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Abstract

In biology, the behaviour of a bacterial suspension in an incompressible fluid drop is modelled by the chemotaxis-Navier–Stokes 
equations. This paper introduces an exchange of oxygen between the drop and its environment and an additionally logistic growth 
of the bacteria population. A prototype system is given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nt + u · ∇n = �n − ∇ · (n∇c) + n − n2, x ∈ �, t > 0,

ct + u · ∇c = �c − nc, x ∈ �, t > 0,

ut = �u + u · ∇u + ∇P − n∇ϕ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0

in conjunction with the initial data (n, c, u)(·, 0) = (n0, c0, u0) and the boundary conditions

∂c

∂ν
= 1 − c,

∂n

∂ν
= n

∂c

∂ν
, u = 0, x ∈ ∂�, t > 0.

Here, the fluid drop is described by � ⊂R
N being a bounded convex domain with smooth boundary. Moreover, ϕ is a given smooth 

gravitational potential.
Requiring sufficiently smooth initial data, the existence of a unique global classical solution for N = 2 is proved, where ‖n‖Lp(�)

is bounded in time for all p < ∞, as well as the existence of a global weak solution for N = 3.
© 2016 

Résumé

Le comportement d’une suspension bactérienne dans une goutte de liquide incompressible est décrit par les équations de 
chemotaxis-Navier–Stokes. Cet article introduit un échange d’oxygène entre la goutte et son environnement et une croissance 
logistique de la population bactérienne. Le système généralise le prototype
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nt + u · ∇n = �n − ∇ · (n∇c) + n − n2, x ∈ �, t > 0,

ct + u · ∇c = �c − nc, x ∈ �, t > 0,

ut = �u + u · ∇u + ∇P − n∇ϕ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0

associé à la donnée initiale (n, c, u)(·, 0) = (n0, c0, u0) et aux conditions du bord

∂c

∂ν
= 1 − c,

∂n

∂ν
= n

∂c

∂ν
, u = 0, x ∈ ∂�, t > 0

d’où � ⊂R
N soit un domaine borné et convexe avec un bord lisse. En outre, ϕ soit un potentiel lisse gravitationnel. En supposant 

que la donnée initiale soit suffisamment régulière, on démontre l’existence d’une solution classique unique pour N = 2 telle que 
‖n‖Lp(�) est borné pour p < ∞ et l’existence d’une solution faible globale pour N = 3.
© 2016 
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1. Introduction

In biology application concerning aerobic bacteria, the favour of the bacteria cells to a higher concentration of a 
chemical has been observed. This effect, called chemotaxis, is presumed to have an deep impact on the time evolution 
of a bacteria population. Depending on the kind of bacteria and the chemical, there are different concepts of chemo-
taxis whether the bacteria consumes or absorbs the chemical. In the present article, we focus on the model describing 
an oxygen-driven bacteria suspension swimming in an incompressible fluid like water which was firstly introduced by 
Tuval et al. [28].

The typical system mainly consists of three coupled subproblems: An equation for the population density n of the 
bacteria, another for the concentration of oxygen c and the Navier–Stokes equations describing the water flow u. It 
can be written as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nχ(c)∇c), x ∈ �, t > 0,

ct + u · ∇c = �c − nf (c), x ∈ �, t > 0,

ut = ν�u + (u · ∇u) + ∇P − n∇ϕ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0,

(1)

where � usually denotes the whole RN or a bounded domain in RN with a smooth boundary. The scalar valued 
parameter functions χ , f , ϕ and the constant ν > 0 are fixed. Here, a bounded domain is used to model a water drop. 
It has been carried out that the presence of a solvent for a chemotaxis system has a main influence on the migration of 
the population of the bacteria. In the case of � being a bounded domain, the system (1) requires boundary conditions. 
Tuval et al. propose Dirichlet boundary conditions for u, no-flux boundary conditions for n and an constant rate of the 
oxygen dissolving into the drop. The mathematical literature [10,21,26] adapts on the one hand the no flux boundary 
condition for n from Tuval et al. [28]. On the other hand it assumes Neumann boundary conditions for c neglecting 
the influence of the surroundings. However, Tuval et al. [28] emphasise the importance of the dissolving oxygen from 
the surroundings: According to the authors, it is an explanation for the observed migration of the bacteria population 
to the contact line between the drop and the air. Regarding this, the present article introduces nontrivial the boundary 
conditions for c, which are generalised to model a bidirectorial oxygen exchange between the water drop and the 
surroundings. Furthermore, it is the first mathematical article treating non-homogeneous boundary conditions for the 
oxygen equation in a chemotaxis system motivated by the experiment of Tuval et al.

Until now, there are several results for the solvability of (1) combined with the typical boundary conditions. We 
will recall some of the most important results concerning this setting of the chemotaxis-Navier–Stokes equations, 
which require n0, c0 being positive:

Assuming χ , f , ϕ are smooth functions with f (0) = 0 and f ′ ≥ 0 on R and some additional regularity on ϕ, Duan 
et al. [9] prove a long-term small-data solution: Let n∞ be a constant; whenever n0 − n∞, c0, u0 are small enough (in 
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W 3,2(RN)), then the system (1) admits a global unique classical solution on RN for N = 2, 3. The authors also derive 
a time-decay of (n − n∞, c, u) by using some assumptions concerning the initial values.

In contrast to Duan et al., Winkler works on a bounded convex domain with a smooth boundary. Moreover, he drops 
the smallness condition of the initial values by requiring more properties for the parameter functions. For sufficiently 
smooth, positive χ and sufficiently smooth f with f (s) > 0 for s > 0 and f (0) = 0, it is assumed(

f

χ

)′
> 0,

(
f

χ

)′′
≤ 0, (f χ)′ ≥ 0 on [0,∞). (2)

Theorem 1.1 (i) in [32] states the global classical solvability for (1) for sufficiently smooth (not necessarily small) 
initial data in spatial dimension two. In 3D he establishes global weak solvability for the related chemotaxis-Stokes 
equations, where the non-linear term u · ∇u is neglected in the Navier–Stokes equations.

Recently, he extended this result by proving the existence of a global weak solution of (1) in dimension 3 for the 
full chemotaxis-Navier–Stokes equation under similar conditions (see [33]).

Chae et al. [4] show global (weak) large-data solution of (1) on the whole RN for N = 2, 3 by mainly requiring 
ϕ, χ, f, χ ′, f ′ ≥ 0 and

sup |χ(c) − μf (c)| ≤ ε for all c ≥ 0 (3)

for some μ ∈R and some ε > 0 in spatial dimension two as well as ε = 0 in spatial dimension three. In particular for 
N = 3, we have χ = μf .

Moreover, in the chemotaxis literature there is a branch, where the linear diffusion in the equation for n is replaced 
by a porus-medium-like diffusion (see [3,8,34]). Here, [8] proves the global-in-time existence of a weak solution of 
(1) for large initial data, where its first equation is replaced by

nt + u · ∇n = δ�nm − ∇ · (nχ(c)∇c), x ∈R
3, t > 0

for any m ≥ 1 and � =R
3.

The mentioned articles assume a total constant number of bacteria undermining death and reproduction. However, 
there has been a lot of progress in understanding the influence of the growth of the bacteria population for some related 
chemotaxis equations{

nt = �n − χ∇ · (n∇c) + l(n), x ∈ �, t > 0,

τct = �c − n + c, x ∈ �, t > 0
(4)

for some τ > 0 and χ ∈R for some well-behaving l (cf. [1,19,22,23]). In [31], Winkler investigates the influence of a 
logistic growth of the bacteria population. In his article, he proves the existence of a unique bounded global-in-time 
classical solution of (4) in a bounded convex domain � ⊆R

N for any N ≥ 1, τ > 0 and χ ∈ R, where l is a smooth 
function fulfilling

l(x) ≤ rx − dx2 for x ≥ 0

for some r > 0 and for sufficiently large d > 0. Restricting to the two dimensional case and assuming � = R
2, it is 

possible to drop the largeness condition on d without changing the result (see [22]).
Note that the system (4) does not involve an equation for a liquid, whereas in [10] the system (4) is supplemented 

by the Stokes equation and reads⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

nt + u · ∇n = �n − χ∇ · (n∇c) + l(n), x ∈ �, t > 0,

τct + u · ∇c = �c − n + c, x ∈ �, t > 0,

ut + ∇P = �u − n∇ϕ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0

(5)

for a given potential ϕ. Setting l(n) = −εn2 for some ε > 0, Espejo and Suzuki prove in [10] the existence of a global 
weak solution of (4) in conjunction with (5) for � being either a smooth, bounded domain in R2 or the whole R

2. 
Moreover, Winkler and Tao [36] extended this result using l(n) = rn − μn2 for some r ≥ 0 and μ > 0. For a bounded 
domain � ∈ R

2 with smooth boundary, they proved that (4) in combination with (5) admits a bounded classical 
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solution requiring sufficiently smooth initial data. In addition, requiring r = 0, the solution decays in time to zero in 
L∞(�) (cf. [36]).

It shall be emphasised that there are several related problems to the standard chemotaxis system: In [35], Winkler 
analyses a chemotaxis-Stokes system, where the equation concerning n is replaced by

nt + u · ∇n = �n − ∇ · (nS(x,n, c) · ∇c) x ∈ �, t > 0.

Assuming some smoothness properties, no flux boundary conditions as well as

|S(x,n, c)| ≤ S0(c) for all (x,n, c) ∈ � × [0,∞)2

for some nondecreasing S0 : [0, ∞) �→ R, Winkler derives the existence of a global generalised solution, which is 
attracted by (n0, c0, u0). Here, (n0, c0, u0) is the initial guess and n0 represents the average of n0 with respect to �.

Another branch of related problems supposes a nonlinear diffusion, i.e. exchanging �n by �nm in equation (1) for 
some m ≥ 1 (see [7,26,27]).

1.1. Extension of the model

The aim of this paper is to derive the global solvability of large-data solutions as in [4] and in [32]. We underline 
that the conditions (2) and (3) are very restrictive to the functions χ and f . Furthermore, a prototype case for the 
chemotaxis-Navier–Stokes equations, introduced by Winkler [32] by setting

∇ϕ ≡ const., χ ≡ const., f ≡ id,

clearly undermines the conditions (3) used in [4]. Although [32] treats this prototype case, the global existence theorem 
is restricted to the simplified chemotaxis-Stokes equations in spatial dimension three.

In order to facilitate the conditions of χ and f , we extend the model by assuming a logistic growth of the bacteria 
population and add the term l(n) to the first equation, whose prototype is given by

l(n) := κn − μn2, κ,μ > 0.

Here κn models the reproduction of the bacteria which is proportional to their total number and −μn2 describes a 
death rate, which prevents an excessive increase of the cell density.

In accord with [32], we study the chemotaxis-Navier–Stokes system in a bounded convex domain � with a smooth 
boundary. Let us assume that the system (1) describes the behaviour of oxygen-driven bacteria living in a water drop 
in which oxygen is solved. According to equation (1)2 the oxygen is consumed by the bacteria and hence, the total 
mass of oxygen decreases over time. If the drop is surrounded by air, there exists a reversible reaction between the 
solved oxygen in the drop and the free oxygen in the air. Therefore, oxygen may diffuse into the drop, which may 
change the behaviour of the bacteria. Clearly, this effect takes place on the boundary of �. Therefore, we require 
different boundary conditions comparing to [32]:

In case of an ideal solution, the behaviour of the oxygen exchange can be described by Raoult’s law, which connects 
the rate of incoming oxygen to the partial vapour pressure of the oxygen in the surroundings. The origin of this law 
is given by Atkins and de Paula in terms of a molecular interpretation (see [2] section 5.3 on page 144). Fortunately, 
this suits our settings:

Atkins and de Paula explain that the leaving rate of the oxygen molecules is proportional to the total number of 
molecules on the surface. The condensing rate of the free oxygen-molecules depends proportionally on their partial 
pressure if we model an ideal solution. In case of a real solution, we have to drop the proportionality. Nevertheless, we 
will assume that the vapour pressure of the free oxygen is given and thereby, the incoming rate of oxygen is known. 
In conclusion, we set the normal derivative of the oxygen concentration on the boundary to

∂c

∂ν
(x, t) = −a1(x)c(x, t) + a2(x, t), (x, t) ∈ ∂� × (0,∞) (6)

for some given functions a1 ∈ C∞(∂�) and a2 ∈ C∞(∂� × [0, ∞)). Here −a1(x)c(x, t) describes the outgoing 
oxygen-molecules; therefore, we assume that

a1(x) is positive for all x ∈ ∂�.
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The second function a2 models the incoming oxygen and depends on the known vapour pressure of the free oxygen. 
a2 shall be positive or at least non-negative.

In view of the term −∇ · (nχ(c)∇c) in equation (1)1, we also need to change the boundary conditions for n unless 
we permit the bacteria to leave the drop. This is the reason for introducing the no-flux boundary conditions for n, 
namely

∂n

∂ν
= nχ(c)

∂c

∂ν
on ∂� × (0,∞). (7)

Up to this point, we have assumed that the exchange of oxygen only takes place at the boundary. But we may think 
of modelling a thin liquid film in 3D by analysing the equations in spatial dimension two. In this case, an oxygen ex-
change is reasonable everywhere in the film. We thus also introduce a sufficiently smooth function h(x, t, c) modelling 
the oxygen exchange, which we add to the right-hand side of equation (1)2. All in all we obtain the system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nχ(c)∇c) + l(n), x ∈ �, t > 0,

ct + u · ∇c = �c − nf (c) + h(x, t, c), x ∈ �, t > 0,

ut = ν�u + u · ∇u + ∇P − n∇ϕ, x ∈ �, t > 0,

∇ · u = 0, x ∈ �, t > 0

(cNS)

in conjunction with the initial data (n, c, u)(·, 0) = (n0, c0, u0) and the boundary conditions (6) and (7).

1.2. Main results

Let � be a bounded domain in RN with smooth boundary for N = 2, 3. We assume the following conditions for 
the standard parameter functions χ , f and ϕ: Let γ > 0, the functions χ ∈ C3+γ (R) and f ∈ C2+γ (R) fulfil

χ ≥ 0 and f (s) ≥ 0, s ≥ 0, f (0) = 0. (8)

Moreover, let ϕ be differentiable such that ∇ϕ ∈ Cγ (�)N for some γ > 0.
The property of l(n) modelling a logistic growth is obtained by the assumption

l(x) ≤ r − dx2 for x > 0 (9)

for some r, d > 0. For technical reasons we also suppose that l ∈ C2+γ (R), γ > 0, fulfils

l(0) ≥ 0 and |l(x)| ≤ M + |x|Q for all x ∈R (10)

and some Q, M > 0. We fix the functions modelling the oxygen exchange by requiring h ∈ C2+γ (� × [0, ∞) × R)

for some γ > 0 and a1 ∈ C∞(∂�), a2 ∈ C∞(∂� × [0, ∞)). As above, we assume that they are bounded and fulfil

a1(x) > 0 and a2(x, t) ≥ 0, (x, t) ∈ ∂� × (0,∞). (11)

Moreover, we need

h(·, ·, c) ≥ 0 ⇔ c ≤ M (12)

for some M > 0. In addition to these conditions for the parameter functions, we also require sufficient smoothness of 
the initial data:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 < n0 ∈ C0(�) ∩ H 1(�),

0 < c0 ∈ W 1,10(�),

u0 ∈ D(Aα) for some
N

4
< α < 1.

(13)

Proposition 1.1. Assume that (8)–(13) hold. Then there exists a time T ∗ ∈ (0, ∞] such that (cNS) admits a classical 
solution (n, c, u, P) on � × [0, T ∗) which is unique up to a time depending constant to the pressure P in the class of
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

n ∈ C4+2μ,2+μ(� × (0, T )) ∩ C0(� × [0, T ))

∩ L∞(0, T ;W 1,2(�)) ∩ L∞(0,∞;Lp(�)),

c ∈ C4+2μ,2+μ(� × (0, T )) ∩ C0(� × [0, T )) ∩ L∞(0, T ;W 1,8(�)),

u ∈ C2+2μ,1+μ(� × (0, T )) ∩ C0(� × [0, T )) ∩ L∞(0, T ;D(Aα)),

P ∈ C1+μ,μ(� × (0, T )) ∩ L∞(0, T ;W 1,2(�))

(14)

for every T < T ∗, p < ∞ and some μ > 0. In addition, the function n, c are positive.

Theorem 1.2 (N = 2). Let � be convex. The solution given by Proposition 1.1 is indeed global in time, i.e. T ∗ = ∞
and each Lq(�) norm of n is globally bounded in time for every q ≥ 1.

Theorem 1.3 (N = 3). Assume that (8)–(13) hold and that � is convex; then (cNS) admits at least a global weak 
solution in sense of Definition 1.5 below.

Remark 1.4. The convexity of � is assumed for technical reasons: It allows us to find an a priori estimate for ∇c in 
Lemma 3.9 in order to prevent a blow-up of the solution. This trick has already been used in [31]. It is not known 
to the author whether Theorem 1.2 and Theorem 1.3 are still correct without assuming the convexity of �. However, 
since � describes a water drop, it is reasonable to suppose that it is convex.

Definition 1.5. Assume that⎧⎪⎪⎨
⎪⎪⎩

n ∈ L2
loc(0,∞;L2(�)) ∩ L

4
3
loc(0,∞;W 1, 4

3 (�))

c ∈ L∞(� × (0,∞)) ∩ L2
loc(0,∞;W 2,2(�)) ∩ C0([0,∞);L2(�))

u ∈ L∞(0,∞;L2
σ (�)) ∩ L2

loc(0,∞;W 1,2
σ (�))

(15)

and l(n) ∈ L1(� × (0, t)) as well as c ∈ W 1, 4
3 (� × (0, t)) are true for all t > 0.

We call (n, c, u) a global weak solution of (cNS) if we have

∞∫
0

∫
�

n�1t +
∞∫

0

∫
�

nu · ∇�1 +
∞∫

0

∫
�

∇n · ∇�1

=
∫
�

n0�1(0, ·) −
∞∫

0

∫
�

nχ(c)∇c · ∇�1 +
∞∫

0

∫
�

l(n)�1,

∞∫
0

∫
�

c�2t +
∞∫

0

∫
�

cu · ∇�2 −
∞∫

0

∫
�

�c�2

=
∫
�

c0�2(0, ·) −
∞∫

0

∫
�

cf (n)�2 +
∞∫

0

∫
�

h(c)�2,

∞∫
0

∫
�

uξt +
∞∫

0

∫
�

u ⊗ u :∇ξ + ν

∞∫
0

∫
�

∇u : ∇ξ =
∫
�

u0 · ξ(0) +
∞∫

0

∫
�

n∇ϕ · ξ

for all �1, �2 ∈ C∞
c (� × [0, ∞)) and ξ ∈ C∞

c (� × [0, ∞))N with ∇ · ξ = 0.

Proposition 1.6 (Strong solvability of the oxygen equation). There exists a weak solution of (cNS) obtained by The-
orem 1.3 such that (n, c, u) is a strong solution of (cNS)2, i.e. ct , ∇c and �c exist almost everywhere and belong to 

L
4
3 (0, ∞; L 4

3 (�)) such that we have
loc
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ct + u · ∇c = �c − nf (c) + h(c) a.e. on � × (0,∞).

Furthermore, c(·, t) → c0 in L2(�) as t → 0. In addition, ∂c
∂ν

and c exist almost everywhere in ∂� with respect to the 
surface measure of ∂� and they are elements of L2

loc(0, ∞; L2(∂�)). The function c fulfils the boundary conditions

∂c

∂ν
= −a1c + a2 a.e. on ∂� × (0,∞).

Lemma 1.7. Let (u, c, n, P) be a solution of (cNS). We have

sup
0≤t<Tmax

‖n(t)‖L1(�) < ∞ (16)

and we deduce

c(t) ≤ c := max

{
M,

∥∥∥∥a2

a1

∥∥∥∥
L∞(∂�×R+)

,‖c0‖L∞(�)

}
(17)

for all 0 ≤ t < Tmax, where M := sup {c|h(c) > 0} < ∞.

1.3. Overview and outlook

The proof of the main theorems is mainly divided into three parts:
The succeeding section provides our first goal: the local existence of a unique classical solution of the chemotaxis-

Navier–Stokes equations. Dealing with technical difficulties due to the non-homogeneous boundary condition, Sec-
tion 2 develops a transformation permitting the standard usage of semi-group theory. We state a local existence result 
which slightly generalises Proposition 1.1 and which introduces a blow-up criterion being crucial for further steps.

Section 3 develops a basic machinery of a priori estimates which are necessary for the last section in order to pass 
from a local to a global solvability. In addition, we develop the key estimate for the global in time boundedness of 
‖n‖Lq(�) for all q < ∞.

Finally, we combine the blow-up criterion with the a priori estimates to earn global existence, which can be directly 
achieved in the two dimensional case. For N = 3 we have get more involved and define an approximating sequence 
for the desired weak solution and cope with its convergence.

For a further research project, it would be interesting to learn more about the gained solution: Obviously, the 
standard chemotaxis-Navier–Stokes equations possess a trivial solution, i.e. (n, c, u, P) ≡ 0. In contrast to that, after 
the extension of the model, the boundary conditions for c disagree with c ≡ 0 in the prototype case. Therefore, we 
may assume that the long-time behaviour for small-data solutions is different to that one proven in [9]. In addition, 
since the bacteria consume the solved oxygen, we may interpret the boundary as an oxygen source. Thereby, having 
in mind that the bacteria need oxygen to survive, it is reasonable to suppose that the bacteria are likely to accumulate 
at the boundary. This leads to the open question if there exists a time-independent distribution of (n, c, u, P) which 
attracts appropriate small-data solutions of the extended chemotaxis-Navier–Stokes system.

2. Local solution and transformation into homogeneous boundary conditions

First of all, we note that according to [17] Theorem 9.4 and the Gagliardo–Nirenberg embedding properties, there 
exist bounded functions g1 ∈ C∞(�) and g2 ∈ C∞(� × [0, ∞)) such that we have

∂g1

∂ν
(x) = −a1(x), g2(x, t) = a2(x, t)

a1(x)
with

∂g2

∂ν
(x, t) = 0, (x, t) ∈ ∂� × [0,∞).

Since these functions are not unique, we now choose such g1 and g2 and fix them. In this and the following section, 
we continue using the expressions g1 and g2 for those two functions.

Remark 2.1. We can rewrite the boundary conditions for c to

∂c
(x, t) = ∂g1

(x)
(
c(x, t) − g2(x, t)

)
, (x, t) ∈ ∂� × [0,∞). (18)
∂ν ∂ν
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Here ∂g1
∂ν

is negative on the boundary. We may interpret g2(x, t) as the critical oxygen concentration which decides 
whether oxygen condensates or vaporises at a point x on the boundary at a time t . Clearly, we have g2 ≥ 0 on ∂�.

Since the system (cNS) has non-linear inhomogeneous boundary conditions, a standard semi-group argument can-
not directly be applied. It has to be postponed after transforming the equations into homogeneous boundary conditions.

Definition 2.2. Let n, c : � × [0, Tmax) → R be a solution of (cNS); we define

c̃ := e−g1(c − g2),

ñ := nA(c) = nA(eg1 c̃ + g2),

A(c) := exp

⎛
⎝−

c∫
0

χ(s)ds

⎞
⎠ (19)

having in mind

∂ñ

∂ν
= ∂c̃

∂ν
= 0 on ∂�. (20)

In addition we also transform the initial guess to

ñ0 := n0A(c0) and c̃0 := e−g1(c0 − g2(·,0)).

The strategy to derive the solvability of (cNS) consists of solving a transformed PDE for the parameters ñ, c̃, u. 
Therefore, we are also interested in a backward transformation which defines n, c by using ñ, c̃:

Definition 2.3. We define the backward transformations T x,t
n :R2 → R and T x,t

c : R →R via

T x,t
c (b) = eg1(x)b + g2(x, t), T x,t

n (a, b) = aA(−T x,t
c (a, b)),

for x ∈ � and 0 ≤ t < ∞. Now let ϕ1, ϕ2 : � × [0, Tmax) → R be two functions for some Tmax > 0. Then we put(
Tn(ϕ1, ϕ2)

Tc(ϕ2)

)
(x, t) :=

(
T

x,t
n (ϕ1(x, t), ϕ2(x, t))

T
x,t
c (ϕ2(x, t))

)
for all x ∈ � and 0 ≤ t < Tmax.

Remark 2.4. Clearly, we have

n = Tn(ñ, c̃) and c = Tc(c̃).

Lemma 2.5. There exist functions R̃ ∈ C2+μ(� ×R+ ×R
2+N), l̃ ∈ C2+μ(� ×R+ ×R

2) and h̃ ∈ C2+μ(� ×R+ ×
R

2+2N) for some μ > 0 such that (n, c, u, P) solves (cNS)1 and (cNS)2 iff (ñ, c̃, u, P) is a solution of

ñt + u · ∇ñ = �ñ − 2ã(c̃,∇ c̃) · ∇ñ + ∇ · (ñã(c̃,∇ c̃)
)

+ R̃(ñ, c̃,∇ c̃) + l̃(ñ, c̃)
(21)

and

c̃t + u · ∇ c̃ = �c̃ + h̃(ñ, c̃,∇ c̃, u), (22)

where we have dropped the x, t dependency in the notation of the equations. In addition, the functions R̃, h̃ can be 
written in use of some differentiable auxiliary functions F1, F2, . . . as

ã(β, v) = F1(β)v + F2(β)

R̃(α,β, v) = F3(α,β) |v + F4(β)|2 + F5(α,β)

l̃(α,β) = F6(β)l(αF7(β))

h̃(x, t, α,β, v,w) = F (β) · w + F · v + F (α,β),

(23)
8 9 10
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for α, β ∈ R, w, v ∈ R
N , where we have again neglected the dependency on (x, t) ∈ � × (0, ∞). Here, a bold letter 

denotes a vector valued function. We have the estimate

|Fi(α,β)| ≤ (1 + |α|)Cβ and |Fi (β)| ≤ Cβ (24)

for all α, β , i, whenever Fi is involving on α, where Cβ is depending on β . To be more precise, F9 does not depend 
on β and hence it is globally bounded.

Proof. This lemma can be shown by a direct and excessive calculation which is left to the reader. However, the 
auxiliary functions are given by

ã : � ×R+ ×R×R
N → R

N

(x, t, s, v) �→ −χ(T x,t
c (s))

(
v + s∇g1(x) + ∇g2(x, t)e−g1(x)

)
eg1(x)

and

l̃(ψ1,ψ2) := A(Tc(ψ2))l(Tn(ψ1,ψ2))

for ψ1, ψ2 being real valued functions on � × [0, T ) for some T > 0. Moreover, we have

R(x, t, s1, s2, v) := −s1χ
′(s2) |v|2 + s2

1χ(s2)
f (s2)

A(s2)
− s1χ(s2)h(x, t, s2),

R̃(x, t, s1, s2, v) := R(x, t, s1, T
x,t
c (s2), veg1(x)) + s2∇eg1(x) + ∇g2(x, t))

for x ∈ �, t > 0, s1, s2 ∈R and v ∈R
N as well as

h̃(x, t, s1, s2, v,w) := −w ·
(
s2∇g1(x) + ∇g2(x, t)e−g1(x)

)
+ 2v · ∇g1(x) + s2(|∇g1(x)|2 + �g1(x)) + �g2(x, t)e−g1(x)

+ e−g1(x)(−T x,t
n (s1, s2)f (T x,t

c (s2)) + h(x, t, T x,t
c (s2) − ∂tg2(x, t))

for x ∈ �, t > 0, s1, s2 ∈R and v, w ∈ R
N . �

As a matter of prudence, we approximate the Navier–Stokes equations in our system in order to obtain a weak 
solution in spatial dimension three. Thus, the (approximate) homogeneous chemotaxis-Navier–Stokes equations are 
given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ñt + u · ∇ñ = �ñ − 2ã(c̃,∇ c̃) · ∇ñ + ∇ · (ñã(c̃,∇ c̃)
)

+ R̃(ñ, c̃,∇ c̃, u) + l̃(ñ, c̃), x ∈ �, t > 0,

c̃t + u · ∇ c̃ = �c̃ + h̃(ñ, c̃,∇ c̃, u), x ∈ �, t > 0,

u′(t) = Au + P mB(u(t), u(t)) − P m
(
Tn(ñ, c̃)∇ϕ

)
in L2

σ (�), t > 0,

(ñ, c̃, u)(x,0) = (ñ0, c̃0,P
mu0)(x), x ∈ �,

∂ñ

∂ν
= 0,

∂c̃

∂ν
= 0 on ∂�.

(25)

Here, we write A = −P�, where P is the Leray projection. We define P m for m ∈ N ∪ {∞} as the projection onto 
the first m eigenspaces of A and B(u, v) denotes the bilinear form u · ∇v. Note that we also allow m = ∞, in which 
the equation for u turns into the common Navier–Stokes equations.

The following proposition corresponds to Lemma 2.1 in [32]. Unlike the situation in [32], we consider a right-hand 
side of equation (25)1 with some extra term like ∇n · ã(c̃, ∇ c̃). Unfortunately, ∇n · ã(c̃, ∇ c̃) is not in divergence form. 
Treating these additional terms turns out to be slightly more involved than it is in [32]. Because of this, we change 
Lemma 2.1 in [32] to
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Proposition 2.6. Let N ∈ {2, 3} and � ⊂R
N be a bounded domain with smooth boundary.

Then there exists a maximal Tmax ∈ (0, ∞] and μ > 0 such that (25) possesses a classical solution fulfilling for 
every 0 < T < Tmax

(ñ, c̃, u) ∈ XT := L∞([0, T );L∞(�) ∩ H 1(�) × W 1,4(�) × D(Aα))

such that

n, c ∈ C2+2μ,1+μ(� × (0, Tmax)) ∩ C0(� × [0, Tmax))

u ∈ C1+μ(0, Tmax;L2
σ (�)) ∩ C([0, Tmax);L2

σ (�)) ∩ Cμ([0, Tmax);D(A)).

Furthermore, if Tmax is finite, we have the blow-up criterion

‖ñ(t)‖L∞ + ‖∇ñ(t)‖L2 + ‖c̃(t)‖W 1,4 + ∥∥Aαu(t)
∥∥

L2 → ∞ as t ↗ Tmax. (26)

Moreover, let m = ∞; then we have u ∈ C2+2μ,1+μ(� × (0, T )) for some μ > 0. In addition, there exists a function 
P ∈ C1+μ,μ(� × (ε, t)) such that (ñ, c̃, u, P) solve⎧⎪⎨

⎪⎩
ut + (u · ∇)u = ν�u + ∇P + Tn(ñ, c̃)∇ϕ, on � × (0, T ),

u = 0 on ∂� × (0, T ),

u(·,0) = u0, on �.

The function P is unique up to a constant.

The proof of Proposition 2.6 begins with achieving a mild solvability of the equations by an application of Banach’s 
fixed-point theorem similarly to [32].

Let XT be as in Proposition 2.6 and let BR denote the closed ball in XT centred at 0 with radius R > 0. In order to 
utilise Banach’s fixed-point theorem, we require an adequate mapping

� := (�1,�2,�3) : BR → XT ,

which needs to be a contraction. We define �(n, c, u) for (n, c, u) ∈ BR by putting

�1(n, c,u)(t) := et�ñ0 +
t∫

0

e(t−s)�{−2ã(c,∇�2) · ∇n + ∇ · (ñã − uñ
)

+ ñR̃(n, c,∇�2) + l̃(n, c)}(s)ds, (27)

�2(n, c,u)(t) := et�c̃0 −
t∫

0

e(t−s)�{−u · ∇c + h̃(n, c,∇c,u)}(s)ds, (28)

�3(n, c,u)(t) := e−tAu0 −
t∫

0

e−(t−s)AP m{u · ∇u − Tn(n, c)∇ϕ}(s)ds. (29)

Here, (et�)t≥0 and (e−tA)t≥0 denote the Neumann heat semi-group and Stokes semi-groups with Dirichlet boundary 
conditions, respectively. The proof that � defines a contraction is analogue to the proof found in [32] and will be 
stated for the reader’s convenience. Let us denote B := −� + 1 as the sectorial operator with Neumann boundary 
conditions.

Remark 2.7. Note that the definition of �1 depends on �2. Replacing �2 by c in the definition of (27) would cause 
more difficulties in showing a bound for �1. Moreover, it is no longer guaranteed that the mapping � is well-defined. 
Thus, the strategy to achieve the bound for �1 is to obtain an admissible regularity of �2 first.

(i) Let us prove that �2 is bounded in W 1,10(�). Applying the contractivity of the heat semi-group and the 
Theorems 1.6.1 and 1.4.1 in [14], we infer choosing α1 < 1 with 1 − N < 2α1 − N that
10 4
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‖�2(n, c,u)(·, t)‖W 1,10(�)

≤ ∥∥et�c0
∥∥

W 1,10(�)
+

t∫
0

∥∥∥e−(t−s)(B−1)
(
u(s) · ∇c(s) + h̃

)∥∥∥
W 1,10(�)

ds

≤ ‖c0‖W 1,10(�) + C2

t∫
0

(t − s)−α1

∥∥∥u(s) · ∇c(s) + h̃

∥∥∥
L4(�)

ds (30)

≤ ‖c0‖W 1,10(�) + C(R)

1 − α1
T 1−α1 (31)

holds for all 0 < t < T , where we used that h̃ is affine in ∇c and ∇c ∈ L∞(0, T ; L4(�)) as well as u ∈ D(Aα) ↪→
C0(�) since α > N/4 [25].

(ii) Note that we have ∇ · (nu) = u · ∇n +n∇ ·u = u · ∇n. An analogue argumentation as in (i) in conjunction with 
Lemma 1.3 (iv) [30] yields

‖�(n, c,u)(t)‖L∞∩H 1

≤ ∥∥et�n0
∥∥

L∞∩H 1 +
t∫

0

∥∥∥B
10
11 e−(t−s)(B−1)

(
2ã(c,∇�2) · ∇n − ñR̃ − l̃

)∥∥∥
L

5
3
ds

+
t∫

0

∥∥∥B
2
5 e−(t−s)(B−1)

∥∥∥
L4→L4

∥∥∥e(t−s)�∇ · (nã(c,∇�2) − un
)∥∥∥

L4
ds

≤ ‖n0‖L∞∩H 1 +
t∫

0

(t − s)
10
11

∥∥∥2ã(c,∇�2) · ∇n − ñR̃ − l̃

∥∥∥
L

5
3
ds

+
t∫

0

(t − s)
9
10

∥∥nã(c,∇�2) − un
∥∥

L4 ds

≤ ‖n0‖L∞∩H 1 + C(R)T
1
11 , (32)

where we also used Hölder’s inequality, the linear or quadratic bounds of ã, ñ, R̃, h̃, l̃ with respect to ∇c, u or ∇�1
and the fact that ∇�1 is locally bounded in L10(�) according to (i).

(iii) Proceeding similarly, we infer

‖�3(n, c,u)(t)‖D(Aα) ≤ ‖u0‖D(Aα) + C19(R) · T 1−α.

Concluding we have seen, that � is bounded. We can also obtain a Lipschitz estimate with a Lipschitz constant 
C(R)T β for some β, C(R) > 0 by the same procedure as above and therefore, we leave it to the reader.

Setting R := 2 ‖(n0, c0, u0)‖, it clearly results from the Banach’s fixed-point theorem that if T is sufficiently small 
(depending only on R), then the mapping � : BR → BR is a well-defined contraction and admits a unique fixed-point 
(ñ, c̃, u) ∈ BR .

Having found a so-called mild solution of the chemotaxis-Navier–Stokes equation, a bootstrap argument using 
the regularity of the Stokes semi-group, the heat semi-group and further regularities for parabolic entails the desired 
regularity, cf. [5,12,13,15,20,25].

Positivity: Note that we have f (0) = 0 and h(·, ·, s) ≥ 0 for s ≤ 0 as well as ∂c
∂ν

(x, t) ≥ 0 whenever c(x, t) ≤ 0
for x ∈ ∂�, t > 0. Thus, a standard argument involving the L2 norm of the negative part of n and c ensures that n
and c are non-negative. The strictly positivity of n and c can be obtained by a second step using the strong maximum 
principle and the regularity of the solutions.

Uniqueness: Proving uniqueness with respect to the desired class, we assume that (ñ, c̃, u) and (ñ′, c̃′, u′) are 
solutions in XT of (25) and fulfil the condition 

∥∥(ñ, c̃, u))XT

∥∥ ≤ R as well as 
∥∥(ñ′, c̃′, u′)

∥∥ ≤ R for some R > 0. 

XT
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Let n, n′, c, c′ be the backward transforms of ñ, ñ′, c̃, c̃′, respectively. Thus, (n, c) and (n′, c′) solve the equations 
(cNS) with the corresponding u, u′ respectively. Likewise to [32], we multiply difference of the equations of c and c′
to obtain

d

dt

∫
�

(c − c′)2 +
∫
�

∣∣∇(c − c′)
∣∣2

= +
∫
�

(−nf (c) + h(c))(c − c′) +
∫
�

(n′f (c′) − h(c′))(c − c′)

−
∫
�

(u∇c − u′∇c′)(c − c′) +
∫
∂�

(a1(c − c′) + a2)(c − c′).

Note that the boundary term can be controlled with the aid of the W 1,2(�) norm of c − c′. A similar treatment to the 
bacteria equation yields

d

dt

∫
�

(n − n′)2 +
∫
�

∣∣∇(n − n′)
∣∣2

= +
∫
�

nχ(c)∇c · ∇(n − n′) −
∫
�

n′χ(c′)∇c′ · ∇(n − n′)

−
∫
�

(u∇n − u′∇n′)(n − n′) +
∫
�

(l(n) − l(n′))(n − n′),

where the boundary terms vanish. We can use exact the same argumentation as in [32] to see that y(t) := ∫
�
(n −

n′)2 + c1
∫
�
(n − n′)2 + c2

∫
�
(n − n′)2 satisfies y′ ≤ c2y on some small time interval and for some positive constants 

c1, c2, c3 which only depend on 
∥∥(n, c,u))XT

∥∥, 
∥∥(n′, c′, u′)

∥∥
XT

. Note that these norms can directly be estimated using ∥∥(ñ, c̃, u))XT

∥∥ , 
∥∥(ñ′, c̃′, u′)

∥∥
XT

≤ R. We infer y(t) = 0 according to y(0) = 0, which ensures the uniqueness of the 
solution.

3. A priori estimates

Throughout this section we always assume that (ñ, c̃, u) is a classical local solution of (25) and n, c denote the 
backward transforms of ñ and c̃, restrictively, by means of Definition 2.2. Thus, requiring m = ∞, (n, c, u) solve 
equations (cNS) for an adequate P .

3.1. n logn energy estimate

The first and main a priori estimate is a rather weak one. However, it possesses the advantage that the energy type 
estimate only slightly depends on the logistic growth since we will only use the smoothness and the following property 
of l appearing in (cNS)1:

l(n) ≤ r − dn2 for n ≥ 0. (33)

By means of (33), we may change l by subtracting a smooth non-negative function without changing the inequalities 
and the constants provided in this section. For example,

l0(n) := l(n) and lε(n) := l(n) − εn3 for n ≥ 0

admit the same n logn estimate for all ε > 0. This estimate, which is uniform in ε, permits defining an adequate 
approximating solution of (cNS)1 and hence plays a crucial role in gaining the weak solution in spatial dimension 
three.

In contrast to the n logn estimate in [32], we shift n by Euler’s number e and work on an (n + e) log(n + e)

argument since we do not want to waste much thought on the singularity of the logarithm. The first approach only 
uses the equation of n:
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Lemma 3.1. There exist some constants C1, C2 > 0 such that

d

dt

∫
�

(n + e)(log(n + e) − 1) + 1

2

∫
�

|∇n|2
n + e

+ d

4

∫
�

n2

≤ C1

∫
�

χ(c)2 |∇c|4 + 1

2

∫
�

(l(n) − r) log(n + e) + C2.

(34)

Proof. A direct differentiation and an integration by parts yield

d

dt

∫
�

(n + e)(log(n + e) − 1) −
∫
�

l(n) log(n + e)

=
∫
�

�n log(n + e) −
∫
�

∇ · (nχ(c)∇c) log(n + e)

= −
∫
�

|∇n|2
n + e

+
∫
�

nχ(c)

n + e
∇n · ∇c

since the boundary integral vanishes and ∇ · u = 0. By Young’s inequality, we may cut the unsigned term containing 
∇c · ∇n into two parts to digest the part involving ∇n by the first integral on the right-hand side of the previous 
calculation. This leads to

2
∫
�

nχ(c)

n + e
∇n · ∇c ≤

∫
�

|∇n|2
n + e

+
∫
�

n

n + e
χ(c)2n |∇c|2 .

Now we split the integral involving ∇c to clear the dependency on n by use of Young’s inequality. In addition, we 
observe n ≤ n + e. Collecting these preparatory considerations, we estimate

d

dt

∫
�

(n + e)(log(n + e) − 1) + 1

2

∫
�

|∇n|2
n + e

≤ d

8

∫
�

n2 + 1

2d

∫
�

χ(c)2 |∇c|4 +
∫
�

l(n) log(n + e).

Fortunately, the logistic growth fulfils l(n) ≤ r − dn2; we thus find a constant C1 > 0 such that

3d

8

∫
�

n2 + 1

2

∫
�

(l(n) + r) log(n + e) ≤ C1.

Note that we have inserted an additional integral of the logarithm of n +e which is also bounded by −l(n). Combining 
this with the previous inequality shows the assertion by noting that c and in particular χ(c) is bounded according to 
Lemma 1.7. �

In order to absorb the integral containing |∇c|4, we make use of the second equation:

Lemma 3.2. There exist constants C0, C1, C2, C3 > 0 such that we have

1

2

d

dt

∫
�

|∇ c̃|2 + C0

∫
�

|∇ c̃|4 + C1

∫
�

|∇ c̃|2

≤ C2

∫
�

|∇u|2 + C3

⎛
⎝1 +

∫
�

|u|2 +
∫
�

n2

⎞
⎠ .

(35)

Proof. Let us recall

h̃(n, c̃,∇ c̃, u) = F8(c̃) · u + F9 · ∇ c̃ + F10(n, c̃)
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where F8, F9 and F10 are given by Lemma 2.5 and fulfil (24). Thus, with the aid of the inequalities in (24), we estimate 
h̃2 ≤ C(1 + |u|2 + n2 + |∇ c̃|2) for some C > 0. Testing the equation c̃t + u · ∇ c̃ = �c̃ + h̃(n, c̃, ∇ c̃, u) with �c̃, we 
derive

1

2

d

dt

∫
�

|∇ c̃|2 +
∫
�

∣∣∣D2c̃

∣∣∣2 = −
∫
�

�c̃c̃t +
∫
�

|�c̃|2 = +
∫
�

�c̃u · ∇ c̃ −
∫
�

�ch̃

since 
∫
�

∣∣D2c̃
∣∣2 = ∫

�
|�c̃|2. First, we estimate the latter integral using Young’s inequality

−
∫
�

�c̃h̃ ≤ 1

4N

∫
�

|�c̃|2 + N

∫
�

h̃2 ≤ 1

4

∫
�

∣∣∣D2c̃

∣∣∣2 + N

∫
�

h̃2.

For the second integral on the right-hand side, we note that ∇ · u = 0 implies u · ∇ c̃ = ∇ · (uc̃). Since u vanishes on 
the boundary, integration by parts ensures

−
∫
�

�c̃u · ∇ c̃ = −
∑
i,j

∫
�

∂ii c̃∂j

(
(u)j c̃

)

= −
∑
i,j

∫
�

∂ij c̃∂i(u)j c̃ −
∑
i,j

∫
�

∂ij c̃(u)j ∂i c̃

= −
∫
�

c̃D2c̃ : ∇u −
∑
i,j

∫
∂�

(∂i c̃)
2 (u)j︸︷︷︸

=0

+
∑

i

∫
�

(∂i c̃)
2
∑
j

∂j (u)j

︸ ︷︷ ︸
=0

≤ 1

4

∫
�

∣∣∣D2c̃

∣∣∣2 +
∫
�

c̃2 |∇u|2 ≤ 1

4

∫
�

∣∣∣D2c̃

∣∣∣2 + C̃

∫
�

|∇u|2

for some C̃ > 0 in combination with Young’s inequality and the boundedness of c̃. Applying Young’s inequality once 
more and using the embedding W 2,2(�) ⊂ W 1,4(�) in spatial dimension 2 or 3 concludes the proof. �

By means of the last lemma, we have reduced the ill-signed term of the n logn estimate to some integrals con-
taining the flow u. Fortunately, there is a well-known fact about the Navier–Stokes equation, which can be proved 
straightforwardly:

Lemma 3.3. There exist constants C1, C2 > 0 such that

d

dt

∫
�

|u|2 + 2ν

∫
�

|∇u|2 + C1

∫
�

|u|2 ≤ C2

∫
�

n2. (36)

Remark 3.4. The previous Lemma also covers the approximate Navier–Stokes equations for a finite m. In fact, it can 
be shown that the constants are independent of m.

Combining the last three lemmata, we can infer the following n logn estimate. This estimate plays a crucial role 
in the proof of the global existence of a solution in spatial dimension two as well as in spatial dimension three. For 
N = 3, we will use an integrated version of this estimate in order to prove a uniform bound of an appropriate sequence 
of the desired solution. In contrast, we require a differential form in N = 2 since the estimate contains an information 
of 

∫
�

|∇c|4 which will be useful later on (see Lemma 4.1).

Corollary 3.5. We introduce the continuous function

z(t) :=
∫

n2(t) +
∫ |∇n(t)|2

n(t) + e
+

∫ ∣∣∣D2c(t)

∣∣∣2 +
∫

|∇c(t)|4 +
∫

|∇u(t)|2

� � � � �
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and define

y(t) :=
∫
�

(n(t) + e)(log(n(t) + e) − 1) + C0

∫
�

|∇ c̃(t)|2 + C1

∫
�

|u(t)|2

for some given parameters C0, C1 > 0. Then y is differentiable and bounded. In addition, there exist positive constants 
C2, C3 and an appropriate choice of C0, C1 such that y fulfils

y′ + C2z ≤ −C2y + C3 + 1

2

∫
�

(l(n) − r) log(n + e).

Proof. According to the previous three lemmata, we find some positive constants C2, C3 such that

y′ + C2

⎛
⎝∫

�

n2 +
∫
�

|∇n|2
n + e

+
∫
�

∣∣∣D2c̃

∣∣∣2 +
∫
�

|∇ c̃|4 +
∫
�

|∇u|2
⎞
⎠

≤ −C2y + 1

2

∫
�

(l(n) − r) log(n + e) + C3

holds. Since (l(n) − r) is negative or zero, we infer from Grönwall’s inequality that y is bounded. Now we apply the 
transformation c̃ := e−g1(c − g2) to the integrals containing ∇ c̃ and D2c̃. Since g1, g2 ∈ C2(� × [0, ∞)) are fixed, 
we obtain the inequality of the assertion after changing the constants. �
3.2. Lp estimates

So far, we have proved an n logn type Lyapunov estimate. The next step is to derive an estimate for np. A straight-
forward argument leads to

Lemma 3.6. Let p > 1; then there exist positive constants C0, C1 such that we have

1

p

d

dt

∫
�

np + 3(p − 1)

4

∫
�

|∇n|2 np−2 ≤ C0

∫
�

|∇c|2p+2 + C1 −
∫
�

np. (37)

Proof. We multiply equation (cNS)1 by np−1 and integrate by parts to entail

1

p

d

dt

∫
�

np = −(p − 1)

∫
�

|∇n|2 np−2 + (p − 1)

∫
�

χ(c)∇c∇nnp−1 +
∫
�

l(n)np−1.

In order to cope with the middle unsigned term, we use Young’s inequality repeatedly and the fact that c is bounded 
as well as that l(n) admits the upper bound r − dn2 (cf. (8)). �

In spatial dimension two, we may use the Gagliardo–Nirenberg inequalities to ameliorate the previous proof.

Lemma 3.7. If N = 2 and p > 1, then there exists a constant Cp > 0 such that

1

p

d

dt

∫
�

np + p − 1

2

∫
�

|∇n|2 np−2 ≤ Cp

⎛
⎝∫

�

|∇c|4 + 1

⎞
⎠∫

�

np +
∫
�

l(n)np−1

holds.

Remark 3.8. The assertion is restricted to spatial dimension two, because of a special use of the Gagliardo–Nirenberg 
inequalities, which depend on the dimension. This concept is introduced by Winkler in [32] in the proof of Lemma 4.5.
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Proof. In contrast to the proof of Lemma 3.6, we estimate

∫
�

χ(c)np−1∇c · ∇n ≤ p − 1

2

∫
�

|∇n|2 np−2 + C

p − 1

⎛
⎝1 +

∫
�

|∇c|4
⎞
⎠∫

�

np

for some C > 0 depending on p. In order to show this, we begin with using Young’s and Cauchy–Schwarz’ inequality 
to see

(p − 1)

∫
�

χ(c)∇c∇nnp−1 ≤ (p − 1)2

4

∫
�

|∇n|2 np−2 + C0

√√√√∫
�

|∇c|4
∫
�

n2p

for some C0 > 0 since c is bounded. We set z := n
p
2 and obtain a constant C1 > 0 from Gagliardo–Nirenberg satisfying⎛

⎝∫
�

n2p

⎞
⎠

1
2

= ‖z‖2
L4(�)

≤ C1

(
‖∇z‖L2(�) ‖z‖L2(�) + ‖z‖2

L2(�)

)

= C1

(
p

2

∥∥∥∇nn
p
2 −1

∥∥∥
L2(�)

‖n‖
p
2
Lp(�) + ‖n‖p

Lp(�)

)
.

Noting 
√

x ≤ 1 + x for x > 0, we observe that√√√√∫
�

|∇c|4
∫
�

n2p ≤ 1

4
(p − 1)2

∫
�

|∇n|2 np−2 + C2
1p2

4(p − 1)2

∫
�

|∇c|4
∫
�

np

+ C1

⎛
⎝1 +

∫
�

|∇c|4
⎞
⎠‖n‖p

Lp(�)

holds thanks to Young’s inequality. Finally, we set C := C0C1(1 + C1p
2

4(p−1)2 ) to verify the estimation above, which 
implies the assertion using the same methods as in the proof of Lemma 3.6. �

As we observe in the two former lemmata, an estimate on 
∫
�

np includes an integral either of |∇c|2p+2 or of |∇c|4. 
This motivates the following investigation:

Lemma 3.9. Let p ≥ 1, then there exist some constants C1, . . . , C4 > 0 depending on p such that we have

d

dt

∫
�

|∇ c̃|2p + C1

∫
�

∣∣∣D2c̃

∣∣∣2 |∇ c̃|2p−2 + C2

∫
�

|∇c|2p+2 ≤ C2

∫
�

|u|2p+2 + C3

∫
�

np+1 + C4.

Proof. This proof is based upon the proof of Lemma 2.2 from [31]. Recalling Lemma 2.5 and inequalities in (24), we 
have h̃2 ≤ C(1 + |u|2 + n2 + |∇ c̃|2), since c̃ is bounded, h, g1, g2, f are smooth and ñ, c̃ can be estimated using the 
definition of the backward transformation T . Now, we can rewrite the equation for c̃ as

c̃t = �c̃ − u · ∇ c̃ + h̃(ñ, c̃,∇ c̃, u) =: �c̃ + η(ñ, c̃,∇ c̃, u).

We multiply the equation for c̃ by �c̃ |∇ c̃|2r and arrive at

1

2r

d

dt

∫
�

|∇ c̃|2r = −
∫
�

(�c̃ + η)�c̃ |∇ c̃|2r−2 −
∫
�

(�c̃ + η)∇ c̃ · ∇ |∇ c̃|2r−2

=
∫
�

∇�c̃ · ∇ c̃ |∇ c̃|2r−2 −
∫
�

(�c̃ |∇ c̃|2r−2 + ∇ c̃ · ∇ |∇ c̃|2r−2)η,
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where we have used integration by parts twice and the fact that ∂c̃
∂ν

= 0 on ∂�. Continuing, we estimate the two inte-

grals separately. For this, we apply the identity � |∇ c̃|2 = 2 
∣∣D2c̃

∣∣2 + 2∇ c̃ · ∇�c̃ to the first integral on the right-hand 
side. Recalling that ∂c̃

∂ν
= 0 holds on ∂�, we use integration by parts to see∫

�

∇�c̃·∇ c̃ |∇ c̃|2r−2 +
∫
�

∣∣∣D2c̃

∣∣∣2 |∇ c̃|2r−2 = − r − 1

2

∫
�

∣∣∣∇ |∇ c̃|2
∣∣∣2 |∇ c̃|2r−4 + I

with I := ∫
∂�

∂|∇ c̃|2
∂ν

|∇ c̃|2r−2. According to [6], we deduce ∂|∇ c̃|2
∂ν

≤ 0 and hence I ≤ 0 from the facts that � is convex 
and ∂c̃

∂ν
= 0. Writing ∇ c̃ ·∇ |∇ c̃|2r−2 η = (r −1)∇ |∇ c̃|2 |∇ c̃|2r−4 · (∇ c̃η), we estimate the integral concerning η using 

Young’s inequality and the relation |�c̃|2 ≤ N
∣∣D2c̃

∣∣2
to conclude

1

2r

d

dt

∫
�

|∇ c̃|2r + 4 − N

4

∫
�

∣∣∣D2c̃

∣∣∣2 |∇ c̃|2r−2 ≤ r + 1

2

∫
�

|∇ c̃|2r−2 |η|2 . (38)

Splitting η into u · ∇ c̃ + h̃ permits a more explicit estimate on ∇ c̃. For this purpose, we apply Young’s inequality to 
deduce

1

2

∫
�

|∇ c̃|2r−2
∣∣∣u · ∇ c̃ + h̃

∣∣∣2 ≤
∫
�

|∇ c̃|2r−2 |u · ∇ c̃|2 +
∫
�

|∇ c̃|2r−2 h̃2

≤
∫
�

|∇ c̃|2r |u|2 + r − 1

r + 1

∫
�

ε̃ |∇ c̃|2r+2 + 2

r + 1

∫
�

ε̃
1−r

2

∣∣∣h̃∣∣∣r+1

≤ 2r − 1

r + 1

∫
�

ε̃ |∇ c̃|2r+2 + 1

r + 1

∫
�

ε̃−r |u|2r+2 + 2

r + 1

∫
�

ε̃
1−r

2

∣∣∣h̃∣∣∣r+1

for every measurable ε̃ : � → (0, ∞). In particular, defining b = b(c̃) := 8(N + 2r)2 sup |c̃|2 and 1
ε̃

:= (2r − 1)b, we 
arrive at

r + 1

2

∫
�

|∇ c̃|2r−2 |η|2 ≤ 1

b

∫
�

ε̃ |∇ c̃|2r+2 + Cr

∫
�

(
br |u|2r+2 + b

r−1
2

∣∣∣h̃∣∣∣r+1
)

(39)

chosen Cr > 0 adequate. So far, we have achieved an separation between c̃ and u, h̃ by introducing an ill-signed 
term involving the (2r + 2)th power of |∇ c̃|. Thus, the next step is to digest this term utilising the left-hand side of 
inequality (38). Integration by parts and the fact that ∂c̃

∂ν
= 0 on ∂� yield∫

�

|∇ c̃|2r+2 = −
∫
�

c̃�c̃ |∇ c̃|2r − r

∫
�

c̃∇ c̃ · ∇ |∇ c̃|2 |∇ c̃|2r−2 .

The identity ∇ |∇z|2 = 2D2z∇z and a second application of |�c̃|2 ≤ N
∣∣D2c̃

∣∣2
ensure in conjunction with Cauchy–

Schwarz’s inequality

∫
�

|∇ c̃|2r+2 ≤ (N + 2r)‖c̃‖L∞(�)

⎛
⎝∫

�

|∇ c̃|2r+2

⎞
⎠

1
2
⎛
⎝∫

�

∣∣∣D2c̃

∣∣∣2 |∇ c̃|2r−2

⎞
⎠

1
2

.

Dividing by 
(∫

�
|∇ c̃|2r+2

) 1
2

and collecting the previous results end up at

d

dt

∫
�

|∇ c̃|2p + C1

∫
�

∣∣∣D2c̃

∣∣∣2 |∇ c̃|2p−2 + C2

∫
�

|∇ c̃|2p+2 ≤ C2

∫
�

|u|2p+2 + C3

∫
�

np+1 + C4

for some constants C1, . . . , C4 > 0. We note that the third term on the left of the assertion contains the non-
transformed ∇c. Since c, c̃ are bounded and g1, g2 are smooth, we can use the formula ∇ce−g1 = ∇ c̃ + c̃∇g1 +
∇g2e

−g1 to replace |∇ c̃|2p+2 by the non-transformed |∇c|2p+2 in the estimate after adjusting the constants C2 and C4. 
This is possible, because g1 and g2 have been fixed at the beginning of Section 2. �
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3.3. Estimates for ∇n

The investigation of the Lp norm of n in the last subsection results in a high dependency on p of the constants. 
Therefore, we cannot take the limit in p to gain an upper bound of n. Gagliardo–Nirenberg’s inequality, however, 
allows us to estimate the L∞ norm of n if we are able to control its W 1,p norm for p > N . Since the equations for c
and n are somehow similar, we would like to estimate the gradient of n likewise to Lemma 3.9. In contrast to c and c̃, 
neither the L∞ norm of n nor of ñ is finite a priori, which leads to the following lemma.

Lemma 3.10. For every ε > 0 and p ≥ 1, there exist some positive constants C0, C1, C2 and P fulfilling

1

2p

d

dt

∫
�

|∇ñ|2p + C0

∫
�

∣∣∣D2ñ

∣∣∣2 |∇ñ|2p−2 + C1

∫
�

|∇ñ|2p+2

(ñ + 1)2

≤ C2

∫
�

|u|2p+2+ε + C2

∫
�

|∇ c̃|2p+2+ε + C2

∫
�

|�c̃|p+1+ε + C2

∫
�

ñP + C2.

Proof. First of all, we rewrite the third term on the left-hand side by computing∫
�

∇ñ · ∇ñ

(ñ + 1)2
|∇ñ|2p =

∫
�

1

ñ + 1
�ñ |∇ñ|2p + p

∫
�

1

ñ + 1
∇ñ · ∇ |∇ñ|2 |∇ñ|2p−2 ,

where we have used integration by parts and ∂ñ
∂ν

= 0 on ∂�. As in the proof of Lemma 3.9, we use ∇ |∇ñ|2 = 2D2ñ∇ñ

and |�ñ| ≤ N
∣∣D2ñ

∣∣ to infer∫
�

|∇ñ|2p+2

(ñ + 1)2
≤ (N + 2p)

∫
�

1

ñ + 1

∣∣∣D2ñ

∣∣∣ |∇ñ|2p .

By means of the Cauchy–Schwarz inequality, this implies∫
�

|∇ñ|2p+2

(ñ + 1)2
≤ (N + 2p)2

∫
�

∣∣∣D2ñ

∣∣∣2 |∇ñ|2p−2 . (40)

Putting f1 := u + ã(c̃, ∇ c̃) and f2 := ñ∇ · (ã(c̃,∇ c̃)
) + R̃(ñ, c̃, ̃a(c̃, ∇ c̃)) + l̃(ñ, c̃), we obtain

1

2p

d

dt

∫
�

|∇ñ|2p + 1

8

∫
�

∣∣∣D2ñ

∣∣∣2 |∇ñ|2p−2

≤ C1

∫
�

(ñ + 1)2p |f1|2p+2 + C2

∫
�

(ñ + 1)p−1 |f2|p+1
(41)

for some C0, C1, C2 > 0 similarly to the proof of Lemma 3.9 (cf. Inequalities (38) and (39) with (2p − 1)ε̃ = 1
8 (N +

2p)−2(ñ + 1)−2 and 1 = (2r − 1)ε̃b). Note that the constants C0, C1, C2 may depend on p.
In order to estimate the right-hand side, we recall ã and l̃:

ã(x, t, c̃,∇ c̃) = −χ(Tc(c̃))
(∇ c̃ + c̃∇g1 + ∇g2e

−g1
)
eg1,

l̃(ñ, c̃) = A(Tc(c̃))l(Tn(ñ, c̃)),

where Tc and Tn are defined in Definition 2.3. By the boundedness of c̃ and the smoothness of g1, g2, we have∣∣ã(c̃,∇ c̃)
∣∣ ≤ C3(|∇ c̃| + 1) and

∣∣∇ · ã(c̃,∇ c̃)
∣∣ ≤ C3(|∇ c̃|2 + |�c̃| + 1).

The conditions of the parameter functions (8)–(12) on page 1017 permit only a polynomial growth for l implying 
l̃(c̃, ñ) ≤ C4(1 + |ñ|Q) (here Q > 0 is the same as in (10)), since c̃ is bounded. Moreover, we have∣∣∣R̃(ñ, c̃, ã(c̃,∇ c̃))

∣∣∣ ≤ C5(ñ + |∇ c̃|2 + 1)ñ

in accord with Inequalities (23). The prove can be completed using Young’s inequality. �
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4. Global solvability of the chemotaxis-Navier–Stokes equations

The local existence result – Proposition 2.6 – admits a blow-up criterion to determine whether the local solution can 
or cannot be extended globally. Given the parameter functions as in (8)–(12), we assume that the chemotaxis-Navier–
Stokes equations (cNS) are classically solvable on � × [0, Tmax) for some Tmax ∈ (0, ∞] with solution (n, c, u, P). 
Here, we choose Tmax maximal with respect to the blow-up criterion of Proposition 2.6, which implies

‖n(t)‖L∞(�) + ‖∇n(t)‖L2(�) + ‖c(t)‖W 1,4(�) + ∥∥Aαu(t)
∥∥

L2(�)
→ ∞, as t ↗ Tmax (42)

unless Tmax = ∞. Throughout this section, we attempt to bound each summand in (42), which will be done separately 
for the cases N = 2 and N = 3 in Section 4.1 and 4.2, respectively. Unfortunately, in spatial dimension three, we 
are only able to prove a global existence for an approximated system. However, an appropriate energy type estimate 
permits passing the limit to a weak solution of the Problem (cNS).

4.1. The two-dimensional case

In this section, we show that the term (42) remains bounded on t ∈ (0, T ] for every finite T ≤ Tmax in the case 
N = 2. Note that this results in a global in-time existence since it is only permitted for Tmax = ∞.

During the following calculation, we fix a finite T ≤ Tmax and bound the term (42) stepwise. We estimate the L∞
norm of n using Gagliardo–Nirenberg’s inequality

‖n‖L∞(�) ≤ C(‖n‖Lp(�) + ‖∇n‖Lp(�))

for p = N + 1 and some C > 0. In addition, the summand ‖Aαu(t)‖L2(�) can be bounded in terms of ‖n‖L2(�) (cf.

[32] Eq. (4.19), pages 339–341). This allows us to neglect the term concerning u in (42). Moreover, the fact that α > 1
2

by assumption entails that u is locally bounded (see [32,25]).
Since c is bounded according to Lemma 1.7, we introduce the new blow-up criterion for finite Tmax which reads

‖n(t)‖Lp(�) + ‖∇n(t)‖Lp(�) + ‖∇c(t)‖L4(�) → ∞ as t ↗ Tmax (43)

for some p = N + 1.
This new criterion guides us to continue in three steps, i.e. estimating each term separately. As we observe later 

on, the most appropriate way is to begin with the Lp norm of n and to prove an estimate for the gradient of c before 
concentrating on ∇n.

Lemma 4.1. 
∫
�

np is bounded on [0, Tmax).

Proof. Let Cp denote the constant from Lemma 3.7. By means of Lemma 3.7, we estimate the time derivative of ∫
�

np by

d

dt

∫
�

np ≤ pCp

∫
�

|∇c|4
∫
�

np − (1 + β)

∫
�

np + γ (44)

for some β, γ > 0 (depending on p), where we have exploit l(n) ≤ r − dn2 and Young’s inequality. If we directly 
apply Grönwall’s inequality, we obtain an exponential bound. Therefore, we need a better approach to show global 
boundedness: Let us recall y from Corollary 3.5, which is bounded fulfilling the differential inequality

y′ ≤ −C

∫
�

|∇c|4 − 1

α
y + α

for some C, α > 0. Defining z := p
C

Cpy, we analyse by means of Eq. (44) that

d

dt

⎛
⎝ez

∫
�

np

⎞
⎠ = ez d

dt

∫
�

np + z′ez

∫
�

np ≤
⎛
⎝−

∫
�

np + γ

⎞
⎠ ez = −ez

∫
�

np + δ

holds for some constant δ > γ ez. This constant exists since y and hence z are globally bounded. Due to Grönwall’s 
inequality, ez

∫
np is bounded as well as 

∫
np , because of the non-negativity of z. �
� �



1032 M. Braukhoff / Ann. I. H. Poincaré – AN 34 (2017) 1013–1039
The Lp regularity of n we have just won admits the following lemma concerning the gradient of c:

Lemma 4.2. 
∫
�

|∇c(t)|p is bounded on [0, T ] if 2 ≤ p ≤ 10 and T < Tmax.

Proof. First, we recall a short version of Lemma 3.9: There exist some constants C1, . . . , C3 > 0 depending on p ≥ 2
such that

1

p

d

dt

∫
�

|∇ c̃|p ≤ C1

∫
�

|u|p+1 + C2

∫
�

n
p
2 +1 + C3

holds. The fact that 
∫
�

nq is bounded on [0, Tmax] for all q ≥ 1 can be used twice: On the one hand, this clearly 
implies the boundedness of the integral containing n by setting q = p

2 + 1. On the other hand, u is bounded on 
� × (0, T ) according to the boundedness of ‖n‖L2� as seen above. Thus, 

∫
�

|∇ c̃|p is locally bounded in t when-
ever 

∫
�

|∇ c̃0|p < ∞. Finally the assertion is shown using C4 |∇c| ≤ |∇ c̃| + C5 and C6 |∇ c̃| ≤ |∇c| + C7 for some 
C4, . . . , C7 > 0. �

Before being able to estimate the gradient of n, we need to ascertain more about �c̃ and ∇ñ in some Lq space. We 
cannot expect ‖�c̃(t)‖Lp and ‖∇n(t)‖Lp to be bounded near t = 0 since the initial values are not sufficiently regular. 
Therefore, let 0 < T0 < T < Tmax.

Lemma 4.3. �c̃ belongs to Lq(� × (T0, T )) for all 1 < q ≤ 10.

Proof. We rewrite the equation for c̃ as c̃t = �c̃ + f , for some functions f1, f2. Making use of Lemmata 4.1 and 4.2
as well as the fact that u is bounded on � × (0, T ), we can show that f ∈ Lq(� × (0, T )) holds for q ≤ 10. The 
maximal Sobolev regularity (cf. [16] Theorem 1 and Corollary 1.1) applied to the heat semigroup with Neumann 
boundary conditions guarantees that �c̃ also belongs to Lq(� × (T0, T )) for all 0 < T0 < T as required. �
Lemma 4.4. 

∫
�

|∇ñ|p is bounded on (T0, T ) for every 2 ≤ p < 8.

Proof. Likewise to the estimates of ∇c, we work in the transformed system ñ and formulate a version of Corol-
lary 3.10: Let ε be positive; then there exist constants C1, P > 0 depending on p and ε such that we have

1

p

d

dt

∫
�

|∇ñ|p ≤ C1

∫
�

|u|p+2+ε + C1

∫
�

|∇ c̃|p+2+ε

+ C1

∫
�

|�c̃| p
2 +1+ε + C1

∫
�

ñP + C1

∫
�

ñ
p
2 −1.

We choose ε > 0 such that p + 2 + ε ≤ 10. We proceed similarly to the proof of Lemma 4.2: Since 
∫
�

|∇ c̃|10, ∫ t

T0

∫
�

|�c̃|10 and 
∫
�

nq are bounded, the term 
∫
�

|∇ñ(t)|p is bounded as well if 
∫
�

|∇ñ(T0)|p < ∞.
Although the relation ñ = nA(c) between n and ñ contains a dependency on c, we can estimate ∇n in terms of n, 

c, ∇c, ∇ñ. �
4.2. Global weak solution in spatial dimension three

The global existence in three dimensions requires a more delicate proof and only results in a weak solvability. The 
main reason for these difficulties is the dimension dependency of the Gagliardo–Nirenberg inequalities. Therefore, we 
reconsider two concepts of the proof which succeed in spatial dimension two:

1. The proof of a global bound for the solution of the Navier–Stokes equations is still an open problem in the 
three-dimensional case. This is the main reason why we can only expect a weak solvability. A standard way to 
achieve this is to approximate the Navier–Stokes system with a Galerkin method of restricting the problem to the 
eigenspaces of the Stokes operator (see [5] Theorem (Leray)).
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2. Unfortunately, the proof of the global boundedness of 
∫
�

np(t) in spatial dimension two fails in the three-
dimensional case. Since our aim is already reduced to find a weak solution, we approximate the equation 
concerning n in order to fix this issue and replace l by

lε(x) := l(x) − εx3 for all x > 0 (45)

and ε ∈ (0, 1). We underline the necessity of a uniform bound while dealing with approximate equations. Subsec-
tion 3.1 providing an n logn argument has discovered an energy estimate so far which is independent of the exact 
formula of lε and holds uniformly for all ε ∈ (0, 1).

Our approximate system is finally given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nt + u · ∇n = �n − ∇ · (nχ(c)∇c) + lε(n), x ∈ �, t > 0,

ct + u · ∇c = �c − nf (c) + h(x, t, c), x ∈ �, t > 0,

ut = −Au + P mB(u · ∇u) + P mPn∇ϕ, t > 0,

(n, c)(x,0) = (n0, c0)(x), x ∈ �,

u(0) = P mu0 ∈ L2
σ

∂c

∂ν
(x, t) = ∂g1

∂ν
(x)

(
c(x, t) − g2(x, t)

)
, x ∈ ∂�, t > 0,

∂n

∂ν
= nχ(c)

∂c

∂ν
, x ∈ ∂�, t > 0

(46)

for ε ∈ (0, 1) and m ∈N, where n0, c0, u0 are as in (13).

4.2.1. Global solvability in 3D of an approximate system
The approximate system defined above possesses a local solution on a maximal interval [0, Tmax) with its blow-up 

criterion

‖n(t)‖Lp(�) + ‖∇n(t)‖Lp(�) + ‖∇c(t)‖L4(�) → ∞ as t ↗ Tmax (47)

for p = N + 1 unless Tmax = ∞, which can be derived similarly to the two-dimensional case. We have already seen 
that the transformed system has the same blow-up criterion as the standard system. We only have to guarantee that n
is bounded in L∞ and that ∇n possesses the same Lp regularity as ∇c in both systems. Thus, we will prove the Lp

boundedness of n in the non-transformed system and the rest in the transformed system as a matter of convenience.

Lemma 4.5. Given p > 1 and finite 0 < T ≤ Tmax, there exists a constant C = C(ε, m) such that we have∫
�

np(x, t)dx < C and
∫
�

|∇ c̃|2p (x, t)dx < C. (48)

Proof. The proof is similar as in the two dimensional case, where we have to use Lemma 3.6 instead of Lemma 3.7. 
Note that in this case the constant C depends on Tmax. �

The boundedness of ∇ñ in L∞(0, T ; L4(�)) is deduced exactly as in the two-dimensional case (see Lemma 4.4). 
We only have to observe, that um belongs to the linear span of the first m eigenfunctions of Stokes operator A = −P�. 
Therefore, 

∥∥Aku
∥∥

L2
σ (�)

≤ C
∥∥Akum

∥∥
L2

σ (�)
for some Cm > 0. Since ∂t ‖um‖L2

σ (�) can be bounded by c1 ‖n‖L2(�) + c2

for some c1, c2 > 0, the global existence result of the local boundedness of 
∫ t

0

∫
�

n2 is bounded with the aid of the 
n logn energy estimate (see Corollary 3.5).

Proposition 4.6. The system (46) admits a global classical solution.
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4.2.2. Uniform bounds for the approximating sequence

Corollary 4.7. Fix any t > 0 and let nε,m, cε,m, uε,m be a solution of (46) on [0, ∞), where ε ∈ (0, 1) and m ∈ N. 
Thus,

1. (nε,m)ε,m is a bounded sequence in L2(�×) ∩ L
4
3 (0, t; W 1, 4

3 (�)). Furthermore,

t∫
0

∫
�

∣∣∇nε,m

∣∣2

nε,m + e
,

∫
�

nε,m(t) log(nε,m(t) + e),

t∫
0

∫
�

(r − lε(nε,m)) log(nε,m + e)

are uniformly bounded in (ε, m).
2. (cε,m)ε,m is bounded in L4(0, t; W 1,4(�)) ∩ L2(0, t; W 2,2(�)) and in L∞(� × (0, ∞)).

3. (uε,m)ε,m is bounded in L∞(0, ∞; L2
σ (�)) ∩ L2(0, t; W 1,2(�)) ∩ L

10
3 (� × (0, t)).

Proof. This corollary is an almost direct consequence of Corollary 3.5 in combination with Remark 3.4 and Grön-
wall’s inequality. The only missing ingredient is to show the boundedness of

t∫
0

∫
�

|∇n| 4
3 and

t∫
0

∫
�

|u| 10
3 ,

whereas we write n = nε,m and u = uε,m here and below. First, we directly deduce that

t∫
0

∫
�

|∇n| 4
3 =

∫
|∇n| 4

3 >(n+e)2

|∇n| 4
3 +

∫
|∇n| 2

3 ≤(n+e)

|∇n| 4
3

=
t∫

0

∫
�

|∇n|2
(n + e)

+
t∫

0

∫
�

(n + e)2

is bounded. According to Gagliardo–Nirenberg, it holds

t∫
0

∫
�

|u| 10
3 =

t∫
0

‖u‖
10
3

L
10
3 (�)

≤
t∫

0

‖u‖
10
3 α

W 1,2(�)
‖u‖

10
3 (1−α)

L2(�)

for α = 3
2 − 9

10 = 3
5 . Finally, the boundedness of 

∫ t

0

∫
�

|∇u| 10
3 α = ∫ t

0

∫
�

|∇u|2 and sups

∫
�

|u|2 (s) imply that ∫ t

0

∫
�

|u| 10
3 is also bounded. �

Lemma 4.8. Fix t > 0 and let nε,m, cε,m, uε,m be a solution of (46) on [0, ∞), where ε ∈ (0, 1) and m ∈N. Then

1. (∂tnε,m) is uniformly bounded in L1(0, t; (W 1,4(�))′).
2. (∂t cε,m) is uniformly bounded in L

4
3 (� × (0, t)).

3. (∂tuε,m) is uniformly bounded in L
4
3 (0, t; (W 1,2

σ (�))′).

Proof. Throughout this proof, we omit again the indices ε, m.

1. We multiply equation (46)1 by ξ ∈ W 1,4(�) and integrate by parts to obtain∫
�

ntξ =
∫
�

un · ∇ξ +
∫
�

∇n · ∇ξ +
∫
�

n∇c · ∇ξ +
∫
�

lε(n)ξ .
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In spatial dimension three, L∞(�) is embedded in W 1,4(�). Therefore, in conjunction with Hölder’s inequality 
and Young’s inequality, we have

‖nt‖W 1,4(�)′ = sup
ξ∈W 1,4(�)

∣∣∫
�

ntξ
∣∣

‖ξ‖W 1,4(�)

≤ ‖n‖2
L2 + ‖u‖2

L4 + ‖∇c‖2
L4 + ‖∇n‖

4
3

L
4
3

+ ‖∇c‖4
L4 + C ‖lε(n)‖L1

for some C > 0 writing Lp = Lp(�). The L4-norm of u can be estimated by using the Gagliardo–Nirenberg 
inequality, namely

‖u‖L4(�) ≤ ‖u‖
3
4
W 1,2(�)

‖u‖
1
4
L2(�)

.

Lastly, we integrate the norm of nt in time to see

‖nt‖L1(0,t;W 1,4(�)′) ≤
t∫

0

∫
�

n2 + sup
0≤s≤t

∫
�

|u(s)|2
t∫

0

‖u‖
3
2
W 1,2(�)

+
t∫

0

‖∇n‖
4
3

L
4
3 (�)

+ 2

t∫
0

‖∇c‖4
L4(�)

+
t∫

0

‖lε(n)‖L1(�) .

Due to Corollary 4.7, the right-hand side is bounded, which entails the first assertion of Lemma 4.8.
2. Recall the equation for c̃, which reads

c̃t = −u · ∇ c̃ + �c̃ + 2∇g1 · ∇ c̃ + h̃(ñ, c̃, u) := �c̃ + Fε,m,

whereas we may estimate 
∣∣Fε,m

∣∣ ≤ C(1 + |u| 3
2 + n + |∇ c̃|3) for some C > 0. Due to Corollary 4.7, Fε,m is 

bounded in L
4
3 (� × (0, t)) such that we deduce the existence of a C̃t > 0 fulfilling ‖c̃t‖

L
4
3 (�×(0,t))

≤ C̃t from the 

maximal Sobolev regularity ([16] Theorem 1 and Corollary 1.1 applied to the heat semi-group).
3. This claim is a direct consequence of [5] Lemma 8.1 in conjunction with the boundedness of n in L2(� × (0, t))

according to Corollary 4.7. �
4.2.3. Precompactness of the approximating sequence

Fix t > 0 and let nε,m, cε,m, uε,m be a classical solution of (46) on [0, ∞), where ε ∈ (0, 1) and m ∈N.

Lemma 4.9. The sequence

1. (nε,m) is precompact in L
4
3 (� × (0, t)) as well as

2. (cε,m) is precompact in L2(0, t; W 1,2(�)) and in C0([0, t]; L2(�)).
3. Finally, (uε,m) is precompact in L2(0, t; L2

σ (�)).

Proof. This lemma is a direct consequence of the Aubin–Lions Lemma (see [24] Theorem 5 and Corollary 4), the 
properties of nε,m, cε,m, uε,m stated in Corollary 4.7 and Lemma 4.8 as well as the Rellich–Kondrachov theorem ([11]
Section 5.7, Theorem 1 and the following remark). �
Lemma 4.10. The sequence (h(cεk,mk

)) is precompact in L1(� ×(0, ∞)) and bounded in Lp(� ×(0, ∞)) for p < ∞.

Proof. The precompactness of (h(cεk,mk
)) in L1 follows from the fact, that h(cεk,mk

) is bounded in L∞ and 
Lebesgue’s convergence theorem. This and the uniform boundedness of (h(cεk,mk

)) yield the boundedness of 
(h(cεk,mk

)) in Lp for p < ∞. �
Lemma 4.11. The sequence lε(nε,m) is weakly precompact in L1(� × (0, t)).
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Proof. First, Corollary 4.7 yields that lε(nε,m) is bounded in L1(� × (0, t)). By Dunford–Pettis (see [29] Defini-
tion VIII.6.6 and Proposition VIII.6.9), it remains to show that lε(nε,m) is uniform integrable, which we postpone to 
Lemma 4.14. �
Lemma 4.12 (de la Vallée-Poussin). Let � ⊂ R

N be bounded and � : [0, ∞) → [0, ∞] be an increasing function 
with �(t)

t
→ ∞ for t → ∞. A bounded subset F ⊂ L1(�) is uniform integrable if there exists a constant C > 0 such 

that ∫
�

�(|f |) < C (49)

for all f ∈ F .

Proof. See [18] Theorem T22. �
Before proving the uniform integrability of lε(nε), we consider an auxiliary function in the following lemma which 

we will require during the proof.

Lemma 4.13. Let ψ : [0, ∞) → [0, ∞) be locally bounded and fulfil ψ(t) → ∞ as t → ∞. We define an almost 
inverse function of ψ by

ψ̂(y) := infψ−1([y,∞)) for y ≥ 0. (50)

Clearly, if ψ is bijective, then ψ̂ = ψ−1. In general, ψ̂ : [0, ∞) → [0, ∞) is well-defined, non-decreasing and satisfies

lim
t→∞ ψ̂(t) → ∞ as well as ψ̂ ◦ ψ(t) ≤ t for t ≥ 0. (51)

Proof. A direct calculation provides the well-definedness of ψ and equation (51). The remaining property ψ(t) → ∞
as t → ∞ can be proved by contradiction and is left to the reader. �
Lemma 4.14. The sequence (lε(nε,m)) is uniform integrable on � × (0, t) for 0 < ε ≤ 1 and m ∈N.

Proof. Our plan is to use Lemma 4.12 to obtain that (lε(nε,m)) is uniform integrability. Therefore, we have to find a 
function � as in Lemma 4.12. This will be done separately for the two terms of lε(nε,m). Recall that we have

lε(nε,m) = l(nε,m) − εn3
ε,m.

To begin with, let us consider the first term l(nε,m) and define ψ(t) := r − l(t) ≥ dt2. From the conditions in (8), 
we infer that ψ is non-negative and ψ(t) → ∞ as t → ∞. Therefore, we set ψ̂ as in Lemma 4.13 and obtain the 
stated properties of ψ̂ . These preliminary considerations let us introduce the desired function

�(t) := t log(ψ̂(t) + e).

In order to continue, we have to check the two conditions for � from Lemma 4.12. Since ψ̂(t) → ∞ as t → ∞, we 
infer that �(t)/t = log(ψ̂(t) + e) → ∞ as t → ∞. Furthermore, in view of ψ(t) := r − l(t) ≥ 0, we deduce∫

�

�(ψ(nε,m)) =
∫
�

ψ(nε,m) log(ψ̂(ψ(nε,m)) + e)

≤
∫
�

ψ(nε,m) log(nε,m + e) =
∫
�

(r − l(nε,m)) log(nε,m + e) ≤ C.

Thus, Lemma 4.12 yields that ψ(nε,m) = r − l(nε,m) is uniform integrable. It remains to show the uniform integrability 
of εn3

ε,m. We define �̃(t) := t log( 3
√

t + e) and see
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�̃(εn3
ε,m) = εn3

ε,m log
(

3
√

εnε,m + e
)

≤ εn3
ε,m log

(
nε,m + e

) ≤ (r − lε(nε,m)) log(nε,m + e),

for ε ≤ 1. Similarly as before, we can verify the two conditions for �̃ from Lemma 4.12 such that we obtain the 
uniform integrability of εn3

ε,m from Lemma 4.12. �
4.2.4. Proof of Theorem 1.3

Let nε,m, cε,m, uε,m be a classical solution of (46) on [0, ∞) where ε ∈ (0, 1) and m ∈ N.

Lemma 4.15. Let (n, c, u) be almost everywhere a pointwise limit point of (nε,m, cε,m, uε,m). Then there exists a 
sequence (εk, mk) → (0, ∞) such that

uεk,mk
nεk,mk

⇀ un in L
5
4 (� × (0, t)),

nεk,mk
χ(cεk,mk

)∇cεk,mk
⇀ nχ(c)∇c in L

4
3 (� × (0, t)),

nεk,mk
f (cεk,mk

) ⇀ nf (c) in L2(� × (0, t)),

uεk,mk
· ∇cεk,mk

⇀ u · ∇c in L
20
11 (� × (0, t))

for all t > 0.

Proof. The sequence (nεk,mk
uεk,mk

) is bounded in L
5
4 (� × (0, t)) and therefore weakly precompact, since Young’s 

inequality implies∫
�

∣∣nεk,mk
uεk,mk

∣∣ 5
4 ≤ 5

8

∫
�

n2
εk,mk

+ 3

8

∫
�

∣∣uεk,mk

∣∣ 10
3 ,

which is bounded due to Corollary 4.7. Hence, a subsequence of (uεk,mk
nεk,mk

) converges weakly to un. The remain-
ing convergences are proved similarly by extracting a subsequence. Here, we use that∫

�

∣∣nεk,mk
χ(cεk,mk

)∇cεk,mk

∣∣ 4
3 ≤ 2

3

∫
�

∣∣nεk,mk

∣∣2 + 1

3

∥∥χ(cεk,mk
)
∥∥4

L∞(�)

∫
�

∣∣∇cεk,mk

∣∣4

is bounded (see Corollary 4.7) as well as∫
�

∣∣nεk,mk
f (cεk,mk

)
∣∣2 ≤ ∥∥f (cεk,mk

)
∥∥2

L∞(�)

∫
�

∣∣nεk,mk

∣∣2
,

∫
�

∣∣uεk,mk
· ∇cεk,mk

∣∣ 20
11 ≤ 6

11

∫
�

∣∣uεk,mk

∣∣ 10
3 + 5

11

∫
�

∣∣∇cεk,mk

∣∣4
. �

Proposition 4.16. There exist

n ∈ L2
loc(0,∞;L2(�)) ∩ L

4
3
loc(0,∞;W 1, 4

3 (�)), (52)

c ∈ L∞(� × (0,∞)) ∩ L2
loc(0,∞;W 2,2(�)) ∩ W

1, 4
3

loc (� × [0,∞)) ∩ C0([0,∞);L2(�)), (53)

u ∈ L∞(0,∞;L2
σ (�)) ∩ L2

loc(0,∞;W 1,2
σ (�)) (54)

such that

t∫
0

∫
�

n�t +
t∫

0

∫
�

nu · ∇� +
t∫

0

∫
�

∇n · ∇�

=
∫

n0�(0, ·) −
t∫ ∫

nχ(c)∇c · ∇� +
t∫ ∫

l(n)�
� 0 � 0 �
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t∫
0

∫
�

uξt +
t∫

0

∫
�

u ⊗ u : ∇ξ + ν

t∫
0

∫
�

∇u : ∇ξ =
∫
�

u0 · ξ(0, ·) +
t∫

0

∫
�

n∇ϕ · ξ

for all � ∈ C∞
c (� × [0, ∞)) and ξ ∈ C∞

c (� × [0, ∞))N with ∇ · ξ = 0.

Proof. Testing equations (46)1 and (46)3 by � and ξ , respectively, and using integration by parts, this proposition is 
consequence of Corollary 4.7 and Lemmata 4.9, 4.11 and 4.15. �

Likewise to the proof of the previous proposition, we can show the following proposition making additionally use 
of Lemma 4.9.

Proposition 4.17. The function (n, c, u) in Proposition 4.16 can be chosen such that we have

ct + u · ∇c = �c − nf (c) + h(c) (55)

in L
4
3
loc(0, ∞; L 4

3 (�)) and c(0, ·) = c0 in L2(�). In addition, c fulfils the boundary condition

∂c

∂ν
= ∂g1

∂ν
(c − g2) (56)

in L2
loc(0, ∞; L2(∂�)).

Remark 4.18. Since c is a strong solution of (55), it is also a weak one as asserted in Theorem 1.3.

Finally, Theorem 1.3 is a consequence of Propositions 4.16 and 4.17.
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