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Abstract

We prove that the Schrödinger equation is approximately controllable in Sobolev spaces Hs , s > 0, generically with respect to
the potential. We give two applications of this result. First, in the case of one space dimension, combining our result with a local
exact controllability property, we get the global exact controllability of the system in higher Sobolev spaces. Then we prove that
the Schrödinger equation with a potential which has a random time-dependent amplitude admits at most one stationary measure on
the unit sphere S in L2.
© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we study the problem

iż = −�z + V (x)z + u(t)Q(x)z, x ∈ D, (1.1)

z|∂D = 0, (1.2)

z(0, x) = z0(x), (1.3)

where D ⊂ Rm is a bounded domain with smooth boundary, V ∈ C∞(D,R) is an arbitrary given function, u is the
control, and z is the state. We prove that this system is approximately controllable to the eigenfunctions of −� + V

in Sobolev spaces Hs , s > 0 generically with respect to the dipolar moment Q. In the case m = 1 and V = 0,
combination of our result with the local exact controllability property obtained by Beauchard [7,8] gives the global
exact controllability of the system in the spaces H 5+ε . Approximate controllability property implies also that the
random Schrödinger equation admits at most one stationary measure on the unit sphere S in L2.

The problem of controllability of the Schrödinger equation has been largely studied in the literature. Let us mention
some previous results closely related to the present paper. Ball, Marsden and Slemrod [5] and Turinici [35] show that
the set of attainable points from any initial data in S ∩ H 2 by system (1.1), (1.2) admits a dense complement in
S ∩ H 2. In [7], Beauchard proves an exact controllability result for the system with m = 1,D = (−1,1),V (x) = 0
and Q(x) = x in H 7-neighborhoods of the eigenstates. Beauchard and Coron [9] established later a partial global exact
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controllability result, showing that the system in question is also controlled between some neighborhoods of any two
eigenstates. Chambrion et al. [14] and Privat and Sigalotti [31] prove that (1.1), (1.2) is approximately controllable
in L2 generically with respect to the functions V,Q and the domain D. See also the papers [32,36,4,3,1,10] for
controllability of finite-dimensional systems and the papers [24,25,6,38,16,26,11,17] for controllability properties of
various Schrödinger systems.

Let us recall that, in the case of the space H 2, we established a stabilization property for system (1.1), (1.2) in [28].
Namely, we introduce a Lyapunov function V (z) � 0 that controls the H 2-norm of z and possesses the following
properties:

• V (z) = 0 if and only if z = ce1,V , where e1,V is the first eigenfunction of the operator −� + V ,
• d

dt
V (z(t)) = uG(z(t)), where z(t) = z(t, u) is the solution of (1.1)–(1.3) and G(z) is a function given explicitly.

Choosing the feedback low u(z) = −G(z), we see that d
dt

V (z(t)) = −u2 � 0, i.e., the function V decreases on the
trajectories of (1.1) corresponding to the feedback u. Thus, to conclude, it suffices to prove that V (z(t)) → 0. To this
end, we use an iteration argument and show that the H 2-weak ω-limit set of any trajectory z(t) contains a minimum
point of the function V , i.e., the eigenfunction ce1,V , where c ∈ C, |c| = 1. Thus we construct explicitly a feedback
low u(z) which forces the trajectories of the system to converge to the eigenstate {ce1,V : c ∈ C, |c| = 1}.

The aim of this paper is to generalize these ideas to the case of the spaces Hk, k > 2. The main difficulty is that we
are not able to construct a Lyapunov function V (z) such that d

dt
V (z(t)) = uG(z(t)) for some function G. However,

notice that for any w ∈ C∞([0, T ],R) we can calculate explicitly the derivative d
dσ

V (z(t, σw))|σ=0. We show that
there is a time T > 0 and a control w such that d

dσ
V (z(t, σw))|σ=0 �= 0. Hence we can choose σ0 close to zero such

that

V
(
z(T ,σ0w)

)
< V

(
z(T ,0)

) = V (z0).

Thus for any point z0 we find a time T > 0 and a control u such that

V
(
z(T ,u)

)
< V (z0).

Using an iteration argument close to that of [28], we conclude that there are sequences Tn > 0 and un ∈ C∞([0, Tn],R)

such that z(tn, un) → e1,V . Thus any point z0 can be approximately controlled to e1,V .
Then, in the case m = 1 and V = 0, combining this controllability property with the local exact controllability

result obtained by Beauchard [8], we see that the system is globally exactly controllable in S ∩ H 5+ε generically with
respect to Q ∈ C∞(D,R), i.e., for any z0, z1 ∈ S ∩ H 5+ε there is a time T > 0 and a control u ∈ H 1

0 ([0, T ],R) such
that z(0, u) = z0 and z(T ,u) = z1.

Next we apply approximate controllability property to prove that the random Schrödinger equation has at most one
stationary measure on S. This follows from uniform Feller property and irreducibility of the transition functions of
the Markov chain associated to the system in question. Existence of a stationary probability different from the Dirac
measure concentrated at zero is an open problem. There are several results on the existence of stationary measures
for deterministic Schrödinger equations. Bourgain [12] and Tzvetkov [37] prove the existence of stationary Gibbs
measures for different nonlinear Schrödinger systems. Kuksin and Shirikyan [23] construct a stationary measure as a
limit of the unique stationary measure of the randomly forced complex Ginzburg–Landau equation when the viscosity
goes to zero. In [15], Debussche and Odasso prove existence and uniqueness of stationary measure and a polynomial
mixing property for a damped 1D Schrödinger equation. For finite-dimensional approximations of the Schrödinger
equation, existence and uniqueness of stationary measure and an exponential mixing property is obtained in [27].

1.1. Notation

In this paper we use the following notation. Let D ⊂ Rm,m � 1, be a bounded domain with smooth boundary. Let
Hs := Hs(D) be the Sobolev space of order s � 0 endowed with the norm ‖ · ‖s . Consider the operators −�z + V z,

z ∈ D(−� + V ) := H 1
0 ∩ H 2, where V ∈ C∞(D,R). We denote by {λj,V } and {ej,V } the sets of eigenvalues and

normalized eigenfunctions of −� + V . Define the spaces Hs
(V ) := D((−� + V )

s
2 ). Let 〈·,·〉 and ‖ · ‖ be the scalar

product and the norm in the space L2. Let S be the unit sphere in L2. For a Polish space X, we shall use the following
notation.
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B(X) is the σ -algebra of Borel subsets of X.
C(X) is the space of real-valued continuous functions on X.
Cb(X) is the space of bounded functions f ∈ C(X).
L(X) is the space of functions f ∈ Cb(X) such that

‖f ‖L := ‖f ‖∞ + sup
u �=v

|f (u) − f (v)|
‖u − v‖ < +∞.

P (X) is the set of probability measures on (X, B(X)).

2. Main results

2.1. Approximate controllability to e1,V

The following lemma shows the well-posedness of system (1.1), (1.2) in Sobolev spaces Hs , s � 0.

Lemma 2.1. For any control u ∈ C∞([0,∞),R) such that dku
dtk

(0) = 0 for all k � 1 and for any z0 ∈ Hs
(V +u(0)Q)

problem (1.1)–(1.3) has a unique solution z ∈ C([0,∞),H s). Furthermore, if dku
dtk

(T ) = 0 for all k � 1, then
z(T ) ∈ Hs

(V +u(T )Q)
.

See [7] for the proof. Denote by Ut (·, u) : L2 → L2 the resolving operator of (1.1), (1.2). As in [28], we assume
that the functions V and Q satisfy the following condition.

Condition 2.2. The functions V,Q ∈ C∞(D,R) are such that:

(i) 〈Qe1,V , ej,V 〉 �= 0 for all j � 2,
(ii) λ1,V − λj,V �= λp,V − λq,V for all j,p, q � 1 such that {1, j } �= {p,q} and j �= 1.

We say that problem (1.1), (1.2) is approximately controllable to e1,V in Hs, s > 0 if for any integer k � 1,
any constants ε, δ, d > 0 and for any point z0 ∈ S ∩ Hs

(V ) there is a time T > 0 and a control u ∈ C∞
0 ((0, T ),R),

‖u‖Ck([0,T ]) < d such that∥∥UT (z0, u) − e1,V

∥∥
s−δ

< ε.

The theorem below is one of the main results of the present paper.

Theorem 2.3. Under Condition 2.2, for any s > 0, problem (1.1), (1.2) is approximately controllable to e1,V in Hs .

In many relevant examples, the spectrum of the operator −�+V is degenerate, hence property (ii) in Condition 2.2
is not verified. In fact, the proof of Theorem 2.3 can be adapted to show the approximate controllability of (1.1), (1.2)
for any potential V , under stronger assumptions on the function Q. More precisely, we have the following result.

Theorem 2.4. Let V ∈ C∞(D,R) be arbitrary. The set of functions Q such that problem (1.1), (1.2) is approximately
controllable to e1,V in Hs for any s > 0 is residual in C∞(D,R), i.e., contains a countable intersection of open dense
sets in C∞(D,R).

Here C∞(D,R) is endowed with its usual topology given by the countable family of norms:

pn(Q) :=
∑

|α|�n

sup
x∈D

∣∣∂αQ(x)
∣∣.

See Section 2.3 for the proof this theorem.
We say that problem (1.1), (1.2) is approximately controllable in L2 if for any integer k � 1, any constants ε, d > 0

and for any points z0, z1 ∈ S there is a time T > 0 and a control u ∈ C∞
0 ((0, T ),R), ‖u‖Ck([0,T ]) < d such that∥∥Uk(z0, u) − z1

∥∥ < ε.



904 V. Nersesyan / Ann. I. H. Poincaré – AN 27 (2010) 901–915
Combination of Theorem 2.4 with the time reversibility property of the Schrödinger equation implies approximate
controllability in L2.

Theorem 2.5. Let V ∈ C∞(D,R) be arbitrary. The set of functions Q such that problem (1.1), (1.2) is approximately
controllable in L2 is residual in C∞(D,R).

This result is proved exactly in the same way as Theorem 3.5 in [28].

Proof of Theorem 2.3. By Lemma 3.4 in [28], it suffices to prove the theorem for any initial data z0 ∈ S ∩ Hs
(V )

with
〈z0, e1,V 〉 �= 0. Let us introduce the Lyapunov function

V (z) := α
∥∥(−� + V )

s
2 P1,V z

∥∥2 + 1 − ∣∣〈z, e1,V 〉∣∣2
, z ∈ S ∩ Hs

(V ), (2.1)

where α > 0 and P1,V z := z − 〈z, e1,V 〉e1,V is the orthogonal projection in L2 onto the closure of the vector span
of {ek,V }k�2. Notice that V (z) � 0 for all z ∈ S ∩ Hs

(V ) and V (z) = 0 if and only if z = ce1,V , |c| = 1. For any
z ∈ S ∩ Hs

(V ) we have

V (z) � α
∥∥(−� + V )

s
2 P1,V z

∥∥2 � C1‖z‖2
s − C2.

Thus

C
(
1 + V (z)

)
� ‖z‖s (2.2)

for some constant C > 0. We need the following result proved in Section 2.2.

Proposition 2.6. Fix any constants s > 0 and d > 0 and an integer k � 1. There is a finite or countable set J ⊂ R∗+
such that for any α /∈ J and for any z0 ∈ S ∩ Hs

(V ) with 〈z0, e1,V 〉 �= 0 and 0 < V (z0) there is a time T > 0 and a
control u ∈ C∞

0 ((0, T ),R), ‖u‖Ck([0,T ]) < d verifying

V
(

UT (z0, u)
)
< V (z0).

Let us take any z0 ∈ S ∩ Hs
(V ) with 〈z0, e1,V 〉 �= 0 and 0 < V (z0), and choose α > 0 in (2.1) such that V (z0) < 1.

Define the set

K = {
z ∈ Hs

(V ) : UTn(z0, un) → z in Hs−δ for some Tn � 0,

un ∈ C∞
0

(
(0, Tn),R

)
,‖un‖Ck([0,Tn]) < d and for any δ > 0

}
.

Let

m := inf
z∈K

V (z).

This infimum is attained, i.e., there is e ∈ K such that

V (e) = inf
z∈K

V (z). (2.3)

Indeed, take any minimizing sequence zn ∈ K, V (zn) → m. By (2.2), zn is bounded in Hs . Thus, without loss of
generality, we can assume that zn ⇀ e in Hs for some e ∈ Hs

(V )
. This implies that V (e) � lim infn→∞ V (zn) = m. Let

us show that e ∈ K. As zn ∈ K, there are sequences Tn > 0 and un ∈ C∞
0 ((0, Tn),R) such that∥∥UTn(z0, un) − zn

∥∥
s−δ

� 1

n
. (2.4)

On the other hand, zn → e in Hs−δ , and (2.4) implies that UTn(z0, un) → e in Hs−δ . Thus e ∈ K and V (e) = m.
Let us show that V (e) = 0. Suppose, by contradiction, that V (e) > 0. It follows from (2.3) and from the choice of α

that V (e) � V (z0) < 1. This shows that 〈e, e1,V 〉 �= 0. Proposition 2.6 implies that there is a time T > 0 and a control
u ∈ C∞

0 ((0, T ),R) such that

V
(

UT (e, u)
)
< V (e). (2.5)
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Define ũn(t) = un(t), t ∈ [0, Tn] and ũn(t) = u(t − Tn), t ∈ [Tn,Tn + T ]. Then ũn ∈ C∞
0 ((0, Tn + T ),R) and, by

continuity in Hs−δ of the resolving operator for (1.1), (1.2) (e.g., see [13]),

UTn+T (z0, ũn) → UT (e, u) in Hs−δ.

This implies that UT (e, u) ∈ K. Clearly, (2.5) contradicts (2.3). It follows that V (e) = 0, hence e = ce1,V for some
c := c(e) ∈ C, |c| = 1. As Uτ (ce1,V ,0) = eiτ ce1,V = e1,V for τ = − arg(c), we see that e1,V ∈ K. �
2.2. Proof of Proposition 2.6

Take any z0 ∈ S ∩ Hs
(V ) such that 〈z0, e1,V 〉 �= 0 and 0 < V (z0). This implies that also 〈z0, ep,V 〉 �= 0 for some

p � 2. Let us consider the mapping

V
(

UT

(
z0, (·)w

)) : R → R,

σ → V
(

UT (z0, σw)
)
,

where T > 0 and w ∈ C∞
0 ((0, T ),R). We are going to show that, for an appropriate choice of T and w, we have

dV (UT (z0,σw))
dσ

|σ=0 �= 0. Clearly,

dV (UT (z0, σw))

dσ

∣∣∣∣
σ=0

= 2α Re
〈
(−� + V )

s
2 P1,V UT (z0,0), (−� + V )

s
2 P1,V RT (w)

〉
− 2 Re

〈
UT (z0,0), e1,V

〉〈
e1,V , RT (w)

〉
, (2.6)

where Rt (·) is the resolving operator of problem

iż = −�z + V (x)z + w(t)Q(x)Ut (z0,0), x ∈ D, (2.7)

z|∂D = 0, (2.8)

z(0) = 0. (2.9)

System (2.7)–(2.9) is the linearization of (1.1), (1.2) around the solution Ut (z0,0). Note that (2.7)–(2.9) is equivalent
to

z(t) = −i

t∫
0

e−i(−�+V )(t−τ)w(τ)Q(x)Uτ (z0,0)dτ. (2.10)

Taking into account the fact that

Ut (z0,0) =
∞∑

k=1

e−iλk,V t 〈z0, ek,V 〉ek,V , (2.11)

we get from (2.10)

〈
RT (w), ej,V

〉 = −ie−iλj,V T
∞∑

k=1

〈z0, ek,V 〉〈Qek,V , ej,V 〉
T∫

0

e−i(λk,V −λj,V )τw(τ)dτ. (2.12)

Replacing (2.11) and (2.12) into (2.6), we get

dV (UT (z0, σw))

dσ

∣∣∣∣
σ=0

= −2α Im
∞∑

j=2,k=1

λs
j,V 〈z0, ej,V 〉〈ek,V , z0〉〈Qek,V , ej,V 〉 ×

T∫
0

ei(λk,V −λj,V )τw(τ)dτ

+ 2 Im
∞∑

k=1

〈z0, e1,V 〉〈ek,V , z0〉〈Qek,V , e1,V 〉
T∫

0

ei(λk,V −λ1,V )τw(τ)dτ

=
T∫

Φ(τ)w(τ)dτ,
0
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where

iΦ(τ) := −α

∞∑
j=2,k=1

λs
j,V 〈z0, ej,V 〉〈ek,V , z0〉〈Qek,V , ej,V 〉ei(λk,V −λj,V )τ

+ α

∞∑
j=2,k=1

λs
j,V 〈ej,V , z0〉〈z0, ek,V 〉〈Qek,V , ej,V 〉e−i(λk,V −λj,V )τ

+
∞∑

k=2

〈z0, e1,V 〉〈ek,V , z0〉〈Qek,V , e1,V 〉ei(λk,V −λ1,V )τ

−
∞∑

k=2

〈e1,V , z0〉〈z0, ek,V 〉〈Qek,V , e1,V 〉e−i(λk,V −λ1,V )τ

=
∞∑

j=2,k=2

P(z0,Q, j, k)e−i(λj,V −λk,V )t

+
∞∑

j=2

(
αλs

j,V + 1
)〈z0, e1,V 〉〈ej,V , z0〉〈Qej,V , e1,V 〉e−i(λ1,V −λj,V )t

−
∞∑

j=2

(
αλs

j,V + 1
)〈e1,V , z0〉〈z0, ej,V 〉〈Qej,V , e1,V 〉ei(λ1,V −λj,V )t . (2.13)

Here P(z0,Q, j, k) are constants. Define the set

J := {
α ∈ R: αλs

j,V = −1 for some j � 1
}
,

and take any α /∈ J . As 〈z0, ej,V 〉 �= 0 for j = 1,p, Condition 2.2 and Lemma 3.10 in [28] imply that there is T > 0
such that Φ(T ) �= 0. Thus there is a control w ∈ C∞

0 ((0, T ),R), ‖w‖Ck([0,T ]) < d such that

dV (UT (z0, σw))

dσ

∣∣∣∣
σ=0

=
T∫

0

Φ(τ)w(τ)dτ �= 0.

This implies that there is σ0 ∈ R close to zero such that

V
(

UT (z0, σ0w)
)
< V

(
UT (z0,0)

) = V (z0),

which completes the proof.

Remark 2.7. Modifying slightly Condition 2.2, Theorem 2.3 can be restated for the eigenfunction ei,V , i � 1. Indeed,
one should replace λ1,V and e1,V by λi,V and ei,V in Condition 2.2 and use the Lyapunov function

Vi (z) := α
∥∥(−� + V )

s
2 Pi,V z

∥∥2 + 1 − ∣∣〈z, ei,V 〉∣∣2
, z ∈ S ∩ Hs

(V ),

where Pi,V is the orthogonal projection in L2 onto the closure of the vector span of {ek,V }k �=i .

2.3. Proof of Theorem 2.4

Let us look for a control in the form σ + u(t), where σ ∈ R\{0} is a constant. Then (1.1) takes the form

iż = −�z + (
V (x) + σQ(x)

)
z + u(t)Q(x)z,

and the idea of the proof is to show that the set of dipolar moments Q such that Condition 2.2 holds for V,Q replaced
by V + σQ,Q is residual. The proof is divided into three steps.
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Step 1. First let us show that the set Q of all functions W verifying

λ1,W − λj,W �= λp,W − λq,W (2.14)

for all integers j,p, q � 1 such that {1, j } �= {p,q} and j �= 1 is residual in C∞(D,R). Fix j,p, q � 1 and denote by
Qj,p,q the set of functions W ∈ C∞(D,R) satisfying (2.14). As Q = ⋂

j,p,q Qj,p,q , it suffices to show that Qj,p,q is

open and dense. Continuity of the eigenvalues λk,W from C∞(D,R) to R (e.g., see Theorem 8.1.2, [18]) implies that
Qj,p,q is open. Let us show that Qj,p,q is dense in C∞(D,R). Indeed, by [2], the set Q̃ of functions W ∈ C∞(D,R)

such that the spectrum of the operator −� + W is non-degenerate is residual in C∞(D,R). Take any W ∈ Q̃ and
P ∈ C∞(D,R). It is well known that λk,W+σP and ek,W+σP are analytic in σ in the neighborhood of 0 in R (e.g., see
Theorem XII.8, [33]). Differentiating the identity

(−� + W + σP − λk,W+σP )ek,W+σP = 0

with respect to σ at σ = 0, we get

(−� + W − λk,W )
dek,W+σP

dσ

∣∣∣∣
σ=0

+
(

P − dλk,W+σP

dσ

∣∣∣∣
σ=0

)
ek,W = 0.

Taking the scalar product of this identity with ek,W , we obtain

dλk,W+σP

dσ

∣∣∣∣
σ=0

= 〈
P,e2

k,W

〉
. (2.15)

Thus

d

dσ
(λ1,W+σP − λj,W+σP − λp,W+σP + λq,W+σP )

∣∣∣∣
σ=0

= 〈
P,e2

1,W − e2
j,W − e2

p,W + e2
q,W

〉
. (2.16)

By Theorem 4.1, the set A of all functions W such that the system {e2
j,W }∞j=1 is rationally independent is residual in

C∞(D,R). Hence the set Q̃ ∩ A is residual. Fix any W ∈ Q̃ ∩ A and take P ∈ C∞(D,R) such that〈
P,e2

1,W − e2
j,W − e2

p,W + e2
q,W

〉 �= 0.

Then (2.16) implies that W + σP ∈ Qj,p,q for any σ sufficiently close to 0. This proves that Qj,p,q is dense in
C∞(D,R).

Step 2. Here we reduce the proof of the controllability of system (1.1), (1.2) with functions V and Q to that of
with V + σQ and Q.

First let us suppose that V ∈ C∞(D,R) is such that the spectrum of the operator −� + V is non-degenerate. Take
any sequence σn → 0, σn �= 0. Then the set P1 of all functions Q ∈ C∞(D,R) such that V + σnQ ∈ Q for all n � 1
is residual as a countable intersection of residual sets. On the other hand, the set P2 of functions Q ∈ C∞(D,R)

such that 〈Qe1,V , ej,V 〉 �= 0 for all j � 2 is also residual (see Section 3.4 in [28]). Define P := P1 ∩ P2. Let us show
that problem (1.1), (1.2) is approximately controllable to e1,V for any Q ∈ P . Fix an integer n � 1 and consider the
problem

iż = −�z + V (x)z + σnQ(x)z + u(t)Q(x)z, x ∈ D, (2.17)

z|∂D = 0, (2.18)

z(0, x) = z0(x). (2.19)

Let U n
t (·, u) be the resolving operator for problem (2.17), (2.18). Then we have U n

t (·, u) = Ut (·, u + σn). Notice that
we cannot apply Theorem 2.3 with functions V (x) + σnQ(x) and Q. Indeed, Condition 2.2, (i) is not necessarily
satisfied. However, as σn → 0, Q ∈ P2 and the spectrum of −� + V is non-degenerate, for any N � 1 there is n∗ � 1
such that 〈Qe1,V +σnQ, ej,V +σnQ〉 �= 0, j = 1, . . . ,N and n � n∗. Modifying slightly the arguments of the proof of
Theorem 2.3, we show that this property is enough to conclude the approximate controllability. We need the following
result.
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Lemma 2.8. Fix any constants s > 0, d > 0 and δ > 0, an integer k � 1 and functions Q ∈ P and V ∈ C∞(D,R)

such that the spectrum of the operator −� + V is non-degenerate. For any M > 0 and ε > 0 there is an integer n̂ � 1
such that for any n � n̂ and z0 ∈ S ∩ Hs

(V +σnQ) with 〈z0, e1,V +σnQ〉 �= 0 and ‖z0‖s < M we have∥∥U n
T (z0, u) − e1,V +σnQ

∥∥
s−δ

< ε

for some time T > 0 and control u ∈ C∞
0 ((0, T ),R),‖u‖Ck([0,T ]) < d .

To prove Theorem 2.4, let z0 ∈ S ∩ Hs
(V ) be such that ‖z0‖s < M and 〈z0, e1,V 〉 �= 0. As z0 is not necessarily in

Hs
(V +σnQ), we cannot apply Lemma 2.8. Take any v ∈ C∞([0, η],R) such that dkv

dtk
(0) = dkv

dtk
(η) = 0 for all k � 1

and v(0) = 0. By Lemma 2.1, we have y := Uη(z0, v) ∈ Hs
(V +v(η)Q)

. If k � 1 is sufficiently large and ‖v‖Ck([0,η]) is
sufficiently small, then ‖y‖s < M and 〈y, e1,V +v(η)Q〉 �= 0. We can choose v such that v(η) = σn for some n � n̂.
Applying Lemma 2.8 for the initial data y, we see that there is a time T̃ > 0 and a control ũ such that ũ − v(η) ∈
C∞

0 ((0, T̃ ),R)) and∥∥U
T̃
(y, ũ) − e1,V +v(η)Q

∥∥
s−δ

<
ε

2
.

For sufficiently small ‖v‖Ck([0,η]) + η we have∥∥Uη

(
U

T̃
(y, ũ), v(η − ·)) − e1,V

∥∥
s−δ

< ε.

This proves Theorem 2.4, when the spectrum of the operator −� + V is non-degenerate.
To prove the theorem for any function V ∈ C∞(D,R), notice that, Theorem 2.4 holds for system (1.1), (1.2) with

functions V + σnQ and Q for any Q ∈ P and n � 1. Indeed, from the construction of the set P it follows that the
spectrum of −� + V + σnQ is non-degenerate. Repeating literally the arguments of the previous paragraph with
Lemma 2.8 replaced by Theorem 2.4 for functions V + σnQ and Q, we complete the proof.

Step 3. To prove Lemma 2.8, let V be defined by (2.1) with V + σnQ instead of V . As 〈z0, e1,V +σnQ〉 �= 0, we can
choose α > 0 so small that V (z0) < 1. Notice that if V (z) < 1, z ∈ S then 〈z, e1,V +σnQ〉 �= 0. On the other hand, for
any ε > 0 there is an integer N � 1 such that if ‖z‖s � M , z ∈ S ∩Hs

(V +σnQ) and 〈z, ej,V +σnQ〉 = 0 for any j ∈ [2,N ],
then ‖z − ce1,V +σnQ‖s−δ < ε for some c := c(z) ∈ C with |c| = 1.

We need the following lemma.

Lemma 2.9. There is a finite or countable set J ⊂ R∗+ and an integer n̂ � 1 such that for any α /∈ J , n � n̂ and
z ∈ Hs

(V +σnQ) with 〈z, e1,V +σnQ〉 �= 0 and 〈z, ej,V +σnQ〉 �= 0 for some integer j ∈ [2,N ], there is a time T > 0 and a
control u ∈ C∞

0 ((0, T ),R) verifying

V
(

U n
T (z,u)

)
< V (z).

Proof. As Q ∈ P , for sufficiently large n̂ we have 〈Qe1,V +σnQ, ej,V +σnQ〉 �= 0 for j = 2, . . . ,N and n � n̂. Repeating
the arguments of the proof of Proposition 2.6, one should just notice that if sum (2.13) equals zero for all τ � 0, then
〈z0, ej,V +σnQ〉 = 0 for all j ∈ [2,N ]. This contradicts the hypothesis of the lemma. �

As in the proof of Theorem 2.3, we define the set

K = {
z ∈ Hs

(V +σnQ): U n
T�

(z0, u�) → z in Hs−δ for some T� � 0,

u� ∈ C∞
0

(
(0, T�),R

)
,‖u�‖Ck([0,T�]) < d and for any δ > 0

}
.

Let

m := inf
z∈K

V (z).

This infimum is attained at some point e ∈ K. Let us show that

‖e − ce1,V +σnQ‖s−δ < ε
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for some c := c(z) ∈ C with |c| = 1. Indeed, it follows from the choice of α that V (e) � V (z0) < 1. Hence
〈e, e1,V +σnQ〉 �= 0. Suppose that 〈e, ej,V +σnQ〉 �= 0 for some integer j ∈ [2,N ]. By Lemma 2.9, there is a time T > 0
and a control u ∈ C∞

0 ((0, T ),R) such that

V
(

U n
T (e, u)

)
< V (e). (2.20)

Define ũ�(t) = u�(t), t ∈ [0, T�] and ũ�(t) = u(t), t ∈ [T�,T� + T ]. Then ũ� ∈ C∞
0 ((0, T� + T ),R) and

U n
T�+T (z0, ũ�) → U n

T (e, u) in Hs−δ.

This implies that U n
T (e, u) ∈ K. Clearly, (2.20) contradicts the definition of e. It follows that 〈e, ej,V +σnQ〉 = 0 for any

j ∈ [2,N ], hence ‖e− ce1,V +σnQ‖s−δ < ε for some c := c(e) ∈ C, |c| = 1. Without loss of generality, we can suppose
that c = 1.

3. Applications

3.1. Global exact controllability

The following controllability result for system (1.1), (1.2) is obtained by Beauchard [8] in the case m = 1 and
V = 0.

Theorem 3.1. There is a residual set Q′ in W 3,∞((0,1),R) such that for any Q ∈ Q′ and some constants T > 0 and
ε > 0 the following exact controllability property holds: for any z0, z1 ∈ S ∩ H 5

(0) with

‖zi − e1,0‖5 < ε, i = 1,2

there is a control u ∈ H 1
0 ([0, T ],R) such that

UT (z0, u) = z1.

On the other hand, by Theorem 2.4, problem (1.1), (1.2) with m = 1 and V = 0 is approximately controllable to
e1,0 in H 5+δ generically with respect to Q in C∞([0,1],R). Literally the same proof shows that in the case of the
phase space H 5+δ the approximate controllability property holds generically with respect to Q in W 3,∞((0,1),R).
Thus, combining Theorems 2.4 and 3.1, we obtain.

Theorem 3.2. There is a residual set Q̂ in W 3,∞((0,1),R) such that for any Q ∈ Q̂ and any z0, z1 ∈ S ∩ H 5+δ
(0)

there

is a time T > 0 and a control u ∈ H 1
0 ([0, T ],R) verifying

UT (z0, u) = z1.

Remark 3.3. It is shown in [7,11] that if we take Q(x) = x, then for any N � 1 there is a constant σ ∗ > 0 such that
for any σ ∈ (0, σ ∗) we have

(i) 〈xe1,σx, ej,σx〉 �= 0 for all j � 2,
(ii) λ1,σx − λj,σx �= λp,σx − λq,σx for all j,p, q � 1 such that {1, j } �= {p,q} and 2 � j � N .

These properties imply that the proof of Theorem 2.4 works and the system with Q(x) = x is approximately control-
lable. Indeed, properties (i) and (ii) are sufficient to conclude that in the proof of Lemma 2.9 sum (2.13) is not equal
to zero for all τ � 0. This is the only place, where the hypotheses on the dipolar moment Q are used.

On the other hand, by Beauchard [7], for Q(x) = x the problem is exactly controllable in a neighborhood of e1,0.
Thus global exact controllability property holds for Q(x) = x.
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3.2. Uniqueness of stationary measure

Let us consider the Schrödinger equation with a potential which has a random time-dependent amplitude:

iż = −�z + V (x)z + β(t)Q(x)z, x ∈ D, (3.1)

z|∂D = 0, (3.2)

z(0) = z0, (3.3)

where V,Q ∈ C∞(D,R) are given functions. We assume that β(t) is a random process of the form

β(t) =
+∞∑
k=0

Ik(t)ηk(t − k), t � 0, (3.4)

where Ik(·) is the indicator function of the interval [k, k + 1) and ηk are independent identically distributed random
variables in L2([0,1],R). Then Uk(·, β) is a homogeneous Markov chain with respect to the filtration Fk generated
by η0, . . . , ηk−1 (e.g., see [29]). For any z ∈ S and Γ ∈ B(S), the transition functions corresponding to the process
Uk(·, β) are defined by Pk(z,Γ ) = P{Uk(z,β) ∈ Γ } and the Markov operators by

Pkf (z) =
∫
S

Pk(z,dv)f (v), P∗
kμ(Γ ) =

∫
S

Pk(v,Γ )μ(dv),

where f ∈ Cb(S) and μ ∈ P (S). Let us recall that a measure μ ∈ P (S) is stationary for (3.1), (3.2), (3.4) if P∗
1μ = μ.

The question of existence of a stationary measure is an open problem. In this section, we derive the uniqueness from
Theorem 2.3. We need the following condition.

Condition 3.4. The random variables ηk have the form

ηk(t) =
∞∑

j=1

bj ξjkgj (t), t ∈ [0,1],

where {gj } is an orthonormal basis in L2([0,1],R), bj > 0 are constants with

∞∑
j=1

b2
j < ∞,

and ξjk are independent real-valued random variables such that Eξ2
jk = 1. Moreover, the distribution of ξjk possesses

a continuous density ρj with respect to the Lebesgue measure and ρj (r) > 0 for all r ∈ R.

Theorem 3.5. Under Conditions 2.2 and 3.4, problem (3.1), (3.2), (3.4) has at most one stationary measure on S.

This theorem is derived from the following general result (cf. [22]). Let X be a Polish space and let Pk(z,Γ )

be a Markov transition function satisfying the Feller property. We denote by Pk and P∗
k the corresponding Markov

semigroups. Recall that a stationary measure μ for P∗
k is said to be ergodic if

σn(f ) := 1

n

n−1∑
i=0

Pif (z) → (f,μ) (3.5)

for any f ∈ Cb(X) and for μ-a.e. z ∈ X, where (f,μ) = ∫
X

f (z)μ(dz).

Theorem 3.6. Suppose that Pk satisfies the following two conditions.

(i) For any f ∈ L(X) there is a constant Lf > 0 such that Pkf is Lf -Lipschitz for any k � 0.
(ii) For any point z ∈ X and any ball B ⊂ X there is l � 1 such that Pl(z,B) > 0.

Then P∗ has at most one stationary distribution.
k
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Proof of Theorem 3.5. Let us show that properties (i) and (ii) are verified for system (3.1), (3.2), (3.4). Take any
function f ∈ L(S). Then∣∣Pkf (z1) − Pkf (z2)

∣∣ = ∣∣E(
f

(
Uk(z1, β)

) − f
(

Uk(z2, β)
))∣∣

� ‖f ‖LE
∥∥Uk(z1, β) − Uk(z2, β)

∥∥ = ‖f ‖L‖z1 − z2‖,
which implies (i). To show (ii), notice that Condition 3.4 implies that

P
{‖u − β‖L2([0,l]) < ε

}
> 0

for any u ∈ L2([0, l]) and ε > 0. Moreover, using the continuity of the mapping Ul (z0, ·) : L2([0, l]) → L2(D), for
any δ > 0 we can find a constant ε > 0 such that

P
{∥∥Ul (z0, β) − Ul (z0, u)

∥∥ < δ
}

� P
{‖u − β‖L2([0,l]) < ε

}
> 0.

Hence, any point Ul (z0, u), u ∈ L2([0, l]) is in the support of the measure D(Ul (z0, β)) = Pl(z0, ·). By Theo-
rem 2.3, problem (1.1), (1.2) is approximately controllable in S (cf. Theorem 3.5 in [28]), hence the set {Ul (z0, u):
u ∈ L2([0, l]), l � 0} is dense in S. This implies (ii). Applying Theorem 3.6, we complete the proof. �
Proof of Theorem 3.6. In view of ergodic decomposition of stationary distributions (e.g., see [21]), it suffices to prove
that there is at most one ergodic stationary measure. Let μ1 and μ2 be two ergodic stationary measures. Suppose there
is a function f ∈ L(X) such that (f,μ1) �= (f,μ2). Let Xi, i = 1,2, be the set of convergence in (i) with μ = μi .
Then μi(Xi) = 1 and X1 ∩ X2 = ∅. Furthermore, in view of condition (ii), for any ball B ⊂ X there is l � 1 such that

μi(B) =
∫
X

Pl(z,B)μi(dz) > 0.

Thus suppμi = X, and therefore Xi = X. Now let Kn ⊂ X be an increasing sequence of compact subsets such that
μi(Kn) > 1 − 2−n. Then, by condition (i) and the Arzelà theorem, there is a subsequence kj → ∞ such that for any
n � 1 the sequence σkj

(f ) converges uniformly on Kn to an Lf -Lipschitz bounded function f n. Let us set Y = ⋃
n Kn

and define an Lf -Lipschitz function f : Y → R such that f |Kn = f n. Since μi(Y ) = 1, we see that μi(Y ∩ Xi) = 1
and Y ∩ Xi = X, where we used again condition (ii). We conclude that f must be a constant function on X equal to
(f,μi). The contradiction obtained shows that μ1 = μ2. �
4. Independence of squares of eigenfunctions

Recall that the functions {fj }∞j=1 ⊂ C(D) are said to be rationally independent, if for any N � 1 and αk ∈ Q, k = 1,

. . . ,N with |α1| + · · · + |αN | > 0 we have

N∑
k=1

αkfk �≡ 0.

Theorem 4.1. The set A of all functions Q ∈ C∞(D,R) such that the system {e2
j,Q}∞j=1 is rationally independent is

residual in C∞(D,R).

Proof. The proof of this theorem is inspired by the paper [31] by Privat and Sigalotti, where the linear independence
of the squares of the eigenfunctions of the Dirichlet Laplacian is established to hold generically with respect to the
domain D.

Take any N � 1 and αk ∈ Q, k = 1, . . . ,N , with |α1| + · · · + |αN | > 0. It suffices to show that the set Aα,N of all
functions Q ∈ C∞(D,R) such that the eigenvalues λj,Q, j = 1, . . . ,N , are simple and

N∑
αke

2
k,Q �≡ 0
k=1
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is open and dense in C∞(D,R). Indeed, noting that

A ⊃
⋂

N�1,α∈QN

Aα,N

we complete the proof. The fact that Aα,N is open follows from the continuity of λj,Q and ek,Q with respect to
Q ∈ C∞(D,R) at any Q0 ∈ Aα,N (e.g., see [20]).

To prove that Aα,N is dense, we first show that the operator −� + Q satisfies the hypothesis of Theorem B
in [34] for any Q ∈ C(D,R). This implies that any functions Q0,Q1 ∈ C(D,R) can be connected by an analytic
curve Qs ∈ C(D,R), s ∈ [0,1] such that the spectrum of −� + Qs is simple for any s ∈ (0,1). In particular, λk,Qs

and ek,Qs are analytic in s ∈ (0,1). Then we show that Aα,N is non-empty. Taking any Q1 ∈ Aα,N , we see that, by
analyticity, also Qs ∈ Aα,N for all s ∈ [0,1]\I , where I ⊂ [0,1] is an at most countable set. Thus Qsn → Q0 and
Qsn ∈ Aα,N for any sn → 0 such that sn ∈ [0,1]\I .

Step 1. The family −� + Q, Q ∈ C(D,R) satisfies the hypothesis of Theorem B in [34]. Indeed, the function Q

is in the separable Banach space C(D,R), and the operator −� + Q is self-adjoint in L2(D) with spectrum which
is discrete, of finite multiplicity, and without finite accumulation points. Thus it remains to show that the condition
SAH2 in [34] is also verified. Notice that for all Q,P ∈ C(D,R) and ε ∈ R we have

d

dε
(−� + Q + εP ) = P.

Hence we have to prove that for any eigenvalue λ of −� + Q of multiplicity n � 2 there exist two orthonormal
eigenfunctions v1 and v2 corresponding to λ such that the functionals P → 〈P,v2

1 − v2
2〉 and P → 〈P,v1v2〉 are

linearly independent. Suppose, by contradiction, that for some eigenfunctions v1 and v2 we have

v2
1(x) − v2

2(x) − cv1(x)v2(x) = 0 for all x ∈ D,

where c ∈ R is a constant. Thus(
v1 − c

2
v2

)2

= c2 + 4

4
v2

2,

where v1 − c
2v2 and

√
c2+4
2 v2 are linearly independent eigenfunctions of −� + Q corresponding to the eigenvalue λ.

Combining this with the unique continuation theorem for the operator −� + Q (see [19]), we get that v1 − c
2v2 =

±
√

c2+4
2 v2, which contradicts the fact that v1 and v2 are linearly independent. Thus the functionals 〈P,v2

1 − v2
2〉 and

〈P,v1v2〉 are linearly independent. Applying Theorem B in [34], we see that any Q0,Q1 ∈ C(D,R) can be connected
by an analytic curve Qs ∈ C(D,R), s ∈ [0,1] such that the spectrum of −� + Qs is simple for any s ∈ (0,1).

Step 2. To show that Aα,N is non-empty, we use the following result from the inverse spectral theory for Sturm–
Liouville problems.

Theorem 4.2. Let {λk}Nk=1 and {λ′
k}Nk=1 be two sets of positive constants such that

λ1 < λ′
1 < λ2 < λ′

2 < · · · . (4.1)

Then for any a > 0 and n � 1 there is a function W ∈ L2([−2na,2na],R) such that

λk = λ
(−2na,2na)
k,W , λ′

k = λ
(0,a)
k,W , k = 1, . . . ,N. (4.2)

This theorem is a consequence of a much stronger result by Pivovarchik (see Theorem 2.1 in [30]).
Without loss of generality, we can assume that 0 ∈ D. Let us choose a > 0 and n � 1 such that

B ′ := (0, a)m ⊂ D ⊂ (−2na,2na
)m =: B. (4.3)

By the min–max principle (e.g., see [33]) and (4.3), we have

λB
k,Q � λD

k,Q � λB ′
k,Q (4.4)



V. Nersesyan / Ann. I. H. Poincaré – AN 27 (2010) 901–915 913
for any Q ∈ L2(B,R) and k � 1. Let us suppose that Q is of the form

Q(x1, . . . , xm) = P(x1) + R(x2) + · · · + R(xm),

where c > 0 is a constant and P,R ∈ L2([−2na,2na]). Then the eigenvalues are of the form

λB ′
k,Q = λ

(0,a)
i1,P

+ λ
(0,a)
i2,R

+ · · · + λ
(0,a)
im,R ,

λB
k,Q = λ

(−2na,2na)
j1,P

+ λ
(−2na,2na)
j2,R

+ · · · + λ
(−2na,2na)
jm,R

for some integers ip, jp � 1, p = 1, . . . ,m. Let {λk,λ
′
k}Nk=1 and {λ̃k, λ̃

′
k}Nk=1 be two sets of positive constants ver-

ifying (4.1). Applying Theorem 4.2, let P,R ∈ L2([−2na,2na],R) be such that (4.2) holds for {λk,λ
′
k}Nk=1 and

{λ̃k, λ̃
′
k}Nk=1, respectively. If λ̃2 > λ′

N , then

λB ′
k,Q = λ

(0,a)
k,P + (m − 1)λ

(0,a)
1,R = λ′

k + (m − 1)λ̃′
1, (4.5)

λB
k,Q = λ

(−2na,2na)
k,P + (m − 1)λ

(−2na,2na)
1,R = λk + (m − 1)λ̃1 (4.6)

for k = 1, . . . ,N . We can choose {λk,λ
′
k}Nk=1 and {λ̃k, λ̃

′
k}Nk=1 such that

N∑
k=1

αkμk �= 0 (4.7)

for all μk ∈ [λB
k,Q,λB ′

k,Q]. Indeed, we deduce from (4.5) and (4.6)∣∣∣∣∣
N∑

k=1

αkμk −
N∑

k=1

αkλ
B ′
k,Q

∣∣∣∣∣ �
N∑

k=1

|αk|
∣∣μk − λB ′

k,Q

∣∣ �
N∑

k=1

|αk|
(
λB ′

k,Q − λB
k,Q

)
�

(
sup

k∈[1,N]
(
λ′

k − λk

) + (m − 1)
(
λ̃′

1 − λ̃1
)) N∑

k=1

|αk|. (4.8)

Take any ε > 0 and choose {λk,λ
′
k}Nk=1 and {λ̃1, λ̃

′
1} such that

(
sup

k∈[1,N]
(
λ′

k − λk

) + (m − 1)
(
λ̃′

1 − λ̃1
)) N∑

k=1

|αk| < ε. (4.9)

On the other hand, we can choose {λ′
k}Nk=1 and {λ̃′

k}Nk=1 such that∣∣∣∣∣
N∑

k=1

αkλ
B ′
k,Q

∣∣∣∣∣ > ε.

Combining this with (4.8) and (4.9), we arrive at (4.7). Thus (4.4) implies that

N∑
k=1

αkλ
D
k,Q �= 0. (4.10)

Without loss of generality, we can assume that Q ∈ C∞(D,R). Take any Q̃ ∈ C∞(D,R)\Aα,N (if C∞(D,R) = Aα,N

then the proof is completed). By Step 2, the functions Q and Q̃ can be connected by an analytic curve Q̃s ∈ C(D,R),

s ∈ (0,1) such that the spectrum of −� + Q̃s is simple for any s ∈ (0,1). We deduce from (4.10) that the analytic
function

∑N
k=1 αkλ

D

k,Q̃s
is non-constant on [0,1]. This implies that

0 �= d

ds

N∑
αkλ

D

k,Q̃s
=

〈
dQ̃s

ds
,

N∑
αk

(
eD

k,Q̃s

)2

〉
(4.11)
k=1 k=1
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for all s ∈ [0,1]\Ĩ , where Ĩ ⊂ [0,1] is an at most countable set (cf. Step 1 of the proof of Theorem 3.1). Indeed, taking
the derivative of the identity(−� + Q̃s − λD

k,Q̃s

)
eD

k,Q̃s
= 0

with respect to s, we get

(−� + Q̃s − λD

k,Q̃s

)deD

k,Q̃s

ds
+

(
dQ̃s

ds
−

dλD

k,Q̃s

ds

)
eD

k,Q̃s
= 0.

Taking the scalar product of this identity with eD

k,Q̃s
, we obtain

dλD

k,Q̃s

ds
=

〈
dQ̃s

ds
,
(
eD

k,Q̃s

)2
〉
, (4.12)

which implies (4.11). Finally, (4.11) shows that

N∑
k=1

αk

(
eD

k,Q̃s

)2 �= 0

for all s ∈ [0,1]\Ĩ and Q̃s ∈ Aα,N . Thus Aα,N is non-empty. �
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