropriate sense and we show that 
the maps τ0 and τ1 can be extended continuously on these spaces. Without lost of generality we consider only these 
spaces for real valued functions. The results of this section are well known, nevertheless we prove them for sake of 
completeness.

A.1. Density result in H�(Q)

Let us first recall the definition of K�(Q):

K�(Q) = {u ∈ H−1(0, T ;L2(�)) : �u = (∂2
t − �x)u ∈ L2(Q)}

with the norm

‖u‖2
K�(Q) = ‖u‖2

H−1(0,T ;L2(�))
+ ‖�u‖2

L2(Q)
.

The goal of this subsection is to prove the following.

Theorem A.1. H�(Q) is embedded continuously into the closure of C∞(Q) with respect to K�(Q).

Proof. Let N be a continuous linear form on K�(Q) satisfying

Nf = 0, f ∈ C∞(Q). (A.1)

In order to show the required density result we will prove that this condition implies that N|H�(Q) = 0.
By considering the application u �→ (u, �u) we can identify K�(Q) to a subspace of H−1(0, T ; L2(�)) ×L2(Q). 

Then, applying the Hahn Banach theorem we deduce that N can be extended to a continuous linear form on 
H−1(0, T ; L2(�)) × L2(Q). Therefore, there exist h1 ∈ H 1

0 (0, T ; L2(�)), h2 ∈ L2(Q) such that

N(u) = 〈u,h1〉H−1(0,T ;L2(�)),H 1
0 (0,T ;L2(�)) + 〈�u,h2〉L2(Q) , u ∈ K�(Q).

Now let O ⊂R
n be a bounded C∞ domain such that � ⊂O and fix Qε = (−ε, T + ε) ×O with ε > 0. Let h̃j be the 

extension of hj on R1+n by 0 outside of Q for j = 1, 2. In view of (A.1) we have
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〈
f, h̃1

〉
L2(Qε)

+
〈
(∂2

t − �x)f, h̃2

〉
L2(Qε)

= N(f|Q) = 0, f ∈ C∞
0 (Qε).

Thus, in the sense of distribution we have

�h̃2 = −h̃1 on Qε.

Moreover, since h̃2 = 0 on R1+n \ Q ⊃ ∂Qε , we deduce that h̃2 solves⎧⎨
⎩

∂2
t h̃2 − �xh̃2 = −h̃1 in Qε,

h̃2(−ε, x) = ∂t h̃2(−ε, x) = 0, x ∈O,

h̃2(t, x) = 0, (t, x) ∈ (−ε,T + ε) × ∂O.

But, since h1 ∈ H 1
0 (0, T ; L2(�)), we have h̃1 ∈ H 1

0 (−ε, T + ε; L2(O)) and we deduce from [23, Chapter 5, Theo-
rem 2.1] that this IBVP admits a unique solution lying in H 2(Qε). Therefore, h̃2 ∈ H 2(Qε). Combining this with 
the fact that h̃2 = 0 on Qε \ Q, we deduce that h2 ∈ H 2

0 (Q), with H 2
0 (Q) the closure of C∞

0 (Q) in H 2(Q), and that �h2 = −h1 in Q. Thus, for every u ∈ H�(Q) we have

〈�u,h2〉L2(Q) = 〈�u,h2〉H−2(Q),H 2
0 (Q) = 〈u,�h2〉L2(Q) = −〈u,h1〉L2(Q) .

Here we use the fact that H�(Q) ⊂ L2(Q). Then, it follows that

N(u) = 〈u,h1〉L2(Q) − 〈u,h1〉L2(Q) = 0, u ∈ H�(Q).

From this last result we deduce that H�(Q) is contained into the closure of C∞(Q) with respect to K�(Q). Combining 
this with the fact that H�(Q) is embedded continuously into K�(Q), we deduce the required result. �
A.2. Trace operator in H�(Q)

In this subsection we extend the trace maps τ0 and τ1 into H�(Q) by duality in the following way.

Proposition A.1. The maps

τ0w = (τ0,1w,τ0,2w,τ0,3w) = (w|�,w|t=0, ∂tw|t=0), w ∈ C∞(Q),

τ1w = (τ1,1w,τ1,2w,τ1,3w) = (∂νw|�,w|t=T , ∂tw|t=T ), w ∈ C∞(Q),

can be extended continuously to τ0 : H�(Q) → H−3(0, T ; H− 1
2 (∂�)) × H−2(�) × H−4(�), τ1 : H�(Q) →

H−3(0, T ; H− 3
2 (∂�)) × H−2(�) × H−4(�).

Proof. It is well known that the trace maps

u �→ (u|∂�, ∂νu|∂�)

can be extended continuously to a bounded operator from H 2(�) to H
3
2 (∂�) × H

1
2 (∂�) which is onto. Therefore, 

there exists a bounded operator R : H 3
2 (∂�) × H

1
2 (∂�) → H 2(�) such that

R(h1, h2)|∂� = h1, ∂νR(h1, h2)|∂� = h2, (h1, h2) ∈ H
3
2 (∂�) × H

1
2 (∂�).

Fix g ∈ H 3
0 (0, T ; H 1

2 (∂�)) and choose G(t, .) = R(0, g(t, .)). One can check that G ∈ H 3
0 (0, T ; H 2(�)) and

‖G‖H 3(0,T ;H 2(�)) � ‖R‖‖g‖
H 3(0,T ;H 1

2 (∂�))
. (A.2)

Applying twice the Green formula we obtain∫
vgdσ(x)dt =

∫
�vGdxdt −

∫
v�Gdxdt, v ∈ C∞(Q).
� Q Q
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But �G ∈ H 1
0 (0, T ; H 2(�)), and we have〈

τ0,1v,g
〉
H−3(0,T ;H− 1

2 (∂�)),H 3
0 (0,T ;H 1

2 (∂�))
= 〈�v,G〉L2(Q) − 〈v,�G〉H−1(0,T ;L2(�)),H 1

0 (0,T ;L2(�)) .

Then, using (A.2) and the Cauchy Schwarz inequality, for all v ∈ C∞(Q), we obtain∣∣〈τ0,1v,g
〉∣∣� ‖�v‖L2(Q) ‖G‖L2(Q) + ‖v‖H−1(0,T ;L2(�)) ‖�G‖H 1(0,T ;L2(�))

� C ‖v‖K�(Q) ‖g‖
H 3(0,T ;H 1

2 (∂�))

which, combined with the density result of Theorem A.1, implies that τ0,1 : v �→ v|� extend continuously to a bounded 

operator from H�(Q) to H−3(0, T ; H− 1
2 (∂�)). In a same way we prove that

τ1,1v = ∂νv|�, v ∈ C∞(Q)

extend continuously to a bounded operator from H�(Q) to H−3(0, T ; H− 3
2 (∂�)).

Now let us consider the operators τi,j , i = 0, 1, j = 2, 3. We start with

τ0,2 : v �−→ v|t=0, v ∈ C∞(Q).

Let h ∈ H 2
0 (�) and fix H(t, x) = tψ(t)h(x) with ψ ∈ C∞

0 (−T , T2 ) satisfying 0 � ψ � 1 and ψ = 1 on [−T
3 , T3 ]. 

Then, using the fact that ψ = 1 on a neighborhood of t = 0, we deduce that

H|� = ∂νH|� = H|t=0 = H|t=T = ∂tH|t=T = �H|t=0 = �H|t=T = 0, ∂tH|t=0 = h.

Therefore, �H ∈ H 1
0 (0, T ; L2(�)) and repeating the above arguments, for all v ∈ C∞(Q), we obtain the representa-

tion 〈
τ0,2v,h

〉
H−2(�),H 2

0 (�)
= 〈�v,H 〉L2(Q) − 〈v,�H 〉H−1(0,T ;L2(�)),H 1

0 (0,T ;L2(�)) .

Then, we prove by density that τ0,2 extends continuously to τ0,2 : H�(Q) −→ H−2(�).
For

τ0,3 : v �−→ ∂tv|t=0, v ∈ C∞(Q),

let ϕ ∈ H 4
0 (�) and fix

�(t, x) = ψ(t)ϕ(x) + ψ(t)t2�xϕ(x)

2
.

Then, � satisfies

�|� = ∂ν�|� = ∂t�|t=0 = �|t=T = ∂t�|t=T = 0, �|t=0 = ϕ.

Moreover, we have �� ∈ H 1(0, T ; L2(�)) with

(∂2
t − �x)�|t=0 = −�xϕ + �xϕ = 0, (∂2

t − �x)�|t=T = 0

and it follows that �� ∈ H 1
0 (0, T ; L2(�)). Therefore, repeating the above arguments we obtain the representation〈

τ0,3v,ϕ
〉
H−4(�),H 4

0 (�)
= 〈v,��〉H−1(0,T ;L2(�)),H 1

0 (0,T ;L2(�)) − 〈�v,�〉L2(Q)

and we deduce that τ0,3 extends continuously to τ0,3 : H�(Q) −→ H−4(�). In a same way, one can check that

τ1,2v = v|t=T , τ1,3v = ∂tv|t=T , v ∈ C∞(Q)

extend continuously to τ1,2 : H�(Q) −→ H−2(�) and τ1,3 : H�(Q) −→ H−4(�). �
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