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Abstract

We consider the semilinear parabolic equation ut − �u = |u|p−1u on the whole space RN , N � 3, where the exponent p =
(N + 2)/(N − 2) is associated with the Sobolev imbedding H 1(RN) ⊂ Lp+1(RN). First, we study the decay and blow-up of
the solution by means of the potential-well and forward self-similar transformation. Then, we discuss blow-up in infinite time and
classify the orbit.
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1. Introduction

The purpose of the present paper is to classify the asymptotic behavior of the solution to the semilinear parabolic
equation

ut − �u = |u|p−1u in RN × (0, T ) (1)

with

u|t=0 = u0 in RN, (2)

where N � 3 and p = (N + 2)/(N − 2), the critical exponent associated with the Sobolev imbedding. In the previous
work [9,8,11,23], we studied the long time behavior of the solution defined on the bounded domain in connection with
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the stable and unstable sets introduced by [22,20]. We have shown that if the orbit enters in the stable set, then the
solution exists globally in time [11]. If the orbit enters in the unstable set, then the solution blows up in finite time [9].
The other case is called “floating”. Thus, the orbit is floating, by definition, if it never enters in the stable set nor the
unstable set. If the domain is star-shaped, then the orbit floating globally in time must blow up in infinite time, while
the floating orbit blowing up in finite time never exists under the additional assumption of the domain and the initial
value, that is, the convexity and symmetry [23].

In contrast with these cases on the bounded domain, there is a family of stationary solutions to (1)–(2) concerning
the whole space RN . We have the lack of the Poincaré inequality also. These differences are made clear by the forward
self-similar transformation and the non-existence of the self-similar solution [5,14]. Consequently, we can classify the
rate of ‖u(t)‖∞ as t ↑ +∞ for the solution u = u(·, t) global in time.

More precisely, if u = u(x, t) is the solution, then

v(y, s) = (1 + t)1/(p−1)u(x, t), t = es − 1, x = (1 + t)1/2y (3)

satisfies

vs + Lv = |v|p−1v + 1

p − 1
v in RN × (0, S) (4)

with

v|s=0 = u0 in RN, (5)

where S = log(1 + T ) and

Lf = −�f − 1

2
y · ∇f.

Since

Lf = − 1

K
∇ · (K∇f )

holds for

K(y) = e|y|2/4,

problem (4)–(5) is associated with the Hilbert space L2(K), the set of measurable functions f = f (y) defined in RN

such that

‖f ‖2,K =
{ ∫

RN

∣∣f (y)
∣∣2

K(y)dy

}1/2

< +∞.

We also take

Hm(K) = {
f ∈ L2(K)

∣∣ Dαf ∈ L2(K) for any multi-index α in |α| � m
}
,

where m = 1,2, . . . . It is a Hilbert space provided with the norm

‖f ‖Hm(K) =
{ ∑

|α|�m

∥∥Dαf
∥∥2

2,K

}1/2

.

This L is realized as a self-adjoint operator in L2(K) associated with the bilinear form

AK(u, v) =
∫

RN

∇u(y) · ∇v(y)K(y)dy

defined for u,v ∈ H 1(K) through the relation

AK(u, v) = (Lu, v)K, u ∈ D(L) ⊂ H 1(K), v ∈ H 1(K),



R. Ikehata et al. / Ann. I. H. Poincaré – AN 27 (2010) 877–900 879
where

(u, v)K =
∫

RN

u(y)v(y)K(y)dy,

see [13], for the general theory of the bilinear form. The domain D(L) of this operator is the set of v ∈ L2(K)

satisfying Lv ∈ L2(K), and we have D(L) = H 2(K), see Lemma 2.1 of [14]. It holds also that L is positive self-
adjoint and has the compact inverse, and in particular, the set of normalized eigenfunctions of L forms a complete
ortho-normal system in L2(K). The first eigenvalue λ1 of L is given by λ1 = N/2, and hence the Poincaré inequality

λ1‖v‖2
2,K � ‖∇v‖2

2,K, v ∈ H 1(K), (6)

is valid, see Proposition 2.3 of [5].
We have

λ1 = N

2
> λ ≡ 1

p − 1
= N − 2

4

and therefore, the operator

A = L − 1

p − 1

in L2(K) is also positive self-adjoint with the domain D(A) = H 2(K). The fractional powers Aα and the semigroup
{e−tA}t�0 are thus defined in L2(K), where α ∈ [0,1]. These structures guarantee the well-posedness of (4)–(5)
locally in time. Later, we shall show the following fact.

Proposition 1.1. Each u0 ∈ H 1(K) admits T > 0 such that (4)–(5) has a unique solution v ∈ C([0, T ];H 1(K))

satisfying the following:

1. v ∈ C((0, T ];D(Aν)).
2. v(s) = e−sAu0 + ∫ t

0 e−(s−σ)A|v(σ )|p−1v(σ )dσ .

3. lims↓0s
ν− 1

2 ‖Aνv(s)‖2,K = 0,

where

ν

⎧⎨
⎩

= N/(N + 2) (N � 5),

∈ (2/3,1) (N = 4),

= 4/5 (N = 3).

We call v = v(·, s) the H 1(K)-solution, or simply the solution to (4)–(5). Proposition 1.1 assures local in time
unique existence of the solution u = u(·, t) to (1)–(2) for u0 ∈ H 1(K). Also, this v = v(·, s) coincides with the
solution discussed in [14]. Henceforth, Tm(K) ∈ (0,+∞] denotes the supremum of T such that the solution v = v(·, s)
to (4)–(5) exists for s ∈ [0, T ]. The local existence time T assured by Proposition 1.1, however, is not estimated from
below by ‖u0‖H 1(K). Consequently, we cannot conclude

lim sup
s↑Tm(K)

∥∥v(s)
∥∥

H 1(K)
= +∞

from Tm(K) < +∞ (cf. Theorem 1.10(ii) of [14]), similarly to the case of the bounded domain, see [9]. Henceforth,
we put T = Tm(K) ∈ (0,+∞] for simplicity.

In this paper, we show that the orbit made from the above mentioned solution is classified in the following way.
We emphasize that the solution u = u(·, t) may be sign-changing.

Theorem 1. If u = u(·, t) is the solution to (1)–(2) with u0 ∈ H 1(K) and p = N+2
N−2 , N � 3, then we have the following

alternatives.
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1. T = +∞ and lim supt↑+∞ tN/2‖u(t)‖∞ < +∞.

2. T = +∞ and limt↑+∞ t (N−2)/4‖u(t)‖∞ = +∞.
3. T < +∞ and limt↑T ‖u(t)‖∞ = +∞.

If u0 = u0(x) � 0, u0 �≡ 0, the first case is refined as T = +∞ with∥∥u(t)
∥∥∞ ∼ t−N/2 as t ↑ +∞. (7)

Here are some comments.

1. There is an analogous result concerning sub-critical nonlinearities [15]. Thus, if u0 = u0(x) � 0 and 1 + 2
N

<

p < N+2
N−2 , then we have the following alternatives for the solution u = u(·, t) to (1)–(2);

(a) T = +∞ and (7).
(b) T = +∞ and ‖u(t)‖∞ ∼ t−1/(p−1) as t ↑ +∞.
(c) T < +∞.
The second case of this result indicates the decay rate with that of the self-similar solution. Our Theorem 1 is,
actually, associated with the non-existence of the self-similar solution for the critical Sobolev exponent [14], see
Proposition 5.1 below. The second case of Theorem 1, thus, may be called “type II rate” at t = +∞ because
1/(p − 1) = (N − 2)/4 for p = N+2

N−2 .
2. The second case of Theorem 1 arises if the orbit is floating globally in time in the rescaled variables (3). Such

a case occurs actually if u0 = u0(x) is a non-trivial stationary solution. In fact, in contrast with the case of the
bounded star-shaped domain provided with the Dirichlet boundary condition, problem (1)–(2) admits a family of
non-trivial stationary solutions, normalized by

−�U = Up, 0 < U � U(0) = 1 in RN, (8)

see [1,3]. As for the solution converging uniformly to 0 in infinite time, however, there remains two possibilities –
the first and the second cases of Theorem 1.

3. Positive radially symmetric solutions have been studied in detail. Particularly, analogous results to Theorem 1
are obtained [21], in accordance with the threshold of the modulus of the initial value for the blow-up of the
solution. Its proof, however, uses the intersection comparison principle and is different from ours. The blow-up
profile is also known by [12]. Thus, T = +∞ implies the existence of limt↑+∞ ‖u(t)‖∞ = α ∈ [0,+∞] for a
suitable family of radially symmetric positive initial values. If α �= 0, the second case of Theorem 1 arises. It
holds, furthermore, that

u(t) = ∥∥u(t)
∥∥∞U

(∥∥u(t)
∥∥ 2

N−2∞ ·) + o(1)

as t ↑ +∞ in Ḣ 1(RN), where

Ḣ 1(RN
) = {

v ∈ L
2N

N−2
(
RN

) ∣∣ ∇v ∈ L2(RN
)N}

and U = U(y) > 0 is the normalized non-trivial stationary solution defined by (8).

Our proof of Theorem 1 is involved by the imbedding theorem concerning H 1(K). Henceforth, Lq(K) denotes the
Banach space composed of measurable functions f = f (y) defined in RN such that

‖f ‖q,K =
{ ∫

RN

∣∣f (y)
∣∣qK(y)dy

}1/q

< +∞

for q ∈ [1,∞) and

‖f ‖∞,K = ess sup
y∈RN

∣∣f (y)
∣∣ < +∞

for q = ∞. The space L∞(K) = L∞(RN) is thus compatible to the other spaces, i.e.,
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lim
q↑∞‖f ‖q,K = ‖f ‖∞,K, f ∈ L1(K) ∩ L∞(

RN
)
. (9)

Although the inclusion

Lp(K) ⊂ Lq(K) (1 � q < p � ∞)

fails, we have

H 1(K) ⊂ L2∗
(K)

for 2∗ = 2N/(N − 2) = p + 1. More precisely, Corollary 4.20 of [5] guarantees the following fact, regarded as a
Sobolev–Poincaré inequality.

Proposition 1.2. It holds that

S0‖v‖2
p+1,K + λ∗‖v‖2

2,K � ‖∇v‖2
2,K, v ∈ H 1(K), (10)

where λ∗ = max(1,N/4) and S0 stands for the Sobolev constant:

S0 = inf
{‖∇v‖2

2

∣∣ v ∈ C∞
0

(
RN

)
, ‖v‖p+1 = 1

}
.

We introduce the functionals

JK(v) = 1

2
‖∇v‖2

2,K − λ

2
‖v‖2

2,K − 1

p + 1
‖v‖p+1

p+1,K

and

IK(v) = ‖∇v‖2
2,K − λ‖v‖2

2,K − ‖v‖p+1
p+1,K

defined for v ∈ H 1(K), where λ = 1/(p − 1). Then, the potential depth of JK in H 1(K) is defined by

d0 = inf
{

sup
μ>0

JK(μv)
∣∣ v ∈ H 1(K) \ {0}

}
,

and it holds that

d0 =
(

1

2
− 1

p + 1

)
S

(p+1)/(p−1)

0 = 1

N
S

N/2
0 > 0. (11)

Here and henceforth, ‖ · ‖q indicates the standard Lq norm on RN . The stable and unstable sets to (4) are defined
by

WK = {
v ∈ H 1(K)

∣∣ JK(v) < d0, IK(v) > 0
} ∪ {0}

and

VK = {
v ∈ H 1(K)

∣∣ JK(v) < d0, IK(v) < 0
}
,

respectively.
Theorem 1 is proven by the study of the above defined stable and unstable sets. First, if the orbit enters in the stable

set, then v(·, s) converges to 0 in infinite time.

Proposition 1.3. If v = v(·, s) is the solution to (4)–(5) satisfying v(s0) ∈ WK for some s0 ∈ [0, T ), then it holds that
T = +∞ and∥∥∇v(s)

∥∥2
2,K

= O
(
e−αs

)
(12)

as s ↑ +∞, where α ∈ (0,1).

If the orbit enters in the unstable set, on the contrary, then v(·, s) blows up in finite time; the following proposition
implies Theorem 1.10(i) of [14].
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Proposition 1.4. If the solution v = v(·, s) to (4)–(5) satisfies v(s0) ∈ VK for some s0 ∈ [0, T ), then it holds that
T < +∞.

The orbit {v(s)} is, thus, floating in the other case than the ones treated in Propositions 1.3–1.4, i.e., v(s) /∈ (WK ∪
VK) for s ∈ [0, T ). In spite of the possibility of the floating orbit blowing up in finite time, the following proposition
is sufficient to classify the orbit to (1)–(2) as in Theorem 1.

Proposition 1.5. If the orbit {v(s)} is floating globally in time, then it holds that

lim
s↑+∞

∥∥v(s)
∥∥∞,K

= +∞. (13)

This paper is composed of six sections. Section 2 takes preliminaries. We confirm inequality (11) and Proposi-
tion 1.1. In Section 3, we prove Propositions 1.3 and 1.4 by the study of stable and unstable sets. Section 4 describes
the Lq(K)-theory of L. Using this, we study the floating orbit and show Proposition 1.5 in Section 5. The proof of
Theorem 1 is completed in Section 6.

2. Preliminaries

This section is devoted to the preliminaries. First, we show (11), noting that

sup
μ>0

JK(μv) = JK(μv)|μ=μ∗

holds for

μ∗ =
{‖∇v‖2

2,K − λ‖v‖2
2,K

‖v‖p+1
p+1,K

}1/(p−1)

and v ∈ H 1(K) \ {0}.

Then, it follows that

sup
μ>0

JK(μv) = p − 1

2(p + 1)

{‖∇v‖2
2,K − λ‖v‖2

2,K

‖v‖2
p+1,K

}(p+1)/(p−1)

and hence

d0 =
(

1

2
− 1

p + 1

)
S

(p+1)/(p−1)
λ ,

where

Sλ = inf

{‖∇v‖2
2,K − λ‖v‖2

2,K

‖v‖2
p+1,K

∣∣∣ v ∈ H 1(K)

}
.

We have, however,

λ = 1

p − 1
= N − 2

4
,

and therefore, Sλ = S0 by Theorem 4.10 and Lemma 4.11 of [5]. This means (11).
Next, we confirm the operator theoretical feature of L in L2(K) described in the previous section. It is actually

involved by the Schrödinger operator with harmonic oscillator;

K1/2LK−1/2 = H ≡ −� + V (y),

where

V (y) = N

4
+ |y|2

16
.

This H is associated with the bilinear form



R. Ikehata et al. / Ann. I. H. Poincaré – AN 27 (2010) 877–900 883
A(u, v) =
∫

RN

(∇u(y) · ∇v(y) + V (y)u(y)v(y)
)
dy

defined for u,v ∈ H 1
1 (RN) through the relation

A(u, v) = (Hu,v)

for u ∈ D(H) ⊂ H 1
1 (RN) and v ∈ H 1

1 (RN), where

H 1
1

(
RN

) = {
v ∈ H 1(RN

) ∣∣ |y|v ∈ L2(RN
)}

and ( , ) denotes the L2 inner product. It is realized as a positive self-adjoint operator in L2(RN) with the compact
inverse, because the inclusion H 1

1 (RN) ⊂ L2(RN) is compact. Now we show the following lemma.

Lemma 2.1. The domain of H in L2(RN) is given by

D(H) = H 2
2

(
RN

) ≡ {
v ∈ H 2(RN

) ∣∣ |y|2v ∈ L2(RN
)}

.

Proof. The inclusion H 2
2 (RN) ⊂ D(H) is obvious. We show that v ∈ H 1

1 (RN) with

−�v + V v = g ∈ L2(RN
)

(14)

implies v ∈ H 2(RN). In fact, from the proof of Lemma 2.1 of [14] we have∫
RN

(
(�v)2 + V |∇v|2)dy � CN‖g‖2

2 (15)

with a constant CN > 0 determined by N . This implies v ∈ H 2(RN), and then V v ∈ L2(RN) by (14). We obtain
D(H) ⊂ H 2

2 (RN) and the proof is complete. �
For later arguments, we describe the proof of (15) in short. First, (14) implies, formally, that∫

RN

(
(�v)2 + V v · (−�v)

)
dy =

∫
RN

g(−�v)dy

and ∫
RN

V v · (−�v)dy =
∫

RN

(
V |∇v|2 + 1

2
∇V · ∇v2

)
dy =

∫
RN

(
V |∇v|2 − 1

2
v2�V

)
dy.

Then, (15) holds by∫
RN

(
(�v)2 + V |∇v|2)dy � N

16
‖v‖2 + ‖g‖2 · ‖�v‖2.

To justify these calculations, we note that v ∈ H 2
loc(R

N) follows from (14). Next, taking ϕ ∈ C∞
0 (RN) such that

0 � ϕ � 1, suppϕ ⊂ {|y| < 2
}
, ϕ = 1 for |y| � 1,

we multiply −�v · ϕn by (15), where ϕn(y) = ϕ(y/n). Then, (14) is obtained by making n → +∞. Henceforth, such
argument of justification will not be described explicitly.

Lemma 2.1 establishes the operator theoretical profiles of L as is desired; it is realized as a positive self-adjoint
operator in L2(K) with the compact inverse and the domain D(L) = H 2(K). Here, we note the following lemma.

Lemma 2.2. The multiplication K1/2 induces the isomorphisms

L2(K) ∼= L2(RN
)
, H 1(K) ∼= H 1

1

(
RN

)
, H 2(K) ∼= H 2

2

(
RN

)
.
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Proof. It is obvious that K1/2 : L2(K) → L2(RN) is an isomorphism. To confirm that K1/2 : H 1(K) → H 1
1 (RN) is

an isomorphism, we take v = K1/2u ∈ L2(RN), given u ∈ H 1(K). Since

∇v = K1/2∇u + y

4
v, (16)

it holds that

K|∇u|2 =
∣∣∣∣∇v − y

4
v

∣∣∣∣
2

= |∇v|2 − y

2
v · ∇v + |y|2

16
v2 = |∇v|2 − 1

4
y · ∇v2 + |y|2

16
v2.

Using

−1

4

∫
RN

y · ∇v2 dy = 1

4

∫
RN

(∇ · y)v2 dy = N

4

∫
RN

v2 dy,

we obtain∫
RN

|∇u|2K dy =
∫

RN

{
|∇v|2 +

(
N

4
+ 1

16
|y|2

)
v2

}
dy,

and therefore, yv ∈ L2(RN)N and ∇v ∈ L2(RN)N . This means v = K1/2u ∈ H 1
1 (RN). Given v ∈ H 1

1 (RN), con-
versely, we take u = K−1/2v ∈ L2(K). Then, ∇u ∈ L2(K)N follows from (16).

To show that K1/2 : H 2(K) → H 2
2 (RN) is an isomorphism, first, we take u ∈ H 2(K) and put v = K1/2u ∈

L2(RN). Since u ∈ H 1(K), it holds that v ∈ H 1
1 (RN) and hence yv ∈ L2(RN)N . This means

yiu ∈ L2(K) (i = 1,2, . . . ,N). (17)

It also holds that ∇u ∈ H 1(K)N and hence

yi

∂u

∂yj

∈ L2(K) (i, j = 1,2, . . . ,N) (18)

follows similarly. The right-hand side of

∂

∂yj

(yiu) = δij u + yi

∂u

∂yj

,

therefore, belongs to L2(K), and hence yu ∈ H 1(K)N follows from (17). This implies

|y|2u ∈ L2(K) (19)

similarly to (17) again, which means |y|2v ∈ L2(RN). Finally, the right-hand side of

∂2v

∂yi∂yj

= √
K

∂2u

∂yi∂yj

+
√

K

4
yi

∂u

∂yj

+
√

K

16
yiyju +

√
K

4
yj

∂u

∂yi

belongs to L2(RN) by (18) and (19). This means v ∈ H 2(RN) and hence v = K1/2u ∈ H 2
2 (RN).

Given v ∈ H 2
2 (RN), conversely, we take u = K−1/2v ∈ L2(K). Since v ∈ H 1

1 (RN), it holds that u ∈ H 1(K). The
right-hand side of

∂2u

∂yi∂yj

= K−1/2 ∂2v

∂yi∂yj

− K−1/2

4
yi

∂v

∂yj

+ K−1/2

16
yiyj v − K−1/2

4
yj

∂v

∂yi

,

on the other hand, belongs to L2(K) because of v ∈ H 2
2 (RN) and the following lemma. Then, we obtain u = K−1/2v ∈

H 2(K) and the proof is complete. �
Lemma 2.3. If v ∈ H 2

2 (RN), then it holds that

yi

∂v

∂yj

∈ L2(RN
)

(i, j = 1, . . . ,N).
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Proof. Henceforth, C denotes a generic large positive constant. It suffices to show

‖y · ∇v‖2 � C‖v‖H 2
2 (RN) (20)

for v ∈ C∞
0 (RN), where

‖v‖H 2
2 (RN) =

{ ∑
|α|�2

(∥∥Dαv
∥∥2

2 + ∥∥yαv
∥∥2

2

)}1/2

.

This inequality is obtained by∫
RN

y2
i

(
∂v

∂yi

)2

dy = −
∫

RN

∂

∂yj

(
y2
i

∂v

∂yj

)
v dy = −

∫
RN

(
2δij yi

∂v

∂yj

v + y2
i

∂2v

∂y2
j

v

)
dy

� 2‖yiv‖2 ·
∥∥∥∥ ∂v

∂yj

∥∥∥∥
2
+ ∥∥y2

i v
∥∥

2 ·
∥∥∥∥∂2v

∂y2
j

∥∥∥∥
2
,

and the proof is complete. �
Lemma 2.4. The operator A = L − 1

p−1 in L2(K), positive, self-adjoint, and with the compact inverse in L2(K), is
provided with the following properties:

1. D(A) ↪→ Lq(K) for

q

⎧⎨
⎩

= 2∗∗ (N � 5),

∈ [2,∞) (N = 4),

∈ [2,∞] (N = 3),

where 2∗∗ = 2N/(N − 4).
2. ‖v‖2p,K � C‖AN/(N+2)v‖2,K for v ∈ D(AN/(N+2)), where C > 0 is a constant.
3. lims↓0 sγ ‖Aγ e−sAv‖2,K = 0, where γ > 0 and v ∈ L2(K).

Proof. The last fact is a consequence of the general theory, because A is a positive self-adjoint operator in L2(K),
see [9]. To show the first and the second facts, we use the relation derived from the interpolation theory, see [7], that
is,

D
(
Aθ

) = [
L2(K),H 2(K)

]
θ

≡ H 2θ (K),

K1/2 : H 2θ (K) → [
L2(RN

)
,H 2

2

(
RN

)]
θ

is an isomorphism,

where θ ∈ (0,1).
In fact, we have

H 2N/(N+2)
(
RN

) = [
L2(RN

)
,H 2(RN

)]
N/(N+2)

↪→ L2p
(
RN

)
,[

Lp(K),Lq(K)
]
θ

= [
K1/pLp

(
RN

)
,K1/qLq

(
RN

)]
θ

= K1/rLr
(
RN

) = Lr(K),

K1/(2p) : H 2p(K) → L2p
(
RN

)
is an isomorphism,

and therefore,

D
(
AN/(N+2)

) = H 2N/(N+2)(K) ∼= K−1/2[L2(RN
)
,H 2

2

(
RN

)]
N/(N+2)

↪→ K−1/2[L2(RN
)
,H 2(RN

)]
N/(N+2)

= K−1/2H 2N/(N+2)
(
RN

)
↪→ K−1/2L2p

(
RN

) ∼= K−1/2+1/(2p)L2p(K) ↪→ L2p(K).

This means the second case.
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The first case is proven as follows. If N = 3, we have H 2(RN) ↪→ Lr(RN) for 2 � r � ∞. Then, it holds that

D(A) = H 2(K) ∼= K−1/2H 2
2

(
RN

)
↪→ K−1/2H 2(RN

)
↪→ K−1/2Lr

(
RN

)
↪→ Lq(K)

for 2 < q � r , r > 2 and r = q = 2, and therefore,

H 2(K) ↪→ Lq
(
RN

)
for any 2 � q � ∞.

If N = 4, we have H 2(RN) ⊂ Lr(RN) for any r ∈ [2,∞). Then, it holds that

D(A) = H 2(K) ∼= K−1/2H 2
2

(
RN

)
↪→ K−1/2H 2(RN

)
↪→ K−1/2Lr

(
RN

)
↪→ Lq(K)

for 2 < q � r , r > 2 and r = q = 2, and therefore,

H 2(K) ↪→ Lq(K)

for any 2 � q < ∞. Finally, if N � 5, it holds that

H 2(K) = K−1/2H 2
2

(
RN

)
↪→ K−1/2L2∗∗(

RN
) = K−(1/2)+(1/2∗∗)L2∗∗

(K) ↪→ L2∗∗
(K).

The proof is complete. �
Once Lemma 2.4 is proven, Proposition 1.1 is shown similarly to [9]. It suffices to use∥∥f (u) − f (v)

∥∥
2,K

� C
(‖u‖2p,K + ‖v‖2p,K

)p−1‖u − v‖2p,K

for f (u) = |u|p−1u. The following proposition is also proven similarly.

Proposition 2.1. If u0 ∈ H 1(K) and v = v(·, s) denotes the solution to (4)–(5), then we have the following properties:

1.
∫ t

s
‖vr(r)‖2

2,K dr + JK(v(t)) = JK(v(s)) for t, s ∈ [0, S).
2. s ∈ [0, S) �→ JK(v(s)) is monotone decreasing.
3. v(s0) ∈ WK (resp. VK) ⇒ v(s) ∈ WK (resp. VK ) for s ∈ [s0, S).
4. 1

2
d
ds

‖v(s)‖2
2,K + IK(v(s)) = 0 for s ∈ [0, S).

The H 1(K)-solution v = v(·, s) to (4)–(5) is regarded as the H 1(K)-solution u = u(·, t) to (1)–(2) through the
transformation (3). It is also the L1-mild solution of [16], and is provided with the following properties.

Proposition 2.2. If u0 ∈ H 1(K), we have

d

dt
J
(
u(t)

) = −∥∥ut (t)
∥∥2

2 and
d

dt

∥∥u(t)
∥∥2

2 = I
(
u(t)

)
for the solution u = u(·, t) to (1)–(2), where

J (u) = 1

2
‖∇u‖2

2 − 1

p + 1
‖u‖p+1

p+1 and I (u) = ‖∇u‖2
2 − ‖u‖p+1

p+1.

3. Stable and unstable sets

In this section we prove Propositions 1.3 and 1.4.

Lemma 3.1. If v = v(·, s) is the solution to (4)–(5) satisfying v(s0) ∈ WK for some s0 ∈ [0, T ), then it holds that∥∥v(s)
∥∥p+1

p+1,K
� (1 − γ )

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

)
(21)

for s ∈ [s0, T ), where γ ∈ (0,1) and λ = 1 .

p−1
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Proof. First, Proposition 1.2 implies

S
(p+1)/2
0 ‖v‖p+1

p+1,K �
(‖∇v‖2

2,K − λ∗‖v‖2
2,K

)(p+1)/2

�
(‖∇v‖2

2,K − λ‖v‖2
2,K

)(‖∇v‖2
2,K − λ∗‖v‖2

2,K

)(p−1)/2

for v ∈ H 1(K). Next, if v ∈ WK it holds that

JK(v) = p − 1

2(p + 1)

(‖∇v‖2
2,K − λ‖v‖2

2,K

) + 1

p + 1
IK(v)

� p − 1

2(p + 1)

(‖∇v‖2
2,K − λ‖v‖2

2,K

)
� p − 1

2(p + 1)

(‖∇v‖2
2,K − λ∗‖v‖2

2,K

)
� 0.

Let v = v(·, s) be the solution to (4)–(5) satisfying v(s0) ∈ WK . Then v(s) ∈ WK holds for s ∈ [s0, T ) by Proposi-
tion 2.1. Using the above inequalities, we obtain

S
2∗/2
0

∥∥v(s)
∥∥p+1

p+1,K
�

{
2(p + 1)

p − 1
JK

(
v(s)

)}(p−1)/2(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

)

�
{

2(p + 1)

p − 1
JK

(
v(s0)

)}(p−1)/2(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

)
for 2∗ = p + 1. Since

d0 = p − 1

2(p + 1)
S

(p+1)/(p−1)

0 > JK

(
v(s0)

)
,

it holds that

γ ≡ 1 − S
−2∗/2
0

{
2(p + 1)

p − 1
JK

(
v(s0)

)}(p−1)/2

∈ (0,1).

Then, inequality (21) follows. �
Proof of Proposition 1.3. First, we show T = +∞, assuming v(s0) ∈ WK for some s0 ∈ [0, T ). In fact, if v ∈ WK is
the case, then

‖v‖p+1
p+1 < ‖∇v‖2

2,K − λ‖v‖2
2,K <

2

p + 1
‖v‖p+1

p+1,K + 2d0

and hence

‖v‖p+1
p+1 < S

n/2
0

by p = n+2
n−2 and d0 = 1

n
Sn/2. This implies

‖∇v‖2
2,K − λ‖v‖2

2,K <
2

p + 1
‖v‖p+1

p+1,K + 2d0 < S
n/2
0 .

Since v(s0) ∈ WK , we obtain

lim sup
s↑T

{∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

}
< S

n/2
0 ,

lim sup
s↑T

∥∥v(s)
∥∥p+1

p+1 < S
n/2
0 (22)

and hence

lim sup
t↑T

∥∥∇v(s)
∥∥

2,K
< +∞ (23)

by Proposition 1.2.
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Inequality (23) then implies

S0
∥∥u(t)

∥∥2
p+1 �

∥∥∇u(t)
∥∥2

2 = ∥∥∇v(s)
∥∥2

2 �
∥∥∇v(s)

∥∥2
2,K

� C

with a constant C > 0 independent of t ∈ [0, T0), where T0 = eT − 1, and therefore,

lim
t↑T0

J
(
u(t)

)
> −∞

for J (u) = 1
2‖∇u‖2

2 − 1
p+1‖u‖p+1

p+1. Then, the blow-up analysis guarantees

lim sup
t↑T0

∥∥u(t)
∥∥p+1

p+1 � S
N/2
0

similarly to the bounded domain case, see [11], and therefore,

lim sup
s↑T

∥∥v(s)
∥∥p+1

p+1,K
� lim sup

s↑T

∥∥v(s)
∥∥p+1

p+1 = lim sup
t↑T0

∥∥u(t)
∥∥p+1

p+1 � S
N/2
0 ,

a contradiction to (22). Thus, T = +∞ follows.
The proof of (12) is similar to that of [9]. First, v ∈ WK implies

JK(v) � p − 1

2(p + 1)
(λ∗ − λ)‖v‖2

2,K (24)

with 0 < λ = 1
p−1 < λ∗ by (22) and Lemma 2.1. If v = v(·, s) is the solution satisfying v(s0) ∈ WK for some s0 ∈

[0,+∞), then it holds that

s1∫
s

IK

(
v(r)

)
dr = 1

2

(∥∥v(s)
∥∥2

2,K
− ∥∥v(s1)

∥∥2
2,K

)

� 1

2

∥∥v(s)
∥∥2

2,K
� p + 1

(p − 1)(λ∗ − λ)
JK

(
v(s)

)
(25)

by Proposition 2.1 and (24), where s0 � s � s1. Since Lemma 3.1 implies

γ
(∥∥∇v(s)

∥∥2
2,K

− λ
∥∥v(s)

∥∥2
2,K

)
� IK

(
v(s)

)
by v(s) ∈ WK , it follows that

JK

(
v(s)

) = p − 1

2(p + 1)

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) + 1

p + 1
IK

(
v(s)

)
�

(
p − 1

2γ (p + 1)
+ 1

p + 1

)
IK

(
v(s)

)
. (26)

Inequalities (25) and (26) imply

+∞∫
s

JK

(
v(r)

)
dr � MJK

(
v(s)

)

with a constant M > 0 independent of s ∈ [s0,+∞). Then, inequality (12) is obtained by Komornik’s method, see
[17], and the proof is complete. �
Lemma 3.2. If v = v(·, s) is an H 1(K)-solution to (4)–(5), satisfying v(s0) ∈ VK for some s0 ∈ [0, T ), then there is
δ > 0 such that∥∥v(s)

∥∥p+1
p+1,K

� (1 + δ)
{∥∥∇v(s)

∥∥2
2,K

− λ
∥∥v(s)

∥∥2
2,K

}
(27)

for s ∈ [s0, T ).
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Proof. If v ∈ VK , we have IK(v) < 0, and therefore,

2(p + 1)

p − 1
d0 �

{‖∇v‖2
2,K − λ∗‖v‖2

2,K}(p+1)/(p−1)

{‖v‖p+1
2∗,K }2/(p−1)

�
{‖∇v‖2

2,K − λ‖v‖2
2,K}(p+1)/(p−1)

{‖∇v‖2
2,K − λ‖v‖2

2,K}2/(p−1)
= ‖∇v‖2

2,K − λ‖v‖2
2,K (28)

by Lemma 1.2, (11), and λ∗ > λ = 1/(p − 1). Proposition 2.1, on the other hand, implies

−IK

(
v(s)

) = p − 1

2

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) − (p + 1)JK

(
v(s)

)
� p − 1

2

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) − (p + 1)JK

(
v(s0)

)
= p − 1

2

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) − (p + 1)(1 − ε0)d0 (29)

for s � s0, where

ε0 = 1 − JK(v(s0))

d0
> 0.

We shall show

p − 1

2

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) − (p + 1)(1 − ε0)d0

� δ
(∥∥∇v(s)

∥∥2
2,K

− λ
∥∥v(s)

∥∥2
2,K

)
(30)

for δ = (p − 1)ε0/2 > 0. Then, (27) will follow from (29).
For this purpose, we use

p − 1

2

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) − (p + 1)(1 − ε0)d0 − δ
(∥∥∇v(s)

∥∥2
2,K

− λ
∥∥v(s)

∥∥2
2,K

)
=

(
p − 1

2
− δ

)(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) − (p + 1)(1 − ε0)d0

= p − 1

2
· 1

d0
· JK

(
v(s0)

)(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

) − (p + 1)JK

(
v(s0)

)
= p − 1

2
· 1

d0
· JK

(
v(s0)

)(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K
− 2(p + 1)d0

p − 1

)
.

The right-hand side of the above inequality is non-negative by (28), and therefore, (30) follows. �
Proof of Proposition 1.4. The argument of [9] for the case of the bounded domain is not valid here, because
Lp+1(K) ⊂ L2(K) does not arise. To avoid this difficulty, we suppose the contrary, T = +∞. It holds that v(s) ∈ VK

for s ∈ [s0,+∞) by Proposition 2.1, and hence

−IK

(
v(s)

)
� δ

(∥∥∇v(s)
∥∥2

2,K
− λ

∥∥v(s)
∥∥2

2,K

)
� δ

(
N

2
− 1

p − 1

)∥∥v(s)
∥∥2

2,K

by (6) and Lemma 3.2. This means

1

2
· d

ds

∥∥v(s)
∥∥2

2,K
� δ1

∥∥v(s)
∥∥2

2,K

by Proposition 2.1, where

δ1 = δ

(
N

2
− 1

p − 1

)
> 0,

and therefore,
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∥∥v(s)
∥∥2

2,K
�

∥∥v(s0)
∥∥2

2,K
e2δ1(s−s0)

is obtained for s � s0.
We have, on the other hand,

∥∥v(s)
∥∥

2,K
�

∥∥v(s0)
∥∥

2,K
+ (s − s0)

1/2

{ s∫
s0

∥∥vs(r)
∥∥2

2,K
dr

}1/2

,

which implies

∥∥v(s)
∥∥2

2,K
� 2

∥∥v(s0)
∥∥2

2,K
+ 2(s − s0)

s∫
s0

∥∥vs(r)
∥∥2

2,K
dr,

and hence

JK

(
v(s0)

) − JK

(
v(s)

) =
s∫

s0

∥∥vs(r)
∥∥2

2,K
dr �

‖v(s0)‖2
2,K(e2δ1(s−s0) − 2)

2(s − s0)

for s > s0. In particular, there exists s1 > s0 such that

JK

(
v(s1)

)
< 0,

which, however, induces T < +∞ by Theorem 1.10 of [14], a contradiction. �
4. Lq -theory of the generator

To study the floating orbit in detail, the Lq -theory of L is useful. Henceforth, we define the operator Lq in Lq(K)

by

D(Lq) = {
u ∈ Lq(K)

∣∣ Lu ∈ Lq(K)
}

and Lqu = Lu for u ∈ D(Lq), where Lu = − 1
K

∇ · (K∇u) and 1 < q < ∞. This definition is consistent to L = L2,
the positive self-adjoint operator in L2(K) with the domain D(L2) = H 2(K). Here, we recall the following facts,
see [14].

First, −L2 generates a holomorphic semigroup in L2(K), denoted by {e−sL2}s�0. Second, λ1 = N/2 is the first
eigenvalue of L2, and hence the semigroup {e−s(L2−λ1)}s�0 is bounded in L2(K). Finally,∥∥e−sLu0

∥∥
Lq(K)

� ‖u0‖Lq(K) (31)

is valid for q ∈ (1,∞) and u0 ∈ Lq(K) ∩ L2(K), and therefore, −Lq generates a (C0) contraction semigroup in
Lq(K), compatible to {e−sL2}s�0 in L2(K).

The following theorem has its own interest, where

Wm,q(K) = {
v ∈ Lq(K)

∣∣ Dαv ∈ Lq(K), |α| � m
}
.

Theorem 2. The operator −Lq + λ1 generates a bounded holomorphic semigroup in Lq(K) with the domain

D(Lq) = W 2,q (K) (32)

for each 1 < q < ∞.

The fact that −Lq + λ1 generates a bounded holomorphic semigroup in Lq(K) compatible to {e−s(L2−λ1)}s�0
in L2(K) is a consequence of the general theory of Markov semigroup, see Theorems 1.4.1 and 1.4.2 of [4]. This
semigroup in Lq(K) is henceforth denoted by {e−s(Lq−λ1)}s�0. Now we shall show (32).
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Lemma 4.1. It holds that∫
RN

|y|q |v|qK(y)dy � Cq

∫
RN

|∇v|qK(y)dy (33)

for v ∈ W 1,q (K), where 1 < q < ∞ and Cq > 0 is a constant.

Proof. In terms of the polar coordinate y = rω with r = |y|, the left-hand side of (33) is equal to

∫
|ω|=1

dω ·
∞∫

0

rqK(r)rN−1
∣∣v(rω)

∣∣q dr = −
∫

|ω|=1

dω ·
∞∫

0

I (r)
∣∣v(rω)

∣∣q−2
v(rω)vr(rω)dr,

where K(r) = er2/4 and

I (r) = q

r∫
0

sN+q−1K(s)ds = q

r∫
0

sN+q−1es2/4 ds.

We have

∫
RN

|y|q |v|qK(y)dy �
{ ∫

|ω|=1

dω ·
∞∫

0

rαq ′
K(r)βq ′ ∣∣v(rω)

∣∣q dr

}1/q ′

·
{ ∫

|ω|=1

dω ·
∞∫

0

I (r)q

rαqK(r)βq

∣∣vr(rω)
∣∣q dr

}1/q

for (1/q) + (1/q ′) = 1 and α,β ∈ R. Putting β = 1/q ′ and α = (N + q − 1)/q ′, we obtain

∫
RN

|y|q |v|qK(y)dy �
{ ∫

|ω|=1

∞∫
0

I (r)q |vr |q
r(q−1)(N+q−1)Kq−1

dr dω

}1/q

·
{ ∫

|ω|=1

∞∫
0

rN+q−1K(r)|v|q dr dω

}1/q ′

,

and therefore, inequality (33) will follow from

I (r)q

r(q−1)(N+q−1)K(r)q−1
� CqrN−1K(r),

or equivalently,

I (r) � C
1/q
q · rN+q−2K(r). (34)

Inequality (34) is immediate, because

I (r)

q
= 2

q

{
rN+q−2K(r) − (N + q − 2)

r∫
0

sN+q−3K(s)ds

}
� 2

q
rN+q−2K(r).

The proof is complete. �
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Lemma 4.2. The multiplication K1/q induces the equivalences

Lq(K) ∼= Lq
(
RN

)
, (35)

W 1,q (K) ∼= W
1,q

1

(
RN

) = {
v ∈ W 1,q

(
RN

) ∣∣ yiv ∈ Lq
(
RN

)
, 1 � i � N

}
, (36)

W 2,q (K) ∼= W
2,q

2

(
RN

) = {
v ∈ W 2,q

(
RN

) ∣∣ |y|2v ∈ Lq
(
RN

)}
(37)

for 1 < q < ∞.

Proof. Relation (35) is obvious. Given u ∈ W 1,q (K), we take v = K1/qu and obtain

∇v = K1/q∇u + y

2q
v ∈ Lq

(
RN

)N (38)

by Lemma 4.1. This implies v ∈ W
1,q

1 (RN). If v ∈ W
1,q

1 (RN), conversely, then ∂u
∂yi

∈ Lq(K) by (38), and hence (36)
follows. Finally, relation (37) is obtained similarly to the case q = 2 of Lemma 2.2, because the following lemma is
valid. �
Lemma 4.3. If v ∈ W

2,q

2 (RN), it holds that

yi

∂v

∂yj

∈ Lq
(
RN

)
for 1 � i, j � N , where 1 < q < ∞.

Proof. The proof is similar to that of Lemma 2.3. It suffices to use

∫
RN

∣∣∣∣yi

∂v

∂yj

∣∣∣∣
q

dy = −
∫

RN

∂

∂yj

[
|yi |q

∣∣∣∣ ∂v

∂yj

∣∣∣∣
q−2

∂v

∂yj

]
· v dy

= −
∫

RN

[
q|yi |q−2yiδij

∣∣∣∣ ∂v

∂yj

∣∣∣∣
q−2

∂v

∂yj

· v + |yj |q−2(q − 1)

∣∣∣∣ ∂v

∂yj

∣∣∣∣
q−2

∂2v

∂y2
j

· y2
j v

]
dy

� q

∥∥∥∥yi

∂v

∂yj

∥∥∥∥
q−1

q

· ‖v‖q + (q − 1)

∥∥∥∥yj

∂v

∂yj

∥∥∥∥
q−2

q

·
∥∥∥∥∂2v

∂y2
j

∥∥∥∥
q

· ∥∥y2
j v

∥∥
q

for v ∈ C∞
0 (RN). �

Proof of Theorem 2. We have K1/qLK−1/q = Hq for

Hqv = −�v − 1

2

(
1 − 2

q

)
y · ∇v + Vq(y)v,

where Vq(y) = αN
2 + α2

4 |y|2 with α = 1 − 1
q

. If v ∈ W
2,q

2 (RN), it holds that Hqv ∈ Lq(RN) by Lemma 4.2. Thus, it

suffices to show that v ∈ Lq(RN) and Hqv = g ∈ Lq(RN) imply v ∈ W
2,q

2 (RN).
In fact, we obtain∫

RN

Hqv · 〈y〉2(q−1)|v|q−2v dy

with 〈y〉 = √
1 + |y|2. First, we have
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∫
RN

(−�v)〈y〉2(q−1)|v|q−2v dy =
∫

RN

∇v · ∇(〈y〉2(q−1)|v|q−2v
)
dy

= (q − 1)

∫
RN

(〈y〉2|v|)q−2∇v · ∇(〈y〉2v
)
dy

= (q − 1)

∫
RN

(〈y〉2q |v|q−2|∇v|2 + 2
(〈y〉2|v|)q−2

vy · ∇v
)
dy

� 2(q − 1)

q

∫
RN

〈y〉2(q−2)y · ∇|v|q dy

= −2(q − 1)

q

∫
RN

|v|q∇ · (〈y〉2(q−2)y
)
dy

with

∇ · (〈y〉2(q−2)y
) = 〈y〉2(q−3)

{
2(q − 2)|y|2 + n〈y〉2} �

(
2(q − 2)+ + N

)〈y〉2(q−2)

and ∫
RN

〈y〉2(q−2)|v|q dy � ‖v‖q · ∥∥〈y〉2v
∥∥q−1

q
.

Next, we have

0 � ∇ · (〈y〉2(q−1)y
) = 〈y〉2(q−2)

{
2(q − 1)|y|2 + N〈y〉2} �

(
2(q − 1) + N

)〈y〉2(q−1)

and hence

0 � −
∫

RN

(y · ∇v)〈y〉2(q−1)|v|q−2v dy = − 1

q

∫
RN

〈y〉2(q−1)y · ∇|v|q dy

= 1

q

∫
RN

|v|q∇ · (〈y〉2(q−1)y
)
dy � 2(q − 1) + N

q

∫
RN

|v|q〈y〉2(q−1) dy

� 2(q − 1) + N

q
‖v‖q · ∥∥〈y〉2v

∥∥q−1
q

.

Since

Vq(y) = α2

4
|y|2 + αN

2
� min

{
α2

4
,
αN

2

}
〈y〉2,

it follows that

min

{
α2

4
,
αN

2

}∥∥〈y〉2v
∥∥q

q
� 2(q − 1)

q

(
2(q − 2)+ + N

)‖v‖q · ∥∥〈y〉2v
∥∥q−1

q

+ 1

2

(
1 − 2

q

)
+

2(q − 1) + N

q
‖v‖q · ∥∥〈y〉2v

∥∥q−1
q

.

This implies Vqv ∈ Lq(RN) and hence v ∈ W
2,q

2 (RN). �
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5. Floating orbit

This section is devoted to the proof of Proposition 1.5. First, Theorem 2 guarantees that each m = 1,2,3, . . . admits
δ > 0 and C > 0 such that∥∥Ame−sAv

∥∥
q,K

� Cs−me−sδ‖v‖q,K (39)

for s > 0. Next,

K1/q : Wm,q(K) → W
m,q
m

(
RN

) ≡ {
v ∈ Wm,q

(
RN

) ∣∣ |y|mv ∈ Lq
(
RN

)}
(40)

is an isomorphism for m = 0,1,2, . . . . In fact, this relation with m = 0,1,2 is proven in Lemma 4.2, and the other
case is obtained by an induction based on Lemmas 4.1 and 4.3.

From

D
(
A

1/2
q

) = [
Lq(K),W 2,q (K)

]
1/2

∼= [
K−1/qLq

(
RN

)
,K−1/qW

2,q

2

(
RN

)]
1/2

↪→ [
K−1/qLq

(
RN

)
,K−1/qW 2,q

(
RN

)]
1/2 = K−1/q

[
Lq

(
RN

)
,W 2,q

(
RN

)]
1/2

= K−1/qW 1,q
(
RN

)
↪→ K−1/qL∞(

RN
)
↪→ L∞(

RN
)

for q > N , e.g., it follows that

v(s) ∈ L∞(
RN

)
, 0 < s < T , (41)

where v = v(·, s) denotes the solution to (4)–(5). Thus, we may assume u0 ∈ H 1(K) ∩ L∞(RN) without loss of
generality.

Lemma 5.1. Any A > 0 admits δ(A) > 0 such that ‖u0‖∞,K � A implies

‖v(s)‖∞,K � 2A, s ∈ [
0, δ(A)

]
,

where v = v(·, s) is the solution to (4)–(5) with u0 ∈ H 1(K).

Proof. We apply the L∞-energy method of [19]. Taking m � 1, we multiply |v|m−1vK to (4). It follows that

1

m

d

ds
‖v‖m

m,K = −m

∫
RN

|∇v|2|v|m−1K dy − 1

p − 1

∫
RN

|v|m+1vK dy +
∫

RN

|v|m+pK dy

� ‖v‖m+p
m+p,K � ‖v‖p∞‖v‖m

m,K,

and therefore,

d

ds

∥∥v(s)
∥∥

m,K
�

∥∥v(s)
∥∥p

∞
∥∥v(s)

∥∥
m,K

.

This implies

∥∥v(s)
∥∥

m,K
�

∥∥v(0)
∥∥

m,K
exp

( s∫
0

∥∥v(r)
∥∥p

∞ dr

)
.

Sending m ↑ +∞, we obtain

∥∥v(s)
∥∥∞,K

�
∥∥v(0)

∥∥∞,K
exp

( s∫
0

∥∥v(r)
∥∥p

∞ dr

)

by (9). The assertion thus follows from ‖v‖∞,K = ‖v‖∞. �
To complete the proof of Proposition 5.1, we use the following proposition obtained by [5].
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Proposition 5.1. If λ � N/4 and p = N+2
N−2 , N � 3, there is no non-trivial solution v = v(y) ∈ H 1(RN) to

−�v − 1

2
y · ∇v = |v|p−1v + λv in RN. (42)

We apply also the fact that T = +∞ in (4)–(5) implies

lim sup
s↑+∞

∥∥v(s)
∥∥

2,K
< +∞. (43)

This is derived from Poincaré’s inequality (10), similarly to the prescaled case on the bounded domain, see [18,2,23].

Proof of Proposition 1.5. From the assumption, we have T = +∞ and

βK ≡ lim
s↑+∞JK

(
v(s)

)
� d0 > 0. (44)

If (13) is not the case, we have A > 0 and sk ↑ +∞ such that∥∥v(sk)
∥∥∞ � A, k = 1,2, . . . ,

and then we obtain∥∥v(s + sk)
∥∥∞ � 2A, s ∈ [

0, δ(A)
]
, (45)

for δ(A) prescribed by Lemma 5.1. We may assume

sk+1 > sk + δ(A), k = 1,2, . . . ,

and in this case it follows that

lim
k→∞

sk+δ(A)∫
sk

∥∥vs(s)
∥∥2

2,K
ds = 0

from (44). Thus, there is s′
k ∈ [sk, sk + δ(A)] such that

lim
k→∞

∥∥vs

(
s′
k

)∥∥
2 = 0.

By (43), on the other hand, we obtain∣∣IK

(
v
(
s′
k

))∣∣ = ∣∣(v(
s′
k

)
, vs

(
s′
k

))
K

∣∣ � C
∥∥vs

(
s′
k

)∥∥
2,K

,

where

(f, g)K =
∫

RN

f (y)g(y)K(y)dy,

and hence it holds that

lim
k→∞ IK

(
v
(
s′
k

)) = 0. (46)

Thus,

βK = lim
s↑+∞JK

(
v(s)

) = p − 1

2(p + 1)
lim

k→+∞
{∥∥∇v

(
s′
k

)∥∥2
2,K

− λ
∥∥v

(
s′
k

)∥∥2
2,K

}
(47)

follows from

JK(v) = p − 1

2(p + 1)

{‖∇v‖2
2,K − λ‖v‖2

2,K

} + 1

p + 1
IK(v),

where λ = 1 .

p−1
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Since Proposition 1.2 implies∥∥∇v
(
s′
k

)∥∥2
2,K

− λ
∥∥v

(
s′
k

)∥∥2
2,K

� μ
∥∥∇v

(
s′
k

)∥∥2
2,K

with μ = 1 − λ/λ1 > 0, we now obtain∥∥∇v
(
s′
k

)∥∥2
2,K

= O(1).

Here, Rellich’s type of compactness theorem holds in the inclusion H 1(K) ↪→ L2(K) by Lemma 2.2, and therefore,
we have

v
(
s′
k

)
⇀ v weakly in H 1(K),

v
(
s′
k

) → v strongly in L2(K)

passing to a subsequence. This v ∈ H 1(K) is a critical point of JK , and therefore, v = 0 by Proposition 5.1. We have,
furthermore, ‖v(s′

k)‖∞ � C by (45), and therefore,∥∥v
(
s′
k

) − v
(
s′
�

)∥∥p+1
p+1,K

�
∥∥v

(
s′
k

) − v
(
s′
�

)∥∥2
2,K

∥∥v
(
s′
k

) − v
(
s′
�

)∥∥p−1
∞ → 0

as k′, �′ → ∞. Thus, it holds that

v
(
s′
k

) → 0 in Lp+1(K) and L2(K).

We now obtain∥∥∇v
(
s′
k

)∥∥2
2,K

= 1

p − 1

∥∥v
(
s′
k

)∥∥2
2,K

+ ∥∥v
(
s′
k

)∥∥p+1
p+1,K

+ (
v
(
s′
k

)
, vs

(
s′
k

))
k
→ 0

by (46), and therefore,

βK = lim
k→∞JK

(
v
(
s′
k

)) = 0,

a contradiction. �
6. Proof of Theorem 1

If the orbit enters in the unstable set VK , then T < +∞ occurs by Proposition 1.4. For the floating orbit global in
time, next, Proposition 1.5 is applicable. It holds that

lim
t↑+∞(1 + t)1/(p−1)

∥∥u(t)
∥∥∞ = lim

s↑+∞
∥∥v(s)

∥∥∞ = lim
s↑+∞

∥∥v(s)
∥∥∞,K

= +∞,

and therefore,

lim
t↑+∞ t (N−2)/4

∥∥u(t)
∥∥∞ = +∞.

If the orbit {v(s)} enters in the stable set WK , finally, Proposition 1.3 is applicable. We have T = +∞ and (12),
and therefore,

lim
s↑+∞

∥∥v(s)
∥∥

H 1(K)
= lim

s↑+∞
∥∥v(s)

∥∥
p+1,K

= 0 (48)

by (10). Then it follows that

lim
t↑+∞

∥∥u(t)
∥∥

p+1 = 0 (49)

from ∥∥u(t)
∥∥

p+1 = ∥∥v(s)
∥∥

p+1 �
∥∥v(s)

∥∥
p+1,K

.

Here, we may assume
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u0 ∈ L1(RN,
(
1 + |x|)dx

) ∩ L∞(
RN

)
, (50)

regarding (41) and∫
Rn

(
1 + |x|)u0(x) dx � ‖u0‖2,K

{ ∫
RN

(
1 + |x|)2

K(x)−1 dx

}1/2

< +∞. (51)

Relations (49)–(50) imply

lim
t↑+∞ tN/2

∥∥u(t)
∥∥∞ < +∞

by Theorem 4.1 of [16]. If

u0 � 0 and u0 �= 0, (52)

furthermore,

tN/2
∥∥∥∥u(t) − m∞(4πt)−N/2 exp

(
−|x|2

4t

)∥∥∥∥∞
� Ct−1/2 (53)

holds by Theorem 4.1 of [15], where C > 0 is a constant and

0 < m∞ = sup
t�0

∥∥u(t)
∥∥

1 < +∞.

Then, (7) follows.

Remark 6.1. When (49)–(50) arises, we have

sup
t�0

∥∥u(t)
∥∥

1 < +∞ (54)

by Theorem 4.1 of [16]. If (52) is the case, furthermore, it follows that

lim
t↑+∞ t (1−1/q)N/2

∥∥∥∥u(t) − m∞(4πt)−N/2 exp

(
−|x|2

4t

)∥∥∥∥
q

= 0

for q ∈ [1,∞], see Lemma 3 of [6]. This relation is refined as

t (1−1/q)N/2
∥∥∥∥u(t) − m∞(4πt)−N/2 exp

(
−|x|2

4t

)∥∥∥∥∞
� Ct−1/2 (55)

by (54) and |x|2u0 ∈ L1(RN), see [10].

Remark 6.2. If∫
RN

(
u2

0 + |∇u0|2
)
K(x − a)dx < +∞ (56)

is assumed for any a ∈ RN , we can argue similarly to the prescaled case [9] to derive

lim
s↑+∞

∥∥v(s)
∥∥∞,K

= 0 (57)

from (48) directly.

In fact, we use the moment inequality, see [24],∥∥Aαv
∥∥

2,K
� C‖Av‖2α−1

2,K

∥∥A1/2v
∥∥2−2α

2,K
,

where α ∈ (0,1). Applying Lemma 2.4 for α = N/(N + 2), we obtain
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∥∥|v|p∥∥
2,K

� C‖Av‖2,K

∥∥A1/2v
∥∥ 4

N−2
2,K . (58)

Since

∥∥A1/2v(s)
∥∥2

2,K
= ∥∥∇v(s)

∥∥2
2,K

+ 1

p − 1

∥∥v(s)
∥∥2

2,K
→ 0

as s ↑ +∞ by (48) and also∥∥Av(s)
∥∥

2,K
�

∥∥vs(s)
∥∥

2,K
+ ∥∥∣∣v(s)

∣∣p∥∥
2,K

by (4), inequality (58) implies∥∥Av(s)
∥∥

2,K
� C

∥∥vs(s)
∥∥

2,K
, s � 1. (59)

We have, on the other hand,

∞∫
0

∥∥vs(s)
∥∥2

2,K
ds < +∞

by (48) and Proposition 2.2, and therefore,

∞∫
0

∥∥Av(s)
∥∥2

2,K
ds < +∞. (60)

Inequalities (59)–(60) imply

∞∫
0

∥∥v(s)
∥∥2

q,K
ds < +∞

for some q > 2∗ = p + 1 by Lemma 2.4, and then

lim sup
s↑+∞

∥∥v(s)
∥∥

q,K
< +∞

follows similarly to the prescaled case, Lemma 6.5 of [9], from the Lq -theory developed in Section 4. This implies
that relation (48) yields

lim sup
s↑+∞

∥∥v(s)
∥∥∞,K

< +∞ (61)

by the bootstrap argument using (39) with D(Am) = W 2m,q(K) and (40).
Relation (61) reads;

sup
t�0

(1 + t)1/(p−1)
∥∥u(t)

∥∥∞ < +∞.

Given sk ↑ +∞, we take xk ∈ RN such that∥∥u(tk)
∥∥∞ = ∣∣u(xk, tk)

∣∣
for tk = esk − 1. Then, vk = vk(y, s) defined by

vk(y, s) = (1 + t)1/(p−1)u(x, t), t = es − 1, x = xk + (1 + t)1/2y

satisfies
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vks + Lvk = |vk|p−1vk + 1

p − 1
vk in RN × (0,+∞),

sup
s�0

∥∥vk(s)
∥∥∞ < +∞,

∞∫
0

∥∥vks(s)
∥∥2

2,K
ds � JK

(
vk(0)

)
< +∞,

where relation (56) is used. There is {s′
k} ⊂ {sk}, in particular, such that

s′
k+1∫

s′
k−1

∥∥vks(s)
∥∥2

2,K
ds < 1/k, k = 1,2, . . . .

Putting ṽk(y, s) = vk(y, s + s′
k), we apply the parabolic regularity. Thus, there is a subsequence, denoted by the

same symbol, and v∞ = v∞(y, s) such that ṽk → v∞ locally uniformly in RN × (−1,1), and furthermore,

1∫
−1

∥∥ṽks(s)
∥∥2

2,K
ds =

s′
k+1∫

s′
k−1

∥∥vks(s)
∥∥2

2,K
ds → 0.

Thus, we obtain v∞s = 0,

−�v∞ − 1

2
y · ∇v∞ = |v∞|p−1v∞ + 1

p − 1
v∞ in RN × (−1,1),

and hence v∞ = 0 by Proposition 5.1. This implies∥∥v
(
s′
k

)∥∥∞ = ∣∣ṽk(0,0)
∣∣ → 0

and therefore, (57) because sk ↑ +∞ is arbitrary.
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