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Abstract

The homoclinic bifurcations of ordinary differential equation under singular perturbations are considered. We use exponential
dichotomy, Fredholm alternative and scales of Banach spaces to obtain various bifurcation manifolds with finite codimension in an
appropriate infinite-dimensional space. When the perturbative term is taken from these bifurcation manifolds, the perturbed system
has various coexistence of homoclinic solutions which are linearly independent.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The homoclinic bifurcations are important topics in dynamical systems since it is related to variously complicated
dynamical behaviors, such as chaos. In recent decades, many authors studied this problem [1–16]. In 1980, S.N. Chow,
J.K. Hale and J. Mallet-Parret [7] introduced Lyapunov–Schmidt reduction to investigate the persistence of homoclinic
orbit for Duffing’s equation under damping and excitation in R

2. Under the assumptions that the unperturbed system
had an orbit which homoclinic to a hyperbolic equilibrium, and the dimension of the intersection of the stable and
unstable manifolds of the equilibrium was one, K.J. Palmer [14] extended this method to R

n.
In 1984, J.K. Hale [12] suggested that this method could be extended to more general case where the perturba-

tive terms were multiple parameters and the dimension of the intersection of the stable and unstable manifolds was
greater than one. For regular perturbations, J. Knobloch, U. Schalk and A. Vanderbauwhede [13,15,16] investigated
the case where the dimension of the intersection was two. Later, J. Gruendler, F. Battelli and C. Lazzari [1,9,10]
gave the general theory for the case where the intersection of the dimension was arbitrary. F. Battelli and C. Lazzari
[1] studied the persistence of degenerate heteroclinic orbit for ordinary differential equations with nonautonomous
perturbations. J. Gruendler [9,10] considered the persistence of homoclinic solutions under autonomous and nonau-
tonomous perturbations. For arbitrary dimension of intersection, the homoclinic bifurcations were also investigated
in [18].
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Meantime, the homoclinic bifurcations under singular perturbations were rising a lot of interest [2–4,8,11]. In [11],
J. Gruendler considered the following singular system

εẋ = f0(x) + εf1(x, ε, t)

where x ∈ R
n, ε ∈ R and f1 is periodic in t . In [3], F. Battelli and K.J. Palmer also investigated this system in R

2

but with the coefficient of ε2 for f1. The general theory for the arbitrary dimension of the intersection was developed
in [11]. By using Lyapunov–Schmidt reduction, he obtained a bifurcation function H : Rd−1 × R

1 × R
1 → R

d , where
d was the dimension of the intersection of the stable and unstable manifolds. The zeros of H(β, ε,α) = 0 were one-
to-one correspondence to the existence of transversal homoclinic solutions for the perturbed system. He gave some
applicable conditions on the bifurcation function.

Motivated by these works, we will consider the system

εẋ(t) = f
(
x(t)

)+ g
(
x(t), ε, t

)
(1.1)

where ε ∈ R, x ∈ R
n and ‖g‖C3 is small. Let t ↔ t/ε, Eq. (1.1) is equivalent to

ẋ(t) = f
(
x(t)

)+ g
(
x(t), ε, εt

)
. (1.2)

Different from the regular perturbations, there are some difficulties when one considers the problem in a usual Banach
space. Let X and Y be certain Banach spaces. If we convert (1.2) into integral equation F(x,g, ε) = 0 where F :X ×
C3 × R → Y . There is a difficulty to solve F(x,g, ε) = 0 since the map F(x,g, ε) is not differentiable in ε. Different
choices of Banach spaces also lead to the similar problem. In [3,11], they dealt with this difficulty by using a scale of
Banach spaces. This idea was introduced by A. Vanderbauwhede and S.A. Van Gils in [17].

In the present paper, we consider Eq. (1.1) and its equivalent form (1.2). Let X and Y be Banach spaces and Ω ∈ X

be an open set. Let Ck(Ω,Y ) denote all functions f :Ω → Y with continuous derivatives up to order k. The space
Ck(Ω,Y ) is Banach space with norm ‖f ‖Ck = supx∈Ω

∑k
i=0 |Dif (x)|. We make some assumptions.

(H1) f and g are C3 in all their variables.
(H2) f (0) = 0 and the eigenvalues of Df (0) lie off the imaginary axis.
(H3) The unperturbed system

ẋ(t) = f
(
x(t)

)
(1.3)

has a homoclinic orbit γ (t). That is, there is differentiable function γ (t) such that γ̇ (t) = f (γ (t)) and
limt→±∞ γ (t) = 0.

(H4) g(0, ε, t) = 0 and ‖g‖C3 is small.

In this paper, both scalar ε and function g are treated as parameters. We will investigate various choices of
g ∈ C3(Rn × R × R,R

n) and give conditions on g to obtain the various situations of linearly independent multi-
ple homoclinic solutions for system (1.2). These conditions determine some bifurcation submanifolds, containing
zero, with finite codimension in C3(Rn × R × R,R

n). When g is chosen from different submanifold, the system (1.2)
has different number linearly independent homoclinic solutions.

2. Preliminary and main results

If h :X1 × · · · × Xm → Y where X1, . . . ,Xm,Y are Banach spaces, let Dih denote the first partial derivative with
respect to the i-th variable, Dijh denote the second partial derivative with respect to the i-th and j -th variables. If
there is only one variable, we often omit the subscript. From (H2), we know that x = 0 is hyperbolic equilibrium
of (1.3). Let Ws and Wu be the stable and unstable manifolds of the origin. From (H3) we see that Eq. (1.3) has a
homoclinic orbit γ (t). It is clear that γ ∈ Ws ∩ Wu. Let d = Tγ (0)W

s ∩ Tγ (0)W
u.

For c ∈ C, let Re(c) denote the real part of c. Since the eigenvalue of Df (0) lies off the imaginary axis, we can
choose a constant α > 0 such that |Re(λi)| > 3α where λi is the eigenvalue of Df (0), i = 1, . . . , n.

The linearly variational equation of (1.3) along γ (t) is

u̇(t) = Df
(
γ (t)

)
u(t). (2.1)

The following lemma is Theorem 2 in [10] with some changes of notations.
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Lemma 2.1. There are fundamental matrix solution, U , for (2.1), constants K > 0 and projections Pss,Psu,Pus and
Puu such that Pss + Psu + Pus + Puu = I and the following hold:

(a) |U(t)(Pss + Psu)U
−1(s)| � Ke2α(t−s), for t � s � 0,

(b) |U(t)(Puu + Pus)U
−1(s)| � Ke2α(s−t), for s � t � 0,

(c) |U(t)(Pss + Pus)U
−1(s)| � Ke2α(s−t), for 0 � s � t ,

(d) |U(t)(Puu + Psu)U
−1(s)| � Ke2α(t−s), for 0 � t � s.

Furthermore, Rank(Pss) = Rank(Puu) = d .

Let u0 ∈ R
n. We consider the solution of (2.1) with initial condition u(0) = u0. It is that u(t, u0) = U(t)U−1(0)u0

with u(0, u0) = u0. From Lemma 2.1, we have the following observations:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

For u0 ∈ PssR
n,

∣∣u(t, u0)
∣∣e2α|t | → 0, as t → ±∞,

For u0 ∈ PsuR
n,

∣∣u(t, u0)
∣∣e−2αt → 0(∞), as t → −∞(∞),

For u0 ∈ PusR
n,

∣∣u(t, u0)
∣∣e2αt → ∞(0), as t → −∞(∞),

For u0 ∈ PuuR
n,

∣∣u(t, u0)
∣∣e−2α|t | → ∞, as t → ±∞.

(2.2)

Renumbering if necessary, we can assume that

Puu =
(

Id 0 0
0 0d 0
0 0 0

)
, Pss =

(0d 0 0
0 Id 0
0 0 0

)

where Id and 0d are d × d identity and zero matrix respectively.
Let uj denote the j -th column of the fundamental solution U defined in Lemma 2.1. From the observations (2.2),

we have

lim
t→±∞

∣∣ui(t)
∣∣e−2α|t | = ∞, i = 1, . . . , d,

lim
t→±∞

∣∣ud+i (t)
∣∣e2α|t | = 0, i = 1, . . . , d.

For any i, i = 1, . . . , n, we define u⊥
i by 〈u⊥

i , uj 〉 = δij , j = 1, . . . , n, where δij is the Kronecker delta. The
vector functions u⊥

i can be obtained as following. Let U⊥ be matrix with u⊥
i in the i-th column. We can get that

U⊥T
U = I where T denote the transpose. Through differentiating, we have U̇⊥T

U + U⊥T
U̇ = 0. Thus U̇⊥ =

−(U⊥T
U̇U−1)T = −Df (γ )T U⊥. Thus U⊥ is the fundamental matrix solution for the adjoint equation of (2.1).

Obviously, U−1 = U⊥T
, {u⊥

1 , . . . , u⊥
d ,0, . . . ,0} = PuuU

−1 and {0, . . . ,0, u⊥
d+1, . . . , u

⊥
2d ,0, . . . ,0} = PssU

−1. It is
clear that

lim
t→±∞

∣∣u⊥
i (t)

∣∣e2α|t | = 0, i = 1, . . . , d,

lim
t→±∞

∣∣u⊥
d+i (t)

∣∣e−2α|t | = ∞, i = 1, . . . , d.

Now we introduce some notations. Let

	ij :=
∞∫

−∞

〈
u⊥

i (t),D2f
(
γ (t)

)
ud+j (t)ud+j (t)

〉
dt, i, j = 1, . . . , d.

We further make an assumption.

(H5) 	1j �= 0, j = 1, . . . , d .

For the perturbative term, we define a subset of C3(Rn × R × R,R
n) by
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G =
{

g ∈ C3:

∞∫
−∞

〈
u⊥

i (t), g
(
γ (t),0,0

)〉
dt = 0, i = 1, . . . , d, g(0, ε, t) = 0, and ‖g‖C3 is small

}
.

The following is our main result.

Theorem 2.1. Assume that (H1)–(H5) hold. Let d = Tγ (0)W
s ∩Tγ (0)W

u. Then there are ε0 > 0, neighborhood U ⊂ G
which contains origin, and d submanifolds Mj ⊂ G,0 ∈ Mj , with codimension dj, j = 1, . . . , d, such that for every
g ∈ U ∩ (Mk/(Mk+1 ∪ · · · ∪ Md)) and ε ∈ (−ε0,0) ∪ (0, ε0), the system (1.1) has k linearly independent homoclinic
solutions where k = 1, . . . , d .

3. The homoclinic bifurcations

For each β ∈ (0, α), we define the space

Zβ =
{
z ∈ C0(

R,R
n
) ∣∣∣ sup

t∈R

∣∣z(t)∣∣e−β|t | < ∞
}
.

We know that Zβ is a Banach space with the sup norm ‖ · ‖. Clearly, for any z ∈ Zβ , the function |z(t)| grows no
faster than eα|t | as t → ±∞. Thus we can define a subspace of Zβ by

Z̃β =
{

z ∈ Zβ

∣∣∣
∞∫

−∞

〈
PuuU

−1(t), z(t)
〉
dt = 0

}
.

Using Zβ , we define another space Z0 =⋂
β∈(0,α) Zβ.

Let S denote subspace of Zβ , such that Zβ = S ⊕ span{ud+1, . . . , u2d}. We make transformation

x(t) = γ (t) +
d∑

i=1

kiud+i (t) + z(t) (3.1)

where ki ∈ R and z ∈ S. We take some special forms of (3.1). For any fixed j , we choose ki = 0 if i �= j . Then (3.1) is

xj (t) = γ (t) + kjud+j (t) + zj (t) (3.2)

where xj and zj are x and z in (3.1) respectively. Under the transformation (3.2), Eq. (1.2) is

żj (t) = Df
(
γ (t)

)
zj (t) + hj (zj , βj , g, ε)(t) (3.3)

where

hj (zj , βj , g, ε)(t) = f
(
γ (t) + kjud+j (t) + zj (t)

)− Df
(
γ (t)

)(
kjud+j (t) + zj (t)

)
− f

(
γ (t)

)+ g
(
γ (t) + kjud+j (t) + zj (t), ε, εt

)
.

Naturally, we wish to convert (3.3) to integral equation F(zj , kj , g, ε) = 0. By implicit function theorem, we
find the solution of F(zj , kj , g, ε) = 0 for zj ∈ Zβ . There is a problem that we cannot control the growth of
hj (zj , βj , g, ε). As in [17], we can introduce a so-called cut-off function. Let χ : Rn → [0,1] be a C∞ function,
such that

χ(x) =
{

1 if |x| � 1,

0 if |x| � 2.

For each ρ > 0, we define new function hj ρ
: Zβ × R × C3 × R → R

n by

hj ρ
(zj , kj , g, ε) = hj (zj , kj , g, ε)χ(zj /ρ). (3.4)

For ρi > 0, ri > 0 and σi > 0, let B1(ρi) ∈ Zβ , B2(ri) ∈ R and B3(σi) ∈ C3 be balls with radius ρi , ri and σi

centered at respective origin.
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Proposition 3.1. For any given K1 > 0, there are ρ1 > 0, r1 > 0 and σ1 > 0 such that the function hj ρ1
(zj , kj , g, ε)

satisfies

(a) |D1hj ρ1
(zj , kj , g, ε)(t)| < K1 for (zj , kj , g, ε) ∈ Zβ × B2(r1) × B3(σ1) × R,

(b) for any z
(1)
j , z

(2)
j ∈ Zβ ,∣∣hj ρ1

(
z
(1)
j , kj , g, ε

)
(t) − hj ρ1

(
z
(2)
j , kj , g, ε

)
(t)

∣∣< K1
∣∣z(1)

j (t) − z
(2)
j (t)

∣∣
for (kj , g, ε) ∈ B2(r1) × B3(σ1) × R.

Proof. (a). From (3.4), we have

D1hj ρ
(zj , kj , g, ε)(t) = [

Df
(
γ (t) + kjud+j (t) + zj (t)

)− Df
(
γ (t)

)
+ D1g

(
γ (t) + kjud+j (t) + zj (t), ε, εt

)] · χ(zj /ρ)

+ 1

ρ

[
f
(
γ (t) + kjud+j (t) + zj (t)

)− Df
(
γ (t)

)(
kjud+j (t) + zj (t)

)
− f

(
γ (t)

)+ g
(
γ (t) + kjud+j (t) + zj (t), ε, εt

)] · Dχ(zj /ρ). (3.5)

Let C1 = supt∈R |ud+j (t)|,C2 = supt∈R sup|x|�2,a∈[−1,1] |D2f (γ (t) + aud+j (t) + x(t))|, C3 = supx |Dχ(x/ρ)|. For

any given K1 > 0, we choose 0 < ρ1 � min{ 1
2 , K1

16C2
, K1

64C2C3
}. Let

r1 = min

{
1,

2ρ1

C1

}
, σ1 = min

{
K1

4
,
K1ρ1

4C3

}
.

Since hj ρ1
= 0 for |zj (t)| > 2ρ1, we see that (a) and (b) hold if |zj (t)| > 2ρ1. Thus we assume |zj (t)| � 2ρ1.

For (zj , kj ) ∈ Zβ × B2(r1), define ψ1[0,1] → L(Zβ, Zβ) by ψ1(s) = Df (γ (t) + skjud+j (t) + szj (t)) −
Df (γ (t)). It is clear that ψ1 ∈ C1. Then there is s1 ∈ [0,1] such that∣∣Df

(
γ (t) + kjud+j (t) + zj (t)

)− Df
(
γ (t)

)∣∣
= ∣∣ψ1(1) − ψ1(0)

∣∣= ∣∣ψ ′
1(s1)

∣∣
�
∣∣D2f

(
γ (t) + s1kjud+j (t) + s1zj (t)

)∣∣(|kj | ·
∣∣ud+j (t)

∣∣+ ∣∣zj (t)
∣∣)

� C2

(
2ρ1

C1
C1 + 2ρ1

)

= 4C2ρ1 � min

{
K1

4
,

K1

16C3

}
. (3.6)

For (zj , kj ) ∈ Zβ × B2(r1), define ψ2 : [0,1] → Zβ by ψ2(s) = f (γ (t) + skjud+j (t) + szj (t)) − f (γ (t)) −
Df (γ (t))(skjud+j (t) + szj (t)). It is clear that ψ2 ∈ C1. Then there is s2 ∈ [0,1] such that∣∣f (γ (t) + kjud+j (t) + zj (t)

)− f
(
γ (t)

)− Df
(
γ (t)

)(
kjud+j (t) + zj (t)

)∣∣
= ψ2(1) − ψ2(0) = ψ ′

2(s2)

�
∣∣Df

(
γ (t) + s2kjud+j (t) + s2zj (t)

)− Df
(
γ (t)

)∣∣(|kj | ·
∣∣ud+j (t)

∣∣+ ∣∣zj (t)
∣∣)

� K1

16C3

(
2ρ1

C1
C1 + 2ρ1

)
= K1ρ1

4C3
(3.7)

where (3.6) is used.
For (zj , kj , g, ε) ∈ Zβ × B2(r1) × B3(σ1) × R, we can get from (3.5)–(3.7) that∣∣D1hj ρ1

(zj , kj , g, ε)(t)
∣∣� ∣∣Df

(
γ (t) + kjud+j (t) + zj (t)

)− Df
(
γ (t)

)∣∣
+ ∣∣D1g

(
γ (t) + kjud+j (t) + zj (t), ε, εt

)∣∣
+ 1 [∣∣f (γ (t) + kjud+j (t) + zj (t)

)− Df
(
γ (t)

)(
kjud+j (t) + zj (t)

)− f
(
γ (t)

)∣∣

ρ1
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+ ∣∣g(γ (t) + kjud+j (t) + zj (t), ε, εt
)∣∣] · ∣∣Dχ(zj /ρ1)

∣∣
� K1

4
+ σ1 + 1

ρ1

(
K1ρ1

4C3
+ σ1

)
C3 � K1. (3.8)

The proof of (a) is completed.
(b). For any z

(1)
j , z

(1)
j ∈ Zβ , and (kj , g, ε) ∈ B2(r1)×B3(σ1)×R, define ψ3 : [0,1] → Z0 by ψ3(s) = hj ρ1

(sz
(1)
j +

(1 − s)z
(2)
j , kj , g, ε)(t). There is s3 ∈ [0,1], such that∣∣hj ρ1

(
z
(1)
j , kj , g, ε

)
(t) − hj ρ1

(
z
(2)
j , kj , g, ε

)
(t)

∣∣
= ∣∣ψ3(1) − ψ3(0)

∣∣= ∣∣ψ ′
3(s3)

∣∣
= ∣∣D1hj ρ1

(
s3z

(1)
j + (1 − s3)z

(2)
j , kj , g, ε

)
(t)

∣∣∣∣z(1)
j (t) − z

(2)
j (t)

∣∣
� K1

∣∣z(1)
j (t) − z

(2)
j (t)

∣∣.
The proof of (b) is completed. �
Let b : R → R be smooth function with

∫∞
−∞ b(t) dt = 1. Define a map P : Zβ → Zβ by

(Pw)(t) = b(t)U(t)

∞∫
−∞

〈
PuuU

−1(s),w(s)
〉
ds.

Lemma 3.1. The operator P is a projection and P(ż − Df (γ (t))z) = 0 for z ∈ Zβ .

Proof. For z ∈ Zβ , we have

(
P 2z

)
(t) = b(t)U(t)

∞∫
−∞

〈
PuuU

−1(s), (P z)(s)
〉
ds

= b(t)U(t)

∞∫
−∞

〈
PuuU

−1(s), b(s)U(s)

∞∫
−∞

〈
PuuU

−1(τ ), z(τ )
〉
dτ

〉
ds

= b(t)U(t)

∞∫
−∞

〈
PuuU

−1(τ ), z(τ )
〉
dτ = (P z)(t).

Thus P is projection.
Note that |u⊥

i (t)|, i = 1, . . . , d , approach zero like e−2α|t | as t → ±∞. For z ∈ Zβ , |z(t)| grows no faster than eα|t |
as t → ±∞. Thus 〈u⊥

i (t), z(t)〉|∞−∞ = 0. Then for z ∈ Zβ , we have

∞∫
−∞

〈
u⊥

i , ż − Df
(
γ (t)

)
z
〉
dt =

∞∫
−∞

〈
u⊥

i , ż
〉
dt −

∞∫
−∞

〈
u⊥

i ,Df
(
γ (t)

)
z
〉
dt

= −
∞∫

−∞

〈
u⊥

i , ż
〉
dt −

∞∫
−∞

〈
Df

(
γ (t)

)∗
(t)u⊥

i , z
〉
dt

=
∞∫

−∞

〈
u⊥

i , ż
〉
dt +

∞∫
−∞

〈
u̇⊥

i , z
〉
dt

=
∞∫

−∞

d

dt

〈
u⊥

i , z
〉
dt = 〈

u̇⊥
i (t), z(t)

〉∣∣∞−∞ = 0.

Thus we get P(ż − Df (γ (t))z) = 0 for z ∈ Zβ . The proof finishes. �
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Consider the equation

v̇(t) = Df (0)v(t). (3.9)

Since |Re(λi)| � 3α where λi are the eigenvalues of Df (0), Eq. (3.9) has a fundamental matrix solution, V (t), with
projections Q, (I − Q) and constants A > 0, β0 ∈ (0, α), such that∣∣V (t)QV −1(s)

∣∣� Ae2β0(s−t), for s � t,∣∣V (t)(I − Q)V −1(s)
∣∣� Ae2β0(t−s), for t � s. (3.10)

Let ρ1 and P be as in Proposition 3.1 and Lemma 3.1 respectively. We define

ηj ρ1
(zj , kj , g, ε)(t) := (

Df
(
γ (t)

)− Df (0)
)
zj (t) + (I − P)hj ρ1

(zj , kj , g, ε)(t). (3.11)

Proposition 3.2. Let β0 and A be as in (3.10). There are t0 > 0, r2 > 0 and σ2 > 0 such that

(1) for z
(1)
j , z

(2)
j ∈ Zβ0 , (kj , g) ∈ B2(r2) × B3(σ2) and t ∈ (−∞,−t0] ∪ [t0,∞),

∣∣ηj ρ1

(
z
(1)
j , kj , g, ε

)
(t) − ηj ρ1

(
z
(2)
j , kj , g, ε

)
(t)

∣∣� 3β0

8A

∣∣z(1)
j (t) − z

(2)
j (t)

∣∣,
(2) for (kj , g) ∈ B2(r2) × B3(σ2) and t ∈ R,

∣∣ηj ρ1
(0, kj , g, ε)(t)

∣∣� 3β0ρ1

16A
e−β0|t |.

Proof. Since ud+j is bounded solution of (2.1) and γ is homoclinic solution, there is c1 > 0 such that∣∣γ (t)
∣∣� c1e

−β0|t |,
∣∣ud+j (t)

∣∣� c1e
−β0|t |.

Let c2 = supt∈R maxs∈[−1,1] |Df (γ (t) + sud+j (t)) − Df (γ (t))| and

r2 = min

{
1, r1,

3β0ρ1

32Ac1c2

}
, σ2 = min

{
σ1,

3β0ρ1

64Ac1

}
where ρ1, r1 and σ1 are defined in Proposition 3.1. Since limt→±∞ γ (t) = 0, there is t0 > 0 such that

∣∣Df
(
γ (t)

)− Df (0)
∣∣� 3β0

16A
for |t | � t0. (3.12)

(1). We only give the proof for t ∈ [t0,∞) since the similar argument can be used to prove the case of
t ∈ (−∞,−t0].

For any z
(1)
j , z

(2)
j ∈ Zβ0 , (kj , g) ∈ B2(r2) × B3(σ2), we can get from (b) in Proposition 3.1 that

∣∣hj ρ1

(
z
(1)
j , kj , g, ε

)
(t) − hj ρ1

(
z
(2)
j , kj , g, ε

)
(t)

∣∣� 3β0

16A

∣∣z(1)
j (t) − z

(2)
j (t)

∣∣ (3.13)

where we have taken K1 = 3β0
16A

. Note that ‖(I − P)‖ � 1 since (I − P) is projection. Then we can get∣∣ηj ρ1

(
z
(1)
j , kj , g, ε

)
(t) − ηj ρ1

(
z
(2)
j , kj , g, ε

)
(t)

∣∣
�
∣∣Df

(
γ (t)

)− Df (0)
∣∣ · ∣∣z(1)

j (t) − z
(2)
j (t)

∣∣+ ∣∣hj ρ1

(
z
(1)
j , kj , g, ε

)
(t) − hj ρ1

(
z
(2)
j , kj , g, ε

)
(t)

∣∣
� 3β0

8A

∣∣z(1)
j (t) − z

(2)
j (t)

∣∣
for t ∈ [t0,∞), where (3.12) and (3.13) are used. The proof of (1) finishes.

(2). It is clear that

ηj ρ1
(0, kj , g, ε)(t) = (I − P)

[
f
(
γ (t) + kjud+j (t)

)− Df
(
γ (t)

)
kjud+j (t)

− f
(
γ (t)

)+ g
(
γ (t) + kjud+j (t), ε, εt

)]
.
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For any (kj , g) ∈ B2(r2) × B3(σ2), define ϕ : [0,1] → Zβ0 by

ϕ(τ) = (I − P)
[
f
(
γ (t) + τkjud+j (t)

)− Df
(
γ (t)

)
τkjud+j (t)

− f
(
γ (t)

)+ g
(
τ
(
γ (t) + kjud+j (t)

)
, ε, εt

)]
.

Then we can get

∣∣ηj ρ1
(0, kj , g, ε)(t)

∣∣= ∣∣ϕ(1) − ϕ(0)
∣∣=

∣∣∣∣∣
1∫

0

ϕ′(τ ) dτ

∣∣∣∣∣
�

1∫
0

∣∣Df (γ + τkjud+j ) − Df (γ )(t)
∣∣∣∣kjud+j (t)

∣∣dτ

+
1∫

0

∣∣D1g
(
τ(γ + kjud+j ), ε, εt

)∣∣(∣∣γ (t)
∣∣+ ∣∣kjud+j (t)

∣∣)dτ

�
[
c2r2c1 + σ2(c1 + r2c1)

]
e−β0|t | � 3β0ρ1

16A
e−β0|t |.

The proof is finished. �
For each ρ > 0, we consider the nonlinear ordinary differential equation

żj (t) = Df
(
γ (t)

)
zj (t) + hj ρ

(zj , kj , g, ε)(t) (3.14)

where hj ρ
(zj , kj , g, ε)(t) is defined in (3.4). It is clear that if there are some ρ > 0 such that |zj (t)| � ρ, then (3.14)

is equivalent to Eq. (3.3).
From Lemma 3.1, we see that P and (I − P) are projections. Thus Eq. (3.14) is equivalent to

żj (t) = Df
(
γ (t)

)
zj (t) + (I − P)hj ρ

(zj , kj , g, ε)(t), (3.15)

0 = Phj ρ
(zj , kj , g, ε)(t). (3.16)

Our strategy is to solve (3.15) for zj ∈ Zβ0 . Then (3.16) becomes the bifurcation equation.

Theorem 3.1. For any fixed ρ > 0, there are constants δ > 0, r3 > 0, σ3 > 0, such that (3.15) has a solution
z∗
j (kj , g, ε) ∈ Zβ0 for (kj , g, ε) ∈ B2(r3) × B3(σ3) × R satisfying z∗

j (0,0, ε) = ∂z∗
j /∂kj |(0,0,ε) = 0 and ‖z∗

j‖ � δ.

Proof. Using variation of constants, we define map K : Z̃β0 → Zβ0 by

K(w)(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(t)

[
−

∞∫
0

〈
PusU

−1(s),w(s)
〉
ds +

t∫
0

〈
(Pss + Psu)U

−1(s),w(s)
〉
ds

+
t∫

−∞

〈
(Pus + Puu)U

−1(s),w(s)
〉
ds

]
, t � 0,

U(t)

[ 0∫
−∞

〈
PusU

−1(s),w(s)
〉
ds +

t∫
0

〈
(Pss + Pus)U

−1(s),w(s)
〉
ds

−
∞∫
t

〈
(Pss + Pus)U

−1(s),w(s)
〉
ds

]
, t � 0.

Define map F : Zβ0 × R × C3 × R → Zβ0 by
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F(zj , kj , g, ε) = K(I − P)hj ρ
(zj , kj , g, ε). (3.17)

It is clear that the fixed points zj ∈ Zβ0 of (3.17) are solutions of (3.15). Through direct calculations, we have

F(0,0,0, ε) = 0, D1F(0,0,0, ε) = 0, D2F(0,0,0, ε) = 0.

For a large r > 0, let B1(r) ∈ Zβ0,B2(r) ∈ R and B3(r) ∈ C3 be balls centered at respective origin. There is M0 > 0
such that∥∥F(·, ·, ·, ε)∥∥< M0,

∥∥D1F(·, ·, ·, ε)∥∥< M0,
∥∥D2F(·, ·, ·, ε)∥∥< M0,∥∥D11F(·, ·, ·, ε)∥∥< M0,

∥∥D12F(·, ·, ·, ε)∥∥< M0,
∥∥D13F(·, ·, ·, ε)∥∥< M0

for (zj , kj , g) ∈ B1(r) × B2(r) × B3(r).

We choose 0 < δ � min{r, 1
8M0

}. Let

r3 = min

{
1, δ,

δ

4M0

}
, σ3 = min

{
δ,

δ

4M0

}
.

For (zj , kj , g) ∈ B1(δ) × B2(r3) × B3(σ3), define ξ1 : [0,1] → L(Zβ0 , Zβ0) by ξ1(s) = D1F(szj , skj , sg, ε). It is
clear that ξ1 ∈ C1. There is s1 ∈ [0,1] such that∥∥D1F(zj , kj , g, ε)

∥∥= ∥∥ξ1(1) − ξ1(0)
∥∥= ∥∥ξ ′

1(s1)
∥∥

�
∥∥D11F(s1zj , s1kj , s1g, ε)

∥∥‖zj‖ + ∥∥D12F(s1zj , s1kj , s1g, ε)
∥∥|kj |

+ ∥∥D13F(s1zj , s1kj , s1g, ε)
∥∥‖g‖

� M0 · 1

8M0
+ M0 · 1

8M0
+ M0 · 1

8M0
= 3

8
. (3.18)

For (zj , kj , g) ∈ B1(δ) × B2(r3) × B3(σ3), as before we define ξ2 : [0,1] → Zβ0 by ξ2(s) = F(szj , skj , sg, ε).
Then there is s2 ∈ [0,1] such that∥∥F(zj , kj , g, ε)

∥∥= ∥∥ξ2(1) − ξ2(0)
∥∥= ∥∥ξ ′

2(s1)
∥∥

�
∥∥D1F(s2zj , s2kj , s2g, ε)

∥∥‖zj‖ + ∥∥D2F(s2zj , s2kj , s2g, ε)
∥∥|kj |

+ ∥∥D3F(s2zj , s2kj , s2g, ε)
∥∥‖g‖

� 3

8
· δ + M0 · δ

4M0
+ M0 · δ

4M0
< δ (3.19)

where (3.18) is used.
For z

(1)
j , z

(2)
j ∈ B1(δ), and (kj , g) ∈ B2(r3)×B3(σ3), let ξ3 : [0,1] → Zβ0 by ξ3(s) = F(sz

(1)
j +(1−s)z

(2)
j , kj , g, ε).

Then there is s3 ∈ [0,1] such that∥∥F (
z
(1)
j , kj , g, ε

)− F
(
z
(2)
j , kj , g, ε

)∥∥= ∥∥ξ3(1) − ξ3(0)
∥∥= ∥∥ξ ′

3(s3)
∥∥

�
∥∥D1F

(
s3z

(1)
j + (1 − s3)z

(2)
j , kj , g, ε

)∥∥∥∥z(1)
j − z

(2)
j

∥∥
� 3

8

∥∥z(1)
j − z

(2)
j

∥∥ (3.20)

where (3.18) is used.
From (3.19) and (3.20), we see that the map F(·, kj , g, ε) :B1(δ) → B1(δ) is uniformly contractive. By contraction

mapping theorem, there is a C1 map z∗
j :B2(r3) × B3(σ3) × R → B1(δ), such that z∗

j (0,0, ε) = 0 and

z∗
j (kj , g, ε) = F

(
z∗
j (kj , g, ε), kj , g, ε

)
. (3.21)

It is clear that ‖z∗
j (kj , g, ε)‖ � δ for (kj , g, ε) ∈ B2(r3) × B3(σ3) × R.

Differentiating (3.21) in kj and evaluating at (0,0, ε), we can get that

D1z
∗
j (0,0, ε) = D1F(0,0,0, ε)D1z

∗
j (0,0, ε) + D2F(0,0,0, ε) = 0.

The proof is completed. �
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Let ri and σi , i = 1,2,3, be as in Propositions 3.1, 3.2 and Lemma 3.1 respectively. Let

r0 = min{r1, r2, r3}, σ0 = min{σ1, σ2, σ3}.

Lemma 3.2. Let z∗
j (kj , g, ε)(t) be as in Theorem 3.1. Then there is ρ0 > 0 such that supt∈R |z∗

j (kj , g, ε)(t)| � ρ0 for
(kj , g, ε) ∈ B2(r0) × B3(σ0) × R.

Proof. Let K2 = supt∈R |(Df (γ (t)) − Df (0))|, β0 and A be as in (3.10), and t0 be as in Proposition 3.2. We choose
ρ0 > 0 such that ρ1 and δ which are obtained in Proposition 3.1 and Theorem 3.1 respectively satisfy

ρ1 � ρ0, δ � min

{
ρ0e

−3β0t0

4A
,

5ρ0

12A
,

4β0ρ0e
−β0t0

3β0 + 16AK2

}
.

We only give the proof of t ∈ [0,∞) since the similar method can be used to prove the case of t ∈ (−∞,0].

Case 1. If t ∈ [t0,∞).

For ρ = ρ1, we rewrite Eq. (3.15) as

żj (t) = Df (0)zj (t) + ηj ρ1
(zj , kj , g, ε)(t) (3.22)

where ηj ρ1
(zj , kj , g, ε)(t) is defined in (3.11).

We know from Theorem 3.1 that z∗
j ∈ Zβ0 is solution of (3.22) with ‖z∗

j‖ � δ, i.e., |z∗
j (t)| � δeβ0t for t ∈ R

+. Thus
we have

z∗
j (t) = V (t)V −1(t0)z

∗
j (t0) + V (t)

t∫
t0

〈
V −1(s), ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

〉
ds

= V (t)QV −1(t0)z
∗
j (t0) + V (t)

t∫
t0

〈
QV −1(s), ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

〉
ds

− V (t)

∞∫
t

〈
(I − Q)V −1(s), ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

〉
ds

+ V (t)(I − Q)

[
V −1(t0)z

∗
j (t0) +

∞∫
t0

〈
V −1(s), ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

〉
ds

]
.

In the last equation, we know that the last term grows like e2β0t as t → ∞ and other terms grow no more than eβ0t as
t → ∞. Thus the last term must vanish and the solution can be expressed as

z∗
j (t) = V (t)QV −1(t0)z

∗
j (t0) + V (t)

t∫
t0

〈
QV −1(s), ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

〉
ds

− V (t)

∞∫
t

〈
(I − Q)V −1(s), ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

〉
ds. (3.23)

We define the space

X =
{
x ∈ C0([t0,∞),R

n
) ∣∣∣ sup

t�t0

∣∣x(t)
∣∣eβ0t < ∞

}
.

Then X is Banach space with sup norm ‖ · ‖X . Define F :X × R × C3 × R → X by
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F (φ, kj , g, ε)(t) = V (t)QV −1(t0)z
∗
j (t0) + V (t)

t∫
t0

〈
QV −1(s), ηj ρ1

(φ, kj , g, ε)(s)
〉
ds

− V (t)

∞∫
t

〈
(I − Q)V −1(s), ηj ρ1

(φ, kj , g, ε)(s)
〉
ds. (3.24)

Let B(ρ0) ⊂ X be ball centered at origin with radius ρ0. For any φ1, φ2 ∈ B(ρ0) and (kj , g, ε) ∈ B2(r0)×B3(σ0)×R,
we have∣∣F (φ1, kj , g, ε)(t) − F (φ2, kj , g, ε)(t)

∣∣
�

t∫
t0

∣∣V (t)QV −1(s)
∣∣∣∣ηj ρ1

(φ1, kj , g, ε)(s) − ηj ρ1
(φ2, kj , g, ε)(s)

∣∣ds

+
∞∫
t

∣∣V (t)(I − Q)V −1(s)
∣∣∣∣ηj ρ1

(φ1, kj , g, ε)(s) − ηj ρ1
(φ2, kj , g, ε)(s)

∣∣ds

� 3β0

8

t∫
t0

e2β0(s−t)
∣∣φ1(s) − φ2(s)

∣∣ds + 3β0

8

∞∫
t

e2β0(t−s)
∣∣φ1(s) − φ2(s)

∣∣ds

� 3β0

8
e−2β0t

t∫
t0

eβ0s
(∣∣φ1(s) − φ2(s)

∣∣eβ0s
)
ds + 3β0

8
e2β0t

∞∫
t

e−3β0s
(∣∣φ1(s) − φ2(s)

∣∣eβ0s
)
ds

�
[

3

8

(
1 − eβ0(t0−t)

)+ 1

8

]
· ‖φ1 − φ2‖X · e−β0t

where (1) of Proposition 3.2 is used. Thus we can get that

∥∥F (φ1, kj , g, ε) − F (φ2, kj , g, ε)
∥∥

X
� 1

2
‖φ1 − φ2‖X. (3.25)

Moreover, from (3.24) we have

∣∣F (0, kj , g, ε)(t)
∣∣� ∣∣V (t)QV −1(t0)z

∗
j (t0)

∣∣+
t∫

t0

∣∣V (t)QV −1(s)
∣∣∣∣ηj ρ1

(0, kj , g, ε)(s)
∣∣ds

+
∞∫
t

∣∣V (t)(I − Q)V −1(s)
∣∣∣∣ηj ρ1

(0, kj , g, ε)(s)
∣∣ds

� Ae2β0(t0−t)
∣∣z∗

j (t0)
∣∣+ 3β0ρ1

16

( t∫
t0

eβ0(s−2t) ds +
∞∫
t

eβ0(2t−3s) ds

)

�
[
Aδeβ0(3t0−2t) + 3ρ1

16

(
1 − eβ0(t0−t)

)+ ρ1

16

]
e−β0t

where (2) of Proposition 3.2 is used. Thus we can get that

∥∥F (0, kj , g, ε)
∥∥

X
� Ae3β0t0δ + 3ρ0

16
+ ρ0

16

� Ae3β0t0
ρ0e

−3β0t0

4A
+ ρ0

4
= ρ0

2
. (3.26)

For any φ ∈ B(ρ0), we can get from (3.25) and (3.26) that



928 C. Zhu et al. / Ann. I. H. Poincaré – AN 27 (2010) 917–936
∥∥F (φ, kj , g, ε)
∥∥

X
�
∥∥F (φ, kj , g, ε) − F (0, kj , g, ε)

∥∥
X

+ ∥∥F (0, kj , g, ε)
∥∥

X

� 1

2
‖φ‖X + ρ0

2
� ρ0. (3.27)

From (3.25) and (3.27), we see that the map F (·, kj , g, ε) : B(ρ0) → B(ρ0) is uniformly contractive. The contraction
mapping theorem implies that the map F (·, kj , g, ε) has unique fixed point φ∗ ∈ X. It is that

φ∗(t) = V (t)QV −1(s)z∗
j (t0) + V (t)

t∫
t0

〈
QV −1(s), ηj ρ1

(
φ∗, kj , g, ε

)
(s)

〉
ds

− V (t)

∞∫
t

〈
(I − Q)V −1(s), ηj ρ1

(
φ∗, kj , g, ε

)
(s)

〉
ds, for t � t0. (3.28)

Let M̃ = supt�t0
|φ∗(t) − z∗

j (t)|e−β0t . Since z∗
j ∈ Zβ0 and φ∗ ∈ X, we know that 0 � M̃ < ∞. From (3.23) and

(3.28), we see that

∣∣φ∗(t) − z∗
j (t)

∣∣�
t∫

t0

∣∣V (t)QV −1(s)
∣∣∣∣ηj ρ1

(
φ∗, kj , g, ε

)
(s) − ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

∣∣ds

+
∞∫
t

∣∣V (t)(I − Q)V −1(s)
∣∣∣∣ηj ρ1

(
φ∗, kj , g, ε

)
(s) − ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

∣∣ds

� 3β0

8
e−2β0t

t∫
t0

e3β0s · (∣∣φ∗(s) − z∗
j (s)

∣∣e−β0s
)
ds

+ 3β0

8
e2β0t

∞∫
t

e−β0s · (∣∣φ∗(s) − z∗
j (s)

∣∣e−β0s
)
ds

�
[

1

8

(
1 − e3β0(t0−t)

)+ 3

8

]
· M̃ · eβ0t

� 1

2
M̃ · eβ0t

where (1) of Proposition 3.2 is used. Then we have M̃ � 1
2M̃ which implies that M̃ = 0. Hence φ∗(t) = z∗

j (t) ∈ X for

t ∈ [t0,∞). We know that z∗
j (t) approaches zero like e−β0t as t → ∞. Thus we can take larger t0 if necessary such

that |z∗
j (t)| � ρ0 for t ∈ [t0,∞).

Case 2. For t ∈ [0, t0].

As in the proof of Proposition 3.2, we take K1 = 3β0
16A

. From (3.11), we have∣∣ηj ρ1

(
z∗
j , kj , g, ε

)
(t)

∣∣� ∣∣ηj ρ1

(
z∗
j , kj , g, ε

)
(t) − ηj ρ1

(0, kj , g, ε)(t)
∣∣+ ∣∣ηj ρ1

(0, kj , g, ε)(t)
∣∣

�
∣∣hρ1

(
z∗
j , kj , g, ε

)
(t) − hρ1(0, kj , g, ε)(t)

∣∣
+ ∣∣(Df

(
γ (t)

)− Df (0)
)
z∗
j (t)

∣∣+ ∣∣ηj ρ1
(0, kj , g, ε)(t)

∣∣
� 3β0

16A

∣∣z∗
j (t)

∣∣+ K2
∣∣z∗

j (t)
∣∣+ 3β0ρ1

16A
e−β0t

�
(

3β0

16A
+ K2

)
δeβ0t + 3β0ρ1

16A
e−β0t (3.29)

where (b) of Proposition 3.1 and (2) of Proposition 3.2 are used.
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Substituting (3.29) in (3.23), we have

∣∣z∗
j (t)

∣∣� ∣∣V (t)QV −1(0)z∗
j (0)

∣∣+
t∫

0

∣∣V (t)QV −1(s)
∣∣∣∣ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

∣∣ds

+
∞∫
t

∣∣V (t)(I − Q)V −1(s)
∣∣∣∣ηj ρ1

(
z∗
j , kj , g, ε

)
(s)

∣∣ds

� Ae−2β0t
∣∣z∗

j (0)
∣∣+

t∫
0

Ae2β0(s−t)

[(
3β0

16A
+ K2

)
δeβ0s + 3β0ρ1

16A
e−β0s

]
ds

+
∞∫
t

Ae2β0(t−s)

[(
3β0

16A
+ K2

)
δeβ0s + 3β0ρ1

16A
e−β0s

]
ds

� Aδ + 3β0 + 16AK2

12β0
δeβ0t0 + ρ1

4

� 5ρ0

12
+ ρ0

3
+ ρ0

4
= ρ0. (3.30)

From Case 1 and Case 2, we see that |z∗
j (t)| � ρ0 for t ∈ [0,∞). Using the same method, we can get that |z∗

j (t)| � ρ0

for t ∈ (−∞,0]. Thus we can get that |z∗
j (t)| � ρ0 for t ∈ R. The proof is completed. �

Let ρ = ρ0 be as in Lemma 3.2. From Theorem 3.1 and Lemma 3.2, we know that χ(z∗
j (kj , g, ε)(t)/ρ0) = 1. Then

the bifurcation function is

Bj (kj , g, ε) := Phj ρ0

(
z∗
j (kj , g, ε), kj , g, ε

)
(t)

= Phj

(
z∗
j (kj , g, ε), kj , g, ε

)
(t)

= b(t)U(t)

∞∫
−∞

〈
PuuU

−1(s), hj

(
z∗
j (kj , g, ε), kj , g, ε

)
(s)

〉
ds

= b(t)

d∑
i=1

ui(t)

∞∫
−∞

〈
u⊥

i (s), hj

(
z∗
j (kj , g, ε), kj , g, ε

)
(s)

〉
ds = 0.

By the independence of u1, . . . , ud , the bifurcation function is equivalent to

H̃ij (kj , g, ε) :=
∞∫

−∞

〈
u⊥

i (s), hj

(
z∗
j (kj , g, ε), kj , g, ε

)
(s)

〉
ds

=
∞∫

−∞

〈
u⊥

i (s), f
(
γ (s) + kjud+j (s) + z∗

j (s)
)− Df

(
γ (s)

)(
kjud+j (s) + z∗

j (s)
)

− f
(
γ (s)

)+ g
(
γ (s) + kjud+j (s) + z∗

j (s), ε, εs
)〉

ds

where i = 1, . . . , d. It is clear that if H̃ij (kj , g, ε) = 0 can be solved for kj = k∗
j (g, ε), then system (1.2) has a

homoclinic orbit which is given by

x∗
j (t) = γ (t) + k∗

j ud+j + z∗
j (t)

where z∗ is derived in Theorem 3.1.
j
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We introduce a function

ξj (kj , g, ε) =
⎧⎨
⎩

z∗
j (kj , g, ε)/kj , if kj �= 0,

∂

∂kj

z∗
j (0, g, ε), if kj = 0.

From Theorem 3.1, we see that ξj (0,0, ε) = ∂
∂kj

z∗
j (0,0, ε) = 0. If kj �= 0, the bifurcation function can be written as

H̃ij (kj , g, ε) =
∞∫

−∞

〈
u⊥

i (s), f
(
γ (s) + kjud+j (s) + kj ξj (s)

)− f
(
γ (s)

)

− Df
(
γ (s)

)(
kjud+j (s) + kj ξj (s)

)〉
ds

+
∞∫

−∞

〈
u⊥

i (s), g
(
γ (s) + kjud+j (s) + kj ξj (s), ε, εs

)〉
ds

=
∞∫

−∞

〈
u⊥

i (s), f
(
γ (s) + kjud+j (s) + kj ξj (s)

)− f
(
γ (s)

)

− Df
(
γ (s)

)(
kjud+j (s) + kj ξj (s)

)〉
ds

+
∞∫

−∞

〈
u⊥

i (s), g
(
γ (s),0,0

)+ D1g
(
γ (s),0,0

)(
kjud+j (s) + kj ξj (s)

)

+ ε
[
D2g

(
γ (s),0,0

)+ sD3g
(
γ (s),0,0

)]〉
ds + R(kj , ε) (3.31)

for i = 1, . . . , d , where R(kj , ε) is order O(|kjud+j + kj ξj |2 + |ε|2).
In (3.31), the Taylor’s expansion of g(x(t), ε, εt) along (γ (t),0) is considered. Let

g
(
γ (t) + z(t), ε, εt

)= g
(
γ (t),0,0

)+ D1g
(
γ (t),0,0

)
z(t)

+ ε
(
D2g

(
γ (t),0,0

)+ tD3g
(
γ (t),0,0

))+ g̃ + ε2 (3.32)

where g̃ is remainder and ‖g̃‖ is order O(‖z‖2). Let

G = {
g̃: g̃ is derived in (3.32), g ∈ G

}
.

Note that ‖g‖C3 is small and |u⊥
i (t)| approaches zero like e−2β0|t | as t → ±∞, i = 1, . . . , d . We have

∣∣∣∣∣
∞∫

−∞

〈
u⊥

i (s),D2g
(
γ (s),0,0

)+ sD3g
(
γ (s),0,0

)〉
ds

∣∣∣∣∣

�
∞∫

−∞

∣∣u⊥
i (s)

∣∣ · (1 + |s|)‖g‖C3 ds

= ‖g‖C3

∞∫
−∞

∣∣u⊥
i (s)

∣∣ · (1 + |s|)ds < ∞, i = 1, . . . , d.

For g ∈ G , Eq. (3.31) is

H̃ij (kj , g̃, ε) =
∞∫ 〈

u⊥
i (s), f

(
γ (s) + kjud+j (s) + kj ξj (s)

)− f
(
γ (s)

)

−∞
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− Df
(
γ (s)

)(
kjud+j (s) + kj ξj (s)

)〉
ds

+
∞∫

−∞

〈
u⊥

i (s),D1g
(
γ (s),0,0

)(
kjud+j (s) + kj ξj (s)

)〉
ds

+ O
(‖g̃‖)+ O(ε), i = 1, . . . , d. (3.33)

For any m, m = 1, . . . , d , our goal is find m homoclinic solutions of (1.2). Our strategy is to find some special
subclass Mm with finite codimension of G to realize the goal. Let

M̃(i, j) = (akl)d×d

where akl = δikδjl , i, j, k, l = 1, . . . , d . We choose some special g ∈ G such that

D1g(γ,0,0) =
d∑

i,j=1

βijMijPss (3.34)

where Mij : span{ud+1, . . . , u2d} → span{u1, . . . , ud} is defined by

Mij (ud+1, . . . , u2d) = (u1, . . . , ud)M̃(i, j).

With the choice of (3.34), Eq. (3.33) is

H̃ij (kj , β, g̃, ε) =
∞∫

−∞

〈
u⊥

i (s), f
(
γ (s) + kjud+j (s) + kj ξj (s)

)− f
(
γ (s)

)
− Df

(
γ (s)

)(
kjud+j (s) + kj ξj (s)

)〉
ds

+
∞∫

−∞

〈
u⊥

i (s),

d∑
i,j=1

kjβijMijPss

(
ud+j (s) + ξj (s)

)〉
ds

+ O
(‖g̃‖)+ O(ε)

=
∞∫

−∞

〈
u⊥

i (s),D2f
(
γ (s)

)(
kjud+j (s) + kj ξj (s)

)2〉
ds

+
∞∫

−∞

〈
u⊥

i (s),

d∑
i,j=1

kjβijMijPss

(
ud+j (s) + ξj (s)

)〉
ds

+ O
(‖kjud+j + kj ξj‖3)+ O

(‖g̃‖)+ O(ε) (3.35)

where β = (β11, . . . , βdd).
Let

Hij (kj , β, g̃, ε) =
⎧⎨
⎩

H̃ij (kj , β, g̃, ε)/kj , if kj �= 0,

∂H̃ij

∂kj
(0, β, g̃, ε), if kj = 0.

If kj �= 0, we know that H̃ij (kj , β, g̃, ε) = 0 if and only if Hij (kj , β, g̃, ε) = 0. Through direct calculation, we have

∂H̃ij

∂kj

(0, β, g̃, ε) =
∞∫

−∞

〈
u⊥

i (s),

d∑
i,j=1

βijMijPss

(
ud+j (s) + ξj (s)

)〉
ds + O

(‖g̃‖)+ O(ε)

= βij +
∞∫ 〈

u⊥
i (s),

d∑
i,j=1

βijMijPssξj (s)

〉
ds + O

(‖g̃‖)+ O(ε).
−∞
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Then we have

Hij (0,0,0,0) = 0

and

∂Hij

∂βkl

∣∣∣∣
(0,0,0,0)

= δikδjl + o(1) (3.36)

as ‖g‖ goes to zero. Moreover,

Hij

∂kj

= ∂

∂kj

(
H̃ij

kj

)

=
∞∫

−∞

〈
u⊥

i (s),D2f
(
γ (s)

)(
ud+j (s) + ξj (s)

)2〉
ds + O

(|kj |
)+ O

(‖g̃‖)+ O(ε)

=
∞∫

−∞

〈
u⊥

i (s),D2f
(
γ (s)

)
ud+j (s)ud+j (s)

〉
ds

+
∞∫

−∞

〈
u⊥

i (s),2D2f
(
γ (s)

)
ud+j (s)ξj (s) + D2f

(
γ (s)

)
ξj (s)ξj (s)

〉
ds

+ O
(|kj |

)+ O
(‖g̃‖)+ O(ε).

Since ξj (0,0, ε) = 0, we have

∞∫
−∞

〈
u⊥

i (s),2D2f
(
γ (s)

)
ud+j (s)ξj (s) + D2f

(
γ (s)

)
ξj (s)ξj (s)

〉
ds = o(1)

as ‖g‖ goes to zero. Then we can get that

Hij

∂kj

∣∣∣∣
(0,0,0,0)

= 	ij + o(1) (3.37)

as ‖g‖ goes to zero. For convenience, let

Hl = (H1l , . . . ,Hdl), ηl = (kl, β2l , . . . , βdl), l = 1, . . . , d.

From (3.36) and (3.37), we have

Mj := ∂Hj

∂ηj

∣∣∣∣
(0,0,0,0)

=
⎡
⎢⎣

	1j + o(1) o(1) . . . o(1)

	2j + o(1) 1 + o(1) . . . o(1)

· · · · · · · · · · · ·
	dj + o(1) o(1) . . . 1 + o(1)

⎤
⎥⎦

d×d

(3.38)

as ‖g‖ goes to zero. It is clear that Mj is nonsingular for small ‖g‖ since 	1j �= 0. With the same argument, we have

Ml := ∂Hl

∂ηl

∣∣∣∣
(0,0,0,0)

=
⎡
⎢⎣

	1l + o(1) o(1) . . . o(1)

	2l + o(1) 1 + o(1) . . . o(1)

· · · · · · · · · · · ·
	dl + o(1) o(1) . . . 1 + o(1)

⎤
⎥⎦

d×d

(3.39)

where l = 1, . . . , d and Ml is nonsingular.

Theorem 3.2. Assume that (H1)–(H5) hold. For any m, m = 1, . . . , d , there are εm > 0 and submanifold Mm ⊂ G
with codimension dm, 0 ∈ Mm, such that for ε ∈ (−εm,0) ∪ (0, ε0) and each small g ∈ Mm, the system (1.2) has m

linearly independent homoclinic solutions.
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Proof. Let

Ĥ (k,β, g̃, ε) = (
H1(k,β, g̃, ε), . . . ,Hm(k,β, g̃, ε)

)
where k = (k1, . . . , km). We rearrange variables.

H(η, β̄, β̃, g̃, ε) := Ĥ (k,β, g̃, ε)

where η = (η1, . . . , ηm) ∈ R
md, β̄ = (β11, . . . , β1m) ∈ R

m, β̃ = (β1m+1, . . . , β2d) ∈ R
d(d−m). It is clear that the system

(1.2) has m homoclinic solutions if H(k,β, g̃, ε) = 0. Notice that

H(0,0,0,0) = 0.

From (3.39), we have

∂H

∂(η1, . . . , ηm)

∣∣∣∣
(0,0,0,0)

=
⎡
⎢⎣

M1 O . . . O
O M2 . . . O

· · · · · ·
O O . . . Mm

⎤
⎥⎦

md×md

as ‖g‖ goes to zero, where

O =
⎡
⎢⎣

0 o(1) . . . o(1)

0 o(1) . . . o(1)

· · · · · ·
0 o(1) . . . o(1)

⎤
⎥⎦

d×d

.

It is clear that ∂H
∂(η1,...,ηm)

|(0,0,0,0) is nonsingular matrix. Then the implicit function theorem implies that there are

neighborhoods U1 ∈ R
m,U2 ∈ R

d(d−m),U3 ∈ G, εm > 0 and C1 functions⎧⎪⎪⎨
⎪⎪⎩

k1 = k∗
1(β̄, β̃, g̃, ε), . . . , km = k∗

m(β̄, β̃, g̃, ε)

β21 = β∗
21(β̄, β̃, g̃, ε), . . . , βd1 = β∗

d1(β̄, β̃, g̃, ε)

· · · · · ·
β2m = β∗

2m(β̄, β̃, g̃, ε), . . . , βdm = β∗
dm(β̄, β̃, g̃, ε)

(3.40)

for (β̄, β̃, g̃, ε) ∈ U1 × U2 × U3 × (−εm,0) ∪ (0, εm) such that

k∗
i (0,0,0,0) = 0, β∗

jk(0,0,0,0) = 0, for i, k = 1, . . . ,m, j = 2, . . . ,m

and

H
(
k∗(β̄, β̃, g̃, ε), β∗(β̄, β̃, g̃, ε), β̄, β̃, g̃, ε

)= 0 (3.41)

for (β̄, β̃, g̃, ε) ∈ U1 × U2 × U3 × (−εm,0) ∪ (0, ε0), where k∗ := (k∗
1 , . . . , k∗

m) and β∗ := (β∗
21, . . . , β

∗
dm). From the

transformation (3.2), the m homoclinic solutions are given by⎧⎨
⎩

x1(t) = γ (t) + k∗
1ud+1(t) + z∗

1(t)· · · · · ·
xm(t) = γ (t) + k∗

mud+m(t) + z∗
m(t)

(3.42)

where k∗
j and z∗

j are as in (3.40) and Theorem 3.1 respectively, j = 1, . . . ,m.
In order to prove that the m solutions given in (3.42) are linear independence, we need to prove k∗

j �= 0. From
system (3.41), we choose m equations and get

H̄
(
k∗, β∗, β̄, β̃, g̃, ε

) := (
H11

(
k∗, β∗, β̄, β̃, g̃, ε

)
, . . . ,H1m

(
k∗, β∗, β̄, β̃, g̃, ε

))= 0. (3.43)

Differentiating (3.43) in β̄ , we have

D1H̄ · ∂k∗

∂β̄
+ D2H̄ · ∂β∗

∂β̄
+ ∂H̄

∂β̄
= 0. (3.44)

From (3.37), we have
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D1H̄ |(0,0,0,0) =
⎡
⎢⎣

	11 + o(1) o(1) . . . o(1)

o(1) 	12 + o(1) . . . o(1)

· · · · · ·
o(1) o(1) . . . 	1m + o(1)

⎤
⎥⎦

m×m

.

Moreover, from (3.36) we get

∂H̄

∂β̄

∣∣∣∣
(0,0,0,0)

=
⎡
⎢⎣

1 + o(1) o(1) . . . o(1)

o(1) 1 + o(1) . . . o(1)

· · · · · ·
o(1) o(1) . . . 1 + o(1)

⎤
⎥⎦

m×m

and |D2H̄ |(0,0,0,0) = o(1). Since β∗ ∈ C1, we have that |D2H̄ · ∂β∗
∂β̄

|(0,0,0,0) = o(1). Thus we can get from (3.44) that

∂k∗

∂β̄

∣∣∣∣
(0,0,0,0)

= −(D1H̄ |(0,0,0,0))
−1 ∂H̄

∂β̄

∣∣∣∣
(0,0,0,0)

+ o(1)

as ‖g‖ goes to zero. It is clear that ∂k∗
∂β̄

|(0,0,0,0) is nonsingular. Thus there exists appropriate β̄∗ = (β∗
1 , . . . , β∗

m), such

that k∗
j (β∗,0,0,0) �= 0. From the continuity of k∗

j , we can shrink U2, U3 and εm > 0 if necessary, such that

k∗
j

(
β̄∗, β̃, g̃, ε

) �= 0, j = 1, . . . ,m (3.45)

for (β̃, g̃, ε) ∈ U2 × U3 × (−εm,0) ∪ (0, εm).
From (3.42), to prove the linear independence of the m homoclinic solutions is sufficient to prove the linear inde-

pendence of the functions

k∗
1ud+1 + z∗

1, . . . , k
∗
mud+m + z∗

m.

If there are some aj ∈ R, such that

m∑
j=1

aj

(
k∗
j ud+j + z∗

j

)=
m∑

j=1

aj k
∗
j ud+j +

m∑
j=1

aj z
∗
j = 0.

From (3.2), we see that
∑m

j=1 aj z
∗
j ∈ S and

∑m
j=1 aj k

∗
j ud+j ∈ span{ud+1, . . . , u2d}. Thus we have

m∑
j=1

aj k
∗
j ud+j = 0.

By the independence of ud+1, . . . , ud+m, we have aj k
∗
j = 0 which implies from (3.45) that aj = 0. Thus the m

homoclinic solution are linearly independent.
We now establish the codimension of the bifurcation manifold. Let G0 be the subclass of G such that D1g(γ,0,0)

has the form of (3.34) for each g ∈ G0. Let

Mm = {
g ∈ G0: (β21, . . . , βdm) = (

β∗
21

(
β̄∗, β̃, g̃, ε

)
, . . . , β∗

dm

(
β̄∗, β̃, g̃, ε

))}
for (β̃, g̃, ε) ∈ U2 ×U3 × (−εm,0)∪ (0, εm). In Mm, the dm parameters, (β11, . . . , βd1, . . . , βmd), are restricted. Thus
Mm defines a submanifold with codimension md in G0 and hence in G . The proof is completed. �

Let ε0 = min{ε1, . . . , εd}. From Theorem 3.2, we see that there are d submanifolds Mk ⊂ G with codimension
dk,0 ∈ Mk, k = 1, . . . , d and neighborhood U ⊂ G,0 ∈ U such that for any k, k = 1, . . . , d , the system (1.2) has k

linearly independent homoclinic solutions for every g ∈ U ∩ (Mk/(Mk+1 ∪ · · · ∪ Md)) and ε ∈ (−ε0,0) ∪ (0, ε0).
The proof of Theorem 2.1 is finished.

We give an example to illustrate the theory. As in [11], we consider the system

ẋ(t) = f
(
x(t)

)+ g
(
x(t), ε, εt

)
(3.46)
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where x = (x1, x2, x3, x4), f (x) = (x2, x1 − x3
1 − x1x

2
3 , x3, x3 − 4

3x3
3 − 2

3x3
1) and g : R4 × R × R → R

4. Eq. (3.46) is
the form of (1.2). The corresponding unperturbed system is⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1(t) = x2,

ẋ1(t) = x1 − x3
1 − x1x

2
3 ,

ẋ3(t) = x4,

ẋ4(t) = x3 − 4

3
x3

3 − 2

3
x3

1 .

(3.47)

Let r(t) = sech(t). One can check that Eq. (3.47) has a homoclinic solution γ (t) = (r(t), ṙ(t), r(t), ṙ(t)). It is clear
that 0 is a fixed point and limt→±∞ γ (t) = 0. Moreover, the matrix Df (0) has eigenvalues {−1,−1,1,1} which lie
off the imaginary axis. Thus (H1)–(H4) are satisfied. The variation equation of (3.47) along γ (t) is

u̇(t) = Df
(
γ (t)

)
u(t) (3.48)

where

Df
(
γ (t)

)=
⎡
⎢⎣

0 1 0 0
1 − 4r2(t) 0 −2r2(t) 0

0 0 0 1
−2r2(t) 0 1 − 4r2(t) 0

⎤
⎥⎦ .

As in [11], let P(t) and Q(t) be differential functions satisfying Ṗ ṙ2 = 1 and Q̇r2 = 1. Then (3.48) has fundamental
solutions

u1 = (
Qr, (Qr)·,−Qr,−(Qr)·

)
, u2 = (

P ṙ, (Qṙ)·,Qṙ, (Qṙ)·
)
,

u3 = (r, ṙ,−r,−ṙ), u4 = (r + ṙ , ṙ + r̈ ,−r + ṙ ,−ṙ + r̈).

It is clear that u1 and u2 are unbounded solutions of (3.48), u3 and u4 are bounded ones. Thus d = 2. The bounded
solutions of the adjoint equation of (3.48) are

u⊥
1 = 1

2
(−ṙ , r, ṙ,−r), u⊥

2 = 1

2
(−r̈ , ṙ,−r̈ , ṙ).

As required in Theorem 2.1, we need to calculate 	1j , j = 1,2.

	11 =
∞∫

−∞

〈
u⊥

1 (t),D2f
(
γ (t)

)
u3(t)u3(t)

〉
dt

=
∞∫

−∞

〈
u⊥

1 (t), col
(
0,−4r3(t),0,−12r3(t)

)〉
dt

=
∞∫

−∞
4r3(t) dt = 16

3
,

	12 =
∞∫

−∞

〈
u⊥

1 (t),D2f
(
γ (t)

)
u4(t)u4(t)

〉
dt

=
∞∫

−∞

〈
u⊥

1 (t), col
(
0,−4r3(t) − 12r(t)ṙ2(t),0,−12r3(t) − 12r(t)ṙ2(t)

)〉
dt

=
∞∫

−∞
4r3(t) dt = 16

3
.

Thus the assumption (H5) holds. As well as (H1)–(H4) hold, Theorem 2.1 can be applied to system (3.46). There are
ε0 > 0 and two submanifolds Mm ⊂ G with codimension 2m, 0 ∈ Mm, m = 1,2, such that for ε ∈ (−ε0,0) ∪ (0, ε0)

and every small g ∈ M1/M2 (respectively g ∈ M2) the system (3.46) has one (respectively two) homoclinic solutions.
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