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Abstract

We prove that the Brouwer degree deg(u, U, ·) for a function u ∈ C0,α(U ; Rn) is in Lp(Rn) if 1 ≤ p < nα
d

, where U ⊂ Rn is 
open and bounded and d is the box dimension of ∂U . This is supplemented by a theorem showing that uj → u in C0,α(U ; Rn)

implies deg(uj , U, ·) → deg(u, U, ·) in Lp(Rn) for the parameter regime 1 ≤ p < nα
d

, while there exist convergent sequences 
uj → u in C0,α(U ; Rn) such that ‖ deg(uj , U, ·)‖Lp → ∞ for the opposite regime p > nα

d
.

© 2016 

MSC: 26B10; 55M25

Keywords: Brouwer degree; Distributional Jacobian determinant; Hölder functions

1. Introduction

The Brouwer degree is a very useful object in nonlinear analysis, in particular in problems with a geometric 
background. One notable example of its use is the C1,α isometric immersion problem (see [8]), where the integrability 
properties of the degree are crucial.

For a Lipschitz function u : U →Rn, where U ⊂Rn is open and bounded, the integrability of the Brouwer degree 
is as good as one could hope, namely, there is the classical “change of variables”-type formula∫

U

ϕ(u(x))detDu(x)dx =
∫
Rn

ϕ(z)deg(u,U, z)dz (1)

for all ϕ ∈ L1(Rn) (see e.g. [11]). However, when the regularity of u is worse – only C0,β for some 0 < β < 1 – it is 
much less clear how to deal with integrals as the one on the right hand side above. To obtain information about such 
integrals, we will use the fact that deg(u, U, y)dy is an exact form (see e.g. [12]) and try to apply Stokes’ Theorem to 
write it as a boundary integral. This in turn needs some regularity of the boundary ∂U . Usually, one needs U to be a 
set of finite perimeter to be able to apply Stokes’ Theorem. In [13], it has been shown that if the integrand is smooth 
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enough, then Stokes’ Theorem may also be applied to sets with rougher boundary. The first aim of the present paper 
is to adapt these ideas to the case of the Brouwer degree and show that deg(u, U, ·) is integrable if u is smooth enough 
in terms of Hölder regularity, and ∂U is smooth enough in terms of its box dimension. We will show that there is a 
trade-off between these two types of regularity.

Theorem 1.1. Let 0 < α < 1 and n − 1 < d < n such that nα > d , and let U ⊂ Rn be open and bounded with 
dimbox ∂U = d . Furthermore, let u ∈ C0,α(U ; Rn). Then deg(u, U, ·) ∈ Lp(Rn) for all 1 ≤ p < nα

d
, and for all p ∈

(1, nα
d

), there exists a constant C = C(n, U, α, d, p) such that

‖deg(u,U, ·)‖Lp ≤ C‖u‖n/p

C0,α(U ;Rn)
.

In fact, we will prove this theorem by giving a meaning to the left hand side in the change of variables formula (1), 
with the regularity of u, U as stated in the theorem. We will show how to make sense of the left hand side for 
u ∈ C0,α(U ; Rn) and ϕ ∈ Lp′

where p′ is defined by requiring p−1 + (p′)−1 = 1. The main idea is to represent 
ϕ(u(x)) detDu(x) as a sum of Jacobian determinants, interpreted in a weak sense. There are two crucial tools that 
will allow us to do so. First, we use multi-linear (real) interpolation for a suitable weak definition of the Jacobian 
determinant, see Lemma 3.1. The statement of this lemma can be viewed as a variant of Theorem 3 in the paper [5] by 
Brezis and Nguyên, which relies on an idea by Bourgain, Brezis and Mironescu [3,4]. Second, we use the following 
trick: Let ψ be a solution of divψ = ϕ. Set Ui := (u1, . . . , ui−1, ψi ◦ u, ui+1, . . . , un). Then we have

detDUi(x)dx = du1(x) ∧ · · · ∧ dui−1(x) ∧ d(ψi ◦ u)(x) ∧ · · · ∧ dun(x)

= ∂iψi(u(x))du1(x) ∧ · · · ∧ dun(x)

= ∂iψi(u(x))detDu(x)dx .

Hence, we get

ϕ(u(x))detDu(x) =
n∑

i=1

∂iψi(u(x))detDu(x)

=
n∑

i=1

detDUi(x),

(2)

which is the sought-for representation as a sum of Jacobian determinants.
We have already noted that by the change of variables formula (1), the integrability of the Brouwer degree is closely 

related to the weakest space for which we can define the distributional Jacobian determinant [Ju]. The question for 
the weakest space in which [Ju] can be defined has a long history, starting with the work of Morrey [23], Reshetnyak 
[25] and Ball [1], and with important contributions by many researchers, see e.g. [20,24,22,19,6,7,15], and references 
therein. In the recent article [5], this question has been answered by the use of fractional Sobolev spaces. In this 
reference, [Ju] has been defined as an element of the dual of C1 for u ∈ W(n−1)/n,n. This result contains most of the 
previously known ones, such as the definition of [Ju] for u ∈ W 1,n−1 ∩ L∞ or u ∈ W 1,n2/(n+1), see [1].

Paralleling the methods from [5], or using the results from [29], one can define [Ju] as an element of (C0,α)∗ for 
u ∈ C0,α and α > n/(n + 1). Using this definition, formula (1) has a well defined meaning for ϕ ∈ C1, since then 
ϕ ◦ u ∈ C0,α . Note however that our treatment using the relation (2), which exploits the special structure of the test 
function, gives meaning to (1) for a much larger class of test functions. In particular, if we assume that U has Lipschitz 
boundary, then we will be able to give a well-defined meaning to the left hand side in (1) for u ∈ C0,α and ϕ ∈ Lp′

with α/p > (n − 1)/n (where p−1 + (p′)−1 = 1), which coincides with the right hand side.
The question whether there exist α-Hölder functions whose mapping degree is not in Lp for nα < pd is not ad-

dressed here. Note however that for nα < d , the image of the boundary u(∂U) has in general non-vanishing Lebesgue 
measure, and hence deg(u, U, ·) is not defined on a set of positive measure (cf. Lemma 2.7).

As a supplement to Theorem 1.1, we show that convergence in C0,α implies convergence of the associated mapping 
degrees in Lp if nα > pd , while for the opposite regime nα < pd , there exist sequences that converge to 0 in C0,α

whose mapping degrees diverge in Lp.
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Theorem 1.2. Let 0 < α < 1, n − 1 < d < n, 1 ≤ p < ∞.

(i) If p < nα
d

, U ⊂Rn is open and bounded with dimbox ∂U = d , and uk ∈ C0,α(U ; Rn) with uk → u in C0,α(U ; Rn), 
then deg(uk, U, ·) → deg(u, U, ·) in Lp(Rn).

(ii) If p > nα
d

, there exist an open bounded set U ⊂ Rn with dimbox ∂U = d , and a sequence uk ∈ C0,α(U ; Rn) with 
deg(uk, U, ·) ∈ Lp(Rn), uk → 0 in C0,α(U ; Rn) and ‖ deg(uk, U, ·)‖Lp → ∞.

We end this introduction by explaining the plan of the paper. In Section 2, we collect some known methods and 
theorems that we are going to need in our proofs. They concern (real) interpolation theory, self-similar fractals, the 
Brouwer degree, the Whitney decomposition of an open subset of Rn, and the relation between the Whitney decom-
position and the box dimension. In Section 3, we give the proof of our main result, Theorem 1.1. Section 4 is devoted 
to the proof of Theorem 1.2, using several Lemmas whose proof is given in Section 5.

Notation The symbol for the non-negative integers is N = {0, 1, . . . }. The open ball in Rn with center x ∈ Rn and 
radius r > 0 will be denoted by B(x, r), while the open ball in Rn−1 with center x ∈ Rn−1 and radius r will be 
denoted by Bn−1(x, r). The standard n − 1 sphere is Sn−1 = {x ∈ Rn : |x| = 1}. The canonical orthonormal basis of 
Rn is denoted by (e1, . . . , en). The characteristic function of a set A ⊂Rn is denoted by χA.

The n-dimensional Lebesgue measure is denoted by Ln, and the k-dimensional Hausdorff measure by Hk . The 
volume of the unit ball in m dimensions is denoted by ωm = πm/2/
(m/2 + 1).

Whenever we want to say that two functions f, g that are defined Ln-almost everywhere on Rn, agree Ln-almost 
everywhere, then we write f .= g.

For a Lipschitz function defined on a set A ⊂ Rn, its Lipschitz constant is Lipf = supx,y∈A,x =y |f (x) −
f (y)|/|x − y|. For sets A ⊂Rn and functions f : A → R, we set

[f ]C0,α(A) := sup
x,y∈A
x =y

|f (x) − f (y)|
|x − y|α .

If the domain is clear, we often will write [f ]α ≡ [f ]C0,α(A) for short. The corresponding Hölder norm is defined by

‖f ‖C0,α(A) = sup
x∈A

|f (x)| + [f ]C0,α(A) .

Let �pRn denote the set of rank p multi-vectors in Rn, i.e., the linear space

�pRn =
⎧⎨⎩ ∑

i1,...,ip∈{1,...,n}
ai1,...,ip dxi1 ∧ · · · ∧ dxip : ai1,...,ip ∈R

⎫⎬⎭ .

With this notation, p-forms are functions on U with values in �pRn. We make Ck,α(U ; �pRn) a normed space by 
setting

‖a‖Ck,α(U ;�pRn) =
∑

i1,...,ip

‖ai1,...,ip‖Ck,α(U)

for a = ∑
i1,...,ip

ai1,...,ip dxi1 ∧ · · · ∧ dxip .
The symbol C will have the following meaning: A statement such as f ≤ C(a, b, . . . )g means that there exists a 

numerical constant C that only depends on a, b, . . . , such that f ≤ Cg. The value of C may change from one line to 
the next.

2. Preliminaries

2.1. Tools from interpolation theory

We are going to use some standard constructions from real interpolation theory, due to Lions and Peetre [17,18]
(see also the textbook [2]). In the following, we give a very short definition of interpolation spaces via the trace 
method [16].
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Let (E0, ‖ · ‖0), (E1, ‖ · ‖1) be normed spaces. We may equip E0 ∩ E1 and E0 + E1 with the following norms:

‖x‖E0∩E1 = max{‖x‖0,‖x‖1}
‖x‖E0+E1 = inf{‖x0‖0 + ‖x1‖1 : x0 ∈ E0, x1 ∈ E1, x0 + x1 = x}

Definition 2.1. For θ ∈ (0, 1) and 1 ≤ p ≤ ∞ we denote by V (p, θ, E1, E0) the set of all functions u ∈
W

1,p

loc (R+, E0 + E1) with the following properties: u(t) ∈ E1 and u′(t) ∈ E0 for all t > 0, and with u∗,θ (t) := tθu(t)

and u′∗,θ (t) := tθu′(t), we have

u∗,θ ∈ Lp(R+,dt/t;E1), u′∗,θ ∈ Lp(R+,dt/t;E0) .

We define a norm on V = V (p, θ, E1, E0) by

‖u‖V := ‖u∗,θ‖Lp(R+,dt/t;E1) + ‖u′∗,θ‖Lp(R+,dt/t;E0) .

It can be shown that those functions are continuous in t = 0 and we define the real interpolation spaces as follows:

Definition 2.2. The real interpolation space (E0, E1)θ,p is defined as set of traces of functions belonging to V (p, 1 −
θ, E1, E0) at t = 0 together with the norm:

‖x‖Tr
(θ,p) = inf{‖u‖V : u ∈ V (p,1 − θ,E1,E0), lim

t→0
u(t) = x}

It can be shown that the Hölder spaces C0,α(U) are identical to the real interpolation space (C0(U), C1(U))α,∞, 
up to equivalence of norms.

2.2. Self-similar fractals

We recall the construction of self-similar fractals introduced in [14] (see also [10]). A similarity is a map S :
Rn →Rn such that |S(x) − S(y)| = c|x − y| for all x, y ∈ Rn, for some c > 0. The number c is called the ratio of S. 
For i = 1, . . . , k, let Si be such a similarity, with ratios smaller than 1. A compact set K ⊂ Rn is said to be invariant 
under S = {S1, . . . , Sk} if

K = ∪k
i=1Si(K) .

In fact, one can show that there exists a unique compact set, the attractor set of S , denoted by K(S), that fulfills this 
property. It consists of the closure of the fixed points of finite compositions of the similarities. A set constructed in 
this way is called self-similar.

For a given set of similarities S = {S1, . . . , Sk}, we define a transformation S on the class of non-empty compact 
sets by

S(E) = ∪k
i=1Si(E) (3)

and write Sl for the l-th iterate of S. For i1, . . . , il ∈ {1, . . . , k} and E ⊂Rn, we will use the notation

Si1,...,il (E) = Si1 ◦ · · · ◦ Sil (E) .

With this notation, we have

Sl(E) =
k⋃

i1,...,il=1

Si1,...,il (E) .

A convenient way of defining certain self-similar sets in R2 (i.e., self-similar curves) is by specifying a generator
for the curve. This is a sequence of points γ : {1, . . . , k + 1} → R2 with |γ (1)| < 1, |γ (i) − γ (i − 1)| < 1 for i =
2, . . . , k + 1. The set of similarities associated to such a generator is given by {S1, . . . , Sk}, where Si is the orientation 
preserving similarity that maps (0, 0) to γ (i) and (1, 0) to γ (i + 1). A typical example of a self-similar set constructed 
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Fig. 1. The Koch curve (right) and its generator (left).

from a generator is the Koch curve, see Fig. 1. A set of similarities S is said to satisfy the open set condition if there 
exists a non-empty open set V ⊂ Rn such that

Si(V ) ⊂ V for i = 1, . . . , k

Si(V ) ∩ Sj (V ) = ∅ for i, j = 1, . . . , k, i = j

The following lemma has been proved in [14,9]:

Lemma 2.3 (Theorem 9.3 in [9]). Let S = {S1, . . . , Sk} be a set of similarities satisfying the open set condition, and 
let ri be the ratio of Si for i = 1, . . . , k. Further, let d be the (unique) real number that satisfies

k∑
i=1

rd
i = 1 .

Then the Hausdorff dimension and box dimension of K(S) agree and are equal to d .

2.3. Properties of the Brouwer degree

We recall the definition and some basic properties of the Brouwer degree. For a more thorough exposition with 
proofs of the claims made here, see e.g. [12].

Let U be a bounded subset of Rn. Further, let u ∈ C∞(U ; Rn). Assume that y ∈ Rn \ u(∂U), and let μ be a C∞
n-form on Rn with support in the same connected component of Rn \ u(∂U) as y, such that 

∫
Rn μ = 1. Then the 

degree is defined by

deg(u,U,y) =
∫
U

u∗(μ) , (4)

where u∗ is the pull-back by u. It can be shown that this definition is independent of the choice of μ. Further, 
deg(u, U, ·) is constant on connected components of Rn \ u(∂U) and integer valued. Moreover, it is invariant under 
homotopies, i.e., given H ∈ C∞([0, 1] × U ; Rn) such that y /∈ H([0, 1], ∂U), we have

deg(H(0, ·),U,y) = deg(H(1, ·),U,y) .

Using these facts, one can go on to define the degree for u ∈ C0(U ; Rn) by approximation.
If u : U → Rn is Lipschitz, and Ln(∂U) = 0, then it follows from (4) and approximation by smooth functions that∫

Rn

deg(u,U, ·)μ =
∫
U

u∗(μ) (5)

for any n-form μ on Rn with coefficients in L∞(R). If μ is an exact form, i.e.,

μ = dω

for some n − 1 form ω on Rn, then

u∗(dω) = d
(
u∗ω

)
.

If U has Lipschitz boundary, this implies, by Stokes’ Theorem,
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∫
Rn

deg(u,U, ·)dω =
∫
U

d
(
u∗ω

)
=

∫
∂U

u∗ω .

(6)

Assume μ is a given n-form. Since we assume U to be bounded, we may always find some n − 1-form ω such that 
dω = μ on supp deg(u, U, ·) ⊂ u(U), and hence (6) shows in particular that the degree only depends on u|∂U . We will 
write deg(u, U, y) = deg∂ (u, ∂U, y).

In the proof of Theorem 1.2 (ii), we will use the following lemma:

Lemma 2.4. Let U ⊂ Rn be a bounded Lipschitz domain, and let u : Ū → Rn be Lipschitz. Further, let V ⊂ ∂U be 
relatively open in ∂U , and assume there exists y0 ∈ Rn such that u(x) = y0 for all x ∈ ∂̃V (where ∂̃V denotes the 
relative boundary of V in ∂U ). Define ui : ∂U →Rn, i = 1, 2 by

u1(x) =
{

u(x) if x ∈ V

y0 if x ∈ ∂U \ V
, u2(x) =

{
y0 if x ∈ V

u(x) if x ∈ ∂U \ V
.

Then

deg∂ (u, ∂U,y) = deg∂ (u2, ∂U \ V,y) + deg∂ (u1,V , y) for all y ∈ Rn \ u(∂U) .

Proof. We will show∫
Rn

deg∂ (u,U, ·)μ =
∫
Rn

deg∂ (u1,U, ·)μ +
∫
Rn

deg∂ (u2,U, ·)μ

for every n-form μ on Rn with coefficients in L∞. Indeed, as we remarked below (6), there exists an n − 1-form ω
such that μ = dω on u(U), and hence∫

Rn

deg∂ (u,U, ·)μ =
∫
∂U

u∗ω

=
∫
∂U

u∗
1ω +

∫
∂U

u∗
2ω

=
∫
Rn

deg∂ (u1,U, ·)μ +
∫
Rn

deg∂ (u2,U, ·)μ ,

proving the claim of the lemma. �
2.4. Whitney decomposition and box dimension

One of our main tools in the proof of Theorem 1.1 will be the Whitney decomposition of an open set U .

Lemma 2.5 (see e.g. [26], Chapter 1, Theorem 3). Let U ⊂ Rn be open. Then there exists a countable collection 
W = {Qi : i ∈N} of cubes Qi with the following properties:

• For every Q ∈ W , there exist k, m1, . . . , mn ∈ Z such that Q = (m12−k, (m1 + 1)2−k) × · · · × (mn2−k,

(mn + 1)2−k). For fixed k, the union of cubes for which this holds for some m1, . . . , mn is denoted by Wk .
• U ⊂ ∪Q∈WQ

• The cubes in W are mutually disjoint
• dist(Q, ∂U) ≤ diamQ ≤ 4 dist(Q, ∂U) for all Q ∈ W

Next, we recall the definition of box dimension, and some of its elementary properties.
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Definition 2.6. Let U ⊂ Rn be bounded. Let Nr(U) be the number of n-dimensional boxes of side length r that is 
required to cover U . The box dimension dimbox U is defined as

dimbox (U) = lim
r→0

logNr(U)

− log r
,

if this limit exists.

We also define the β-dimensional Hausdorff-type content for sets A ⊂Rn,

Hβ(A) = lim
r→0

(
inf{krβ : ∪k

i=1B(xi, r) ⊃ A}
)

.

If dimbox A exists, then

dimbox A = inf{β : Hβ(A) < ∞} ,

see e.g. [9], Definition 3.1.
In the following lemma, for sets A ⊂Rn, we will use the notation

(A)ε = {x ∈Rn : dist(x,A) ≤ ε} .

Lemma 2.7. Let V ⊂ Rn be open and bounded, U ⊂⊂ V , n − 1 < dimbox ∂U = d < n, 0 < α < 1 such that nα > d , 
and u ∈ C0,α(V ; Rn). Then

Ln (u(∂U)ε) → 0 as ε → 0 .

Proof. Set ε̃ = εα−1
. Choose a finite number of xi ∈ ∂U , i = 1, . . . , k, such that

∂U ⊂
k⋃

i=1

B(xi, ε̃)

B(xi, ε̃/5) ∩ B(xj , ε̃/5) = ∅ for i, j ∈ {1, . . . , k}, i = j .

Such a collection {xi} exists by the Vitali Covering Lemma. Choose d < d̄ < nα. This choice implies Hd̄(∂U) = 0. 
By choosing ε small enough, we may assume

kε̃d̄ ≤ 1 .

Next observe that

u(∂U) ⊂
k⋃

i=1

B
(
u(xi),‖u‖C0,α ε̃

α
)

=
k⋃

i=1

B
(
u(xi),‖u‖C0,α ε

)
.

We set C∗ = ‖u‖C0,α + 1 and get

(u(∂U))ε ⊂
k⋃

i=1

B
(
u(xi),C

∗ε
)

.

Hence,

Ln
(
(u(∂U))ε

) ≤ kLn(B(0,1))(C∗ε)n

≤ C(u,n)(ε̃αn−d̄ )kε̃d̄

≤ C(u,n)(ε̃αn−d̄ )

→ 0 as ε → 0 .

This proves the lemma. �
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In the proof of Theorem 1.1, we are going to exploit the following relation between the Whitney decomposition 
and box dimension:

Theorem 2.8 ([21], Theorem 3.12). Let K ⊂ Rn be compact, with dimbox K = d < n. Let W be the Whitney decom-
position of Rn \ K . Then limk→∞ log2 #Wk

k
= d .

3. Proof of Theorem 1.1

Recall that C1(U ; �n−1Rn) denotes the space of continuously differentiable n − 1 forms on U . For the subspace 
of closed forms, we introduce the notation

C1
cl(U ;�n−1Rn) := {ω ∈ C1(U ;�n−1Rn) : dω = 0} .

Now we define two norms ‖ · ‖
Xn−1

0
, ‖ · ‖

Xn−1
1

on the quotient space C1(U ; �n−1Rn)/C1
cl(U ; �n−1Rn):

‖ω‖
Xn−1

0
:= inf{‖ω + α‖C0(U ;�n−1Rn) : α ∈ C1(U ;�n−1Rn),dα = 0}

‖ω‖
Xn−1

1
:= ‖dω‖C0(U ;�nRn)

Let Xn−1
0 , Xn−1

1 denote the Banach spaces that one obtains by completion with respect to the above norms respectively.
Next we define a multi-linear operator

M : C1(U ;Rn) → C0(U ;�n−1Rn)

(u1, . . . , un) �→ 1

n

n∑
i=1

(−1)i+1ui du1 ∧ · · · ∧ d̂ui ∧ · · · ∧ dun ,

where d̂ui denotes omission of the factor dui . Note that

dM(u1, . . . , un) = detDudx1 ∧ . . .dxn ≡ detDudx .

In the following lemma, let Xθ denote the real interpolation space

Xθ = (Xn−1
0 ,Xn−1

1 )θ,∞ .

Lemma 3.1. Let U ⊂Rn be bounded and open. For i = 1, . . . , n, let αi ∈ (0, 1) such that

θ :=
(

n∑
i=1

αi

)
− (n − 1) > 0 .

Additionally, let u = (u1, . . . , un) ∈ C1(U ; Rn). Then

‖M(u1, . . . , un)‖Xθ ≤ C(n,α1, . . . , αn)

n∏
i=1

‖ui‖C0,αi (U) . (7)

Moreover, for θ̃ < θ , M extends to a multi-linear operator C0,α1(U) × · · · × C0,αn(U) → Xθ̃ .

Notation. All constants C in the proof below may depend on n, α1, . . . , αn without explicit statement.

Proof. We use the representation of real interpolation spaces as trace spaces, see Definition 2.1. In particular, we have 
C0,αi (U) = (C0(U), C1(U))αi ,∞, and hence we may choose vi ∈ W

1,∞
loc (R+; C0(U)) with vi(t) ∈ C1(U), v′

i (t) ∈
C0(U) for all t > 0 such that

‖t1−αi vi(t)‖L∞(R+;C1(U)) ≤ C‖ui‖C0,αi (U) ,

‖t1−αi v′(t)‖ ∞ + 0 ≤ C‖ui‖ 0,α ,
i L (R ;C (U)) C i (U)
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and ui = limt→0 vi(t). Then we set

w(t) = M(v1(t), . . . , vn(t)) .

By the multi-linearity of M , we have

‖t
∑

i (1−αi)w(t)‖
Xn−1

1
≤ C

n∏
i=1

(
t1−αi ‖vi(t)‖C1(U)

)
≤ C

n∏
i=1

‖ui‖C0,αi (U)

and

‖t
∑

i (1−αi)w′(t)‖
Xn−1

0
= 1

n
t
∑

i (1−αi)

∥∥∥∥∥
n∑

i=1

(−1)i+1v′
i (t)dv1(t) ∧ · · · ∧ d̂vi(t) ∧ · · · ∧ dvn(t)

+
∑
j =i

(−1)i+1vi(t)dv1(t) ∧ · · · ∧ d̂vi(t) ∧ · · · ∧ dv′
j (t) ∧ · · · ∧ dvn(t)

∥∥∥∥∥
Xn−1

0

≤ t
∑

i (1−αi)

n∑
i=1

∥∥∥(−1)i+1v′
i (t)dv1(t) ∧ · · · ∧ d̂vi(t) ∧ · · · ∧ dvn(t)

∥∥∥
Xn−1

0

(8)

where we have used that

‖vi(t)dv1(t) ∧ · · · ∧ d̂vi(t) ∧ · · · ∧ dv′
j (t) ∧ · · · ∧ dvn(t)‖Xn−1

0
=

‖v′
j (t)dv1(t) ∧ · · · ∧ d̂vi(t) ∧ · · · ∧ dvn(t)‖Xn−1

0
,

which in turn is a consequence of

d
(
vi(t)dv1(t) ∧ · · · ∧ d̂vi(t) ∧ · · · ∧ dv′

j (t) ∧ · · · ∧ dvn(t)
)

= d
(
(−1)j+iv′

j (t)dv1(t) ∧ · · · ∧ d̂vi(t) ∧ · · · ∧ dvn(t)
)

.

From (8) we get

‖t
∑

i (1−αi)w′(t)‖
Xn−1

0
≤ C

n∑
i=1

(
t1−αi ‖v′

i (t)‖C0(U)

)∏
j =i

(
t1−αj ‖vj (t)‖C1(U)

)

≤ C

n∏
i=1

‖ui‖C0,αi (U) .

Hence w(0) ∈ (Xn−1
0 , Xn−1

1 )1−∑
i (1−αi),∞ = Xθ , with ‖w(0)‖Xθ ≤ C

∏
i ‖ui‖C0,αi . The estimate (7) follows from 

w(0) = M(u1, . . . , un).
To prove the statement about the extension, we choose βi < αi with 

∑
i βi = n − 1 + θ̃ . Then we have

‖M(u1, . . . , un)‖X
θ̃
≤

n∏
i=1

‖ui‖C0,βi
(9)

for u = (u1, . . . , un) ∈ C1(U ; Rn). Now every ũ = (ũ1, . . . , ũn) ∈ C0,α1 × · · · × C0,αn can be approximated in 
C0,β1 × · · · × C0,βn by sequences of functions in C1(U ; Rn), and hence the existence of a unique extension follows 
from (9). �
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3.1. Integrating distributional Jacobians over sets with fractal boundary

The purpose of the construction of the interpolation space Xθ = (Xn−1
0 , Xn−1

1 )θ,∞ has been to make its elements 
suitable for integration over fractals of dimension up to (but not including) n − 1 + θ . The corresponding definition 
will be given in the present subsection. This will be similar to the constructions in [13].

In the following, let U ⊂ Rn be fixed, with d := dimbox ∂U < n − 1 + θ . Let W be the Whitney decomposition 
of U , cf. Section 2.4. Since M ∈ Xθ , there exists M̃(·) ∈ W

1,∞
loc (R+; Xn−1

0 ) with M̃(t) ∈ Xn−1
1 , M̃ ′(t) ∈ Xn−1

0 for all 
t > 0 such that

t1−θ
(
‖M̃(t)‖

Xn−1
1

+ ‖M̃ ′(t)‖
Xn−1

0

)
≤ ‖M‖Xθ for all t ∈R+ ,

and

lim
t→0

‖M − M̃(t)‖
Xn−1

0
= 0 ,

see Section 2.1.

Definition 3.2. Assume that n − 1 + θ > d . For M ∈ Xθ let the integral 
∫
U

dM be defined by∫
U

dM :=
∑
Q∈W

∫
Q

dM̃(diamQ) +
∫

∂Q

(M − M̃(diamQ)) ,

where M̃ ∈ W
1,∞
loc (R+; Xn−1

0 ) is chosen as above.

Lemma 3.3. The above definition makes 
∫
U

dM well defined for M ∈ Xθ , and the map

M �→
∫
U

dM

is continuous on Xθ with | ∫
U

dM| ≤ C(U)‖M‖Xθ .

Proof. Let M̃(·) as above, and let Q ∈ W . First we estimate∣∣∣∣∣∣∣
∫
Q

dM̃(diamQ)

∣∣∣∣∣∣∣ ≤ Ln(Q)‖M̃(diamQ)‖
Xn−1

1

≤ Ln(Q)(diamQ)θ−1‖M‖Xθ .

To estimate 
∫
∂Q

(M − M̃(diamQ)), we first note that

‖M − M̃(diamQ)‖
Xn−1

0
≤

diam Q∫
0

‖M̃ ′(t)‖
Xn−1

0

≤ C

diam Q∫
0

tθ−1‖M‖Xθ

≤ C(diamQ)θ‖M‖Xθ .

Hence we get∣∣∣∣∣∣∣
∫

∂Q

(M − M̃(diamQ))

∣∣∣∣∣∣∣ ≤ Hn−1(Q)‖M − M̃(diamQ)‖
Xn−1

0

≤ CHn−1(Q)(diamQ)θ‖M‖ .
Xθ
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By Theorem 2.8 the number of cubes in W of sidelength 2−k can be estimated by C2kd , where the constant C may 
depend on the domain U , and d = dimbox ∂U . In this way we obtain∣∣∣∣∣∣

∫
U

dM

∣∣∣∣∣∣ ≤
∑
Q∈W

Ln(Q)(diamQ)θ−1‖M‖Xθ +Hn−1(Q)(diamQ)θ‖M‖Xθ

≤ C
∑
k∈N

2dk2−(n−1)k2−θk‖M‖Xθ .

By the assumption d < n − 1 + θ the infinite sum converges absolutely. This proves∣∣∣∣∣∣
∫
U

dM

∣∣∣∣∣∣ ≤ C‖M‖Xθ ,

and in particular it follows that 
∫
U

dM does not depend on the choice of M̃ , which makes the integral well defined. 
Also, the continuity of M �→ ∫

U
dM as a map from Xθ to R follows by linearity. �

We are ready to prove Theorem 1.1. In the proof below, all constants C may depend on n, α, p, d without explicit 
statement.

Proof of Theorem 1.1. In this proof we assume p > 1, and define p′ by requiring p−1 + (p′)−1 = 1. Note that by 
assumption, we have p < n/(n − 1) and hence p′ > n.

Using the representation of Hölder spaces as trace spaces (cf. Definition 2.1), we can choose vi : R+ → C1(U), 
i ∈ {1, . . . , n}, such that

‖t1−αvi(t)‖L∞(R+;C1(U)) + ‖t1−αv′
i (t)‖L∞(R+;C0(U)) ≤ C‖u‖C0,α(U)

and limt→0 vi(t) = ui in C0(U).
We write v(t) = (v1(t), . . . , vn(t)), and claim that

lim sup
t→0

sup

⎧⎨⎩
∫
Rn

deg(v(t),U,y)ϕ(y)dy : ϕ ∈ Lp′
(Rn) ∩ C∞(Rn), ‖ϕ‖

Lp′
(Rn)

≤ 1

⎫⎬⎭
< C

(‖u‖C0,α(U ;Rn)

)n/p
,

(10)

where the constant on the right hand side may depend on U . From the estimate (10) it follows that {deg(v(t), U, ·) :
t ≤ 1} is bounded and hence precompact in Lp(Rn). By v(t) → u in C0, it follows the pointwise convergence 
deg(v(t), U, ·) → deg(u, U, ·) on Rn \ u(∂U). By Lemma 2.7, we have Ln(u(∂U)) = 0, and hence deg(v(t), U, ·) →
deg(u, U, ·) almost everywhere. In combination with the compactness in Lp, it follows deg(v(t), U, ·) ⇀ deg(u, U, ·)
in Lp(Rn). In particular, deg(u, U, ·) ∈ Lp with ‖ deg(u, U, ·)‖Lp < C‖u‖n

C0,α . Since the support of deg(u, U, ·) is 
bounded, we also have deg(u, U, ·) ∈ L1(Rn), and the theorem is proved. It remains to show (10).

Let ϕ ∈ Lp′
(Rn) ∩ C∞(Rn) with ‖ϕ‖

Lp′ ≤ 1. Let ζ ∈ W 2,p′
(Rn) be the solution of

�ζ = ϕ on Rn ,

and define ψ ∈ W
1,p′
loc (Rn; Rn) by

ψ(x) = Dζ(x) − Dζ(0) .

By standard estimates, we have ‖Dψ‖
Lp′ ≤ C‖ϕ‖

Lp′ . Hence by Morrey’s inequality, we have

[ψ]
C0,1−n/p′

(U)
≤ C‖ϕ‖

Lp′ .

Now since ψ(0) = 0 we have for any w ∈ C0,α(U ; Rn)
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sup
x∈U

|ψ ◦ w(x)| ≤ [ψ]
C0,1−n/p′

(
sup
x∈U

|w(x)|
)1−n/p′

≤ [ψ]
C0,1−n/p′ ‖w‖1−n/p′

C0,α .

Furthermore for x, y ∈ U , we have

|ψ ◦ w(x) − ψ ◦ w(y)| ≤ [ψ]
C0,1−n/p′ |w(x) − w(y)|1−n/p′

≤ [ψ]
C0,1−n/p′ ‖w‖1−n/p′

C0,α |x − y|(1−n/p′)α.

Let α̃ := α(1 − n/p′). By the above, we have for all t > 0,

ψ ◦ v(t) ∈ C0,α̃(U ;Rn) ,

‖ψ ◦ v(t)‖C0,α̃ (U) ≤ C‖ϕ‖
Lp′ ‖v(t)‖1−n/p′

C0,α(U)

≤ C‖ϕ‖
Lp′ ‖u‖1−n/p′

C0,α(U)
,

(11)

where in the last estimate, we have assumed that t is small enough and used Lemma A.2. Next, for i = 1, . . . , n, we 
set ṽi (t) = ψi ◦ v(t), and

V j (t) := (
v1(t), . . . , vj−1(t), ṽj (t), vj+1(t), . . . , vn(t)

)
.

For t > 0, we have∣∣∣∣∣∣
∫
Rn

ϕ(y)deg(v(t),U,y)dy

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
U

ϕ(v(t)(x))detDv(t)(x)dx

∣∣∣∣∣∣ . (12)

Using the relation dM(V j (t)) = detDV j (t)dx, we get

n∑
j=1

dM(V j (t))|x =
n∑

j=1

detDV j(t)|xdx

=
n∑

j=1

dV
j

1 (t)|x ∧ · · · ∧ dV
j
n (t)|x

=
n∑

j=1

∂jψj

∣∣
v(t)(x)

dv1(t)|x ∧ · · · ∧ dvn(t)|x

= ϕ(v(t)(x))detDv(t)(x)dx .

Inserting this into (12), we get∣∣∣∣∣∣
∫
Rn

ϕ(y)deg(v(t),U,y)dy

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
U

n∑
j=1

dM(V j (t))

∣∣∣∣∣∣ .

We set

θ̄ := θ − d + n − 1

= (1 − n/p′)α + (n − 1)α − d

= nα

p
− d .

Note that by p < nα , we have θ̄ > 0. Now we apply Lemmas 3.3 and 3.1 to obtain

d
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∣∣∣∣∣∣
∫
Rn

ϕ(y)deg(v(t),U,y)dy

∣∣∣∣∣∣ ≤
∑
j

∣∣∣∣∣∣
∫
U

dM(V j (t))

∣∣∣∣∣∣
≤ C

∑
j

‖M(V j (t))‖X
θ̃

≤ C‖v(t)‖n−1+1−n/p

C0,α

≤ C‖u‖n/p

C0,α

where we have also used Lemma A.2 in the last estimate. This proves (10) and hence the theorem. �
Remark 3.4. By the method of proof we are using, we cannot get the estimate ‖deg(u, U, ·)‖L1 ≤ C‖u‖n

C0,α , since 
this would require W 2,∞ estimates on the solution of �ζ = ϕ with ‖ϕ‖L∞ ≤ 1, which of course do not hold in general.

4. Proof of Theorem 1.2

4.1. Proof of Theorem 1.2 (i)

The first part of the theorem is just a corollary to Theorem 1.1.

Proof of Theorem 1.2 (i). Let p < q < nα
d

. By Theorem 1.1, we have

‖deg(uk,U, ·)‖Lq ≤ C(n,α, q, d)‖u‖n
C0,α ,

and hence deg(uk, U, ·) is weakly compact in Lq . In particular, | deg(uk, U, ·)|p is equi-integrable. To show the strong 
convergence deg(uk, U, ·) → deg(u, U, ·) in Lp , it is sufficient to show deg(uk, U, ·) → deg(u, U, ·) in measure, i.e., 
for every δ > 0,

Ln ({y : |deg(uk,U,y) − deg(u,U,y)| > δ}) → 0 as k → ∞ .

Since the Brouwer degree is integer-valued, this is equivalent to

Ln ({y : deg(uk,U,y) = deg(u,U,y)}) → 0 as k → ∞ . (13)

Indeed, let ε > 0, and choose k0 large enough that sup |u − uk| < ε/2 for k > k0. Then

y /∈ {tu(x) + (1 − t)uk(x) : t ∈ [0,1], x ∈ ∂U} for all y ∈ Rn \ (u(∂U))ε , k > k0 .

By the homotopy invariance of the degree, this implies

deg(uk,U,y) = deg(u,U,y) for all y ∈ Rn \ (u(∂U))ε , k > k0 .

The claim (13) now follows from Lemma 2.7. This proves (i). �
4.2. Proof of Theorem 1.2 (ii)

The present section and Section 5 are devoted to the proof of Theorem 1.2 (ii). It consists of a rather explicit 
construction of an example.

The basic idea is that one considers sequences um of functions defined on a self-similar set of given box dimension 
d (which is the boundary of some open set U ). As the index m increases, the functions um use smaller and smaller 
scales of the self-similar set ∂U to develop “loops”. Each of these loops increases the degree, and has (locally) 
controlled α̃-Hölder semi-norm, where α̃ is slightly larger than α. Thus one constructs a sequence that converges to 
0 in C0,α for which the Lp norm of the degree diverges. For the reader’s convenience, we first outline the strategy of 
proof in a little more detail.



946 H. Olbermann / Ann. I. H. Poincaré – AN 34 (2017) 933–959
1. In Lemma 4.1 and 4.2, we construct the self-similar set ∂U and the pre-fractals ∂Um, that will be helpful for the 
definition of the loops at scale m. To lift maps defined on ∂Um to ∂U , we define certain projection maps (see 
Lemma 4.4).

2. Then we define “single loops” (Lemma 4.5). These are defined on (n − 1)-dimensional boxes of sidelength one. 
Also, we find collections of disjoint (n − 1)-dimensional boxes on ∂Um of sidelength rm (Lemma 4.8). We work 
with Euclidean motions and rescalings to lift the “single loop” to each of these boxes, such that the resulting map 
will have controlled α̃-Hölder semi-norm (see Definition 4.6 and Notation 4.9), where α̃ is slightly larger that α.

3. We then use the compact embedding between Hölder spaces to show that these functions converge to 0 in C0,α, 
while we may use Lemma 2.4 to show that the associated Brouwer degrees diverge in Lp.

From now on, we assume α̃ to be fixed such that

α < α̃ <
np

d
. (14)

We collect some useful notation. Firstly, we set

L = {(x,0) ∈R2 : x ∈ [0,1]} ,

D = {(x, y) ∈R2 : 0 < x < 1, 0 < y < min(x,1 − x)} .

Lemma 4.1. Let 1 < d̄ < 2. Then there exist r > 0, N ∈ N, and for each i ∈ {1, . . . , N} a similarity Si :R2 → R2 such 
that the following properties are fulfilled:

(i) H1(Si(L)) = r for i = 1, . . . , N .
(ii) The union ∪N

i=1Si(L) is the image of a continuous curve with start point (0, 0) and end point (1, 0).
(iii) Nrd = 1.
(iv) For i, j ∈ {1, . . . , N}, we have

Si(D) ⊂ D ,

Si(D) ∩ Sj (D) = ∅ if i = j ,

Si(D) ∩ Sj (D) = ∅ if |i − j | > 1 .

(v) r < 1
2 and 2r1−α ≤ 1.

The proof can be found in Section 5.
For the rest of this section, let d, n be fixed with n − 1 ≤ d < n. Further, let d̄ = d − (n − 2) and fix N, r and a 

set of similarities S = {S1, . . . , SN } as in Lemma 4.1. In the following, we are going to use the notation introduced in 
Section 2.2.

We now define four (orientation preserving) Euclidean motions S∗
1 , . . . , S∗

4 : R2 → R2 by their actions on (0, 0)

and (1, 0),

S∗
1 (0,0) = (0,1) S∗

1 (1,0) = (1,1)

S∗
2 (0,0) = (1,1) S∗

2 (1,0) = (1,0)

S∗
3 (0,0) = (1,0) S∗

3 (1,0) = (0,0)

S∗
4 (0,0) = (0,0) S∗

4 (1,0) = (0,1) .

Next, for i0 ∈ {1, . . . , 4} and i1, . . . , im ∈ {1, . . . , N}, we introduce the notation

Si0|i1,...,im = S∗
i0

◦ Si1 ◦ · · · ◦ Sim .

Definition 4.2. For m ∈N, let Ũm ⊂R2 be the bounded open set with boundary
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Fig. 2. The pre-fractals ∂U0, ∂U1 and ∂U4 (with n = 2, N = 5).

∂Ũm :=
4⋃

i0=1

S∗
i0
Sm(L)

=
⋃

i0∈{1,...,4}
i1,...,im∈{1,...,N}

Si0|i1,...,im(L) .
(15)

Further, let Ũ ⊂R2 be the bounded open set with boundary

∂Ũ =
4⋃

i0=1

S∗
i0
K(S) , (16)

where K(S) is the attractor set of S , cf. Section 2.2. For m ∈ N, we define Um = Ũm × (0, 1)n−2 and moreover, 
U = Ũ × (0, 1)n−2.

For a sketch of ∂U0, ∂U1 and ∂U4 (with n = 2, N = 5) see Fig. 2.

Remark 4.3. The sets Ũm and Ũ are well defined, since the right hand sides in (15), (16) are closed curves by 
Lemma 4.1 (ii) and the definition of the Euclidean motions S∗

i , i = 1, . . . , 4. Also note that by Lemma 4.1 (iii) and 
(iv) and Lemma 2.3 we have dimbox ∂U = d .

We will need certain “projection maps” to pull back maps defined on the pre-fractals ∂Um to the fractal ∂U :

Lemma 4.4. For every m ∈ N, there exist Lipschitz maps P m
m+1 : Um+1 \ Um → ∂Um and P m : U → Um with the 

following properties:

• Lip(P m
m+1) ≤ 1, Lip(P m) ≤ 1.

• If z = (z′, z′′) ∈ Um+1 with z′ ∈R2, z′′ ∈Rn−2, then P m
m+1(z) = (z̄, z′′) for some z̄ ∈ R2.

Again, the proof is postponed to Section 5.
In the statement of the next lemma, we set B := B(n−1)(0, 1) × {0}, and by slight abuse of notation, we write 

∂B := (
∂B(n−1)(0,1)

) × {0}.

Lemma 4.5. There exists a Lipschitz map ζ̃ : B → Rn (whose Lipschitz constant only depends on n) with the following 
properties:

(i) ζ̃ (B) ⊂ Sn−1 and ζ̃ (x) = −en for all x ∈ ∂B .
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Fig. 3. A sketch of the construction from Definition 4.6. In the figure, Bn−1 ≡ Bn−1(0, ρ/2) × {0}.

(ii) If W ⊂Rn is open and bounded with Lipschitz boundary such that

B ⊂ ∂W

and the outer normal to W on B is en, then ζ (W) : ∂W → Rn defined by

ζ (W)(x) =
{

ζ̃ (x) if x ∈ B

−en else

satisfies

deg∂ (ζ (W), ∂W,y)
.=

{
1 if y ∈ B(0,1)

0 else.

Again, the proof is postponed to Section 5.

Definition 4.6. Let ρ > 0 and let W ⊂Rn be an open bounded Lipschitz set with Bρ := Bn−1(0, ρ) ×{0} ⊂ ∂W , such 
that the outer normal of W on Bρ is en. Then we define a Lipschitz map ζ (W)

ρ : ∂W → Rn by

ζ (W)
ρ (x) =

{
ρα̃ζ̃ (x/ρ) if x ∈ Bρ

−ρα̃en else,

where ζ̃ has been defined in Lemma 4.5.

See Fig. 3 for a sketch of ζ (W)
ρ . From now on, we are going to drop the superscript (W) for ease of notation, and 

write ζ (W)
ρ ≡ ζρ .

Remark 4.7.
(i) As a consequence of Lemma 4.5 (i) and (ii), ζρ is indeed a well defined Lipschitz map with

Lip ζρ ≤ C(n)ρα̃−1 .

(ii) By Lemma 4.5 (ii), we have

deg∂ (ζρ, ∂W,y)
.=

{
1 if y ∈ B(0, ρα̃)

0 else.

In the next lemma, by an “(n −1)-dimensional box”, we mean the image of [−ρ, ρ]n−1 ×{0} under some Euclidean 
motion, for some ρ > 0.

Lemma 4.8. For every m ∈N, there exists a finite collection Qm of (n − 1)-dimensional boxes of sidelength rm, such 
that, writing
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Qm =
#Qm⋃
i=1

Qm
i ,

the following holds:

(i) For every i ∈ {1, . . . , #Qm}, we have Qm
i ⊂ ∂Ũm × [0, 1]n−2, with Ũm as in Definition 4.2.

(ii) If i, j ∈ {1, . . . , #Qm}, i = j , then Qm
i ∩ Qm

j = ∅. If additionally Qm
i ∩ Qm

j = ∅, then dist(Qm
i , Qm

j ) ≥ rm.

(iii) limm→∞ N−mr(n−2)m #Qm = 1.

Again, the proof is postponed to Section 5.

Notation 4.9. For m ∈N and x ∈ ∂Um, let νm(x) denote the outward normal to ∂Um at x, if it exists. Let Nm ⊂ ∂Um

denote the set of points for which νm(x) does not exist. For i ∈ {1, . . . , #Qm}, let Em
i denote a Euclidean motion that 

satisfies

Em
i ((−rm/2, rm/2)n−1 × {0}) = Qm

i

Em
i (en) = Em

i (0) + νm(Em
i (0)) ,

and let Bm
i be the (n − 1)-ball of radius rm/2 at the center of Qm

i , i.e.,

Bm
i := Em

i (Bn−1(0, rm/2) × {0}) .

We are now ready to prove the second part of Theorem 1.2.

Proof of Theorem 1.2 (ii). Let U, Um ⊂Rn be as in Definition 4.2, for m ∈ N. For x ∈ ∂Um, we set

vm(x) =
{

ζrm/2((E
m
i )−1(x)) if x ∈ Bm

i

−(rm/2)α̃en if x ∈ ∂Um \
(⋃#Qm

i=1 Bm
i

)
,

where we used the notation introduced in Definition 4.6 and Notation 4.9. We immediately see that vm is Lipschitz 
with

sup
x∈∂U

|vm| ≤ Crα̃m . (17)

Now let α < α′ < α̃. By (17), we have

sup
x∈∂U

|vm| ≤ εmrα′m (18)

with εm := Crm(α̃−α′). Next, for |x − y| > rm, we have

|vm(x) − vm(y)| ≤ 2εmrα′m ≤ 2εm|x − y|α′
. (19)

From Remark 4.7 (i), we have Lip (vm) ≤ Crm(α̃−1). Hence, for |x − y| ≤ rm, we have

|vm(x) − vm(y)| ≤ C|x − y|εmrm(α′−1) ≤ Cεm|x − y|α′
. (20)

By (18), (19) and (20), we have

‖vm‖
C0,α′

(∂Um)
< Cεm → 0 as m → ∞ . (21)

We come to the computation of deg∂ (vm, ∂Um, ·). To do so, we introduce some additional notation. For m ∈ N, we
set

B∗,m = B(0, (rm/2)α̃)

and for i = 1, . . . , #Qm, we define ζm : ∂Um → Rn by
i
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ζm
i (x) =

{
ζrm/2((E

m
i )−1(x)) if x ∈ Bm

i

−(rm/2)α̃en else.

We note that by Remark 4.7 (ii), we have

deg∂ (ζm
i , ∂Um,x)

.=
{

1 if x ∈ B∗,m

0 else

= χB∗,m .

By repeated application of Lemma 2.4, with V := Bm
i for i ∈ {1, . . . , #Qm},

deg(vm,Um, ·) .=
#Qm∑
i=1

deg∂ (ζm
i , ∂Um, ·)

.= #Qm χB∗ ,

Hence,

‖deg(vm,Um, ·)‖p
Lp = (

#Qm
)p

ωn(r
m/2)nα̃ .

Using Lemma 4.8 (iii) and the relation between r and N from Lemma 4.1 (iii), we have

lim
m→∞‖deg(vm,Um, ·)‖Lp = lim

m→∞Nmr−(n−2)mω
1/p
n (rm/2)nα̃/p

≥ lim
m→∞C(n,p, α̃)rm(−d+α̃n/p)

= +∞ .

We define um : ∂U → Rn by

um(x) = vm(P m(x)) ,

and extend um from ∂U to U by Theorem A.1, such that

‖um‖
C0,α′

(U)
< C‖vm ◦ Pm‖

C0,α′
(∂Um)

≤ Cεm → 0 .

By the compact embedding C0,α′
(U) → C0,α(U),

um → 0 in C0,α(U) .

Furthermore, note that

deg∂ (um, ∂U, ·) .= deg∂ (vm, ∂Um, ·) for all m ∈N

and hence ‖deg∂ (um, ∂U, ·)‖Lp → ∞. This proves the theorem. �
5. Proof of lemmas used in Section 4

Proof of Lemma 4.1. We first construct an auxiliary sequence of points in R2, depending on two parameters β ∈
(0, π/2] and M ∈ N \ {0}. From this sequence of points, we will construct a generator for a self-similar fractal later in 
the proof. First, let

e
β
up := (sinβ, cosβ)

e
β

down := (sinβ,− cosβ)

e
β

right := (1,0) .

For m ∈N, m > 0, we define λm,β : {1, . . . , 4m} → R2 by
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Fig. 4. The curve constructed from l �→ ∑l
i=1 λm,β(i) for m = 3.

Fig. 5. The curve constructed from K3,β .

λm,β(l) =

⎧⎪⎨⎪⎩
e
β

right if l ∈ {1,2m + 1}
e
β
up if 1 < l < 2m + 1

e
β

down if 2m + 1 < l ≤ 4m

. (22)

The curve one obtains by connecting successively 
∑l

i=1 λm,β(i) for l = 0, . . . , 4m is depicted in Fig. 4. Note that this 
curve has length 4m. Our next aim is to concatenate several curves as in Fig. 4, letting m increase from 1 to some 
maximal value M , and then let it decrease to 1 again. For M ∈N, M > 0, we set

a(M) = (1,2, . . . ,M − 1,M,M − 1, . . . ,2,1)

b
(M)
l = 4

l∑
j=1

a
(M)
j for l = 0, . . . ,2M − 1.

Then for i = 1, . . . , 4M2, there exists a unique li ∈ {1, . . . , 2M − 1} such that

b
(M)
li−1 < i ≤ b

(M)
li

.

We set

κM,β(i) := λli ,β(i − b
(M)
li

) .

Furthermore, we set κM,β(4M2 + 1) = e
β

right, and for j = 0, . . . , 4M2 + 1, we set

KM,β(j) :=
j∑

i=1

κM,β(i) .

The curve one obtains by connecting successively KM,β(j) for j = 0, . . . , 4M2 + 1 is depicted in Fig. 5. We may 
compute

e1 · KM,β(4M2 + 1) =
M∑

m=1

4m∑
i=1

e1 · λm,β(i) +
2M−1∑

m=M+1

4(2M−m)∑
i=1

e1 · λm,β(i)

= 2

(
M−1∑
m=1

((4m − 2) sinβ + 2)

)
+ (4M − 2) sinβ + 3

= (4M(M − 1) + 2) sinβ + 4M − 1 .

(23)
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Now set

N̂(M) := 4M2 + 1

r̂(M,β) :=
(
e1 · KM,β(4M2 + 1)

)−1

= ((4M(M − 1) + 2) sinβ + 4M − 1)−1

d̂(m,β) := − log N̂(M)

log r̂(M,β)
.

(24)

We claim that it is possible to choose M0 ∈N such that

d̄ < d̂(M0,0) ,

(4M0 − 1)−1 <
1

2
,

2(4M0 − 1)α−1 ≤ 1 .

(25)

Indeed, we have r̂(M, 0) = (4M − 1)−1 and hence

d̂(M,0) = log(4M2 + 1)

log(4M − 1)
. (26)

In particular, note that

d̂(M,0) → 2 as M → ∞ .

This proves that we may choose M0 such that the first inequality in (25) is fulfilled. After possibly increasing M0, the 
second and third hold true too.

Since r̂(M0, ·) is continuous monotone decreasing on [0, π/2], the function d̂(M0, ·) is continuous monotone 
decreasing on [0, π/2] too. Additionally, we have d̂(M0, π/2) = 1. Hence, there exists β0 ∈ (0, π/2) such that

d̄ = d̂(M0, β0) .

Now set

r := r̂(M0, β0) , N := N̂(M0).

We use the following notation: To two points x = y ∈ R2, we associate the (unique) orientation preserving Euclidean 
motion Sx,y : R2 →R2 that maps (0, 0) to x and (1, 0) to y.

For i = 0, . . . , N write p(i) := rKM0,β0(i), and set

Si := Sp(i−1),p(i) .

It remains to verify that r, N and S = {S1, . . . , SN } satisfy the required properties.
Property (i) follows from p(i) − p(i − 1) ∈ {reβ0

right, re
β0
up, reβ0

down} for i = 1, . . . , N , and |eβ0
right| = |eβ0

up | =
|eβ0

down| = 1. Property (ii) simply follows from S1(0, 0) = 0, Si(1, 0) = Si+1(0, 0) for i = 1, . . . , N − 1 and SN(1, 0) =
(1, 0). Property (iii) follows from the definition of d̂(M, β) in the last line of (24), d̄ = d̂(M0, β0), N = N̂(M0) and 
r = r̂(M0, β0). Property (iv) is obvious from an inspection of Fig. 6, where the union of all Si(D), i = 1, . . . , N is de-
picted. Property (v) follows from the second and third line in (25), and r = r̂(M0, β0) ≤ (4M0 − 1)−1. This concludes 
the proof of the lemma. �
Proof of Lemma 4.4. We are going to assume that n = 2 and construct the maps P m

m+1 and P m for this case only. 
The general case follows easily by setting

P m
m+1(x) = (P

m,(2)
m+1 (x1, x2), x3, . . . ) ,

P m(x) = (P m,(2)(x1, x2), x3, . . . ) ,

where P m,(2), P m,(2) denote the maps constructed for n = 2 below.
m+1
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Fig. 6. Si(D) ⊂ D for i = 1, . . . ,N , Si(D) ∩ Sj (D) = ∅ for i = j , and Si(D) ∩ Sj (D) = ∅ for |i − j | > 1. In the picture above, N = 37.

Fig. 7. The closed set A, whose boundary contains L and S(L) (with N = 37).

Let A ⊂ D be the bounded closed simply connected set whose boundary contains the union of the curves L and 
S(L), see Fig. 7. I.e., the set A satisfies

U1 \ U0 =
4⋃

i=1

S∗
i A .

For x = (x1, x2) ∈ A, let P be the projection A → L, x �→ (x1, 0). Obviously, P is Lipschitz with Lipschitz constant 
≤ 1.

For m ∈N, y ∈ U
m+1 \ Um, there exist i0 ∈ {1, . . . , 4}, i1, . . . , im ∈ {1, . . . , N}, and x ∈ A such that

y = Si0|i1,...,imx .

We set

P m
m+1(y) = Si0|i1,...,imP (x) .

We claim that

P m
m+1 :Um+1 \ Um → ∂Um is well defined,

LipP m
m+1 ≤1 .

(27)

Indeed, if there exist i0, i′0 ∈ {1, . . . , 4}, i1, . . . , im, i′1, . . . , i′m ∈ {1, . . . , N}, and x, x′ ∈ A with y = Si0|i1,...,imx =
Si′0|i′1,...,i′mx′, then either ij = i′j for j = 0, . . . , m and x = x′ or y ∈ ∂Um and x, x′ ∈ L, in which case P(x) = x, 
P(x′) = x′ and hence Si0|i1,...,imP (x) = Si′0|i′1,...,i′mP (x′). This proves the first part of (27), the second part follows 

from LipP ≤ 1. For l > m ≥ 0, let P m
l : Ul → ∂Um be defined by

P m
l = P m

m+1 ◦ · · · ◦ P l−1
l .

It is easily seen from this definition and (27) that LipP m
l ≤ 1.

We come to the definition of P m : U → Um for m ∈ N. We set Am := Um+1 \ Um and note

U ⊂ Um ∪
( ∞⋃

Ak

)
.

k=m
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For k > m and x ∈ Ak , we let P m(x) = P m
k (x). Note that this makes P m|U well defined with

LipP m|U ≤ 1 , (28)

since for k = k′ with x ∈ Ak ∩ Ak′
, we have P m

k′ (x) = P m
k (x).

Now let x ∈ ∂U . There exist i0 ∈ {1, . . . , 4} and a (possibly non-unique) sequence ik ∈ {1, . . . , N}, k = 1, 2, . . . , 
such that x ∈ Si0|i1,...,ik (D) for every k ∈ N (cf. [9], Chapter 9). Note that for k′ > k > m,

P m
k′

(
Si0|i1,...,ik′ (D)

) ⊂ P m
k

(
Si0|i1,...,ik (D)

)
.

Thus there exists a unique x′ ∈ S∗
i0
L (that does not depend on the choice of the sequence ik) such that

x′ ∈
∞⋂

k=m+1

P m
k (Si0|i1,...,ik (D)) .

We set P m(x) = x′.
It remains to show that P m is Lipschitz on U with LipP m ≤ 1. By (28), it is sufficient to show continuity on U . 

Assume we are given xj , j ∈ N, with xj ∈ U , xj → x ∈ ∂U . We need to show P m(xj ) → P m(x). Indeed, we will 
show that for every subsequence, there exists a further subsequence such that convergence holds. For any subsequence, 
there has to exist a further subsequence xj (no relabeling), a sequence i1, i2, · · · ∈ {1, . . . , N}, and a monotonous 
increasing function K : N → N with limj→∞ K(j) = ∞ such that

xj ∈ Si0|i1,i2,...,iK(j)
(D) . (29)

In this case, we must have

x ∈
∞⋂

k=1

Si0|i1,i2,...,ik (D) ,

and hence

P m(x) ∈
∞⋂

k=m+1

P m
k

(
Si0|i1,i2,...,ik (D)

)
. (30)

By (29) and (30), we get P m(xj ) → P m(x). This proves the lemma. �
Proof of Lemma 4.5. For x = (x1, x2, . . . , xn−1, 0) ∈ B , we will identify x with (x1, . . . , xn−1), and we write x̂ =
x/|x|. We define ζ̃ by

ζ̃ (x) = (
x̂ sinπ |x|, cosπ |x|) .

For x ∈ B , we compute

Dζ̃(x) = (e1 ⊗ e1 + · · · + en−1 ⊗ en−1)
sinπ |x|

|x| + x̂ ⊗ x̂

(
π cosπ |x| − sinπ |x|

|x|
)

− π sinπ |x| en ⊗ x̂ .

(31)

From this formula, we see that ζ̃ is indeed Lipschitz. All other properties claimed in (i) are verified easily.
For the proof of (ii), first note that ζ (W) : ∂W → Sn−1 is a well defined Lipschitz map. Furthermore, 

#(ζ (W))−1(y) = 1 for all y ∈ Sn−1 \ {−en}. This implies that there exists k ∈ {−1, +1} such that

deg∂ (ζ (W), ∂W,y) =
{

k for all y ∈ B(0,1)

0 for all y ∈Rn \ B(0,1) .
(32)

Next, we construct2 a Lipschitz map λ : W → Rn such that

2 The construction of λ is not necessary if we use the relation (6) – we do not do so here for the sake of clarity.
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λ = ζ on ∂W, ∂nλ(x) = ζ (W)(x) for all x ∈ Q.

Such a λ exists by (a suitable version of) the Whitney Extension Theorem (see, e.g., Theorem 3.6.2 in [28]). We are 
going to compute explicitly the sign of∫

Rn

deg∂ (ζ (W), ∂W, ·)dLn =
∫
Rn

deg(λ,W, ·)dLn ,

to decide which value for k holds true in (32). In order to do so, we introduce the following piece of notation. Let

εi1...in =
{

0 if {i1, . . . , in} = {1, . . . , n}
sgn ((1, . . . , n) �→ (i1, . . . , in)) else.

In the second line on the right hand side above, sgn ((1, . . . , n) �→ (i1, . . . , in)) denotes the signature of the permutation 
(1, . . . , n) �→ (i1, . . . , in). With this notation, we have for x ∈ W ,

detDλ(x) =
n∑

i1,...,in=1

εi1...in (∂xi1
λ1) . . . (∂xin

λn)

=
n∑

i1,...,in=1

∂xin

(
εi1...in (∂xi1

λ1) . . . (∂xin−1
λn−1)λn

)

=:
n∑

in=1

∂xin
fin

= divf .

Using the formula (5) for the computation of the degree, and the Gauss–Green Theorem, we get∫
Rn

deg(λ,W, ·)dLn =
∫
W

detDλ(x)dx

=
∫

∂W

νW · f dHn−1

=
∫
B

en · f dHn−1 ,

where we denoted the outward normal to W by νW , and used the fact that f vanishes Hn−1 almost everywhere on 
∂W \ B . For x ∈ B , we have

fn(x) =
n∑

i1,...,in−1=1

εi1...in−1nλ1,i1(x) . . . λn−1,in−1(x)λn(x)

= cosπ |x|detD(x �→ x̂ sinπ |x|)

= π cos2 π |x|
(

sinπ |x|
|x|

)n−2

,

where the value of (sinπ |x|)/|x| at 0 is understood to be π . It follows that∫
Rn

deg∂ (ζ (W), ∂W, ·)dLn > 0 ,

and hence it follows from (32) that3

3 Of course, instead of arguing that k ∈ {−1, +1} in (32) as we did above that equation, the value of k could also have been deduced by explicit 
calculation of 

∫
B en · f dHn−1.
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deg∂ (ζ (W), ∂W, ·) .= χB(0,1) .

This proves the lemma. �
Proof of Lemma 4.8. For m ∈ N, choose km ∈N such that

k−1
m ≥ rm ≥ (km + 1)−1 .

This choice implies

kmrm → 1 as m → ∞ . (33)

Further, let Q̃m denote the set of cubes in Rn−2 of side length rm and vertices in ([0,1] ∩ (Nrm))n−2,

Q̃m := {(j1r
m, (j1 + 1)rm) × · · · × (jn−2r

m, (jn−2 + 1)rm) :
0 ≤ jl ≤ km − 1 for l = 1, . . . , n − 2}

Now let L′ = (0, 1) × {0}, recall the definition of the similarities Si0|i1,...,im from Section 2.2, and set

Qm := {
Si0|i1,...,im(L′) × Q̃ : i0 ∈ {1, . . . ,4},
i1, . . . , im ∈ {1, . . . ,Nm} , Q̃ ∈ Q̃m} .

Property (i) follows directly from the definition of ∂Um (see Definition 4.2) and Qm. The first part of property (ii) is 
also obvious; we show the second part. Assume Q1, Q2 ∈ Qm, Q1 = Si0|i1,...,im(L′) × Q̃1, Q2 = Sj0|j1,...,jm(L′) × Q̃2, 

with i0, j0 ∈ {1, . . . , 4}, i1, . . . , im, j1, . . . , jm ∈ {1, . . . , N}, and Q̃1, Q̃2 ∈ Q̃m. We must have either Q̃1 ∩ Q̃2 = ∅ or 
Si0|i1,...,im(L) ∩ Sj0|j1,...,jm(L) = ∅. In the first case, dist(Q̃1, Q̃2) ≥ rm and hence also dist(Q1, Q2) ≥ rm. In the 
second case, dist(Si0|i1,...,im(L), Sj0|j1,...,jm(L)) ≥ rm and hence also dist(Q1, Q2) ≥ rm.

Next, note that by construction, #Qm = (#Q̃m)Nm = (km)(n−2)Nm and hence property (iii) follows from (33). �
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Appendix A. Properties of Hölder functions

The following lemma is based on the construction from the well known Whitney extension Theorem. The proof is 
mainly a repetition of the proof of Theorem 2.1 in [13]. However, we could not find a full proof of the claim we need 
in the literature, which is why we give it here.

Lemma A.1. Let K ⊂Rn be compact, 0 < α < 1, and f ∈ C0,α(K). Then there exists f̃ : Rn →R such that

‖f̃ ‖C0,α(Rn) ≤ C(n,α)‖f ‖C0,α(K) ,

and f̃ |K = f .

Proof. Let W be the Whitney decomposition of Rn \ K , see Lemma 2.5. For Qi ∈ W , denote the sidelength of Qi

by |Qi |, and its center by xi . For each i ∈ N, fix pi ∈ K such that dist(Qi, pi) = dist(Qi, K), and let Q̃i be the cube 
with center xi and |Q̃i | = 3

2 |Qi |. Fix η ∈ C∞
0 (Rn) with 0 ≤ η ≤ 1, η = 1 on [−1, 1]n, η = 0 on Rn \ [−3/2, 3/2] and 

|Dη| ≤ 4. Set
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ηi(x) := η

(
x − xi

|Qi |
)

,

ϕi(x) := ηi(x)∑
j∈N ϕj (x)

.

Note that {ϕi}i∈N is a partition of unity of Rn \ K subordinate to W̃ := {Q̃i : i ∈ N}. We define the extension f̃ by

f̃ (x) :=
{∑

i∈N ϕi(x)f (pi) for x ∈ Rn \ K

f (x) for x ∈ K .

From this definition, we immediately get

sup
Rn

|f̃ | ≤ ‖f ‖C0(Rn) . (A.1)

Obviously, on Rn \ K , f̃ is a smooth function, and there exists a number N = N(n) such that for each x ∈ Rn \ K , 
there exist at most N pairwise disjoint Qi ∈ W such that ϕi(x) = 0.

Fix x ∈ Rn \ K . Let N (x) ⊂ N denote the index set defined by ϕi(x) = 0 for i ∈ N (x), and let i0 ∈ N (x). We 
compute

|Df̃ (x)| =
∣∣∣∣∣∣

∑
i∈N (x)

Dϕi(x)f (pi)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i∈N (x)\{i0}
Dϕi(x)(f (pi) − f (pi0))

∣∣∣∣∣∣
≤ C(n)

∑
i∈N (x)

[f ]α|pi − pi0 |α
dist(Qi,K)

≤ C(n)[f ]α dist(x,K)α−1 .

(A.2)

With these preparations, we are ready to prove an estimate on [f̃ ]α . Let x, y ∈ Rn, and let x′, y′ ∈ Rn with

|x − x′| = dist(x,K) , |y − y′| = dist(y,K) .

Note that this choice implies that for every point z on the line segment [x, x′], we have |Df̃ (z)| ≤ C[f ]α|z − x′|α−1

by (A.2), and an analogous statement for the line segment [y, y ′]. Hence

|f̃ (x) − f̃ (x′)| =

∣∣∣∣∣∣∣
|x−x′|∫

0

d

dt
f̃

(
x + t

x − x′

|x − x′|
)

dt

∣∣∣∣∣∣∣
≤

|x−x′|∫
0

∣∣∣∣Df̃

(
x + t

x − x′

|x − x′|
)∣∣∣∣dt

≤ C(n)[f ]α
|x−x′|∫

0

tα−1dt

≤ C(n,α)[f ]α|x − x′|α .

In the same way, we obtain |f̃ (y) − f̃ (y ′)| ≤ C[f ]α|y − y′|α .
Now assume that |x − x′| + |y − y′| ≤ 4|x − y|. Then

|f (x) − f (y)| ≤ |f̃ (x) − f̃ (x′)| + |f̃ (x′) − f̃ (y′)| + |f̃ (y′) − f̃ (y)|
≤ C(n,α)[f ]α(|x − x′|α + |y − y′|α + |x′ − y′|α)

≤ C(n,α)[f ] |x − y|α .
α
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On the other hand, if |x − x′| + |y − y′| > 4|x − y|, then we may assume |x − x′| > 2|x − y| and hence the line 
segment [x, y] is contained in Rn \ K , and for each point z ∈ [x, y], we have |Df̃ (z)| ≤ C[f ]α|x − y|α−1. Then we 
get

|f̃ (x) − f̃ (y)| =

∣∣∣∣∣∣∣
|x−y|∫
0

d

dt
f̃

(
x + t

x − y

|x − y|
)

dt

∣∣∣∣∣∣∣
≤

|x−y|∫
0

C(n)[f ]α|x − y|α−1dt

≤ C(n,α)[f ]α|x − y|α .

This proves [f̃ ]α ≤ C(n, α)[f ]α , and together with (A.1), this proves the claim of the present lemma. �
The following lemma is a well known fact from real interpolation theory; we include it for the non-specialist reader.

Lemma A.2. Let U ⊂Rn be open and bounded, u ∈ C0,α(U), and v : R+ → C1(U) with v′(t) ∈ C0(U) for all t > 0
such that

• ‖t1−αvi(t)‖L∞(R+;C1(U)) ≤ C‖u‖C0,α(U)

• ‖t1−αv′
i (t)‖L∞(R+;C0(U)) ≤ C‖u‖C0,α(U)

• limt→0 vi(t) = ui in C0(U).

Then

‖v(t)‖C0,α(U) ≤ C‖u‖C0,α(U) for t ≤ 1 .

Proof. We first observe for x ∈Rn, and t ≤ 1,

|v(t)(x)| ≤
∣∣∣∣∣∣u(x) +

t∫
0

v′(s)(x)ds

∣∣∣∣∣∣
≤ ‖u‖C0(U) +

t∫
0

C‖u‖C0,α(U)s
α−1ds

≤ C‖u‖C0,α(U) .

Now let x, y ∈Rn with x = y. First assume |x − y| ≤ t . Then

|v(t)(x) − v(t)(y)| ≤|x − y| sup
Rn

|Dv(t)| ≤ C‖u‖C0,α(U)|x − y|tα−1

≤C‖u‖C0,α(U)|x − y|α .

On the other hand, if |x − y| > t , then

|v(t)(x) − v(t)(y)| ≤ |v(t)(x) − u(x)| + |u(x) − u(y)| + |u(y) − v(t)(y)|
≤ C‖u‖C0,α(U)

(
2tα + |x − y|α)

≤ C‖u‖C0,α(U)|x − y|α .

This proves [v(t)]α ≤ C‖u‖C0,α(U) and hence the claim of the lemma. �
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