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Abstract

We consider nonlinear diffusion of some substance in a container (not necessarily bounded) with bounded boundary of class C2.
Suppose that, initially, the container is empty and, at all times, the substance at its boundary is kept at density 1. We show that,
if the container contains a proper C2-subdomain on whose boundary the substance has constant density at each given time, then
the boundary of the container must be a sphere. We also consider nonlinear diffusion in the whole R

N of some substance whose
density is initially a characteristic function of the complement of a domain with bounded C2 boundary, and obtain similar results.
These results are also extended to the heat flow in the sphere S

N and the hyperbolic space H
N .

© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons la diffusion non linéaire d’une substance dans un récipient (pas nécessairement borné) avec frontière bornée
de classe C2. Supposons qu’initialement, le récipient soit vide et, à sa frontière, la densité de la substance soit gardée à tout moment
égale à 1. Nous montrons que, si le récipient contient un sous-domaine C2 propre à la frontière duquel la substance est gardée à tout
moment à densité constante, alors la frontière du récipient doit être une sphère. Nous considérons aussi la diffusion non linéaire
dans tout R

N d’une substance dont la densité est initialement une fonction caractéristique du complémentaire d’un domaine ayant
la frontière bornée et C2, et nous obtenons des résultats semblables. Ces résultats sont aussi généralisés au cas du flux de chaleur
dans la sphère S

N et l’espace hyperbolique H
N .
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1. Introduction

1.1. Background

In the paper [12], we considered the solution u = u(x, t) of the following initial–boundary value problem for the
heat equation:

ut = �u in Ω × (0,+∞), (1.1)

u = 1 on ∂Ω × (0,+∞), (1.2)

u = 0 on Ω × {0}, (1.3)

where Ω is a bounded domain in R
N with N � 2, and we obtained the following symmetry result.

Theorem A. (See [12].) Let Ω be a bounded domain in R
N, N � 2, satisfying the exterior sphere condition and

suppose that D is a domain, with boundary ∂D, satisfying the interior cone condition, and such that D ⊂ Ω.

Assume that the solution u of problem (1.1)–(1.3) is such that

u(x, t) = a(t), (x, t) ∈ ∂D × (0,+∞), (1.4)

for some function a : (0,+∞) → (0,+∞). Then Ω must be a ball.

We recall some terminology from [12]. A surface satisfying (1.4) is said to be a stationary isothermic surface;
Ω satisfies the exterior sphere condition if for every y ∈ ∂Ω there exists a ball Br(z) such that Br(z) ∩ Ω = {y},
where Br(z) denotes an open ball centered at z ∈ R

N and with radius r > 0; D satisfies the interior cone condition if
for every x ∈ ∂D there exists a finite right spherical cone Kx with vertex x such that Kx ⊂ D and Kx ∩ ∂D = {x}.

In order to better understand the background of the present paper, we outline the proof of Theorem A improved by
a result in [13]. The proof is essentially based on three ingredients.

The first one is a result of Varadhan [21] which states that, as t → 0+, the function −4t logu(x, t) converges
uniformly on Ω to the function d(x)2, where

d(x) = dist(x, ∂Ω), x ∈ Ω.

To apply this result one needs the boundary ∂Ω to be also the boundary of the exterior R
N \ Ω . The assumption that

Ω satisfies the exterior sphere condition is sufficient for that to happen. Hence, by (1.4) there exists R > 0 satisfying

d(x) = R for every x ∈ ∂D. (1.5)

The second ingredient consists of a balance law proved in [10] and [11] (see [12] for another proof). It states that,
in any domain G in R

N, a solution v = v(x, t) of the heat equation is zero at some point x0 ∈ G for every t > 0 if and
only if ∫

∂Br (x0)

v(x, t) dSx = 0, for every r ∈ [
0,dist(x0, ∂G)

)
and t > 0. (1.6)

We use (1.6) in two different ways. In the former one, we choose G = Ω and v = uxi
, i = 1, . . . ,N, and obtain,

by some manipulations, that the gradient ∇u is zero at some point x0 ∈ Ω for every t > 0 if and only if∫
∂Br (x0)

(x − x0)u(x, t) dSx = 0, for every r ∈ [
0, d(x0)

)
and t > 0. (1.7)

This condition helps us show that both ∂D and ∂Ω must be analytic. Indeed, with the aid of the interior cone condition
for D, by combining (1.7) and (1.5) with the short-time behavior of u described in Varadhan [21], we can see that for
every point x0 ∈ ∂D there exists a time t0 > 0 satisfying ∇u(x0, t0) 	= 0; this implies that ∂D is analytic. Thus, by
using the exterior sphere condition for Ω again, we can conclude that ∂Ω is analytic and parallel to ∂D.

In the latter way of using (1.6), we choose two distinct points P,Q ∈ ∂Ω and let p,q ∈ ∂D be the points such that

BR(p) ∩ ∂Ω = {P } and BR(q) ∩ ∂Ω = {Q}.
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Thence, we consider the function v = v(x, t) defined by

v(x, t) = u(x + p, t) − u(x + q, t) for (x, t) ∈ BR(0) × (0,+∞).

Since v satisfies the heat equation and v(0, t) = a(t) − a(t) = 0 for every t > 0, it follows from (1.6) that

t−
N+1

4

∫
BR(p)

u(x, t) dx = t−
N+1

4

∫
BR(q)

u(x, t) dx for every t > 0.

Therefore, by taking advantage of the boundary layer for u for short times, we let t → 0+ and by using a result in [13],
we obtain that

C(N)

{
N−1∏
j=1

[
1

R
− κj (P )

]}− 1
2

= C(N)

{
N−1∏
j=1

[
1

R
− κj (Q)

]}− 1
2

, (1.8)

where κj (x), j = 1, . . . ,N − 1, denotes the j -th principal curvature of the surface ∂Ω at the point x ∈ ∂Ω with
respect to the inward unit normal vector to ∂Ω , and where C(N) is a positive constant depending only on N (see [13,
Theorem 4.2]).

With (1.8) in hand, we are ready to use our third ingredient: Aleksandrov’s sphere theorem [1, p. 412]. (A special
case of this theorem is the well-known Soap-Bubble Theorem (see also [17]).) Since (1.8) implies that

∏N−1
j=1 [ 1

R
−

κj (x)] is constant for x ∈ ∂Ω , by applying Aleksandrov’s sphere theorem, we conclude that ∂Ω must be a sphere
(see [12] and [13] for details).

1.2. Main results

In the present paper, we extend and improve the results described in Section 1.1 to the case of certain nonlinear
diffusion equations. It is evident that the introduction of a nonlinearity immediately rules out the use of our second
ingredient, e.g. the balance law.

Since this was crucial to prove the necessary regularity of ∂Ω, we will have to change our assumptions on the
domain Ω. Thus, we shall assume Ω to be a domain (not necessarily bounded) in R

N,N � 2, having bounded
boundary of class C2, that is, ∂Ω consists of m (m � 1) connected components S1, . . . , Sm ⊂ ∂Ω which are the
boundaries of bounded C2-domains G1, . . . ,Gm in R

N , respectively. Thus

∂Ω =
m⋃

j=1

Sj and Sj = ∂Gj for each j ∈ {1, . . . ,m}. (1.9)

It should also be noticed that the lack of a balance law precludes the proof of property (1.8) (unless we find an
alternative proof) and hence Aleksandrov’s sphere theorem cannot be put in action. We shall overcome this difficulty
by a new and more direct proof of symmetry only based on our first ingredient (conveniently modified in Theorem 1.1)
and Serrin’s method of moving planes (see [18,16,19]). It is worth mentioning that our proof does not need Serrin’s
corner lemma but simply uses the strong maximum principle and Hopf boundary lemma (see Theorems 1.2 and 1.3).

We now set up our framework. We consider the unique bounded solution u = u(x, t) of the nonlinear diffusion
equation

ut = �φ(u) in Ω × (0,+∞), (1.10)

subject to conditions (1.2) and (1.3). Here φ : R → R is such that

φ ∈ C2(R), φ(0) = 0, and (1.11)

0 < δ1 � φ′(s) � δ2 for s ∈ R, (1.12)

where δ1, δ2 are positive constants. By the maximum principle we know that

0 < u < 1 in Ω × (0,+∞).

Moreover, by applying the comparison principle to u(x, t + h) and u(x, t) for h > 0, we get

ut � 0 and hence �φ(u) � 0 in Ω × (0,+∞). (1.13)
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Let Φ = Φ(s) be the function defined by

Φ(s) =
s∫

1

φ′(ξ)

ξ
dξ for s > 0. (1.14)

Note that if φ(s) ≡ s, then Φ(s) = log s.
We extend Varadhan’s result to our setting by the following

Theorem 1.1. Let u be the solution of problem (1.10), (1.2)–(1.3).
Then,

lim
t→0+ −4tΦ

(
u(x, t)

) = d(x)2

uniformly on every compact set in Ω.

The proof of this theorem is constructed by adapting well-known results of the theory of viscosity solutions [2,7,3,
4,9]. The techniques developed to prove Theorem 1.1 can be used to extend this result to the important case in which
the homogeneous boundary condition (1.2) is replaced by the non-homogeneous one

u = f on ∂Ω × (0,+∞), (1.15)

where f = f (x) is a continuous function on ∂Ω, bounded from above and away from zero by positive constants (see
Theorem 3.7).

The following symmetry result corresponds to Theorem A and Theorem 3.1 in [14].

Theorem 1.2. Let D be a C2 domain in R
N satisfying D ⊂ Ω . Assume that the solution u of problem (1.10), (1.2)–

(1.3), satisfies (1.4).
Then m = 1 and ∂Ω must be a sphere.

When Ω is limited to unbounded domains, we have

Theorem 1.3. Let D be a C2 unbounded domain in R
N satisfying D ⊂ Ω .

Assume that, for any connected component Γ of ∂D, the solution u of problem (1.10), (1.2)–(1.3), satisfies the
following condition:

u(x, t) = aΓ (t), (x, t) ∈ Γ × (0,+∞), (1.16)

for some function aΓ : (0,+∞) → (0,+∞).

Then m = 1 and ∂Ω must be a sphere.

When φ(s) = s and Ω is bounded, Theorem A is clearly stronger than Theorem 1.2, since in the former we can
use the balance law to infer better regularity. Furthermore, the same techniques used for the proof of Theorem A also
yield a more general version of it (see Theorem 2.1).

The paper is then organized as follows. In Section 2, we prove all our symmetry results: Theorems 1.2, 1.3 and 2.1.
In Section 3, with the help of the theory of viscosity solutions, we prove Theorem 1.1 and its extension, Theorem 3.7.
Section 4 is devoted to show similar results for the unique bounded solution of the Cauchy problem for nonlinear
diffusion equations. In Section 5, we mention that this kind of results also hold for the heat flow in the sphere S

N and
the hyperbolic space H

N with N � 2.

2. Symmetry results

In this section, with the aid of Theorem 1.1, by applying the method of moving planes to problem (1.10), (1.2)–(1.3)
directly, we prove Theorems 1.2 and 1.3.
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Proof of Theorem 1.2. First of all, we consider the case where Ω is unbounded. In this case Ω is an exterior domain,
that is, we have

Gi ∩ Gj = ∅ if i 	= j, i, j = 1, . . . ,m, and Ω = R
N \

(
m⋃

j=1

Gj

)

(see (1.9) for the definitions of Sj and Gj ). Set

G =
m⋃

j=1

Gj . (2.1)

Then G is a bounded open set in R
N having m connected components G1, . . . ,Gm. Theorem 1.1 and the assumption

(1.4) yield (1.5). Furthermore, with the aid of our C2-smoothness assumption on ∂D and ∂Ω , we see that both ∂Ω

and ∂D consist of m connected closed hypersurfaces and each component of ∂Ω is parallel, at distance R, to only
one component of ∂D.

We apply the method of moving planes to the open set G. The proof runs similarly to those of Serrin’s [18] — or
Reichel’s [16] and Sirakov’s [19] for exterior domains — but with the major difference that, here, since the relevant
overdetermination takes place inside Ω, Serrin’s corner lemma — an extension of Hopf boundary lemma to domains
with corners — is not needed.

Let � be a unit vector in R
N, λ ∈ R, and let πλ be the hyperplane x · � = λ. For large λ, πλ will be disjoint from G;

as λ decreases, πλ will intersect G and cut off from G an open cap Gλ (on the same side of λ → +∞).
Denote by G′

λ the reflection of Gλ in the plane πλ. At the beginning, G′
λ will be and remain in G until one of the

following occurs:

(i) G′
λ becomes internally tangent to ∂G at some point P not on πλ;

(ii) πλ reaches a position in which it is orthogonal to ∂G at some point Q.

Let λ∗ denote the (minimal) value of λ at which the plane πλ reaches one of these positions and suppose that
G is not symmetric with respect to πλ∗ . Let Ω� be the connected component of Ω ∩ {x ∈ R

N : x · � < λ∗} whose
boundary contains the points P or Q in the respective cases (i) or (ii). Since, as already observed, ∂Ω and ∂D consist
of connected closed pairwise parallel hypersurfaces, we can find points P ∗ and Q∗ in ∂D such that |P − P ∗| or
|Q − Q∗| equal R, respectively, and we have that P ∗ ∈ Ω� and Q∗ ∈ ∂Ω� ∩ πλ∗ .

Let xλ = x + 2[λ − (x · �)]� denote the reflection of a point x ∈ R
N in the plane πλ. For (x, t) ∈ Ω� × (0,∞),

consider the function w = w(x, t) defined by

w(x, t) = u
(
xλ∗ , t

)
.

Then it follows from (1.4) that

w(P ∗, t) = u(P ∗, t) or
∂u

∂�
(Q∗, t) = 0 for all t > 0, (2.2)

where in the second equality we have used the fact that the vector � is tangential also to ∂D at Q∗ ∈ ∂D.
Observe that w and u satisfy

wt = �φ(w) and ut = �φ(u) in Ω� × (0,+∞),

w = u on (∂Ω� ∩ πλ∗) × (0,+∞),

w < 1 = u on (∂Ω� \ πλ∗) × (0,+∞),

w = u = 0 on Ω� × {0}.
Hence, by the strong comparison principle,

w < u in Ω� × (0,+∞). (2.3)

Indeed, (2.3) can be obtained by applying the strong comparison principle to the bounded solutions W = φ(w) and
U = φ(u) of Wt = 1′ �W and Ut = 1′ �U , respectively; here, ψ is the inverse function of φ.
ψ (W) ψ (U)
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If case (i) applies, (2.3) contradicts the first equality in (2.2), since P ∗ ∈ Ω�. If case (ii) applies, by using Hopf’s
boundary point lemma, we can infer that

∂u

∂�
(Q∗, t) < 0 for all t > 0,

which contradicts the second equality in (2.2).
In conclusion, G is symmetric for any direction � ∈ R

N , and in view of the definition (2.1) of G, m = 1 and G

must be a ball. Namely, Ω is the exterior of a ball and ∂Ω must be a sphere.
When Ω is bounded, it suffices to apply the method of moving planes directly to Ω . �

Proof of Theorem 1.3. With the aid of the C2 smoothness assumption of both ∂D and ∂Ω , Theorem 1.1 and the
assumption (1.16), together with the fact that D is unbounded, yield that ∂Ω and ∂D consist of m pairs of connected
closed hypersurfaces being parallel to each other respectively. (When D is bounded, ∂D may consist of two connected
components being parallel to one component of ∂Ω .) Hence, the proof runs similarly to that of Theorem 1.2, with
the only difference that the components in each pair constituting ∂Ω ∪ ∂D may be at different distance from one
another. �

We conclude this section with a more general version of Theorem A.

Theorem 2.1. Let Ω be a domain (not necessarily bounded) in R
N , N � 2, satisfying the exterior sphere condition

and suppose that ∂Ω is bounded. Let D be a domain with D ⊂ Ω , and let Γ be a connected component of ∂D

satisfying

dist(Γ, ∂Ω) = dist(∂D, ∂Ω). (2.4)

Suppose that D satisfies the interior cone condition on Γ . Assume that the solution u of problem (1.1)–(1.3) satisfies
(1.16).

Then ∂Ω must be either a sphere or the union of two concentric spheres.

Proof. Because of the assumption (2.4), the proofs of Lemma 2.2 of [14] and Lemma 3.1 in [12] also work in
this situation. Then, there exists a connected component S of ∂Ω such that both Γ and S are analytic and these are
parallel with distance R = dist(Γ, ∂Ω); also,

∏N−1
j=1 [ 1

R
−κj (x)] is constant for x ∈ S. Since S is bounded, by applying

Aleksandrov’s sphere theorem [1] to this equation, we see that S and Γ are concentric spheres.
Let E be the annulus with ∂E = S ∪ Γ . With the help of the analyticity of u, by proceeding as in the proof of

Theorem 3.1 in [14], we see that for any i 	= j

−(xj − aj )
∂u(x, t)

∂xi

+ (xi − ai)
∂u(x, t)

∂xj

= 0 in Ω × (0,+∞),

where the point a = (a1, . . . , aN) ∈ R
N is the center of the sphere S. Hence u must be radially symmetric with respect

to a. �
3. Short-time behavior of solutions of nonlinear diffusion equations

In this section, with the help of the theory of viscosity solutions, we prove our keystone result, Theorem 1.1. We
begin with some preliminaries.

Lemma 3.1. Let w = φ(u), where u is the solution of (1.10), (1.2)–(1.3). For j = 1,2, let wj solve the problem:

(wj )t = δj�wj in Ω × (0,+∞), (3.1)

wj = φ(1) on ∂Ω × (0,+∞), (3.2)

wj = 0 on Ω × {0}. (3.3)

Then

w1 � w � w2 in Ω × (0,+∞).
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Proof. Since wt = φ′(u)�w, from (1.12) and (1.13) we have:

δ1�w � wt � δ2�w in Ω × (0,+∞). (3.4)

Hence, by the comparison principle we get our claim. �
Now, let Ψ = Ψ (s) be the inverse function of Φ . Then

s = Φ
(
Ψ (s)

) =
Ψ (s)∫
1

φ′(ξ)

ξ
dξ

and

Ψ (s) = φ′(Ψ (s)
)
Ψ ′(s), (3.5)

by differentiating in s.

As in Freidlin and Wentzell [5], for 0 < ε < 1, define the function uε = uε(x, t) by

uε(x, t) = u(x, εt) for (x, t) ∈ Ω × (0,+∞).

Then uε satisfies

uε
t = ε�φ

(
uε

)
in Ω × (0,+∞),

uε = 1 on ∂Ω × (0,+∞),

uε = 0 on Ω × {0}.
Moreover, the function vε = vε(x, t) defined by

vε(x, t) = −εΦ
(
uε(x, t)

)
for (x, t) ∈ Ω × (0,+∞)

is such that uε = Ψ (−ε−1vε) and, by (3.5), we have that

vε
t = εφ′�vε − ∣∣∇vε

∣∣2 in Ω × (0,+∞), (3.6)

vε = 0 on ∂Ω × (0,+∞), (3.7)

vε = +∞ on Ω × {0}, (3.8)

where φ′ = φ′(Ψ (−ε−1vε)).

Lemma 3.2. It holds that for (x, t) ∈ Ω × (0,+∞)

δ1

δ2
· 1

4t
d(x)2 � lim inf

ε→0+ vε(x, t) � lim sup
ε→0+

vε(x, t) � δ2

δ1
· 1

4t
d(x)2,

where these limits as ε → 0+ are uniform in every compact set contained in Ω × (0,+∞).

Proof. We observe that the following hold:

δ1s � φ(s) � δ2s for s � 0, (3.9)

−δ1 log s � −Φ(s) � −δ2 log s for 0 < s � 1, (3.10)

es/δ1 � Ψ (s) � es/δ2 for − ∞ < s � 0. (3.11)

Let wε
j = wε

j (x, t) (j = 1,2) be the functions defined by

wε
j (x, t) = wj(x, εt),

where the wj ’s are defined in Lemma 3.1. With the aid of (3.9) and (3.10), it follows from Lemma 3.1 that

−εδ1 log

(
wε

2
)

� vε � −εδ2 log

(
wε

1
)

in Ω × (0,+∞).

δ1 δ2
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By the result of Varadhan [21], we see that, as ε → 0+, the functions −εδj logwε
j converge to the function 1

4t
d(x)2

uniformly on every compact set contained in Ω ×(0,+∞), since each scaled function 1
φ(1)

wj (x, δ−1
j t) solves problem

(1.1)–(1.3). Our claim then follows at once. �
The next lemma easily follows from Lemma 3.2.

Lemma 3.3. For any compact set K in Ω × (0,+∞), there exist three positive constants ε0, c1, and c2 (0 < c1 � c2)

depending on K such that

0 < c1 � vε � c2 in K,

for 0 < ε � ε0.

The key point in the proof of Theorem 1.1 is to obtain the following gradient estimate which we shall prove at the
end of this section.

Lemma 3.4. For any compact set K in Ω × (0,+∞), there exist two positive constants ε1 (ε1 � ε0) and c3 depending
on K, such that∣∣∇vε

∣∣ � c3 in K,

for 0 < ε � ε1.

Then, by combining Lemmas 3.3 and 3.4 with Gilding’s result [6], we obtain the following uniform Hölder esti-
mate.

Lemma 3.5. For any compact set K in Ω × (0,+∞), there exist two positive constants ε2 (ε2 � ε1) and c4 depending
on K, such that∣∣vε(x, t) − vε(x, s)

∣∣ � c4|t − s| 1
2 for any pair (x, t), (x, s) ∈ K

and for 0 < ε � ε2.

Theorem 3.6. The following limit

lim
ε→0+ vε(x, t) = 1

4t
d(x)2

holds uniformly on every compact set in Ω × (0,+∞).

Proof. Lemmas 3.3, 3.4, and 3.5 together with Ascoli–Arzelà’s theorem and the Cantor diagonal process yield a
positive vanishing sequence of numbers εn and a continuous function v = v(x, t) in Ω × (0,+∞) such that, as
n → ∞, the vεn ’s converge to v uniformly on every compact set contained in Ω × (0,+∞). Hence, by Lemma 3.2,

δ1

δ2
· 1

4t
d(x)2 � v(x, t) � δ2

δ1
· 1

4t
d(x)2 for (x, t) ∈ Ω × (0,+∞). (3.12)

Define a function V = V (x, t) on R
N × (0,+∞) by

V (x, t) =
{

v(x, t) if x ∈ Ω,

0 if x /∈ Ω.

Since both d2 and its gradient vanish on ∂Ω , (3.12) yields that V is continuous on R
N × (0,+∞), differentiable at any

point on ∂Ω × (0,+∞), and that both V and ∇V vanish on ∂Ω × (0,+∞). Also, (3.12) yields that limt→0+ v(x, t) =
+∞ if x ∈ Ω .

Therefore, by using the fact that vε solves problem (3.6)–(3.8), with the help of Crandall, Ishii, and Lions [2], we
see that V is a viscosity solution of the following Cauchy problem:
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Vt = −|∇V |2 in R
N × (0,+∞),

V = 0 on
(
R

N \ Ω
) × {0},

V = +∞ on Ω × {0}. (3.13)

Moreover, since a uniqueness result of Strömberg [20] tells us that the Hopf–Lax formula provides the unique viscosity
solution of the Cauchy problem (3.13), we must have that, for any (x, t) ∈ R

N × (0,+∞),

V (x, t) = inf

{
ϕ(ξ) + |x − ξ |2

4t
: ξ ∈ R

N

}
= (dist(x,R

N \ Ω))2

4t
,

where ϕ = ϕ(ξ) is the lower semicontinuous initial data defined by

ϕ(ξ) =
{+∞ if ξ ∈ Ω,

0 if ξ /∈ Ω.

By the uniqueness of V , the whole sequence {vε} converges as ε → 0+, and we get our claim. �
Proof of Theorem 1.1. The desired result follows by simply setting t = 1 and then ε = t in Theorem 3.6. �

By a simple argument, we can extend Theorem 1.1 to the important case of non-homogeneous boundary values.

Theorem 3.7. Let f = f (x) be a continuous function on ∂Ω such that

0 < b1 � f (x) � b2 for all x ∈ ∂Ω, (3.14)

for some positive constants b1 and b2. Let u be the solution of problem (1.10), (1.15), (1.3).
Then,

lim
t→0+ −4tΦ

(
u(x, t)

) = d(x)2

uniformly on every compact set in Ω.

Proof. Consider the unique bounded solutions uj = uj (x, t) (j = 1,2) of the following initial–boundary value prob-
lems:

u
j
t = �φ

(
uj

)
in Ω × (0,+∞),

uj = bj on ∂Ω × (0,+∞),

uj = 0 on Ω × {0}.
Then it follows from (3.14) and the comparison principle that

u1 � u � u2 in Ω × (0,+∞). (3.15)

With the help of Theorem 1.1, we see that, as t → 0+, the function −4tΦ(uj (x, t)) converges to the function
d(x)2 uniformly on every compact set in Ω for each j = 1,2. Indeed, for each j = 1,2, we set

U = uj

bj

, φ̃(s) = 1

bj

φ(bj s) for s ∈ R, and Φ̃(s) =
s∫

1

φ̃′(ξ)

ξ
dξ for s > 0.

Then it follows that

φ̃′(s) = φ′(bj s) for s ∈ R, Φ̃(s) = Φ(bj s) − Φ(bj ) for s > 0, (3.16)

and

Ut = �φ̃(U) in Ω × (0,+∞), (3.17)

U = 1 on ∂Ω × (0,+∞), (3.18)

U = 0 on Ω × {0}. (3.19)
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Thus, applying Theorem 1.1 to U yields that, as t → 0+, the function −4tΦ̃(U(x, t)) converges to the function d(x)2

uniformly on every compact set in Ω . Hence, with the aid of the second equality of (3.16), this means that, as t → 0+,

the function −4tΦ(uj (x, t)) converges to the function d(x)2 uniformly on every compact set in Ω .
On the other hand, since Φ is increasing in s > 0, we have from (3.15) that

−4tΦ
(
u1) � −4tΦ(u) � −4tΦ

(
u2) in Ω × (0,+∞),

which implies that, as t → 0+, the function −4tΦ(u(x, t)) converges to the function d(x)2 uniformly on every
compact set in Ω . �
Proof of Lemma 3.4. We use Bernstein’s technique (see [3,7,4,9]). Let r , τ and T be positive numbers such that
τ < 2τ < T and K ⊂ Br(0) × [2τ, T ]. Take ζ ∈ C∞(B2r (0) × (τ, T ]) satisfying

0 � ζ � 1 and ζt � 0 in B2r (0) × (τ, T ],
ζ = 1 on Br(0) × [2τ, T ], and supp ζ ⊂ B2r (0) × (τ, T ].

In the sequel of this proof, we will use the constants ε0, c1 and c2 of Lemma 3.3 relative to the compact set B2r (0) ×
[τ, T ].

Consider the function z = z(x, t) defined by

z = ζ 2
∣∣∇vε

∣∣2 − λvε, (3.20)

where λ > 0 is a constant to be determined later, and 0 < ε � ε0. Suppose that (x0, t0) is a point in B2r (0) × (τ, T ]
satisfying

ζ(x0, t0) > 0 and max
B2r (0)×[τ,T ]

z = z(x0, t0).

At (x0, t0) we then have

zt � 0, zxi
= 0, and �z � 0, (3.21)

and hence

0 � zt − εφ′(Ψ (−ε−1vε
))

�z.

The following inequality holds at (x0, t0) for some positive constants A1 and A2 independent of (x0, t0) and ε:

λ
∣∣∇vε

∣∣2 � A1
∣∣∇vε

∣∣2 + A2ζ
∣∣∇vε

∣∣3 − 2ζ 2
∣∣∇vε

∣∣2
φ′′Ψ ′�vε − εφ′ζ 2

∣∣∇2vε
∣∣2

. (3.22)

It is a consequence of (3.21) and some lengthy calculations that, for the reader’s convenience, will be carried out in
Appendix A.

Now, we want to bound the third and fourth summand on the right-hand side of (3.22). The bound for the latter
summand,

−εφ′ζ 2
∣∣∇2vε

∣∣2 � −εδ1ζ
2
∣∣∇2vε

∣∣2
,

easily follows from (1.12). In order to bound the former one, we use the fact that φ ∈ C2(R) and Lemma 3.3, the
algebraic inequality 2ab � a2 + b2, and the key inequality

0 < Ψ ′(−ε−1vε
) = Ψ (−ε−1vε)

φ′ � 1

δ1
e
− vε

εδ2 � 1

δ1
e
− c1

εδ2 , (3.23)

which follows from (3.5), (1.12) and (3.11). With these three ingredients, we show that

−2ζ 2
∣∣∇vε

∣∣2
φ′′Ψ ′�vε � 1

δ1
e
− c1

εδ2 ζ 2(A3
∣∣∇vε

∣∣4 + ∣∣∇2vε
∣∣2)

,

at (x0, t0), for some positive constant A3 independent of (x0, t0) and ε.

Set

M = max ζ
∣∣∇vε

∣∣, λ = M2 + 1

2(c + 1)
,

B2r (0)×[τ,T ] 2
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and choose ε∗ in (0, ε0] so small to obtain that

A3

δ1
e
− c1

εδ2 � 1

4(c2 + 1)
and

1

δ1
e
− c1

εδ2 � εδ1

for all ε ∈ (0, ε∗]. Then, with these choices of constants, from (3.22) and the aforementioned bounds on the second-
order derivatives of vε, we have that

M2 + 1

4(c2 + 1)

∣∣∇vε
∣∣2 � A1

∣∣∇vε
∣∣2 + A2M

∣∣∇vε
∣∣2 (3.24)

at (x0, t0), for any ε ∈ (0, ε∗].
Thus, if ∇vε(x0, t0) 	= 0, from (3.24) we get

M2 + 1

4(c2 + 1)
� A1 + A2M,

which yields the desired gradient estimate at once. If ∇vε(x0, t0) = 0, instead, we use the definition (3.20) of z to infer
that

M2 � max z + λmaxvε � λmaxvε � M2 + 1

2(c2 + 1)
c2 � M2

2
+ 1

2
,

since z(x0, t0) = −λvε(x0, t0) < 0. Therefore, M � 1 and this completes the proof. �
Remark. Lions, Souganidis, and Vázquez [9] consider the pressure equation for the porous medium equation:

(vm)t = (m − 1)vm�vm + |∇vm|2 for m > 1,

and consider the asymptotic behavior as m → 1+. They get the interior gradient estimate for vm independent of m by
a technique similar to ours. We follow the outline of their proof but we use inequality (3.23) in order to overcome the
difficulty caused by φ′ = φ′(Ψ (−ε−1vε)) in Eq. (3.6).

4. On the Cauchy problem

Let Ω be a domain given in (1.9) and consider the unique bounded solution u = u(x, t) of the following Cauchy
problem:

ut = �φ(u) in R
N × (0,+∞), and u = χRN \Ω on R

N × {0}, (4.1)

where χRN\Ω denotes the characteristic function of the set R
N \Ω and φ satisfies the assumptions (1.11)–(1.12). The

purpose of this section is to prove the following result.

Theorem 4.1. Theorems 1.1, 1.2, and 1.3 also hold for the unique bounded solution u of the Cauchy problem (4.1).

Let us start with two lemmas.

Lemma 4.2. There exist a small δ > 0 and a C2-function f = f (ξ) on R satisfying

(
φ′(f )f ′)′ + 1

2
(ξ + 2δ)f ′ = 0 and f ′ < 0 in R, and

1 > f (−∞) > f (0) > 0 > f (+∞) > −∞. (4.2)

Proof. It suffices to show that there exists a C2-function h = h(ξ) on R satisfying

(
φ′(h)h′)′ + 1

2
ξ h′ = 0 and h′ < 0 in R, and (4.3)

1 > h(−∞) > h(0) > 0 > h(+∞) > −∞. (4.4)

Indeed, setting f (ξ) = h(ξ + 2δ) for sufficiently small δ > 0 gives the desired solution f.
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The assumptions (1.11)–(1.12) guarantee existence and uniqueness, on the whole R, of the solution (h,H) of the
Cauchy problem for the system of ordinary differential equations

h′ = H

φ′(h)
, H ′ = −1

2
ξ

H

φ′(h)
, and

(
h(0),H(0)

) = (h0,H0) (4.5)

(obtained by letting H = φ′(h)h′ in (4.3)); here h0 > 0 and H0 < 0 are given numbers. Also, by uniqueness we infer
that H < 0 on R and hence h′ < 0 on R.

Thus, with the help of (1.12), by integrating the second equation in (4.5), we have that

H0 exp

{
− ξ2

4δ2

}
� H(ξ) � H0 exp

{
− ξ2

4δ1

}
< 0

and

H0

δ1
exp

{
− ξ2

4δ2

}
� h′(ξ) � H0

δ2
exp

{
− ξ2

4δ1

}
< 0

for ξ ∈ R; hence

h0 + H0

δ1

ξ∫
0

exp

{
− η2

4δ2

}
dη � h(ξ) � h0 + H0

δ2

ξ∫
0

exp

{
− η2

4δ1

}
dη,

for ξ > 0, and

h0 + H0

δ2

ξ∫
0

exp

{
− η2

4δ1

}
dη � h(ξ) � h0 + H0

δ1

ξ∫
0

exp

{
− η2

4δ2

}
dη,

for ξ < 0. By letting ξ → +∞ and ξ → −∞, respectively, we get

h0 + H0

δ1

√
πδ2 � h(+∞) � h0 + H0

δ2

√
πδ1,

h0 − H0

δ2

√
πδ1 � h(−∞) � h0 − H0

δ1

√
πδ2.

Therefore, (4.4) is obtained by setting

h0 = δ
3/2
1

2(δ
3/2
1 + δ

3/2
2 )

and H0 = − δ1δ2√
π(δ

3/2
1 + δ

3/2
2 )

in the last two formulas. �
Lemma 4.3. There exists a constant c0 > 0 satisfying

c0 � u < 1 on ∂Ω × (0,1].

Proof. First of all, by the strong maximum principle

0 < u < 1 in R
N × (0,+∞). (4.6)

Consider the signed distance function d∗ = d∗(x) of x ∈ R
N to the boundary ∂Ω defined by

d∗(x) =
{

dist(x, ∂Ω) if x ∈ Ω,

−dist(x, ∂Ω) if x /∈ Ω.
(4.7)

Since ∂Ω is C2 and compact, there exists a number ρ > 0 such that d∗(x) is C2-smooth on a compact neighborhood
N of the boundary ∂Ω given by

N = {
x ∈ R

N : −ρ � d∗(x) � ρ
}
.
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We set now

w(x, t) = f
(
t−

1
2 d∗(x)

)
for (x, t) ∈ R

N × (0,+∞). (4.8)

Then, it follows from a straightforward computation and the properties of f that

wt − �φ(w) = −1

t
f ′(t− 1

2 d∗){−δ + √
tφ′(f )�d∗} in N × (0,+∞).

Notice that if
√

t < δ
δ2 maxN |�d∗| , then wt − �φ(w) < 0. Hence, since ∂N is compact, in view of Lemma 4.2, (4.8),

and (4.1), we observe that there exists a small τ > 0 satisfying

wt − �φ(w) < 0 = ut − �φ(u) in N × (0, τ ],
w � u on ∂N × (0, τ ],
w � u on N × {0}.

Here, we note that u and w are regarded as continuous mappings from [0, τ ] to L1(N ) and, by taking into ac-
count (4.2), the initial condition is satisfied by their limits as t → 0+ in L1(N ).

Therefore it follows from the comparison principle that w � u in N × (0, τ ]. In particular, we have

u � f (0) (> 0) on ∂Ω × (0, τ ].
Combining this with (4.6) completes the proof. �
Proof of Theorem 4.1. Consider the unique bounded solutions u± = u±(x, t) of the following initial–boundary value
problems:

u±
t = �φ

(
u±)

in Ω × (0,+∞),

u+ = 1 and u− = c0 on ∂Ω × (0,+∞),

u± = 0 on Ω × {0}.
Then it follows from Lemma 4.3 and the comparison principle that

u− � u � u+ in Ω × (0,1]. (4.9)

By applying Theorem 3.7 to u±, we have that, as t → 0+, both functions −4tΦ(u±(x, t)) converge to the function
d(x)2 uniformly on every compact set in Ω .

On the other hand, since Φ is increasing in s > 0, we have from (4.9) that

−4tΦ
(
u−)

� −4tΦ(u) � −4tΦ
(
u+)

in Ω × (0,1],
which implies that, as t → 0+, the function −4tΦ(u(x, t)) converges to the function d(x)2 uniformly on every
compact set in Ω . This means that Theorem 1.1 also holds for the Cauchy problem (4.1).

Finally, proceeding as in Section 2, with the aid of the strong comparison principle for the Cauchy problem, we
can easily show that Theorems 1.2 and 1.3 also hold for the Cauchy problem (4.1). �
5. Sphere SSS

N and hyperbolic space HHH
N

The purpose of this section is to show that similar results hold also for the heat flow in the sphere S
N and the

hyperbolic space H
N with N � 2. In order to handle S

N and H
N together, let us put M = S

N or M = H
N .

Let Ω be a domain in M with bounded C2-smooth boundary ∂Ω , and denote by L the Laplace–Beltrami operator
on M. Let u = u(x, t) be the unique bounded solution either of the following initial–boundary value problem for the
heat flow:

ut = Lu in Ω × (0,+∞), (5.1)

u = 1 on ∂Ω × (0,+∞), (5.2)

u = 0 on Ω × {0}, (5.3)
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or of the following Cauchy problem for the heat flow:

ut = Lu in M × (0,+∞), and u = χM\Ω on M × {0}, (5.4)

where χM\Ω denotes the characteristic function of the set M \ Ω .
Denote by d(x) = inf{d(x, y): y ∈ ∂Ω} the geodesic distance between x and ∂Ω , where d(x, y) is the geodesic

distance between two points x and y in M. Then, with the aid of a result of Norris [15, Theorem 1.1, p. 82] concerning
the short-time asymptotics of the heat kernel of Riemannian manifolds, we later prove

Theorem 5.1. Let u be the solution either of problem (5.1)–(5.3) or of problem (5.4) in S
N or H

N . Then the function
−4t logu(x, t) converges to the function d(x)2 as t → 0+ uniformly on every compact set in Ω .

Theorem 5.1 yields the following symmetry results.

Theorem 5.2. Let u be the solution either of problem (5.1)–(5.3) or of problem (5.4) in S
N or H

N. In the case of S
N,

assume that Ω is contained in a hemisphere in S
N.

Then Theorems 1.2 and 1.3 hold for H
N and Theorem 1.2 holds for S

N in the sense that ∂Ω must be a geodesic
sphere in H

N or S
N, respectively.

Proof. By Theorem 5.1, each stationary isothermic surface of class C2 in Ω is then parallel to a connected component
of ∂Ω in the sense of the geodesic distance. The claims of our theorem can thus be proved by replacing the method of
moving planes, used in Section 2 for R

N , by a straightforward adaptation of the method of moving closed and totally
geodesic hypersurfaces for S

N or H
N developed by Kumaresan and Prajapat in [8]. �

Proof of Theorem 5.1. Consider the signed distance function d∗ = d∗(x) of x ∈ M given by the same definition
as (4.7). Since ∂Ω is C2 and compact, there exists a number ρ0 > 0 such that d∗(x) is C2-smooth on a compact
neighborhood N of ∂Ω given by

N = {
x ∈ M: −ρ0 � d∗(x) � ρ0

}
.

Set

N − = {
x ∈ M: −ρ0 � d∗(x) � 0

}
(⊂ N ).

Let u− = u−(x, t) be the unique bounded solution of the following Cauchy problem:

u−
t = Lu− in M × (0,+∞), and u− = χN − on M × {0}, (5.5)

where χN − denotes the characteristic function of the set N −. Moreover, for each 0 < ρ < ρ0, we set

Nρ = {
x ∈ M: −ρ � d∗(x) � ρ

}
(⊂ N ).

For each 0 < ρ < ρ0, let uρ+ = uρ+(x, t) be the unique bounded solution of the following Cauchy problem:

u
ρ+
t = Luρ+ in M × (0,+∞), and uρ+ = 2χNρ

on M × {0}, (5.6)

where χNρ
denotes the characteristic function of the set Nρ.

Let ρ ∈ (0,min{1, ρ0}) be arbitrarily small. Then, there exists a number tρ > 0 satisfying

uρ+ > 1 in ∂Ω × (0, tρ]. (5.7)

Thus it follows from (5.7) and the comparison principle that for any (x, t) ∈ Ω × (0, tρ]∫
N −

p(t, x, y) dy = u−(x, t) � u(x, t) � uρ+(x, t) = 2
∫

Nρ

p(t, x, y) dy, (5.8)

where p = p(t, x, y) denotes the heat kernel or the fundamental solution of the heat equation on the whole M.
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On the other hand, it follows from a result of Norris [15, Theorem 1.1, p. 82] that the function −4t logp(t, x, y)

converges to the function d(x, y)2 as t → 0+ uniformly on every compact set in M × M. If K is any compact set
contained in Ω, there exists a number tρ,1 ∈ (0, tρ] satisfying∣∣−4t logp(t, x, y) − d(x, y)2

∣∣ < ρ2 for any (t, x, y) ∈ (0, tρ,1] × K × N .

Then we have that for any (t, x, y) ∈ (0, tρ,1] × K × N

exp

(
−d(x, y)2 + ρ2

4t

)
� p(t, x, y) � exp

(
−d(x, y)2 − ρ2

4t

)
. (5.9)

Set m = maxx∈K d(x). In view of (5.8) and (5.9), let us estimate u from above. Since d(x, y) � max{0, d(x) − ρ}
for any (x, y) ∈ K × Nρ , we observe that

d(x, y)2 − ρ2 � d(x)2 − 2mρ for any (x, y) ∈ K × Nρ.

Combining this inequality and (5.9) with (5.8) yields that for any (x, t) ∈ K × (0, tρ,1]

u(x, t) � 2 exp

(
−d(x)2 − 2mρ

4t

)
|Nρ |, (5.10)

where |Nρ | denotes the volume of Nρ .
Next, we proceed to estimating u from below. For each x ∈ K, there exists a point z ∈ ∂Ω with d(x) = d(x, z).

Then there exists a geodesic ball B with radius 1
2ρ satisfying

B ⊂ N − and B ∩ Ω = {z}.
Since d(x, y) � d(x, z) + d(z, y) � d(x) + ρ for any y ∈ B , we have

d(x, y)2 + ρ2 � d(x)2 + 2(m + 1)ρ for any y ∈ B.

Combining this inequality and (5.9) with (5.8) yields that for any (x, t) ∈ K × (0, tρ,1]

u(x, t) � exp

(
−d(x)2 + 2(m + 1)ρ

4t

)
|B|, (5.11)

where |B| denotes the volume of B and |B| is independent of x ∈ K.
Therefore, it follows from (5.10) and (5.11) that there exists a number tρ,2 ∈ (0, tρ,1] satisfying for any (x, t) ∈

K × (0, tρ,2]
d(x)2 − (2m + 1)ρ � −4t logu(x, t) � d(x)2 + (2m + 3)ρ. (5.12)

This completes the proof. �
Appendix A. Proof of inequality (3.22)

Let us write v = vε for simplicity. By (3.21) we have at (x0, t0)

zt = 2ζ ζt |∇v|2 + 2ζ 2vxk
vxkt − λvt � 0, (A.1)

zxi
= 2ζ ζxi

|∇v|2 + 2ζ 2vxk
vxkxi

− λvxi
= 0, (A.2)

�z = 2|∇ζ |2|∇v|2 + 2ζ�ζ |∇v|2 + 8ζ ζxi
vxk

vxkxi
+ 2ζ 2vxkxi

vxkxi

+ 2ζ 2vxk
(�v)xk

− λ�v � 0, (A.3)

where the summation convention is understood. Hence, it follows from (A.1) and (A.3) that

0 � zt − εφ′�z

= −λ(vt − εφ′�v) + 2ζ 2vxk
(vt − εφ′�v)xk

+ 2ζ 2vxk
εφ′′Ψ ′ · (−ε−1vxk

)
�v + 2ζ ζt |∇v|2

− εφ′{2|∇ζ |2|∇v|2 + 2ζ�ζ |∇v|2 + 8ζ ζxi
vxk

vxkxi
+ 2ζ 2vxkxi

vxkxi

}
.
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Then with the aid of (3.6), we get

0 � λ|∇v|2 + 2ζ 2vxk

(−|∇v|2)
xk

− 2ζ 2|∇v|2φ′′Ψ ′�v + 2ζ ζt |∇v|2
− εφ′{2|∇ζ |2|∇v|2 + 2ζ�ζ |∇v|2 + 8ζ ζxi

vxk
vxkxi

+ 2ζ 2vxkxi
vxkxi

}
.

Here, by using (A.2) we obtain

2ζ 2vxk

(−|∇v|2)
xk

= −4ζ 2vxk
vxi

vxkxi

= −4

{
λ

2
|∇v|2 − ζ ζxi

vxi
|∇v|2

}
= −2λ|∇v|2 + 4ζ ζxi

vxi
|∇v|2.

Then it follows that

λ|∇v|2 � 4ζ ζxi
vxi

|∇v|2 − 2ζ 2|∇v|2φ′′Ψ ′�v + 2ζ ζt |∇v|2
− εφ′{2|∇ζ |2|∇v|2 + 2ζ�ζ |∇v|2 + 8ζ ζxi

vxk
vxkxi

+ 2ζ 2vxkxi
vxkxi

}
.

Next, by using inequality ab � 1
8a2 + 2b2, we get

−8εφ′ζ ζxi
vxk

vxkxi
� εφ′{ζ 2

∣∣∇2v
∣∣2 + 16|∇ζ |2|∇v|2}

� εφ′ζ 2
∣∣∇2v

∣∣2 + 16εδ2|∇ζ |2|∇v|2.
Consequently, combining these inequalities with Lemma 3.3 yields inequality (3.22).
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