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Abstract

We study spectral properties of the Neumann–Poincaré operator on planar domains with corners with particular emphasis on 
existence of continuous spectrum and pure point spectrum. We show that the rate of resonance at continuous spectrum is different 
from that at eigenvalues, and then derive a method to distinguish continuous spectrum from eigenvalues. We perform computa-
tional experiments using the method to see whether continuous spectrum and pure point spectrum appear on domains with corners. 
For the computations we use a modification of the Nyström method which makes it possible to construct high-order convergent 
discretizations of the Neumann–Poincaré operator on domains with corners. The results of experiments show that all three possible 
spectra, absolutely continuous spectrum, singularly continuous spectrum, and pure point spectrum, may appear depending on do-
mains. We also prove rigorously two properties of spectrum which are suggested by numerical experiments: symmetry of spectrum 
(including continuous spectrum), and existence of eigenvalues on rectangles of high aspect ratio.
© 2016 

Résumé

Nous étudions les propriétés spectrales de l’opérateur Neumann–Poincaré sur les domaines planaires avec coins. Un accent parti-
culier est mis sur l’existence d’un spectre continu et d’un point isolé du spectre. Nous montrons que le taux de résonance du spectre 
continu est différent de celui des valeurs propres. Nous dérivons ensuite une méthode pour distinguer spectre continu et valeurs 
propres. Nous effectuons des expériences numériques afin de voir si le spectre continu et les valeurs propres apparaissent pour des 
domaines avec coins. Pour les calculs, nous utilisons une modification de la méthode de Nyström. Elle permet la discrétisation 
convergente de l’opérateur Neumann–Poincaré d’ordre élevé sur des domaines avec coins. Les résultats des expériences montrent 
que tous les trois spectres possibles, spectre absolument continu, spectre singulier et point isolé du spectre, peuvent apparaître en 
fonction des domaines. Nous montrons aussi rigoureusement deux propriétés spectrales qui sont suggérées par des expériences 
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numériques : la symétrie du spectre (y compris spectre continu), et de l’existence des valeurs propres sur des rectangles ayant des 
rapports d’aspect élevés.
© 2016 Elsevier Masson SAS. All rights reserved.

MSC: primary 35P05; secondary 45B05

Keywords: Neumann–Poincaré operator; Lipschitz domain; Spectrum; RCIP method; Resonance

1. Introduction

Let � be a bounded simply connected domain in R2 with the Lipschitz boundary. The Neumann–Poincaré (NP) 
operator on � is defined by

K∗
∂�[ϕ](x) := 1

2π
p.v.

∫
∂�

(x − y) · n(x)

|x − y|2 ϕ(y)dσ(y) , x ∈ ∂�, (1.1)

where n(x) denotes the unit outward normal vector to ∂� at x ∈ ∂� and p.v. stands for the Cauchy principal value. 
Recently there is rapidly growing interest in the spectral properties of the NP operator due to its relation to plasmonics 
and cloaking by anomalous localized resonance: Plasmon resonance occurs at eigenvalues of the NP operator and 
anomalous localized resonance occurs at the accumulation point of eigenvalues, respectively (see, for example, [1,19,
20] and references therein).

Although the NP operator K∗
∂� is not self-adjoint with respect to the usual L2-inner product unless � is a disk 

or a ball [18], it can be realized as a self-adjoint operator on H−1/2(∂�) space by introducing a new inner product 
(see [12,16] and the next section for a brief review). Here and throughout this paper Hs denotes the usual L2 Sobolev 
space. So, the NP operator can have only three kinds of spectra: absolutely continuous spectrum, singularly continuous 
spectrum, and pure point spectrum (eigenvalues) [24,26].

Observe that the NP operator depends on � in two ways: integration over ∂� and the normal vector n(x). So, 
its spectral nature differs depending on smoothness of the domain on which it is defined. If the domain has a smooth 
boundary, C1,α for some α > 0 to be precise, then the NP operator is compact on H−1/2(∂�) and its spectrum consists 
of eigenvalues converging to 0. It is worth mentioning that a convergence rate of eigenvalues of the NP operator on 
smooth domains (among others) is obtained in a recent paper [21]. However, not much is known about the spectrum 
of the NP operator defined on the domain with corners. Bounds on the essential spectrum on curvilinear polygonal 
domains have been obtained in [22]. Recently a complete spectral resolution of the NP operator on the intersecting 
disk has been derived in [14], which in particular shows that there is only absolutely continuous spectrum, no point 
spectrum and no singularly continuous spectrum. It is worth mentioning that it also shows that the bound in previous 
mentioned paper is sharp for the intersecting disks. We mention that T. Carleman found solutions of the interface 
problem on intersecting disks in [4], which is closely related to the continuous spectrum (there was no notion of 
continuous spectrum at his time). So the paper [14] may be regarded as a modern (and more complete) treatise of 
[4] even if the former was written without knowing existence of the latter. We also refer to a recent work [17] where 
plasmon resonance on intersecting disks was studied in a numerical way.

Some natural questions arise regarding the spectrum of the NP operator on general domains with corners: Does 
it always have a continuous spectrum?, no point spectrum?, and so on. The purpose of this paper is to address these 
questions. On the one hand, we investigate these questions in a numerical way as the first step toward a better under-
standing of the spectral nature of the NP operator on domains with corners. Novelty of the computational approach 
of this paper may be found in two aspects. Firstly we present a way to classify spectra based on resonance. Extending 
the analysis of [14] we show that the resonance at absolutely continuous spectrum is weaker than that at eigenvalues. 
We quantify the rate of resonance and develop a computational method to distinguish absolutely continuous spec-
trum from eigenvalues. Singularly continuous spectrum is more difficult to classify. However, if a strong resonance 
occurs at a point inside the absolutely continuous spectrum, we may infer that the point is in the singularly continuous 
spectrum. Another important aspect of this paper is the method of computation. For classification of spectra using 
resonance high precision computations are required. However, when the domain has corners, it is quite difficult to 
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compute with high precision the NP operator. In this paper we use the Recursively Compressed Inverse Precondition-
ing (RCIP) method [10], explained in detail in [6,7], which is a high precision method for solving integral equations on 
piecewise smooth boundaries. It is worth mentioning that this method has been successfully adapted for computation 
of polarizability on domains with corners [9].

Results of computational experiments of this paper reveal that absolutely continuous spectrum always appears on 
planar domains with corners, while pure point spectrum and singularly continuous spectrum may or may not appear 
depending on domains. For example, for rectangles there is a threshold r0 of the aspect ratio such that if the aspect 
ratio is less than r0 then no eigenvalue appears, and if the aspect ratio is larger than r0 then eigenvalues appear. In fact, 
more and more eigenvalues appear as the aspect ratio increases. But no singularly continuous spectrum appears. On 
perturbed ellipses, singularly continuous spectrum (discrete eigenvalues embedded in absolutely continuous spectrum) 
appears.

On the other hand, we prove rigorously some important spectral properties of the NP operator suggested by com-
putational experiments. We first show that the spectrum of the NP operator on planar domains is symmetric with 
respect to 0. This fact is known for eigenvalues [25]. We extend it to include the continuous spectrum by proving that 
the resolvent of the NP operator is symmetric with respect to 0. Inspired by computational results on rectangles we 
also prove that the NP operator on a rectangle has at least one eigenvalue if the aspect ratio of the rectangle is high 
enough. We first show that the spectral bound on rectangles tends to 1/2 as the aspect ratio tends to ∞, and then 
existence of an eigenvalue follows as an immediate consequence. The numerical results of this paper also show that 
the interval determined by the bound on the essential spectrum obtained in [22] is actually the essential spectrum. 
After completion of the major part of this work we were informed by Mihai Putinar that he and Karl-Mikael Perfekt 
prove this rigorously [23]. Their paper and the current one are complementary to each other.

The rest of the paper is organized as follows. In the next section we review symmetrization of the NP operator, and 
prove symmetry of spectrum and existence of eigenvalues on rectangles of high aspect ratio. In section 3 we present 
a method to classify spectra by quantifying resonance. For computation of resonance we use polarizable dipoles as a 
source function. We show advantages using polarizable dipoles in section 4. Section 5 is to describe the computational 
method (RCIP method) of this paper. Section 6 is to present results of computational experiments. This paper ends 
with a short conclusion and discussion on mathematical problems raised by computational results.

2. Spectrum of the NP operator in two dimensions

Throughout this paper, we denote by 〈·, ·〉 the duality pairing of H−1/2 and H 1/2, and ‖ · ‖−1/2 denotes the H−1/2

norm on ∂�. Let H−1/2
0 (∂�) be the space of ψ ∈ H−1/2(∂�) satisfying 〈ψ, 1〉 = 0.

The single layer potential S∂�[ϕ] of a function ϕ on ∂� is defined by

S∂�[ϕ](x) := 1

2π

∫
∂�

ln |x − y|ϕ(y)dσ (y), x ∈ R
2. (2.1)

Its relation to the NP operator is given by the following jump formula (see, for example, [2,5]):

∂νS∂�[ϕ]|± =
(

±1

2
I +K∗

∂�

)
[ϕ] on ∂�, (2.2)

where ∂ν denotes the outward normal derivative on ∂�, and the subscripts + and − respectively indicate the limits 
(to ∂�) from outside and inside �.

It is found in [16] that K∗
∂� can be symmetrized using Plemelj’s symmetrization principle

S∂�K∗
∂� =K∂�S∂�. (2.3)

If we define, for ϕ, ψ ∈ H
−1/2
0 (∂�),

(ϕ,ψ)∗ := −〈ϕ,S∂�[ψ]〉 = − 1

2π

∫
∂�

∫
∂�

ln |x − y|ϕ(x)ψ(y)dσ (x)dσ (y), (2.4)

then (·, ·)∗ is an inner product on H−1/2
0 (∂�), and the norm ‖ · ‖∗ induced by this inner product is equivalent to the 

H−1/2(∂�) norm, namely,
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‖ϕ‖H∗ ≈ ‖ϕ‖−1/2 (2.5)

for all ϕ ∈ H
−1/2
0 (∂�) (see [13]). Let H∗

0 be the space H−1/2
0 (∂�) equipped with the inner product (·, ·)∗. Then the 

symmetrization principle (2.3) shows that K∗
∂� is self-adjoint on H∗

0.
Let σ(K∗

∂�) be the spectrum of K∗
∂� on H∗

0. Since K∗
∂� is self-adjoint on H∗

0, σ(K∗
∂�) consists of continuous 

spectrum and pure point spectrum (eigenvalues), and continuous spectrum in turn consists of absolutely continuous 
spectrum and singularly continuous spectrum, namely,

σ(K∗
∂�) = σc(K∗

∂�) ∪ σpp(K∗
∂�) = σac(K∗

∂�) ∪ σsc(K∗
∂�) ∪ σpp(K∗

∂�), (2.6)

and continuous spectrum and pure point spectrum are mutually disjoint (see [24,26]). It is known (see [15]) that

σ(K∗
∂�) ⊂ (−1/2,1/2). (2.7)

We will present a method based on resonance to distinguish continuous spectrum from pure point spectrum in the 
section 3. Results of numerical experiments presented in section 6 show that the spectrum is symmetric with respect 
to 0. They also shows that on rectangles more and more eigenvalues appear as the aspect ratio increases, in particular, 
the pure point spectrum is non-empty if the aspect ratio is high enough. Let us prove rigorously these facts first in the 
following subsections.

2.1. Symmetry of spectrum

Here we prove that the spectrum of the NP operator in two dimensions is symmetric with respect to 0, namely, that 
λ is in the spectrum if and only if −λ is. As mentioned before, this fact for eigenvalues is known [25]. We extend it to 
include continuous spectrum. We emphasize that the spectrum we are considering is that on H∗

0. It is known that 1/2
is an eigenvalue of K∗

∂� on H−1/2(∂�) while −1/2 is not. It is worth mentioning that the spectrum of the NP operator 
in three dimensions may not be symmetric with respect to 0. For example, eigenvalues on the ball are all positive (see, 
for example, [12,16]).

We have the following theorem.

Theorem 2.1. It holds in two dimensions that

σc(K∗
∂�) = −σc(K∗

∂�), σpp(K∗
∂�) = −σpp(K∗

∂�). (2.8)

Proof. For a given ψ ∈ H∗
0 let uψ be the solution to{

�uψ = 0 in �,

∂νuψ = ψ on ∂�.

Let u⊥
ψ be a harmonic conjugate of uψ in � so that

∂τ u
⊥
ψ = ∂νuψ, ∂νu

⊥
ψ = −∂τ uψ, (2.9)

where ∂τ denotes the tangential derivative on ∂�. Let ψ⊥ := ∂νu
⊥
ψ = −∂τuψ on ∂�, namely, ψ⊥ is the Hilbert 

transform of ψ .
We first prove that

σ(K∗
∂�) = −σ(K∗

∂�). (2.10)

To do so, it suffices to show that λ is in the resolvent if and only if −λ is. Suppose that λ is in the resolvent, namely, 
λI −K∗

∂� is invertible on H∗
0. Let k be the number such that

λ = k + 1

2(k − 1)
. (2.11)

For ψ ∈H∗
0 let ϕ ∈ H∗

0 be the unique solution to

(λI −K∗
∂�)[ϕ] = 1

ψ⊥. (2.12)

k − 1
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We see from (2.2) that u(x) := S∂�[ϕ](x) for x ∈R
2 is a solution to⎧⎪⎨

⎪⎩
�u = 0 in � ∪ (R2 \ �),

u|+ − u|− = 0,

∂νu|+ − k∂νu|− = ψ⊥.

(2.13)

Moreover, since 〈ϕ, 1〉 = 0, it holds that

u(x) → 0 as |x| → ∞. (2.14)

Let vi be a harmonic conjugate of u in �. Thanks to (2.14), u has a harmonic conjugate in R2 \ �. Let ve be 
the harmonic conjugate in R2 \ � such that ve(x) → 0 as |x| → ∞. Then vi and ve are harmonic in � and R2 \ �, 
respectively, and they satisfy{

∂τ ve − k∂τ vi = ∂νu|+ − k∂νu|− = ψ⊥

∂νve − ∂νvi = −∂τ (u|+ − u|−) = 0
on ∂�.

Define w by

w(x) :=
{

kvi(x) − uψ(x) + C, x ∈ �,

ve(x), x ∈R
2 \ �,

(2.15)

where C is a constant to be determined. Then, w is a solution to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�w = 0 in � ∪ (R2 \ �),

w|+ − w|− = 0 on ∂�

∂νw|+ − 1
k
∂νw|− = 1

k
ψ on ∂�,

w(x) → 0 as |x| → ∞.

(2.16)

In fact, we have

∂τw|+ − ∂τw|− = ∂τ ve − k∂τ vi + ∂τuψ = ψ⊥ − ψ⊥ = 0.

So, w|+ − w|− is constant on ∂�. Hence, we can make it vanish on ∂� by choosing the constant C properly.
Define ϕ1 ∈H∗

0 by

ϕ1 := ∂νw|+ − ∂νw|−. (2.17)

Then we have

w(x) = S∂�[ϕ1](x), x ∈ R
2. (2.18)

In fact, if let W := w − S∂�[ϕ1], then we see from (2.2) that

∂νW |+ − ∂νW |− = 0 on ∂�.

So, it follows from (2.16) that W is a solution to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�W = 0 in � ∪ (R2 \ �),

W |+ − W |− = 0 on ∂�

∂νW |+ − ∂νW |− = 0 on ∂�,

W(x) → 0 as |x| → ∞.

It then follows from Green’s identity that∫
�

|∇W |2 +
∫

R2\�
|∇W |2 =

∫
∂�

W |−(∂νW |− − ∂νW |+) = 0,

and hence W is constant. Since W(x) → 0 as |x| → ∞, W ≡ 0. So we have (2.18). By plugging (2.18) into the third 
identity in (2.16), one can see from (2.2) that
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(−λI −K∗
∂�)[ϕ1] = 1

1 − k
ψ. (2.19)

So far we have shown that −λI −K∗
∂� is surjective on H∗

0. Injectivity can be proved by reversing arguments from 
(2.19) (with ψ = 0 and −λ replaced with λ) to (2.12). By interchanging the role of λ and −λ we see that λI −K∗

∂�

is invertible if and only if −λI −K∗
∂� is. This proves (2.10).

Let us now prove (2.8). To do so, it suffices to prove the second identity since σc(K∗
∂�) ∩σpp(K∗

∂�) = ∅. We include 
a short proof here even if it is a known fact as mentioned before.

Suppose that

(λI −K∗
∂�)[ϕ] = 0 (2.20)

for some non-zero ϕ ∈ H∗
0. Then, u(x) := S∂�[ϕ](x) is a nontrivial solution to (2.13) with ψ⊥ = 0 satisfying (2.14). 

Then w defined by (2.15) is a solution to (2.16) with ψ = 0. Then, w(x) = S∂�[ϕ2](x) for some non-zero ϕ2 ∈ H∗
0, 

and it holds that

(−λI −K∗
∂�)[ϕ2] = 0. (2.21)

So we have shown that if λ ∈ σpp(K∗
∂�), then −λ ∈ σpp(K∗

∂�). By interchanging the role of λ and −λ we show the 
second identity in (2.8). This completes the proof. �
2.2. Existence of eigenvalues on rectangles of high aspect ratio

Let us first recall that the spectral bound b (other than 1/2) of the NP operator on ∂� is given by

b = 1

2
sup

ϕ∈H∗
0

∣∣∣‖∇S∂�[ϕ]‖2
L2(Rd\�)

− ‖∇S∂�[ϕ]‖2
L2(�)

∣∣∣
‖∇S∂�[ϕ]‖2

L2(Rd )

. (2.22)

(See, for example, [16].) On the other hand, the bound on the essential spectrum of the NP operator on curvilinear 
polygonal domains is obtained in [22]:

bess = 1

2
max

1≤j≤N

(
1 − θj

π

)
, (2.23)

where θj is the interior angle of the j th corner and N is the number of corners. Note that 1/2 appears in (2.23) since 
the NP operator of this paper is 1/2 times the one in [22]. If � is a rectangle, bess = 1/4. We show that on rectangles 
of high aspect ratio b is larger than 1/4, and hence there must be eigenvalues.

Theorem 2.2. For r ≥ 1, let �r be a rectangle of aspect ratio r and br be the spectral bound of the NP operator on 
�r . It holds that

lim
r→∞br = 1

2
. (2.24)

Above theorem shows that there is r0 such that if r ≥ r0, then br > 1/4. It means that there is a member of spectrum 
λ such that 1/4 < λ. Since the essential spectrum is confined in [−1/4, 1/4] due to (2.23), λ must be an eigenvalue. 
So we have the following corollary.

Corollary 2.3. There is r0 such that for any r ≥ r0 the NP operator on �r has at least one eigenvalue.

Proof of Theorem 2.2. We adapt the idea of the proof of Theorem 5 in [16]. For δ > 0 there exists a C∞ odd function 
ψ on R such that

ψ(t) ≤ Cδ−1 for all t, (2.25)

ψ(t) = t if − 1 ≤ t ≤ 1, (2.26)∫
|t |≥1

|ψ ′(t)|2dt < δ, (2.27)
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where C is a universal constant independent of δ. Existence of such a function is proved in [16, Lemma 7]. In fact, the 
property (2.25) is not presented there. But one can easily check that ψ there satisfies (2.25). Let χ be a non-negative 
C∞ function on R with a compact support such that χ(t) = 1 on [−1, 1]. Let χN(t) := χ(t/N). Then, there is a 
constant C independent of N such that

χN(t) ≤ C for all t, (2.28)

and ∫
R

χN(t)2dt ≤ CN,

∫
R

χ ′
N(t)2dt ≤ CN−1. (2.29)

Let us use (x, y) for Cartesian coordinates in this proof. Since the NP operator is scale invariant, we may assume 
� = �r := [−1, 1] × [−ε, ε] with ε = r−1. Let ψN(t) := χN(t)ψ(t) and define

w(x,y) := χN(x)ψM(y/ε),

where M and N are large numbers to be determined. The function w also depends on δ which is also to be determined. 
Note that w(x, y) = y/ε if (x, y) ∈ �, in particular, it is harmonic there. Define

ϕ := (−1

2
I +K∗

∂�)−1[∂νw|∂�] on ∂�,

and let

u(x, y) := S∂�[ϕ](x, y), (x, y) ∈R
2.

We emphasize that ϕ belongs to H∗
0. Since ∂νu|− = ∂νw on ∂�, we have u = w + C in � for some constant C. One 

can easily see that u is odd with respect to x-axis, so C = 0. It then follows that

‖∇u‖2
L2(�)

= ‖∇w‖2
L2(�)

= 4ε−1. (2.30)

Let us now estimate ‖∇u‖2
L2(R\�)

. Since u = w on ∂�, we have from Dirichlet’s principle

‖∇u‖2
L2(R\�)

≤ ‖∇w‖2
L2(R\�)

=
∞∫

−∞

∫
|x|≥1

+
∫

|y|≥ε

∫
|x|≤1

|∇w|2dxdy.

So, we have

‖∇u‖2
L2(R\�)

≤
∞∫

−∞

∣∣∣ψM

(y

ε

)∣∣∣2
dy

∫
|x|≥1

|χ ′
N(x)|2dx + 1

ε2

∫
|y|≥ε

∣∣∣ψ ′
M

(y

ε

)∣∣∣2
dy

∫
|x|≥1

|χN(x)|2dx

+ 1

ε2

∫
|y|≥ε

∣∣∣ψ ′
M

(y

ε

)∣∣∣2
dy

∫
|x|≤1

|χN(x)|2dx

= ε

∞∫
−∞

|ψM(y)|2dy

∫
|x|≥1

|χ ′
N(x)|2dx + 1

ε

∫
|y|≥1

|ψ ′
M(y)|2dy

∫
|x|≥1

|χN(x)|2dx

+ 1

ε

∫
|y|≥1

|ψ ′
M(y)|2dy

∫
|x|≤1

|χN(x)|2dx =: I1 + I2 + I3.

One can see from (2.25) and the first inequality in (2.29) that

∞∫
−∞

|ψM(y)|2dy ≤ Cδ−1

∞∫
−∞

|χM(y)|2dy ≤ Cδ−1M.

So we obtain from the second inequality in (2.29) that
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I1 ≤ Cεδ−1MN−1. (2.31)

Similarly, we have

∫
|y|≥1

|ψ ′
M(y)|2dy ≤ C

⎛
⎜⎝δ−1

∫
|y|≥1

|χ ′
M(y)|2dy +

∫
|y|≥1

|ψ ′(y)|2dy

⎞
⎟⎠ ≤ C(δ−1M−1 + δ),

and hence

I2 ≤ Cε−1(δ−1M−1 + δ)N, (2.32)

and

I3 ≤ Cε−1(δ−1M−1 + δ). (2.33)

Putting them together, we see that

‖∇u‖2
L2(R\�)

≤ C
(
εδ−1MN−1 + ε−1δ−1M−1N + ε−1δN

)
.

Let us take, for example, δ = ε1/3, M = ε−2/3, and N = ε−1/6. Then we have

‖∇u‖2
L2(R\�)

≤ Cε−5/6.

According to (2.22) and (2.30), the spectral bound br satisfies

br ≥ 1

2

4ε−1 − Cε−5/6

4ε−1 + Cε−5/6
.

Since br < 1/2, we have (2.24). This completes the proof. �
3. Classification of spectrum by resonance

Let f ∈ H∗
0. For t ∈ (−1/2, 1/2) and δ > 0, let ϕt,δ be the solution of the integral equation(

(t + iδ)I −K∗
∂�

)[ϕt,δ] = f on ∂�. (3.1)

By spectral resolution theorem [26], there is a family of projection operators Es (called the resolution identity) such 
that

K∗
∂� =

∫
σ(K∗

∂�)

s dEs . (3.2)

We then obtain from (3.1)

ϕt,δ =
∫

σ(K∗
∂�)

1

t + iδ − s
dEs[f ], (3.3)

and hence

‖ϕt,δ‖2∗ =
∫

σ(K∗
∂�)

1

(s − t)2 + δ2
d(f,Es[f ])∗. (3.4)

If t /∈ σ(K∗
∂�), one can immediately see from (3.4) that

lim
δ→0

δα‖ϕt,δ‖∗ = 0 (3.5)

for any α > 0.
Suppose that t ∈ σ(K∗

∂�). An eigenvalue t of K∗
∂� is characterized by discontinuity Et+ −Et �= 0 (and t is isolated). 

So, if f satisfies
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(f,Et+[f ])∗ − (f,Et [f ])∗ > 0, (3.6)

then

‖ϕt,δ‖2∗ ≥ (f,Et+[f ])∗ − (f,Et [f ])∗
δ2

,

and hence

‖ϕt,δ‖2∗ ≈ δ−2. (3.7)

Suppose that the spectral measure d(f, Es[f ])∗ is absolutely continuous near t , namely, there is ε > 0 and a 
function μf (s) which is integrable on [t − ε, t + ε] such that

d(f,Es[f ])∗ = μf (s)ds, s ∈ [t − ε, t + ε]. (3.8)

Then we obtain from (3.4)

‖ϕt,δ‖2∗ =
∫

σ(K∗
∂�)\[t−ε,t+ε]

1

(s − t)2 + δ2
d(f,Es[f ])∗ +

∫
[t−ε,t+ε]

μf (s)ds

(s − t)2 + δ2
.

From the boundary behavior of the Poisson integral, we have

lim
δ→0

δ

∫
[t−ε,t+ε]

μf (s)ds

(s − t)2 + δ2
= π

2
(μf (t+) + μf (t−)). (3.9)

On the other hand, it is proved in [14] that

lim
δ→0

δ2
∫

[t−ε,t+ε]

μf (s)ds

(s − t)2 + δ2
= 0. (3.10)

So, we have

lim
δ→0

δ‖ϕt,δ‖2∗ = π

2
(μf (t+) + μf (t−)), (3.11)

and

lim
δ→0

δ2‖ϕt,δ‖2∗ = 0. (3.12)

Define an indicator function αf (t) by

αf (t) := sup

{
α

∣∣∣ lim sup
δ→0

δα‖ϕt,δ‖∗ = ∞
}

, t ∈ (−1/2,1/2). (3.13)

We see that 0 ≤ αf (t) ≤ 1 for all t . The classification of spectra of the NP operator is based on the following theorem.

Theorem 3.1. Let f ∈H∗
0 .

(i) If αf (t) > 0, then t ∈ σ(K∗
∂�).

(ii) If αf (t) = 1 and t is isolated, then t ∈ σpp(K∗
∂�).

(iii) If 1/2 ≤ αf (t) < 1, then t ∈ σc(K∗
∂�).

Proof. The assertion (i) is an immediate consequence of (3.5), while (ii) follows from (3.7) and (3.12). (iii) is a 
consequence of (i) and (ii). �

Because of complicated nature of the singularly continuous spectrum, it is hard to classify it from the continuous 
spectrum. However, αf (t) = 1 and t is not isolated (embedded in the continuous spectrum), then we may infer that it 
is in the singularly continuous spectrum.

The indicator function αf (t) can be computed using the following lemma.
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Lemma 3.2. For t ∈ (−1/2, 1/2) and δ > 0 define

αf (t, δ) = − log‖ϕt,δ‖∗
log δ

. (3.14)

It holds that

αf (t) = lim
δ→0

αf (t, δ) (3.15)

if the limit exists.

Proof. Let � := limδ→0 αf (t, δ) under the assumption that the limit exists. If α < �, then

lim sup
δ→0

δα‖ϕt,δ‖∗ = ∞,

and hence α ≤ αf (t). If α > �, then

lim
δ→0

δα‖ϕt,δ‖∗ = 0,

and hence α ≥ αf (t). So αf (t) = �. �
Lemma 3.2 allows us to approximate αf (t) by αf (t, δ) for small δ. In fact, the high precision method to compute 

K∗
∂�, which will be described in the next section, makes it possible to use δ smaller than 10−10.

4. Source functions

It is quite important for the classification of spectra using αf to choose the source function properly. For example, 
to have αf (t) = 1 for classification of eigenvalues, f needs to have a non-zero eigenmode (the component of the 
corresponding eigenfunctions). To be more precise, we consider (3.1) when δ = 0, namely,(

tI −K∗
∂�

)[ϕ] = f on ∂�. (4.1)

Since K∗
∂� is self-adjoint, this equation is solvable if and only if f ⊥ Ker(tI − K∗

∂�). It means that in order to 
characterize spectrum of K∗

∂� in terms of blow-up of ‖ϕt,δ‖∗, f must have a component of Ker(tI −K∗
∂�).

For example, if f = ν · ∇(d · x) for a constant vector d , there are dark plasmons which are the eigenvalues unde-
tectable by f [11]. In this regard, it is helpful to mention about the polarization tensors. Let ϕ(j)

t,δ be the solution (3.1)
when f = ν · ∇xj . For i, j = 1, 2, we define

mij (t + iδ) :=
∫
∂�

xiϕ
(j)
t,δ (x) dσ.

The matrix M(t + iδ) := (mij (t + iδ)) is called the polarization tensor. It is an analytic function of λ = t + iδ in 
C \ (−1/2, 1/2), and may have singularities at λ = t in the spectra of K∗

∂�. The singularities of M(t + iδ) were 
investigated in [9,11] when M is isotropic. However, singularities of M(t + iδ) can show some spectrum, but not all 
as the following example shows. If � is an ellipse of major axis a and minor axis b, then M(λ) = M(t + iδ) is given 
by

M(λ) = 2πab

⎡
⎢⎢⎣

a + b

(2λ − 1)a + (2λ + 1)b
0

0
a + b

(2λ − 1)b + (2λ + 1)a

⎤
⎥⎥⎦ . (4.2)

(See, for example, [12].) So the singularities (actually poles) of M(λ) occur only at ± a−b
2(a+b)

. However, it is known 
that eigenvalues of K∗

∂� are

±1
(

a − b
)n

, n = 1,2, . . . . (4.3)

2 a + b
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So, in this case M(λ) shows only two eigenvalues. It is quite interesting to observe that those two eigenvalues are the 
largest (in absolute values) eigenvalues.

In this paper we use as source functions

fz(x) = ν(x) · ∇qz(x), q(x) = d · ∇x

(
1

2π
ln |x − z|

)
(4.4)

where d is a constant unit vector and z ∈ R2 \ �. In fact, qz is the Newtonian potential of the polarizable dipole 
d · ∇δz(x) (δz(x) is the Dirac mass) located at z. The source function fz was used in [14] for analysis of resonance on 
intersecting disks.

Using fz as source functions has several advantages. First of all, qz is a harmonic function in �, and hence

‖fz‖H−1/2(∂�) ≈ ‖qz‖H 1(�)

by the standard regularity estimates of the Neumann problem for the Laplace equation. Moreover, one can see easily 
that there are constants C1 and C2 such that

C1 ≤ ‖qz‖H 1(�) ≤ C2

as long as the location z of the dipole is at some distance from � and ∞, namely, there are constants C3 and C4 such 
that

C3 ≤ dist(z,�) ≤ C4. (4.5)

It means that for all z satisfying (4.5) we have

‖fz‖H−1/2(∂�) ≈ 1. (4.6)

In particular, we don’t have to normalize fz.
Another advantage of using fz as source functions is that for any ϕ ∈ H∗

0 fz contains a component of ϕ, namely, 
(fz, ϕ)∗ �= 0 for most z’s. To see this we first observe that

(fz,ϕ)∗ = −〈fz,S∂�[ϕ]〉 = −
∫
�

∇qz(x) · ∇S∂�[ϕ](x) dx

= d · ∇z

⎛
⎝ 1

2π

∫
�

x − z

|x − z|2 · ∇S∂�[ϕ](x) dx

⎞
⎠ = d · ∇zS∂�[∂νS∂�[ϕ]](z).

It shows that (fz, ϕ)∗ is harmonic as a function of the z variable, and it is non-vanishing. In fact, if (fz, ϕ)∗ = 0 for all 
z ∈ R

2 \ �, then S∂�[∂νS∂�[ϕ]](z) = 0, and hence ∂νS∂�[ϕ] = 0 on ∂�. Thus ϕ = 0. As a non-vanishing harmonic 
function, (fz, ϕ)∗ cannot be zero for z in an open set. So, we infer that (fz, ϕ)∗ �= 0 for almost all z.

Still (fz, ϕ)∗ can be small for z in a large set. To avoid such a case, we choose several z’s, say z1, . . . , zN , satisfying 
(4.5), and consider the new indicator function

α�(t) := max
1≤j≤N

{αfzj
(t)}. (4.7)

We emphasize that Theorem 3.1 is still valid with α�(t) replaced with αf (t). The indicator function α�(t) is approxi-
mated by α�(t, δ) for small δ, which is defined by

α�(t, δ) := max
1≤j≤N

{αfzj
(t, δ)}. (4.8)

5. Description of the numerical method

This section briefly motivates and discusses the numerical method used in section 6 to solve (3.1) and to compute 
the inner product (·, ·)∗ in (2.4).
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5.1. Nyström discretization on smooth boundaries

Let K(x, y) be the kernel of an integral operator K that is compact on a smooth boundary ∂� and let f (x) be a 
smooth function on ∂�. A popular method for finding numerical solutions to Fredholm second kind boundary integral 
equations of the type

ϕ(x) +
∫
∂�

K(x, y)ϕ(y) dσ (y) = f (x) , x ∈ ∂�, (5.1)

is Nyström discretization: the integral in (5.1) is discretized on a mesh on ∂� according to some polynomial-based 
quadrature rule with a number N of nodes and weights xj and wj , j = 1, . . . , N , and the resulting semi-discrete 
equation for the unknown layer density ϕ(x) is enforced at the quadrature nodes [3, Chapter 4.1]. Upon solving the 
resulting linear system

ϕ̃(xj ) +
N∑

k=1

K(xj , xk)ϕ̃(xk)wk = r(xj ) , j = 1, . . . ,N , (5.2)

one obtains an approximation ϕ̃(xj ) to ϕ(xj ) whose convergence with N reflects that of the underlying quadrature. 
When (5.1) stems from a well-conditioned boundary value problem on a domain whose boundary ∂� can be resolved 
with a moderate number of discretization points, uniform meshes and high-order accurate quadrature rules, such as 
composite 16-point Gauss–Legendre quadrature, are appropriate in the sense that they often produce solutions ϕ̃(xj )

with a relative accuracy close to machine epsilon (εmach) at modest computational costs.

5.2. Difficulties related to piecewise smooth boundaries

Eq. (3.1) of the present paper is not quite of the type (5.1). The chief difference being that the boundary ∂� has 
a finite number of corners where the NP operator K∗

∂� in (3.1) is not compact. This lack of compactness manifests 
itself in that the solution ϕt,δ(x) to (3.1) may exhibit a non-smooth, oscillatory, and diverging behavior close to the 
corner vertices which cannot easily be resolved by polynomials on a uniform mesh. Rather, intense mesh refinement 
is needed for accuracy. This, in turn, may lead to all kinds of numerical problems related to computational economy 
and to stability irrespective of what numerical method is used.

Another difficulty with producing numerical solutions ϕt,δ(x) to (3.1) appears for very small values of δ in com-
bination with t being close to, or in, the spectrum of the NP operator. Finite precision arithmetic makes it hard for 
any solver to distinguish between combinations of δ and t for which a solution exists and combinations for which no 
solution exists. Such dichotomies often imply numerical ill-conditioning and the loss of precision.

Finally, the computation of (·, ·)∗ offers challenges when ϕt,δ(x) is non-smooth, oscillatory, and diverging. The 
action of the operator S∂� on ϕt,δ(x) may become inaccurate due to numerical cancellation even if ϕt,δ(x) itself is 
accurate.

5.3. RCIP acceleration and Nyström schemes

Fortunately, most of the numerical difficulties discussed in section 5.2, can be overcome by the use of the recur-
sively compressed inverse preconditioning (RCIP) method [7,10], which is a tool to improve the stability and greatly 
reduce the computational cost of standard Nyström discretization schemes when applied to Fredholm second kind in-
tegral equations on piecewise smooth domains. In particular, for t at some distance away from zero, from the endpoints 
of the continuous spectrum, and from the pure point spectrum, RCIP-accelerated Nyström solvers in combination with 
fixed-point iteration, Newton’s method, and a certain homotopy technique [6, Section 6] can often produce solutions 
ϕt,δ(x) to (3.1) with a relative precision of about 10 ·εmach for any δ. See [6, Fig. 10] for an illustration. The achievable 
relative precision for the inner product (·, ·)∗ is, typically, 10 · εmach/δ.

In the numerical examples of section 6 in this paper we use an RCIP-accelerated Nyström solver that has previously 
been used to compute, very accurately, polarizabilities of various arrangements of dielectric squares and cubes [7,
11] as well as electromagnetic resonances inside microwave cavities with sharp edges [8]. It would carry too far to 
recapitulate and put in context the fairly large collection of numerical techniques that constitute the RCIP method, so 
we refer the reader to [6,7] for details.
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Fig. 1. The 20 largest eigenvalues for ellipses of various aspect ratios r . Thinner ellipses have bigger eigenvalues.

6. Numerical experiments

This section presents numerical results for the spectrum of the NP operator on various domains as revealed by 
the indicator function α�(t) of (4.7). On smooth domains, the spectrum consists only of pure point spectrum and the 
standard Nyström method of section 5.1 is very efficient. This is illustrated with experiments on ellipses and superel-
lipses in subsections 6.1 and 6.4. All other experiments apply to domains with corners and use the RCIP-accelerated 
Nyström solver mentioned in section 5.3. The high performance of this solver is demonstrated by comparison with 
analytical results for intersecting disks, which is the only domain with corners for which the spectrum is fully ana-
lyzed [14]. We present spectrum on a triangle, on rectangles of various aspect ratios, and on an ellipse perturbed by a 
corner. The results for rectangles show that the pure point spectrum can be empty or non-empty depending on the as-
pect ratio. The result for the perturbed ellipse shows that there are eigenvalues embedded in the absolutely continuous 
spectrum. So, we conclude that pure point spectrum and singularly continuous spectrum can be non-empty depending 
on the geometry of the domain.

From now on, let fz be the dipole source function in (4.4). To determine α�(t) of (4.7) for a particular domain we 
use N = 103 source functions fzj

located on a circle enclosing the domain. In addition to maximizing over dipole 
source locations we also, for each fzj

, maximize over 103 orientations of the unit vector d . In this way, the maximum 
in (4.7) is taken over 106 dipole fields for each t -value. The enclosing circle is centered at the origin and has radius R.

Our experiments confirm the symmetry of Theorem 2.1. They also show that the bounds on the essential spectrum 
obtained in [22] are optimal. Actually, the experiments show even more: the whole interval between the bounds is the 
essential spectrum. As mentioned in Introduction, this was proved rigorously quite lately in [23].

6.1. Ellipses

Recall from (4.3) that for an ellipse with aspect ratio r , the eigenvalues of the NP operator are

±1

2

(
1 − r

1 + r

)n

, n = 1,2, . . . .

For n ≤ 40 and r = 3, the Nyström method reproduces these eigenvalues with an absolute error of less than 7 · 10−16. 
For r = 30 the error is less than 6 · 10−15. Fig. 1 illustrates the largest eigenvalues for 1 ≤ r ≤ 10.

6.2. Intersecting disks

Numerical results for the spectrum of the NP operator, obtained with the RCIP-accelerated Nyström solver, are 
now compared with analytical results. The domain � is that of the intersecting disks in Fig. 2(b). We let the disk 
radius be a = 2 and the exterior angle at the two corners be θ0 = π/4.
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Fig. 2. Spectrum of the intersecting disks taken by one dipole source. (a) illustrates the intersecting disks (in blue) and the source (location as a dot 
and orientation as an arrow). (b) illustrates the intersecting disks whose exterior angle, say 2θ0, at the two corners is smaller than π . (c) and (d) 
are analytical values; (e), (f), (g), and (h) are numerical results using the RCIP-accelerated Nyström solver. (For interpretation of the colors in this 
figure, the reader is referred to the web version of this article.)
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Fig. 2. (continued)

Table 1
Spectrum of the intersecting disks taken by one dipole source located at (3, 2).

t limδ→0 δ‖ϕt,δ‖2∗ (analytical) δ‖ϕt,δ‖2∗, δ = 10−10 (numerical)

−0.3 0 2 · 10−11

−0.2 0.018710399304385 0.0187104
−0.1 0.022245420816273 0.0222454
+0.1 0.007687535353992 0.00768753
+0.2 0.003180101918936 0.00318010
+0.3 0 8 · 10−12

Let us briefly review the analytical results for intersecting disks obtained in [14]. The spectrum of the NP operator 
has the range [−b, b] with b = 0.25, which is in agreement with (2.23), and consists only of absolutely continuous 
spectrum. Let (�1(z), �2(z)) be the bipolar coordinates with two foci (±c, 0) located at the corners of the intersecting 
disks, i.e.,

�1(z) + i�2(z) = Log

(
z + c

z − c

)
, c = a sin θ0 ,

where Log is the logarithm with the principal branch. For the dipole field fz, oriented in a suitable direction, we have

αfz(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , |t | > b ,

0.5 , 0 < |t | < b ,

0.5
(

1 + |�2(z)|
θ0

)
, t = 0 ,

0.75 , t = ±b .

(6.1)

More precisely, δ‖ϕt,δ‖2∗ converges to a positive number as δ → 0 for 0 < |t | < b with a limit that can be expressed in 
terms of elementary functions of bipolar coordinates. Furthermore, δ3/2‖ϕt,δ‖2∗ converges at |t | = b and

|log δ|−1 δ1+|�2(z)|/θ0‖ϕt,δ‖2∗ converges at t = 0 . (6.2)

In view of (6.1), the indicator function αfz(0) depends on the location of the dipole source. It increases as z approaches 
∂�, but never reaches one.

One dipole field. We first consider the spectrum of the intersecting disks as excited by a single dipole source located 
at z = (3, 2) and orientated in the direction d = (1, 1)/

√
2. In Fig. 2, images (c) and (d) show analytical values of 

αfz(t) from [14] while (e), (f), (g), and (h) show numerical results. Table 1 compares values from Fig. 2(d,f) and 



1006 J. Helsing et al. / Ann. I. H. Poincaré – AN 34 (2017) 991–1011
Fig. 3. Spectrum of the intersecting disks taken over many dipole fields. Dipole sources are situated on an enclosing circle.

shows that the numerical results of (f) for δ = 10−10 exhibit a 6-digit agreement with the analytical results of (d) for 
limδ→0 δ‖ϕt,δ‖2∗ when t is away from 0, ±b. In Fig. 2(e), numerical values for αf (t, δ) (in blue) are computed with 
δ = 10−10, and those for αf (t) (in red) are extrapolated from the limit behavior of δ‖ϕt,δ‖2∗ for |t | �= 0. At t = 0, 
|log δ|−1 δ1+|�2(z)|/θ0‖ϕt,δ‖2∗ is instead considered because of the property (6.2). Note that the logδ factor does not 
affect the limit value of αf (t, δ) as δ → 0. We conclude that analytical values and numerical results of αf (t), red 
graphs in Fig. 2(c,e), coincide for t �= 0 and have very similar values at t = 0.

A large number of dipole fields. Fig. 3 shows α�(t) taken over dipole sources situated on the enclosing circle with 
radius R = 3.6. The obtained extrapolated α�(t) coincides with αf (t) in Fig. 2(e) for t �= 0. At t = 0, the indicator 
function α�(t) achieves a larger value than αf (t) since it involves the maximum over multiple sources and some of 
sources attain bigger values in |�2(z)|.

6.3. Triangle

Fig. 4 show the spectrum of an isosceles triangle. The interval of continuous spectrum is determined by the smallest 
interior angle according to (2.23).
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Fig. 4. Spectrum of the isosceles triangle with sides 1, 2 and 2. The values of 0.5(1 − θ/π) for interior angles, say θ , are approximately 0.4196 and 
0.2902. The larger number 0.4196 bounds the essential spectrum. While the indicator function α�(t) changes only at zero and 0.4196, the functions 
α�(t, δ) and δ‖ϕt,δ‖2∗ for δ = 10−10 show dynamic changes near 0.2902 as well.

6.4. Rectangles and superellipses

The spectrum of the NP operator is computed for rectangles and superellipses of various aspect ratios r . The 
images of Fig. 5 show α�(t) for rectangles with unit area and r ∈ {1; 2.201592; 3; 30}. These images illustrate Corol-
lary 2.3, which says that a rectangle with a sufficiently high r exhibits eigenvalues outside the continuous spectrum 
t ∈ [−0.25, 0.25] and that the number of such eigenvalues increase with r . The ratio r ≈ 2.201592 is a very special 
aspect ratio for which the eigenvalues of the corresponding rectangle are just about to emerge at t = ±0.25. It is 
interesting to observe that α�(t) of this rectangle is exactly same as α�(t) of the intersecting disks in Fig. 3 for t �= 0.

Superellipses are smooth domains which can be described by the Cartesian equation

|x/r|k + |y|k = 1 ,

where r is the aspect ratio and k ≥ 2 is a positive parameter. The higher the parameter k is, the more the superellipse 
resembles a rectangle. However, the spectrum of the superellipse always consists of discrete eigenvalues only. This is 
so since the corresponding NP operator is compact. Similarly as with rectangles and ellipses, superellipses with high 
r exhibit large eigenvalues. Table 2 shows that eigenvalues of the superellipse that lie outside the continuous spectrum 
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Fig. 5. Rectangles with various aspect ratios (Left column) and the corresponding spectra (Right column). The second row exhibits a rectangle with 
the special aspect ratio such that eigenvalues are just about to emerge at the two ends of the continuous spectrum interval.
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Fig. 5. (continued)

Table 2
Largest eigenvalues λn’s of superellipses |x/30|k + |y|k = 1 and those of rectangle with aspect ratio 30.

n k = 101 k = 104 k = 1016 Rectangle

1 0.4641820097578 0.4644081276586 0.4644081752814 0.46440817528139
2 0.4184312731794 0.4187549794499 0.4187551816213 0.41875518162132
3 0.3780806619486 0.3783007052834 0.3783013145614 0.37830131456136
4 0.3413081257441 0.3413712365784 0.3413730990324 0.34137309903240
5 0.3082509222763 0.3082501675778 0.3082566649421 0.30825666494214
6 0.2782621209976 0.2783942470929 0.278425654617 0.27842565462101
7 0.2512202243804 0.2519388130114 0.252346607 0.25234907781210
8 0.2267447370526 0.2298550809760 0.247976317

t ∈ [−0.25, 0.25] converge to eigenvalues of the rectangle with the same r as k → ∞. (Eigenvalues of the superellipse 
that lie inside the continuous spectrum get increasingly densely spaced as k → ∞.)

6.5. Perturbed ellipse with a corner

Fig. 6 shows that even a small Lipschitz perturbation of a smooth domain may induce a big change in the spec-
trum. The perturbed domain has the interval of continuous spectrum, whose bounds are determined by (2.23). Two 
singularly continuous spectrum lie inside the continuous spectrum at about ±0.2, which are the largest eigenvalue of 
the un-perturbed ellipse.

7. Conclusion

We proposed a method to classify spectra of the NP operator on planar domains with Lipschitz boundaries in terms 
of resonance rates. The method was implemented computationally using the RCIP-accelerated Nyström solver on 
domains such as intersecting disks, a triangle, rectangles, superellipses, and a perturbed ellipse. The results show that 
the NP operators on all the examples have absolutely continuous spectrum, and some of them have pure point spectrum 
or singularly continuous spectrum. We also prove rigorously two properties of spectrum suggested by experiments: 
symmetry of the spectrum and existence of pure point spectrum on rectangles of high aspect ratio.

Several questions are raised by numerical experiments of this paper. On rectangles there is a critical aspect ratio 
which separates non-existence and existence of eigenvalues, and proving this seems quite interesting. It is also inter-
esting to find the relation between the number of eigenvalues and the aspect ratio. We have shown that the rectangle 
gets thinner, the spectral bound tends to 1/2 (Theorem 2.2). It is interesting and useful to extend this result to general 
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Fig. 6. Perturbed ellipse with a corner. The aspect ratio before the perturbation is 7/3. The spectrum contains two singularly continuous spectra.

domains. It is desirable to construct in a rigorous manner a domain with corners whose NP operator has singularly 
continuous spectrum. It is also interesting to show that the NP operator on triangles does not have an eigenvalue.
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