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Abstract

We study the set of solutions of the nonlinear elliptic system⎧⎨
⎩

−�u + λ1u = μ1u3 + βv2u in Ω,

−�v + λ2v = μ2v3 + βu2v in Ω,

u,v > 0 in Ω, u = v = 0 on ∂Ω,

(P)

in a smooth bounded domain Ω ⊂ R
N , N � 3, with coupling parameter β ∈ R. This system arises in the study of Bose–Einstein

double condensates. We show that the value β = −√
μ1μ2 is critical for the existence of a priori bounds for solutions of (P). More

precisely, we show that for β > −√
μ1μ2, solutions of (P) are a priori bounded. In contrast, when λ1 = λ2, μ1 = μ2, (P) admits

an unbounded sequence of solutions if β � −√
μ1μ2.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper we study the existence and a priori bounds for solitary wave solutions of the following two-component
system of nonlinear Schrödinger equations (also called Gross–Pitaevskii equations):⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−i
∂

∂t
Φ1 = h̄2

2m
�Φ1 − V1(x)Φ1 + μ1|Φ1|2Φ1 + β|Φ2|2Φ1 for y ∈ Ω, t > 0,

−i
∂

∂t
Φ2 = h̄2

2m
�Φ2 − V2(x)Φ2 + μ2|Φ2|2Φ2 + β|Φ1|2Φ2 for y ∈ Ω, t > 0,

Φj = Φj(y, t) ∈ C, j = 1,2,

Φj (y, t) = 0 for y ∈ ∂Ω, t > 0, j = 1,2.

(1.1)
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This system models a binary mixture of Bose–Einstein condensates in two different hyperfine states |1〉 and |2〉
(see [7]). Physically, Φ1 and Φ2 are the corresponding condensate amplitudes, Ω ⊆ R

N is the domain for condensate
dwelling, h̄ is the Planck constant divided by 2π , m is atom mass, and Vj is the trapping potential for the j -th hyperfine
state. Moreover, μj and β are the intraspecies and interspecies scattering lengths which determine the interaction of
the states.

Throughout the paper, we assume that Ω is a smooth bounded domain and that μj > 0, j = 1,2. The latter condi-
tion implies that the self-interactions of the single states |j〉 are attractive. The sign of β determines the interaction of
state |1〉 with state |2〉. When β < 0, this interaction is repulsive (as considered, e.g., in [26]). In contrast, when β > 0,
the interaction is attractive.

To obtain solitary wave solutions of the form Φ1(x, t) = eiλ1t u(x), Φ2(x, t) = eiλ2t v(x), system (1.1) is reduced
to the following elliptic system for u, v:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h̄2

2m
�u − (λ1 + V1)u + μ1u

3 + βuv2 = 0 in Ω,

h̄2

2m
�v − (λ2 + V2)v + μ2v

3 + βu2v = 0 in Ω,

u,v > 0 in Ω, u = v = 0 on ∂Ω.

(1.2)

Motivated by recent experimental and theoretical examinations of double condensates (see [7,11–13,26]), system (1.2)
has been attracting fastly growing attention. In [17], the existence and asymptotic behavior of least energy solutions
is studied in a bounded domain with constant trapping potential, as h̄ → 0. In [18], the asymptotic behavior is studied
in R

N under the influence of nonconstant trapping potentials. When Ω = R
N , least energy and higher energy bound

states of (1.2) are investigated in [1,2,16,20,24,29].
The purpose of this paper is to analyze the impact of the parameter β (the interspecies scattering length) on a priori

bounds and the existence of multiple solutions of (1.2). We first consider a priori estimates for the following more
general version of (1.2):⎧⎨

⎩
−�u = f (x,u, v) in Ω,

−�v = g(x,u, v) in Ω,

u,v > 0 in Ω, u = v = 0 on ∂Ω.

(1.3)

Here f and g are continuous in x and smooth in u and v, and they satisfy the following asymptotic conditions at +∞:

f (x,u, v) = f∞(u, v) + h1(x,u, v), g(u, v) = g∞(u, v) + h2(x,u, v) (1.4)

where

f∞(u, v) = μ1u
3 + βuv2, g∞(u, v) = μ2v

3 + βu2v, (1.5)

and
hi(x,u, v)

(max{u,v})3
→ 0 uniformly in x ∈ Ω for i = 1,2 as max{u,v} → ∞. (1.6)

Our first result is the following.

Theorem 1.1. Assume that (1.4)–(1.6) hold. Then if N � 3, β > −√
μ1μ2, there exists a constant C = C(β,μ1,

μ2,Ω) such that for any solution (u, v) of (1.3) we have

‖u‖L∞(Ω),‖v‖L∞(Ω) � C.

The proof of Theorem 1.1 relies on Liouville type theorems which we state in Section 2 below. A priori bounds for
systems like (1.3) have been studied extensively in recent years, see [5,6,19,22,23,25,31] and the references therein.
With the exception of [22], in all these papers, it is assumed that the limiting nonlinearity (f∞, g∞) is cooperative (or
quasimonotone), i.e.,

∂f∞(u, v)

∂v
� 0,

∂g∞(u, v)

∂u
� 0. (1.7)

For cooperative systems, the maximum principle still works. So one can use various versions of the moving plane
method to prove Liouville theorems and a priori estimates. In particular, when β > 0, Theorem 1.1 follows from
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results in [6] and [23]. In contrast, our system is non-cooperative if β < 0 and therefore the methods in the above-
mentioned papers fail. To our knowledge, the result here seems to be the first in obtaining a priori bounds via Liouville
theorems for a non-cooperative system. As discussed in [22, Introduction], there are also other methods – not relying
on Liouville theorems – to obtain a priori bounds. In particular, the method in [22] works for non-cooperative systems
but requires growth restrictions on the nonlinear part which are not satisfied here.

We may assume that β < 0 from now on.
In our second result we show that the assumption on β in Theorem 1.1 is optimal. More precisely, we consider the

fully symmetric case λ1 = λ2, μ1 = μ2 and V1 = V2 ≡ 0. Then, by a rescaling, (1.2) becomes⎧⎨
⎩

−�u + u = u3 + βv2u in Ω,

−�v + v = v3 + βu2v in Ω,

u,v > 0 in Ω, u = v = 0 on ∂Ω.

(1.8)

We note that the critical value −√
μ1μ2 corresponds to β = −1 in (1.8). We also point out that (1.8) is invariant under

the reflection (u, v) → σ(u, v) = (v,u). This invariance is essential for the following multiplicity result depending
on β .

Theorem 1.2. Let N � 3.

(a) If β � −1, then system (1.8) admits a sequence (uk, vk)k of solutions with

‖uk‖L∞(Ω) + ‖vk‖L∞(Ω) → ∞.

(b) For any positive integer k there exists a number βk > −1 such that, for β < βk , system (1.8) has at least k pairs
(u, v), (v,u) of solutions.

We add some comments.

Remark 1.1. (i) For β > −1, every positive solution of the Dirichlet problem for the scalar equation −�u + u = u3

in Ω gives rise to a diagonal solution 1√
1+β

(u,u) of (1.8). In contrast, it will be evident from our construction that
the solutions obtained in Theorem 1.2 have different components u, v. Moreover, for β �= 1, system (1.8) does not
admit nontrivial solutions (u, v) with u �= v and u � v or v � u (as is easily seen by multiplying the first equation
of (1.8) with v, the second equation with u and integrating). Consequently, all solutions obtained in Theorem 1.2 have
intersecting components.

(ii) The proof of Theorem 1.2 relies on a variant of Lyusternik–Schnirelmann theory on a submanifold M of Nehari
type (depending on β) of the underlying energy space H 1

0 (Ω) × H 1
0 (Ω). The importance of this manifold is given

by the following properties: it contains all solutions of (1.8), it is invariant under the reflection σ , and σ has no fixed
points in M if β � −1.

(iii) The multiplicity statements in Theorem 1.2 carry over to the corresponding problem in the full space R
N if

compactness is restored by restricting to radial functions. More precisely, with essentially the same proof we can show
that, for β � −1, system (1.8) admits infinitely many radial bound state solutions if Ω = R

N , and the number of radial
bound states tends to infinity as β ↘ −1, β > −1.

(iv) If Ω = B1(0) is the unit ball in R
N , a different approach based on a corresponding parabolic problem shows

the existence of radial solutions of (1.8) with a prescribed number of intersections of u and v, see [30].

We briefly describe the organization of the paper and the line of arguments in our proofs. In Section 2 we prove the
Liouville theorems for the limit system

−�u = f∞(u, v), −�v = f∞(u, v) (1.9)

which are the basis for the a priori estimates asserted in Theorem 1.1. For N = 1,2, these Liouville theorems are
rather simple consequences of nonexistence results for solutions of the differential inequality −�w � w3 obtained
in [8,14,15]. The case N = 3 is essential more involved, since −�w � w3 admits solutions if the underlying domain
is a half space in R

3, see [15]. In this case we proceed in two steps. Assuming by contradiction that there exists
a nonnegative, nontrivial solution to (1.9) satisfying Dirichlet boundary conditions, we use a doubling lemma of
Poláčik, Quittner and Souplet [21], the boundary Harnack inequality of Berestycki, Caffarelli and Nirenberg [3] and
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comparison arguments to obtain a uniform gradient estimate in terms of boundary derivatives, see Lemma 2.3 below.
Then we apply a variant of Pohozaev’s identity in a family of unbounded cylindrical subdomains Zr , r > 0 in R

3+. The
gradient estimate obtained before shows that the corresponding boundary integrals over ∂Zr exist, and the identity
leads to a differential inequality in r which forces the solution to vanish everywhere. This procedure is new and should
be useful for other elliptic systems. Indeed, the procedure is even new for scalar equations, and in some cases it leads
to better results than the ones based on the moving plane method (see the references [5,6,23,31] mentioned earlier).
An example has already been given by Zou [32, p. 424] who adapted our strategy in order to prove a Liouville type
result for a quasilinear Dirichlet problem in a half space. In Section 3 we complete the proof of Theorem 1.1 by a
standard blow up argument. Finally, Section 4 contains the proof of Theorem 1.2.

We add a general remark concerning the structure of the elliptic systems (1.8) and (1.9). These systems are of
gradient type, so they can be written in the form �u = ∂uF (u, v), �v = ∂vF (u, v) with suitably potential functions
F : R

2 → R. At first glance this might lead to the expectation that all methods available for scalar problems can
also be used for this type of systems. As we already have discussed in the case of the moving plane method, this is
not true. Moreover, although Pohozaev type identities play a major role both for scalar problems and gradient type
systems, the true difficulty in the context of Liouville type theorems is to derive asymptotic estimates which allow
to state the identities for suitably chosen subsets of the domain and to use the information obtained from it. We also
note that the variational structure of (1.8) has some similarities with the one of a scalar equation, but there are also
crucial differences. In particular, we point out the subtle dependence on β concerning the location of fixed points of σ .
Avoiding fixed points is of major importance in the context of general Lyusternik–Schnirelmann theory. The situation
is much simpler in the scalar case; here Lyusternik–Schnirelmann theory is applied to the simple reflection u �→ −u

which only admits the fixed point u = 0. We note that the difference in the variational structure between gradient
systems of the type (1.8) and scalar problems has also been pointed out in [24, p. 205].

2. Liouville type theorems

As usual, we put R
N+ := {x ∈ R

N : xN > 0}. In this section we will prove the following Liouville type theorems.

Theorem 2.1. If N � 3, β > −√
μ1μ2, and (u, v) is a classical solution of the system{−�u = μ1u

3 + βv2u in RN,

−�v = μ2v
3 + βu2v in R

N
(2.1)

with u � 0 and v � 0, then (u, v) = (0,0).

Theorem 2.2. Let β > −√
μ1μ2.

(i) If N � 2 and (u, v) is a classical solution of the system⎧⎪⎨
⎪⎩

−�u = μ1u
3 + βv2u in R

N+ ,

−�v = μ2v
3 + βu2v in R

N+ ,

u, v � 0 in R
N+ , u = v = 0 on ∂R

N+ ,

(2.2)

then (u, v) = (0,0).
(ii) If N = 3 and (u, v) is a bounded classical solution of (2.2), then (u, v) = (0,0).

As we shall see below, Theorem 2.1 is a rather direct corollary of a known nonexistence result for supersolutions.
For Theorem 2.2, the same is true only in case N � 2. We now recall these nonexistence results.

Theorem 2.3.

(i) Suppose that 0 < q � N
N−2 if N � 3, 0 < q < ∞ if N = 1,2, and suppose that w ∈ C2(RN) is a nonnegative

function satisfying

−�w � wq in R
N.

Then w ≡ 0.
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(ii) Suppose that 0 < q � N+1
N−1 if N � 2, 0 < q < ∞ if N = 1, and suppose that w ∈ C2(RN+) is a nonnegative

function satisfying

−�w � wq in R
N+ , w = 0 on ∂R

N+ .

Then w ≡ 0.

Part (i) of this theorem is due to Gidas [8]. Part (ii) is due Berestycki, Capuzzo-Dolcetta and Nirenberg [4] for
q > 1, whereas a more general result including the statement was later obtained by Laptev [14,15].

Proof of Theorem 2.1. If β � 0, then −�u � μ1u
3 and −�v � μ2v

3 in R
N , so that ũ = √

μ1u satisfies −�ũ � ũ3

in R
N and ṽ = √

μ2v satisfies −�ṽ � ṽ3 in R
N . Hence u ≡ ũ ≡ 0 and v ≡ ṽ ≡ 0 by Theorem 2.3(i).

Next we assume that −√
μ1μ2 < β < 0. We put

α =
(

μ2

μ1

) 1
4

. (2.3)

Then we have the following inequality: there exists γ0 > 0 such that

α
(
μ1u

3 + βuv2) + μ2v
3 + βu2v � γ0(αu + v)3 for all u,v � 0. (2.4)

To see this, we let t = v
u

and consider the function

t �→ ρ(t) := α(μ1 + βt2) + t (μ2t
2 + β)

(α + t)3
, t � 0.

Then ρ(0) = μ1 > 0 and ρ(t) → μ2 > 0 as t → ∞. We show that ρ has no positive zero. Indeed, since −√
μ1μ2 <

β < 0,

(α + t)3ρ(t) > α
(
μ1 − √

μ1μ2t
2) + t

(
μ2t

2 − √
μ1μ2

)
= μ2

(
t −

(
μ1

μ2

) 1
2

α

)(
t2 −

(
μ1

μ2

) 1
2
)

= μ2

[
t −

(
μ1

μ2

) 1
4
]2[

t +
(

μ1

μ2

) 1
4
]

� 0 for t > 0.

Hence mint�0 ρ(t) > 0, and from this (2.4) follows.
We now put z = αu + v. Then (2.4) shows

−�z � γ0z
3 in R

N, (2.5)

so that z̃ := √
γ0z satisfies −�z̃ � z̃3. Since z̃ is nonnegative, we conclude again from Theorem 2.3(i) that z̃ ≡ 0.

Hence z ≡ 0 and therefore u ≡ 0 and v ≡ 0. �
Part (i) of Theorem 2.2 can be deduced from Theorem 2.3(ii) similarly as in the proof of Theorem 2.1. The case

N = 3 is much more delicate since the differential inequality −�w � w3 admits positive solutions in R
3+, see [15].

The remainder of this section is devoted to the proof of Theorem 2.2(ii). We first need an a priori singularity and
decay estimate for (possibly) singular solutions. The proof of the next lemma is modeled on an argument of Poláčik,
Quittner and Souplet [21].

Lemma 2.1. There is a constant C1 > 0 such that for every solution (u, v) of{−�u = μ1u
3 + βv2u,

−�v = μ2v
3 + βu2v

in R
3+, u, v � 0 in R

3+ (2.6)

we have[
u + v + |∇u| 1

2 + |∇v| 1
2
]
(x) � C1

x3
for every x = (x1, x2, x3) ∈ R

3+. (2.7)
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Proof. Suppose by contradiction that there exists a sequence of solutions (un, vn)n of (2.6) and a sequence of points
xn = (xn

1 , xn
2 , xn

3 ) ∈ R
3+, n ∈ N, such that

Mn

(
xn

)
xn

3 � 2n

for all n, where the functions Mn : R3+ → R are defined by

Mn(x) = [
un + vn + |∇un| 1

2 + |∇vn| 1
2
]
(x), x ∈ R

3+. (2.8)

By the doubling lemma of Poláčik, Quittner and Souplet [21, Lemma 5.1] there exists another sequence (yn)n ⊂ R
3+

such that

Mn

(
yn

)
yn

3 � 2n and Mn(z) � 2Mn

(
yn

)
for z ∈ Bnλn

(
yn

)
,

where λn := [Mn(y
n)]−1. We now define

ũn, ṽn :Bn(0) → R, ũn(x) = λnun

(
yn + λnx

)
, ṽn(x) = λnvn

(
yn + λnx

)
.

Then ũn, ṽn are nonnegative functions solving{−�ũn = μ1(ũn)
3 + β(ṽn)

2ũn, |x| � n,

−�ṽn = μ2(ṽn)
3 + β(ũn)

2ṽn, |x| � n.
(2.9)

Moreover,[
ũn + ṽn + |∇ũn| 1

2 + |∇ṽn| 1
2
]
(0) = 1 (2.10)

and

max
Bn(0)

[
ũn + ṽn + |∇ũn| 1

2 + |∇ṽn| 1
2
]
� 2.

By standard elliptic estimates, we deduce that a subsequence of (ũn, ṽn)n converges in C1
loc(R

N) to a solution (u, v)

of (2.1) on R
N which is nonnegative in both components. Since[

u + v + |∇u| 1
2 + |∇v| 1

2
]
(0) = 1

by (2.10), (u, v) is a nontrivial solution. This contradicts Theorem 2.1. �
Lemma 2.2. Let N = 3. Then there is a constant C2 > 0 such that, for every solution (u, v) of (2.2) and every
x = (x1, x2, x3) ∈ R

3+,

w(x) � C2
√

∂x3w(x1, x2,0), (2.11)

where w = u + v.

Proof. It clearly suffices to show that, for some C̃2 > 0, every solution (u, v) of (2.2) and every x ∈ R
3+ we have

z(x) � C̃2
√

∂x3z(x1, x2,0), (2.12)

where z = αu + v and α given by (2.3). Suppose by contradiction that there exists a sequence of solutions (un, vn)n
of (2.2) and a sequence of points xn = (xn

1 , xn
2 , xn

3 ) ∈ R
3+, n ∈ N, such that for zn := αun + vn we have

zn

(
xn

)
> n

√
∂x3zn

(
xn

1 , xn
2 ,0

)
for all n.

We put λn = 1
zn(xn)

, yn := (xn
1 , xn

2 ,0), and we consider the rescaled functions

ũn, ṽn : R3+ → R, ũn(x) = λnun

(
yn + λnx

)
, ṽn(x) = λnvn

(
yn + λnx

)
and z̃n = αũn + ṽn. Then ũn, ṽn solve again the system (2.2), and√

∂x3 z̃n(0) = λn

√
∂x3zn

(
xn

1 , xn
2 ,0

)
� 1

. (2.13)

n
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Moreover, for tn := λ−1
n x3

n and an := (0,0, tn) ∈ R
3+ we have z̃n(a

n) = 1, so that tn � C1 for all n by Lemma 2.1. We
put τ = min{ 1

2C1
, 1

16C2
1
} and consider

Bn := {
x ∈ R

3+:
∣∣x − an

∣∣ � τ t2
n

}
.

For x ∈ Bn we have |x| � tn − τ t2
n = tn(1 − τ tn) � tn(1 − τC1) � tn

2 and therefore |∇ z̃n(x)| � 2C2
1

(
tn
2 )2 = 8C2

1
t2
n

by

Lemma 2.1. From this we conclude that

z̃n(x) � z̃n

(
an

) −
(

8C2
1

t2
n

)
τ t2

n = 1 − 8C2
1τ � 1

2
for x ∈ Bn.

We now define the comparison functions

gn : R3 \ {±an
} → R, gn(x) = τ t2

n

2

(
1

|x − an| − 1

|x + an|
)

.

For every n, gn is a harmonic function which vanishes on ∂R
3+ and is bounded above by 1

2 on ∂Bn. On the other hand,
z̃n satisfies −�z̃n � γ0z̃

3
n � 0 in R

3+ with γ0 as in (2.4). Moreover, z̃n is bounded below by 1
2 on ∂Bn and vanishes

on ∂R
3+. Consequently, the functions ϕn := z̃n − gn satisfy

−�ϕn � 0 in R
3+ \ Bn,

ϕn � 0 on ∂
(
R

3+ \ Bn

)
,

lim inf|x|→∞
x∈R

3+

ϕn = lim inf|x|→∞
x∈R

3+

z̃n � 0.

Since ϕn cannot attain a negative minimum in R
3+ \ Bn by the maximum principle, we conclude that ϕn � 0 and

therefore z̃n � gn in R
3+ \ Bn. We thus obtain

∂x3 z̃n(0) � ∂x3gn(0) = τ t2
n

2

(
2

t2
n

)
= τ independently of n,

contrary to (2.13). The proof is complete. �
Lemma 2.3. Let N = 3, and let (u, v) be a bounded solution of (2.2). Then there is a constant C3 > 0 (possibly
depending on u, v) such that, for every x = (x1, x2, x3) ∈ R

3+,

∣∣∇u(x)
∣∣ + ∣∣∇v(x)

∣∣ � C3 min

{
1,

1

x3

}√
∂x3w(x1, x2,0), (2.14)

where w = u + v.

Proof. Let x ∈ R
3+ be fixed. We distinguish two cases, and we point out that the constants C3,C4, . . . chosen below

are all independent of x.

Case 1: x3 � 1. Then we consider the rescaled functions ũ, ṽ, w̃ : R3+ → R defined by

ũ(y) = x3u
(
(x1, x2,0) + x3y

)
, ṽ(y) = x3v

(
(x1, x2,0) + x3y

)
and w̃(y) = ũ(y) + ṽ(y).

Since ũ, ṽ solve again the system (2.2), Lemma 2.1 implies that

w̃(y) � 2C1 whenever |y3| � 1

2
. (2.15)

We put e3 = (0,0,1) ∈ R
3+ and Ω0 = {y ∈ R

3: |y − e3| < 1
2 }. Moreover, we note that

−�ũ = f1(y)ũ, and − �ṽ = f2(y)ṽ in Ω0, (2.16)

where f1 = μ1ũ
2 + βṽ2 and f2 = μ2ṽ

2 + βũ2. By (2.15), we have

|f1|, |f2| � C4 in Ω0. (2.17)
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Therefore, using (2.15) together with the standard estimate [10, Theorem 3.9] for solutions of the Poisson equation,
we infer that∣∣∇ũ(e3)

∣∣ � C5

(
sup

|y−e3|� 1
4

ũ(y) + sup
|y−e3|� 1

4

∣∣f1(y)ũ(y)
∣∣) � C6 sup

|y−e3|� 1
4

ũ(y) (2.18)

and similarly∣∣∇ṽ(e3)
∣∣ � C6 sup

|y−e3|� 1
4

ṽ(y). (2.19)

Using (2.16), (2.17) and the Harnack inequality (see [10, Theorem 8.20]), we also infer that

sup
|y−e3|� 1

4

ũ(y) � C7ũ(e3), sup
|y−e3|� 1

4

ṽ(y) � C7ṽ(e3). (2.20)

Combining (2.18)–(2.20) and Lemma 2.2, we obtain

∣∣∇ũ(e3)
∣∣ + ∣∣∇ṽ(e3)

∣∣ � C8w̃(e3) � C9

√
∂x3w̃(0).

We conclude that

∣∣∇u(x)
∣∣ + ∣∣∇v(x)

∣∣ = 1

x2
3

(∣∣∇ũ(e3)
∣∣ + ∣∣∇ṽ(e3)

∣∣) � C9

x2
3

√
∂x3w̃(0)

= C9

x3

√
∂x3w(x1, x2,0). (2.21)

Case 2: 0 < x3 � 1. We note that u and v solve the linear equations

−�u = g1(y)u, and − �v = g2(y)v in R
3+, (2.22)

where g1 = μ1u
2 + βv2 and g2 = μ2v

2 + βu2. Since u and v are bounded by assumption, the functions g1, g2 are
also bounded in R

3+. Since u, v are classical solutions satisfying Dirichlet boundary conditions on ∂R
3+, standard

estimates up to the boundary for solutions of the Poisson equation (see, e.g., [10, Theorem 4.16]) yield∣∣∇u(x)
∣∣ � C10

(
sup

|y−x|� 1
2

u(y) + sup
|y−x|� 1

2

∣∣gi(y)u(y)
∣∣) � C11 sup

|y−x|� 1
2

u(y) (2.23)

and ∣∣∇v(x)
∣∣ � C11 sup

|y−x|� 1
2

v(y). (2.24)

Moreover, applying the Harnack inequality up to the boundary of Berestycki, Caffarelli and Nirenberg [3, Theo-
rem 1.3] to (2.22), it follows that

sup
|y−x|� 1

2

u(y) � C12u(x1, x2,1) and sup
|y−x|� 1

2

v(y) � C12v(x1, x2,1). (2.25)

Combining (2.23)–(2.25) and Lemma 2.2, we obtain∣∣∇u(x)
∣∣ + ∣∣∇v(x)

∣∣ � C13
√

∂x3w(x1, x2,0). (2.26)

Combining (2.21) and (2.26), we conclude that

∣∣∇u(x)
∣∣ + ∣∣∇v(x)

∣∣ � (C9 + C13)min

{
1,

1

x3

}√
∂x3w(x1, x2,0) for all x ∈ R

3+.

Now the claim follows with C3 := C9 + C13. �
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The following lemma is related to a Pohozaev type identity.

Lemma 2.4. Let N = 3. For r > 0 consider the set Zr = {(x′, t): x′ ∈ R
2, |x′| � r, t � 0} ⊂ R

3+, whose boundary
consists of the two parts Cr = {(x′, t): x′ ∈ R

2, |x′| = r, t � 0} and Dr = {(x′,0): x′ ∈ R
2, |x′| � r}. Let ν denote

the outer unit normal vector field on Cr . Then∫
Dr

[
(∂x3u)2 + (∂x3v)2]dμ2 = 2

∫
Cr

[
(∂νu)(∂x3u) + (∂νv)(∂x3v)

]
dμ2 (2.27)

for every r > 0 and every solution (u, v) of (2.2).

Here and in the following, μk denotes the k-dimensional Hausdorff measure.

Proof. We use the fact that (2.2) is a gradient system, i.e., it can be written as �u = ∂uF (u, v), �v = ∂vF (u, v) with

F : R2 → R, F (u, v) = −μ1

4
u4 − μ2

4
v4 − β

2
u2v2.

For r, s > 0, consider the sets

Zs
r := {(

x′, t
)
: x′ ∈ R

2,
∣∣x′∣∣ � r, 0 � t � s

} ⊂ Zr,

Cs
r := {(

x′, t
)
: x′ ∈ R

2,
∣∣x′∣∣ = r, 0 � t � s

} ⊂ Cr and

Ds
r := {(

x′, s
)
: x′ ∈ R

2,
∣∣x′∣∣ � r

}
.

Multiplying the first equation of the system with ∂x3u, the second with ∂x3v and integrating over Zs
r , we get∫

Zs
r

[�u∂x3u + �v∂x3v]dx =
∫
Zs

r

[
∂uF (u, v)∂x3u + ∂vF (u, v)∂x3v

]
dx

=
∫
Zs

r

∂x3F(u, v) dx =
∫
Ds

r

F (u, v) dμ2 −
∫
Dr

F (u, v) dμ2 =
∫
Ds

r

F (u, v) dμ2 (2.28)

since u ≡ v ≡ 0 on ∂R
3 and thus F(u(x), v(x)) = 0 for x ∈ Dr . On the other hand, by Green’s formula,∫

Zs
r

[�u∂x3u + �v∂x3v]dx =
∫
Cs

r

[
(∂νu)(∂x3u) + (∂νv)(∂x3v)

]
dμ2 +

∫
Ds

r

[
(∂x3u)2 + (∂x3v)2]dμ2

−
∫
Dr

[
(∂x3u)2 + (∂x3v)2]dμ2 −

∫
Zs

r

[∇u∇∂x3u + ∇v∇∂x3v]dx, (2.29)

whereas∫
Zs

r

[∇u∇∂x3u + ∇v∇∂x3v]dx = 1

2

∫
Zs

r

∂x3

[|∇u|2 + |∇v|2]dx

= 1

2

∫
Ds

r

[|∇u|2 + |∇v|2]dμ2 − 1

2

∫
Dr

[
(∂x3u)2 + (∂x3v)2]dμ2. (2.30)

Combining (2.28)–(2.30), we obtain

1

2

∫
Dr

[
(∂x3u)2 + (∂x3v)2]dμ2 =

∫
Cs

r

[
(∂νu)(∂x3u) + (∂νv)(∂x3v)

]
dμ2

+
∫
Ds

([
(∂x3u)2 + (∂x3v)2] − [|∇u|2 + |∇v|2] − F(u, v)

)
dμ2.
r
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Passing to the limit s → ∞ (for fixed r > 0) and using the decay estimates given in Lemma 2.1, we get

1

2

∫
Dr

[
(∂x3u)2 + (∂x3v)2]dμ2 =

∫
Cr

[
(∂νu)(∂x3u) + (∂νv)(∂x3v)

]
dμ2,

as claimed. �
Proof of Theorem 2.2(ii) (completed). Let N = 3, and suppose by contradiction that (u, v) is a nontrivial bounded
solution of (2.2). Put h(r) = ∫

Dr
[(∂x3u)2 + (∂x3v)2]dμ2 and Sr = {(x′,0): x′ ∈ R

2, |x′| = r}. Then (2.27) and
Lemma 2.3 imply

h(r) = 2
∫
Cr

[∂νu∂x3u + ∂νv∂x3v]dμ2 � 2
∫
Cr

[|∇u|2 + |∇v|2]dμ2

� 2C2
3

∫
|x′|=r

∂x3w
(
x′,0

)( ∞∫
0

min
{
1, t−2}dt

)
dx′

� C14

∫
Sr

∂x3(u + v)dμ1 � C15
[
μ1(Sr)

] 1
2

(∫
Sr

[
(∂x3u)2 + (∂x3v)2]dμ1

) 1
2

� C16

√
rh′(r).

It follows that 1
(C16)

2r
− h′(r)

h2(r)
� 0, which implies that g(r) := ln r

(C16)
2 + 1

h(r)
is nonincreasing in r > 0. However,

g(r) → ∞ as r → ∞, which yields a contradiction. The proof is finished. �
3. A priori bounds in the case β > −√

μ1μ2

In this section we complete the proof of Theorem 1.1, and we fix β > −√
μ1μ2. We proceed by contradiction,

assuming that there is a sequence of solutions (un, vn) to (1.3) with

max
x∈Ω

un(x) + max
x∈Ω

vn(x) → +∞ as n → ∞. (3.1)

We follow a blow up procedure introduced by Gidas and Spruck [9] for scalar equations which has already been
generalized to elliptic systems, see, e.g., [6] and [5]. Since the method is standard, we only sketch the argument.
Without loss of generality, we may assume that

Mn := max
x∈Ω

un(x) � max
x∈Ω

vn(x). (3.2)

Let xn ∈ Ω satisfy un(xn) = Mn. Now we perform a rescaling, setting Ωn = {y ∈ R
N : xn + y

Mn
∈ Ω} and defining

functions Un,Vn :Ωn → R by

Un(y) = un(xn + y
Mn

)

Mn

, Vn(y) = vn(xn + y
Mn

)

Mn

for y ∈ Ωn. (3.3)

Then

1 := max
y∈Ωn

Un(y) � max
y∈Ωn

Vn(y), (3.4)

and (Un,Vn) solves the rescaled problem⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�Un = μ1U
3
n + βUnV

2
n + h1(xn + y

Mn
,un, vn)

M3
n

in Ωn,

−�Vn = μ1V
3
n + βVnU

2
n + h2(xn + y

Mn
,un, vn)

M3
n

in Ωn,
(3.5)
Un = Vn = 0 on ∂Ωn.



E.N. Dancer et al. / Ann. I. H. Poincaré – AN 27 (2010) 953–969 963
Using (1.6), we see that

sup
x∈Ω

hi(x,un, vn)

M3
n

→ 0 as n → ∞. (3.6)

Passing to a subsequence if necessary, we consider two cases.

Case 1: Mnd(xn, ∂Ω) → +∞. In this case, Ωn approaches R
N in the sense that any compact subset of R

N is
contained in

⋂
m�n Ωm for n large enough. Using elliptic regularity theory as in [5,6], we may assume that (Un,Vn) →

(U0,V0) uniformly on compact subsets of R
N where (U0,V0) is a solution of

−�U0 = μ1U
3
0 + βU0V

2
0 , −�V0 = μ2V

3
0 + βU2

0 V0 in R
N (3.7)

with 0 � U0(y) � 1, 0 � V0(y) � 1 for y ∈ RN and U0(0) = 1. This is impossible by Theorem 2.1.

Case 2: dn := Mnd(xn, ∂Ω) → d0 � 0. In this case we consider Ωn, Un and Vn as before and let yn ∈ ∂Ωn be a
point where

|yn| = dist(0, ∂Ωn) = dn.

Rotating Ωn suitably, we may assume that yn = tneN , where eN = (0, . . . ,0,1) is the n-th coordinate vector and
tn = −dn → −d0 as n → ∞. In this case, Ωn approaches the half space H := {x ∈ R

N : xN > −d0} in the sense that
Ωn ∩ BR(0) → H ∩ BR(0) for every R > 0 with respect to the Hausdorff distance. As in [5,6,9] we may now pass to
a subsequence such that (Un,Vn) → (U0,V0) uniformly on compact subsets of R

N+ , where now (U0,V0) is a solution
of the following limiting problem on H⎧⎨

⎩
−�U0 = μ1U

3
0 + βU0V

2
0 in H,

−�V0 = μ2V
3
0 + βU2

0 V0 in H,

U0 = V0 = 0 on ∂H.

(3.8)

Moreover, 0 � U0(y) � 1, 0 � V0(y) � 1 for y ∈ R
N and U0(0) = 1 (a posteriori this implies that d0 > 0). This is

impossible by Theorem 2.2.
Since in both cases we have come to a contradiction, the proof of Theorem 1.1 is complete.

4. Multiple positive solutions in the symmetric case

In this section we prove Theorem 1.2. Throughout this section, we assume that λ1 = λ2 = 1,μ1 = μ2 = 1 and
β < 0. We put H = H 1

0 (Ω) × H 1
0 (Ω), and we consider the energy functional E ∈ C2(H,R) defined by

E(u,v) = 1

2

(‖u‖2 + ‖v‖2) − 1

4

∫
Ω

(∣∣u+∣∣4 + ∣∣v+∣∣4)
dx − β

2

∫
Ω

u2v2 dx.

Here and in the following, u+ = max{u,0}, u− = −min{u,0} and ‖u‖2 = ∫
Ω

(|∇u|2 + |u|2) dx for u ∈ H 1
0 (Ω).

Moreover, for a function u ∈ Ls(Ω), we denote by |u|s the usual Ls -norm of u. We are interested in nontrivial critical
points (u, v) of E. These are critical points with u �= 0 and v �= 0, as opposed to semitrivial critical points which are
of the form (u,0) or (0, v).

Lemma 4.1. Every nontrivial critical point (u, v) ∈ H of E is a classical solution of (1.8).

Proof. A critical point (u, v) ∈ H is a weak solution of the system⎧⎪⎨
⎪⎩

−�u + (
1 − βv2

)
u = (

u+)3 in Ω,

−�v + (
1 − βu2

)
v = (

v+)3 in Ω,

u = v = 0 on ∂Ω.

(4.1)

Multiplying these equations with u− respectively v− and integrating, we get∫ ∣∣∇u−∣∣2 +
∫ (

1 − βv2)∣∣u−∣∣2 = 0 =
∫ ∣∣∇v−∣∣2 +

∫ (
1 − βu2)∣∣v−∣∣2

.

Ω Ω Ω Ω
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Since β < 0, we conclude that u,v � 0, and therefore (u, v) is a weak solution of the original system in (1.8). By
standard elliptic regularity, (u, v) is a classical solution. If u �≡ 0 and v �≡ 0, we conclude that u,v > 0 in Ω by the
strong maximum principle. �

Next we put

M =
{
(u, v) ∈ H, u, v �= 0

∣∣∣ ‖u‖2 − β
∫
Ω

u2v2 = ∫
Ω

|u+|4
‖v‖2 − β

∫
Ω

u2v2 = ∫
Ω

|v+|4
}

= {
(u, v) ∈ H, u, v �= 0

∣∣ ∂uE(u, v)u = 0, ∂vE(u, v)v = 0
}
.

Clearly, all nontrivial critical points (u, v) of E are contained in M.

Lemma 4.2.

(i) M is a C2-submanifold of H of codimension two.
(ii) If (u, v) is a critical point of the restriction EM of E to M, then (u, v) is a nontrivial critical point of E.

(iii) E(u,v) = 1
4 (‖u‖2 + ‖v‖2) for (u, v) ∈ M.

(iv) EM : M → R satisfies the Palais–Smale condition.

Proof. (i) The Sobolev embedding H 1
0 (Ω) ↪→ L4(Ω) implies that for (u, v) ∈ M we have

C‖u‖4 � |u|44 � ‖u‖2 and C‖v‖4
4 � |v|44 � ‖v‖2 (4.2)

with a constant C > 0, hence

‖u‖,‖v‖ � C−1/2 for all (u, v) ∈ M. (4.3)

Moreover, M = {(u, v) ∈ H: u,v �= 0, F (u, v) = (0,0)}, where F ∈ C2(H,R
2) is given by

F(u, v) =
(

F1(u, v)

F2(u, v)

)
=

(‖u‖2 − β
∫
Ω

u2v2 − ∫
Ω

|u+|4
‖v‖2 − β

∫
Ω

u2v2 − ∫
Ω

|v+|4
)

. (4.4)

Note that for (u, v) ∈ M we have

∂uF1(u, v)u = 2‖u‖2 − 2β

∫
Ω

u2v2 − 4
∫
Ω

∣∣u+∣∣4 = −2
∫
Ω

∣∣u+∣∣4 �= 0

and

∂vF2(u, v)v = 2‖v‖2 − 2β

∫
Ω

u2v2 − 4
∫
Ω

∣∣v+∣∣4 = −2
∫
Ω

∣∣v+∣∣4 �= 0,

whereas ∂vF1(u, v)v = −2
∫
Ω

u2v2 = ∂uF2(u, v)u. Consequently,

Tu,v :=
(

∂uF1(u, v)u ∂uF2(u, v)u

∂vF1(u, v)v ∂vF2(u, v)v

)
=

( −2
∫
Ω

|u+|4 −2β
∫
Ω

u2v2

−2β
∫
Ω

u2v2 −2
∫
Ω

|v+|4
)

∈ R
2×2.

Since (u, v) ∈ M, we have
∫
Ω

|u+|4 > −β
∫
Ω

u2v2 � 0 and
∫
Ω

|v+|4 > −β
∫
Ω

u2v2 � 0, which implies that Tu,v

is negative definite. Hence the vectors F ′(u, v)(u,0) and F ′(u, v)(0, v) are linearly independent in R
2, so that

F ′(u, v) : H → R
2 is onto. We therefore conclude that M is a C2-submanifold of H of codimension two.

(ii) If (u, v) ∈ M is a critical point of E|M, then there are Lagrangian multipliers λ1, λ2 ∈ R such that

λ1F
′
1(u, v) + λ2F

′
2(u, v) = E′(u, v) in H∗. (4.5)

Applying this to (u,0) and (0, v), respectively, gives

Tu,v

(
λ1
λ2

)
=

(
0
0

)
with Tu,v as above.

Since Tu,v is negative definite, λ1 = λ2 = 0, so that E′(u, v) = 0 by (4.5).
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(iii) For (u, v) ∈ M we have

E(u,v) = 1

2

(‖u‖2 + ‖v‖2) − 1

4

∫
Ω

(∣∣u+∣∣4 + ∣∣v+∣∣4)
dx − β

2

∫
Ω

u2v2 dx

= 1

2

(‖u‖2 + ‖v‖2) − 1

4

(
‖u‖2 + ‖v‖2 − 2β

∫
Ω

u2v2
)

− β

2

∫
Ω

u2v2 dx

= 1

4

(‖u‖2 + ‖v‖2).
(iv) Let (uk, vk)k ⊂ M be a Palais–Smale sequence for EM. Then (uk, vk)k is bounded in H by (iii). Passing to a

subsequence, we may assume that (uk, vk) ⇀ (u, v) ∈ H and uk → u, vk → v in L4(Ω). We note that

u+ �= 0 and v+ �= 0. (4.6)

Indeed, suppose by contradiction that u+ = 0. Then

lim
k→∞

∣∣u+
k

∣∣
4 → 0 and lim sup

k→∞
β

∫
Ω

u2
kv

2
k � 0,

so that ‖uk‖ → 0 since uk ∈ M. This contradicts (4.3). Similarly we exclude that v+ = 0.
Next we note that

o(1) = E′
M(uk, vk) = E′(uk, vk) − λk

1F
′
1(uk, vk) − λk

2F
′
2(uk, vk) as k → ∞ (4.7)

for appropriate sequences (λk
1)k, (λ

k
2)k ⊂ R, where F1, F2 are defined in (4.4). Since the sequence (uk, vk)k is bounded

in H, we find that

o(1) =
(

E′(uk, vk)(uk,0) − [λk
1F

′
1(uk, vk) + λk

2F
′
2(uk, vk)](uk,0)

E′(uk, vk)(0, vk) − [λk
1F

′
1(uk, vk) + λk

2F
′
2(uk, vk)](0, vk)

)

= −
( [λk

1F
′
1(uk, vk) + λk

2F
′
2(uk, vk)](uk,0)

[λk
1F

′
1(uk, vk) + λk

2F
′
2(uk, vk)](0, vk)

)
= −Tuk,vk

(
λk

1

λk
2

)

= (−Tu,v + o(1)
)(

λk
1

λk
2

)
. (4.8)

Since (uk, vk) ∈ M for every k, the weak convergence implies that

‖u‖2 − β

∫
Ω

u2v2 �
∫
Ω

∣∣u+∣∣4 and ‖v‖2 − β

∫
Ω

u2v2 �
∫
Ω

∣∣v+∣∣4
.

So as in the proof of (i) it follows that Tu,v is negative definite, and therefore λk
1, λ

k
2 → 0 by (4.8). Since F ′

1(uk, vk)

and F ′
2(uk, vk) remain bounded in H∗ as k → ∞, we now infer from (4.7) that E′(uk, vk) → 0. It is then standard to

deduce that (u, v) is a weak solution of⎧⎪⎨
⎪⎩

−�u + u = (
u+)3 + βv2u in Ω,

−�v + v = (
v+)3 + βu2v in Ω,

u = v = 0 on ∂Ω.

(4.9)

Multiplying the first equation by u and integrating by parts we get

‖u‖2 = ∣∣u+∣∣4
4 + β

∫
Ω

v2u2 = lim
k→∞

(∣∣u+
k

∣∣4
4 + β

∫
Ω

v2
ku

2
k

)
= lim

k→∞‖uk‖2

since (uk, vk) ∈ M. This implies that uk → u strongly in H 1
0 (Ω). Similarly we find that vk → v strongly in H 1

0 (Ω),
so that (uk, vk) → (u, v) strongly in H. �
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To prove the existence of multiple critical points of E, we consider the sets Mc := {(u, v) ∈ M: E(u,v) � c} and

Kc := {
(u, v) ∈ M: E(u,v) = c, E′(u, v) = 0

}
= {

(u, v) ∈ M: EM(u, v) = c, E′
M(u, v) = 0

}
for every c ∈ R, and we note that the functional E and M, Mc and Kc are invariant with respect to the involution

σ : H → H, (u, v) �→ σ(u, v) = (v,u).

We put

c(β) := inf
{
E(u,v): (u, v) ∈ M is a fixed point of σ

}
.

Note that, in contrast to the notation introduced up to now, we stress the dependence of c(β) on the parameter β in
view of the following simple but crucial fact.

Lemma 4.3. c(β) = ∞ for β � −1, and limβ→−1, β>−1 c(β) = ∞.

Proof. It follows immediately from the definition of M that σ has no fixed points in M for β � −1, hence c(β) = ∞.
If −1 < β < 0 and (u,u) ∈ M for some u ∈ H 1

0 (Ω), then

‖u‖2 = ∣∣u+∣∣4
4 + β|u|44 � (1 + β)|u|44 � C(1 + β)‖u‖4,

where the constant C is given independently of β by the Sobolev embedding H 1
0 (Ω) ↪→ L4(Ω) as in (4.2). We

conclude that ‖u‖2 � 1
C(1+β)

and therefore E(u,u) � 1
2C(1+β)

by Lemma 4.2(iii). Since 1
2C(1+β)

→ ∞ as β → −1,
the claim follows. �

Using the Palais–Smale condition for the functional EM : M → R and the fact that M is a C1,1-manifold, we
obtain the following equivariant deformation lemma. Since the proof is standard, we omit it.

Proposition 4.1. Let c ∈ R, and let N ⊂ M be a relative open σ -invariant neighborhood of Kc. Then there exists
ε > 0 and a C1-deformation η : [0,1] × Mc+ε \ N → Mc+ε such that, for all (u, v) ∈ Mc+ε \ N and s ∈ [0,1],

η
(
0, (u, v)

) = (u, v), η
(
1, (u, v)

) ∈ Mc−ε and σ
[
η
(
s, (u, v)

)] = η
(
s, σ (u, v)

)
.

For any closed σ -invariant subset A ⊂ M we now define the genus γ (A) as the smallest n ∈ N∪{0} such that there
exists a continuous map h :A → R

n \ {0} with h(σ(u, v)) = −h(u, v) for all (u, v) ∈ A. As usual, we set γ (A) = ∞
if no such map h exists. In particular, γ (A) = ∞ if A contains a fixed point of σ . By definition we have γ (∅) = 0.
We list some properties of γ .

Lemma 4.4. Let A,B ⊂ M be closed and σ -invariant.

(i) If A ⊂ B , then γ (A) � γ (B).
(ii) γ (A ∪ B) � γ (A) + γ (B).

(iii) If h :A → M is continuous and σ -equivariant, then γ (A) � γ (h(A)).

If A does not contain fixed points of σ , then:

(iv) if γ (A) > 1, then A is an infinite set;
(v) if A is compact, then γ (A) < ∞, and there exists a relatively open σ -invariant neighborhood N of A in M such

that γ (A) = γ (N).

Finally,

(vi) if S is the boundary of a bounded symmetric neighborhood of zero in a k-dimensional normed vector space and
ψ :S → M is a continuous map satisfying ψ(−u) = σ(ψ(u)), then γ (ψ(S)) � k.



E.N. Dancer et al. / Ann. I. H. Poincaré – AN 27 (2010) 953–969 967
Note that in (vii) the set ψ(S) is closed since S is compact.

Proof. Properties (i) and (iii) are immediate consequences of the definition of γ . Properties (ii) and (v) can be proved
precisely as in the case of the Krasnoselski genus, see, e.g., [27, Proposition 5.4].

To prove (iv), we note that a finite σ -invariant subset A ⊂ M without fixed points can be written as

A = {
(u1, v1), . . . , (un, vn), σ (u1, v1), . . . , σ (un, vn)

}
,

where the (ui, vi), σ (ui, vi) ∈ M, i = 1, . . . , n, are pairwise different. Therefore a continuous map h :A → R \ {0} is
defined by

h(ui, vi) = −1 and h
(
σ(ui, vi)

) = 1 for i = 1, . . . , n,

showing that γ (A) = 1.
Property (vi) is proved by contradiction, assuming that there exists a continuous map h :ψ(S) → R

k−1 \ {0} with
h(σ(u, v)) = −h(u, v). Then h ◦ ψ :S → R

k−1 \ {0} is an odd and continuous map, which contradicts the Borsuk–
Ulam theorem (see, e.g., [28, Theorem D.17.]). �
Proposition 4.2. For every c < c(β) we have γ (Kc) < ∞, and there exists ε > 0 such that

γ
(

Mc+ε
)
� γ

(
Mc−ε

) + γ (Kc). (4.10)

Proof. Since EM satisfies the Palais–Smale condition, the set Kc is compact, and it does not contain fixed points of σ

by definition of c(β). Hence γ (Kc) < ∞ by Lemma 4.4(v), and there exists a relative open σ -invariant neighborhood
N ⊂ M of Kc in M with γ (N) = γ (Kc). Let ε > 0 and η : [0,1]× Mc+ε \N → Mc+ε be chosen as in the statement
of Proposition 4.1. Put η1 := η(1, ·) : Mc+ε \ N → Mc−ε . Since η1 is σ -equivariant, Lemma 4.4(iii) implies that
γ (Mc+ε \ N) � γ (Mc−ε) and therefore

γ
(

Mc+ε
)
� γ

(
Mc+ε \ N

) + γ (N) � γ
(

Mc−ε
) + γ (Kc),

as claimed. �
The nondecreasing sequence of Lyusternik–Schnirelmann type levels associated to the genus γ is defined by

ck := inf
{
c ∈ R: γ

(
Mc

)
� k

}
, k ∈ N.

We note the following.

Proposition 4.3.

(i) For every k, ck < ∞ is bounded independently of β < 0.
(ii) ck → c̄ as k → ∞, where c(β) � c̄ � ∞.

(iii) If c := ck = ck+1 = · · · = cl < c(β) for some l � k, then γ (Kc) � l − k + 1.
(iv) If ck < c(β), then Kck

�= ∅, and Mck contains at least k pairs (u, v), (v,u) of critical points of E.

Proof. (i) Let W ⊂ H 1
0 (Ω) be a k-dimensional subspace consisting of functions u ∈ H 1

0 (Ω) with
∫
Ω

u = 0, and let
S := {u ∈ W : ‖u‖ = 1}. Then u+ �= 0 and u− �= 0 for every u ∈ S. We therefore may consider the map

ψ :S → M, ψ(u) =
((‖u+‖2

|u+|44

)1/2

u+,

(‖u−‖2

|u−|44

)1/2

u−
)

.

Clearly ψ is continuous, and ψ(−u) = σ(ψ(u)) for every u ∈ S. Hence γ (ψ(S)) � k by Lemma 4.4(vi) and therefore
ck � supu∈S E(ψ(u)) < ∞. By definition of ψ and Lemma 4.2(iii), the value of supu∈S E(ψ(u)) does not depend
on β . Hence the claim follows.

(ii) Suppose by contradiction that ck → c̄ < c(β) as k → ∞. Choosing ε > 0 as in Proposition 4.2 for c = c̄, we
find that c̄ − ε < ck for k large, hence γ (Mc̄−ε) is finite. By Proposition 4.2 we therefore conclude that γ (Mc̄+ε) �
γ (Mc̄−ε) + γ (Kc̄) < ∞, which contradicts the fact that c̄ � ck for all k.
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(iii) By assumption and the definition of the Lyusternik–Schnirelmann values we have γ (Mc−ε) � k − 1 and
γ (Mc+ε) � l for every ε > 0, hence γ (Kc) � l − k + 1 by Proposition 4.2.

(iv) If ck < c(β), then (iii) implies that γ (Kck
) � 1, hence Kck

is a nonempty σ -invariant set. If c1 < c2 < · · · < ck ,
we conclude that Mck contains at least k pairs of critical points of E. On the other hand, if ci = cj for some i < k and
j > i, then γ (Kci

) > 1 by (iii), and therefore Kci
is an infinite set by Lemma 4.4(iv). Hence in this case Mck contains

infinitely many pairs of critical points of E. �
We now complete the

Proof of Theorem 1.2. (a) Choosing (uk, vk) ∈ Kck
for every k, we get a sequence of nontrivial critical points of E

with E(uk, vk) → ∞, hence ‖uk‖2 + ‖vk‖2 → ∞ by Lemma 4.2(iii). Since

|Ω|4(|uk|4∞ + |vk|4∞
)
� |uk|44 + |vk|44 � ‖uk‖2 + ‖vk‖2,

we conclude that |uk|∞ + |vk|∞ → ∞ as k → ∞.
(b) Let k be a given positive integer. By Lemma 4.3 and Proposition 4.3(i), there exists βk > −1 such that for

β < βk we have ck < c(β). Hence E has at least k pairs of nontrivial critical points by Proposition 4.3(iv), and
therefore (1.8) admits at least k pairs (u, v), (v,u) of solutions. �
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