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Abstract

This paper is concerned with the Cauchy problem of the Burgers equation with the critical dissipation. The well-posedness and 
analyticity in both of the space and the time variables are studied based on the frequency decomposition method. The large time 
behavior is revealed for any large initial data. As a result, it is shown that any smooth and integrable solution is analytic in space 
and time as long as time is positive and behaves like the Poisson kernel as time tends to infinity. The corresponding results are also 
obtained for the quasi-geostrophic equation.
© 2020 The Author. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

We consider the Cauchy problem for the Burgers equation with the fractional Laplacian:{
∂tu + �u + u∂xu = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,
(1.1)

where � := F−1|ξ |F . We study the local solvability and the analyticity for initial data in the largest space of the 
Sobolev and Besov spaces which are related to the scaling invariant spaces and the large time behavior of solutions 
for any large initial data. It will be shown that the similar argument also works for the quasi-geostrophic equation.

It is known that the equation (1.1) is solvable locally in time (see [19,28,31]). In fact, for any initial data in 

H
1
2 (R) or Ḃ

1
p

p,1(R) with p < ∞, there exists a unique local solution. Also, the analyticity in space is proved in the 
papers [19,28], while that in time variable has been left open up to now. The first purpose of this paper is to construct 
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solutions for initial data in the Besov space B0∞,∞(R), which is analytic in both of the space and the time variables 
for positive time.

Before recalling the results on the large time behavior, let us mention about the global regularity. Consider the 
problem with the fractional Laplacian of order γ .

∂tu + �γ u + u∂xu = 0. (1.2)

It was proved that the value γ = 1 is the threshold for the occurrence of singularity in finite time or the global 
regularity (see [3,19,21,28]). In fact, if γ < 1, it is shown that the gradient of the solution blows up in finite time for 
some continuous initial data. On the other hand, if γ ≥ 1, such singularity does not appear, so that solution always 
exists globally in time. We refer to the results on the global regularizing effects in the subcritical case γ > 1 (see [21]), 
and on the non-uniqueness of weak solutions in the supercritical case γ < 1 (see [2]) and on the global regularizing 
effects for the n-dimensional Burgers equation in the critical case γ = 1 (see [11]). We should also mention about 
papers concerned with the quasi-geostrophic equation [10,27,29], where the method of [10] is inspired by Di-Giorgi 
iterative estimates, the approach of [27] involves control of Hölder norms using appropriate test functions, and the 
proof in [29] is based on a nonlocal maximum principle and to investigate a certain modulus of continuity of solutions. 
The global regularity is not the aim of this paper, but we apply their results to guarantee the global existence.

As for the large time behavior, Biler-Karch-Woyczynski [5] considered the equation with the semigroup generated 
by �γ −� (0 < γ < 2) to study the asymptotic expansion of solutions (see also [6–8]). For the equation (1.2), Karch-
Miao-Xu [25] considered the subcritical case 1 < γ < 2 to study that the large time asymptotics is described by the 
rarefaction waves with some condition in the distance. Alibaud-Imbert-Karch [1] investigated that the entropy solution 
converges to the self-similar solution for the critical case γ = 1, and the nonlinearity is negligible in the asymptotic 
expansion of solutions for the supercritical case γ < 1. In the previous paper [24], it was proved that the solution 
behaves like the Poisson kernel if initial data is integrable and small in the Besov space Ḃ0

∞,1(R). However, for large 
initial data, the large time behavior of smooth solutions has been left open up to now. In our theorem below, we show 
that any smooth and integrable solution behaves like the Poisson kernel without smallness condition for initial data.

Before stating our results, let us recall the definition of Besov spaces.

Definition (Besov spaces). Let {ψ} ∪ {φj }j∈Z be such that

supp ψ̂ ⊂ {|ξ | ≤ 2}, supp φ̂j ⊂ {2j−1 ≤ |ξ | ≤ 2j+1} for any j ∈ Z,

ψ̂(ξ) +
∞∑

j=1

φ̂j (ξ) = 1 for any ξ ∈ Rd,
∑
j∈Z

φ̂j (ξ) = 1 for any ξ ∈Rd \ {0}. (1.3)

For s ∈R and 1 ≤ p, q ≤ ∞, we define the Besov spaces as follows.

(i) Bs
p,q(Rd) is defined by

Bs
p,q(Rd) := {u ∈ S ′(Rd) | ‖u‖Bs

p,q
< ∞},

where

‖u‖Bs
p,q

:= ‖ψ ∗ u‖Lp + ∥∥{
2sj‖φj ∗ u‖Lp

}
j∈N

∥∥
	q (N)

.

(ii) Ḃs
p,q(Rd) is defined by

Ḃs
p,q(Rd) := {u ∈ S ′(Rd)/P(Rd) | ‖u‖Ḃs

p,q
< ∞},

where P(Rd) is the set of all polynomials and

‖u‖Ḃs
p,q

:= ∥∥{
2sj‖φj ∗ u‖Lp

}
j∈Z

∥∥
	q (Z)

.

We also introduce the standard spaces Lr(0, T ; Bs
p,q(Rd)) and the Chemin-Lerner spaces L̃r(0, T ; Bs

p,q(Rd))

which is defined by the set of all distributions u such that
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‖u‖L̃r (0,T ;Bs
p,q ) := ‖ψ ∗ u‖Lr(0,T ;Lp) + ∥∥{

2sj‖φj ∗ u‖Lr(0,T ;Lp)

}
j∈N

∥∥
	q (N)

< ∞.

We also define the Poisson kernel Pt(x).

Pt (x) := F−1[e−t |ξ |](x) = 
(d+1
2 ) t−d

π
d+1

2 (1 + | x
t
|2) d+1

2

for t > 0, x ∈Rd ,

where 
(·) is the Gamma function. The following is our main theorem.

Theorem 1.1. Let u0 be such that

u0 ∈ B0∞,∞(R) and lim
j→∞‖φj ∗ u0‖L∞ = 0. (1.4)

(i) There exists T > 0 and a unique solution u of (1.1) such that

u ∈ C([0, T ],B0∞,∞(R)) ∩ L̃∞(0, T ;B0∞,∞(R)) ∩ L̃1(0, T ;B1∞,∞(R)),

lim
j→∞‖φj ∗ u(t)‖L∞ = 0 for any t > 0.

Furthermore u(t, x) is real analytic in space and time if t > 0.

(ii) If in addition u0 ∈ L1(R), the solution u from (i) is global in time, satisfies that u(t) ∈ L1(R) for any t ≥ 0, and 
that for any 1 ≤ p ≤ ∞

lim
t→∞ t

1− 1
p

∥∥∥u(t) − Pt

∫
R

u0(y)dy

∥∥∥
Lp

= 0. (1.5)

Furthermore, for any α > 0 there exists C > 0 such that

‖|∇|αu(t)‖Lp ≤ Ct
−(1− 1

p
)−α for any t ≥ 1. (1.6)

Remark. The higher order asymptotic expansion in Theorem 1.2 (ii) in [24] are able to be proved also for any large 
initial data, since we already have the decay estimates of all regularity norms as (1.6). Namely, the following assertion

lim
t→∞ t

1+d(1− 1
p

)
∥∥∥u(t) − PtM + ∂xPt

∫
R

yu0(y)dy

+ 1

2
(∂xPt )

t∫
0

∫
R

u(τ, y)2dydτ + 1

2

t∫
0

(∂xPt−τ ) ∗ (MPτ+1)
2dτ

− 1

2
(∂xPt )

t∫
0

∫
R

(MPτ+1(y))2dydτ

∥∥∥
Lp

= 0

is true provided that u0 ∈ L1(R), 
∫
R |yu0(y)|dy < ∞ and (1.4) is satisfied, where M = ∫

R u0(y)dy.

Let us give remarks on the proof. Based on the frequency decomposition method (see [31,34]), we develop the 
local solvability to obtain solutions in more general spaces which include non-decaying functions, while they [31,34]
considered function spaces where the Schwartz class is dense. In Proposition 2.1 below, another frequency localized 
maximum principle is established, which enables us to work with the iterative method. On the analyticity, the existing 
method is to consider the direct computation in the frequency space through the Plancherel theorem (see e.g. [19,28]), 
or to apply the Fourier multiplier theorem to multipliers et�, et(|∂x1 |+···+|∂xd

|) (see [4,19,30]), which requires the 
boundedness of the Riesz transformation or singular integral operators. On the other hand, we simply consider the 
derivatives with the weight of time variable, which does not require the Fourier multiplier theorem, and the analyticity 
of Gevery type with order one is verified for not only space but also time variable (see Propositions 3.2, 3.3 and the 
proof of analyticity thereunder).
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As for the large time behavior (1.5) without smallness of initial data, the most important point is to get an integra-
bility of solutions

∞∫
0

‖u(t)‖Ḃ1∞,1
dt < ∞, (1.7)

which can be seen in the previous paper [24] and is useful to work via the Duhamel formula. To handle large initial 
data, we develop the time decay estimate in L∞(R) along the paper [15], which assures the smallness of u(t0) for 
some large t0. Then we can apply the argument for small data for t ≥ t0, while the integrability for [0, t0] is guaranteed 
by u ∈ L1

loc([0, ∞), Ḃ1∞,1(R)) by the result [31]. In addition, we also establish decay estimates with arbitrary positive 
regularity (1.6) for any large initial data (see also Proposition 4.3).

We next consider the quasi-geostrophic equation.⎧⎪⎨⎪⎩
∂t θ + �γ θ + (u · ∇)θ = 0, t > 0, x ∈R2,

u = (−R2θ,R1θ), t > 0, x ∈R2,

θ(0, x) = θ0(x), x ∈R2,

(1.8)

where θ :R2 →R is the unknown function, R1, R2 are the Riesz transforms in R2. The equation is an important model 
in geophysical fluid dynamics, which describes the evolution of a surface temperature field in a rotating and stratified 
fluid. We obtain the following result by modifying the method for the Burgers equation to handle the Riesz transform 
especially for the low frequency part. For the sake of simplicity, we consider initial data in L1(R2) ∩ B0∞,∞(R2) to 
avoid the complexity to get the following result.

Theorem 1.2. Let γ = 1, u0 satisfy u0 ∈ L1(R2) ∩ B0∞,∞(R2), ‖φj ∗ u0‖L∞ → 0 as j → ∞. Then, there exists a 
unique global solution u of (1.8) such that

u ∈ C([0,∞),B0∞,∞(R2)) ∩ L̃∞
loc(0,∞;B0∞,∞(R2)) ∩ L̃1

loc([0,∞);B1∞,∞(R2)),

lim
j→∞‖φj ∗ u(t)‖L∞ = 0 for any t > 0,

and u(t, x) is real analytic in space and time if t > 0. Furthermore, for any 1 ≤ p ≤ ∞
lim

t→∞ t
2(1− 1

p
)
∥∥∥u(t) − Pt

∫
R2

u0(y)dy

∥∥∥
Lp

= 0,

and for any α > 0 there exists C > 0 such that

‖|∇|αu(t)‖Lp ≤ Ct
−2(1− 1

p
)−α for any t ≥ 1.

Let us compare with known results. There are a lot of known results on the global solvability and the asymptotic 
behavior. The solvability in the case when γ = 1 was studied for small initial data in L∞(R2) in [12] and that 
for arbitrarily large data has been settled in the papers [10,27,29]. The well-posedness is also studied in Besov spaces 
in [34], where spaces are defined by the completion of the Schwartz class. Here we refer the recent papers [9,16,23,26]
on regularity of super-critical case γ < 1, where the global regularity is open. As for the large time behavior, the 
subcritical case γ > 1 was resolved by [14,20,33]. For the critical case γ = 1, the time decay estimates in Lp(R2)

for some p of weak solutions are known in [12,18,32]. We also refer to the recent papers [22] for modified equations, 
including not only critical case but also super-critical case, [13] on the existence of a compact global attracter with 
a time-independent force, and see also references therein. The contribution of Theorem 1.2 is the analyticity in the 
space and the time variables and to reveal the large time behavior of smooth solutions for any large initial data.

This paper is organized as follows. In section 2, we prepare lemmas on the frequency localized maximum principle. 
On the proof of theorems, we prove Theorem 1.1 only, since Theorem 1.2 follows analogously. Section 3 is devoted to 
showing the local solvability and the analyticity for Burgers equation. In section 4, we verify the large time behavior 
of solutions in Theorem 1.1.
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2. Preliminary

In this section, we prepare the frequency localized maximum principle for non-decaying smooth functions, which 
is motivated by the paper [34]. The Fourier multiplier theorem for the Poisson kernel and the continuity property of 
linear solutions are also investigated.

Proposition 2.1 (Frequency localized maximum principle). Let u, v, f be smooth functions on (0, ∞) ×Rd such that 
u, ∂tu, ∂2

t u, v ∈ L∞((0, ∞) ×Rd).
(i) Let j ∈ Z. If u satisfies ∂t

(
φj ∗ u

) + (v · ∇)
(
φj ∗ u

) + �
(
φj ∗ u

) = f , then there exists a positive constant c
independent of u, v, f, j such that for almost every t ≥ 0

∂t‖φj ∗ u‖L∞ + c2j‖φj ∗ u‖L∞ ≤ ‖f ‖L∞ . (2.1)

(ii) If u satisfies ∂t

(
ψ ∗ u

) + (v · ∇)
(
ψ ∗ u

) + �
(
ψ ∗ u

) = f , then for almost every t ≥ 0

∂t‖ψ ∗ u‖L∞ ≤ ‖f ‖L∞ . (2.2)

In order to prove the above proposition, we prepare two lemmas.

Lemma 2.2. Let u(t, x) be a smooth function with u, ∂tu, ∂2
t u ∈ L∞((0, ∞) ×Rd). Then ∂t‖u(t)‖L∞ exists for almost 

every t ≥ 0. Furthermore, for almost every t ≥ 0, there exists a sequence {xt,n}∞n=1 ⊂ Rd such that

‖u(t)‖L∞ = lim
n→∞u(t, xt,n) sgn

(
u(t, xt,n)

)
, (2.3)

∂t‖u(t)‖L∞ = lim
n→∞(∂tu)(t, xt,n) sgn

(
u(t, xt,n)

)
, (2.4)

where sgnu is a sign function of u.

Proof. Our proof is based on the proof of Lemma 3.2 in the paper [34], but there needs some modification to handle 
non-decaying functions. In what follows, let t ≥ 0 and |h| < 1 such that t + h ≥ 0.

The existence of ∂t‖u(t)‖L∞ for almost every t is proved by∣∣‖u(t + h)‖L∞ − ‖u(t)‖L∞
∣∣ ≤ ‖u(t + h) − u(t)‖L∞ ≤ sup

|τ−t |≤1
‖∂τu(τ)‖L∞|h|,

since this inequality implies the Lipschitz continuity of ‖u(t)‖L∞ .
We turn to prove the latter assertion. Let us consider non-negative u for the sake of simplicity. For each t +h, there 

exists a sequence {xt+h,n}∞n=1 such that

u(t + h,xt+h,n) → ‖u(t + h)‖L∞ as n → ∞. (2.5)

By considering the limit as h → 0, we can take sequences {hm}∞m=1 and {xt+hm,nm}∞m=1 such that

hm → 0, u(t + hm,xt+hm,nm) → ‖u(t)‖L∞ as m → ∞,

‖u(t + hm)‖L∞ − u(t + hm,xt+hm,nm) ≤ h2
m, (2.6)

‖u(t)‖L∞ − u(t, xt+hm,nm) ≤ h2
m, (2.7)

lim
m→∞(∂tu)(t, xt+hm,nm) exists.

Put x′
m := xt+hm,nm . It follows from the inequality (2.6) and smoothness of u in the time variable that

‖u(t + hm)‖L∞ − ‖u(t)‖L∞

hm

≤u(t + hm,x′
m) + h2

m − u(t, x′
m)

hm

≤u(t + hm,x′
m) − u(t, x′

m)

hm

+ hm

→ lim (∂tu)(t, x′
m),
m→∞
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as m → ∞, which implies

∂t‖u(t)‖L∞ ≤ lim
m→∞(∂tu)(t, x′

m). (2.8)

On the other hand, we have from (2.7) that

‖u(t + hm)‖L∞ − ‖u(t)‖L∞

hm

≥u(t + hm,x′
m) − u(t, x′

m) − h2
m

hm

≥u(t + hm,x′
m) − u(t, x′

m)

hm

− hm

→ lim
m→∞(∂tu)(t, x′

m),

as m → ∞, which proves the inequality in the opposite direction of (2.8). Hence, the assertion (2.4) of (a) together 
with (2.3) is proved for non-negative u. For general functions u, the analogous argument also works well by replacing 
u with −u at which u takes the negative value. Therefore we complete the proof. �
Lemma 2.3. Let

A := {
g ∈ L∞(Rd)

∣∣ ‖g‖L∞ = 1, supp ĝ ⊂ {ξ ∈Rd |2−1 ≤ |ξ | ≤ 2}}.
There exists c > 0 such that for all g ∈ A and {xn}∞n=1 such that

lim
n→∞g(xn) sgn(g(xn)) = ‖g‖L∞,

we have

lim
n→∞

(
�g(xn)

)
sgn(g(xn)) ≥ c. (2.9)

Proof. If the statement of the above lemma is not true, then there exist {gn}∞n=1 and {xn}∞n=1 such that

gn(xn) ≥ 1 − 1

n
, lim sup

n→∞
(�gn)(xn) ≤ 0, (2.10)

noting that it suffices to consider −gn instead of gn if gn can be negative. Let

g̃n(x) := gn(x + xn).

Noting that g̃n(0) → 1 as n → ∞ and ‖∇gn‖L∞ ≤ C‖gn‖L∞ = C, by taking a subsequence we see that there exists 
g ∈ L∞(Rd) with g(0) = 1 such that g̃n(x) → g(x) as n → ∞ uniformly with respect to x in each bounded set of Rd

by the Ascoli-Arzelá theorem and g ∈ C∞(Rd) ∩ L∞(Rd), since ̂gn is supported in the bounded set {ξ ∈ Rd | 2−1 ≤
|ξ | ≤ 2} and so is g. This g also satisfies g �≡ 1, since 1 = g(0) = (

(φ−1 + φ0 + φ1) ∗ g
)
(0) but the constant function 

1 satisfies (φ−1 + φ0 + φ1) ∗ 1 = 0. Here we recall the following formula:

�g(x) = Cd

∫
Rd

2g(x) − g(x + y) − g(x − y)

|x − y|d+1 dy, (2.11)

where Cd is a positive constant depending on the dimensions (see e.g. Lemma 3.2 in [17]). The above formula yields 
that

sgn
(
g(0)

)
�g(0) = sgn

(
g(0)

)
Cd

∫
Rd

2g(0) − g(y) − g(−y)

|y|d+1 dy > 0,

since g is not a constant function. Here we can show that

lim
n→∞

∫
Rd

2g̃n(0) − g̃n(y) − g̃n(−y)

|y|d+1 dy =
∫
Rd

2g̃(0) − g̃(y) − g̃(−y)

|y|d+1 dy.

In fact, for any δ > 0, it follows from the dominated convergence theorem that
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lim
n→∞

∫
|y|>δ

2g̃n(0) − g̃n(y) − g̃n(−y)

|y|d+1 dy =
∫

|y|>δ

2g̃(0) − g̃(y) − g̃(−y)

|y|d+1 dy,

while the uniform boundedness of ‖∇2gn‖L∞ with respect to n gives that∣∣∣ ∫
|y|<δ

2g̃n(0) − g̃n(y) − g̃n(−y)

|y|d+1 dy

∣∣∣ ≤‖∇2gn‖L∞
∫

|y|<δ

|y|2
|y|d+1 dy

≤C‖gn‖L∞δ = Cδ.

Therefore, by the assumption (2.10), we find that

0 < sgn
(
g(0)

)
�g(0) ≤ sgn

(
g(0)

)
lim

n→∞Cd

∫
Rd

2g̃n(0) − g̃n(y) − g̃n(−y)

|y|d+1 dy

= sgn
(
g(0)

)
lim inf
n→∞ �gn(xn)

≤0,

which is a contradiction. �
We are ready to prove Proposition 2.1.

Proof of Proposition 2.1. The inequality (2.1) is an immediate consequence of Lemmas 2.2, 2.3 with the scaling by 
2j and the fact that for any {xt,n}∞n=1 satisfying

‖u(t)‖L∞ = lim
n→∞u(t, xt,n) sgn

(
u(t, xt,n)

)
,

its gradient must satisfy

lim
n→∞∇u(t, xt,n) = 0.

It is also readily to show (2.2), since the same argument works well for ∂t (ψ ∗ u) by the non-negativity 0 ≤
lim infn→∞ �ψ ∗ u(t, xt,n) sgn(ψ ∗ u(t, xt,n)) for {xt,n}∞n=1 satisfying |ψ ∗ u(t, xt,n)| → ‖ψ ∗ u(t)‖L∞ as n → ∞, 
which is seen from (2.11). �

The following is the Fourier multiplier theorem for the propagator defined with the Poisson kernel.

Lemma 2.4. (see e.g. [24,31]) There exist C > 0, 0 < c < 1 independent of u0 such that

ce−Ct2j ‖φj ∗ u0‖L∞ ≤ ‖φj ∗ (e−t�u0)‖L∞ ≤ Ce−ct2j ‖φj ∗ u0‖L∞ (2.12)

for all j ∈Z and u0 ∈ B0∞,∞(Rd).

Next lemma is concerned with the continuity of the linear solution.

Lemma 2.5. (i) Let u0 ∈ B0∞,∞(Rd). Then

lim
t→0

e−t�u0 = u0 in B0∞,∞(Rd) if and only if lim
j→∞‖φj ∗ u0‖L∞ = 0.

(ii) Let u0 ∈ B0∞,∞(Rd) be such that ‖φj ∗ u0‖L∞ → 0 as j → ∞. Then

lim
T →0

‖e−t�u0‖L̃1(0,T ;B1∞,∞) = 0. (2.13)

Proof. Before proving, let us recall the proof of Proposition 2.4 (i) from [24], which would be helpful for the readers 
to understand details of the proof below.
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We prove (i) first. Since for any ξ ∈Rd with 2j−1 ≤ |ξ | ≤ 2j+1

|e−t |ξ | − 1| �
{

1 if t2j ≥ 1,

t2j if t2j ≤ 1,

we have from the Fourier multiplier theorem that

C−1 min{1, t2j }‖φj ∗ u0‖L∞ ≤‖φj ∗ (
(e−t� − 1)u0

)‖L∞

≤C min{1, t2j }‖φj ∗ u0‖L∞ .

The above first inequality implies the high frequency part of u0 vanishing by the time continuity of e−t�u0, and the 
second one yields the time continuity under the condition that high frequency of u0 vanishes.

Let us turn to prove (ii). For j0 ∈ N , it follows from (2.12) that

‖e−t�u0‖L̃1(0,T ;B1∞,∞) ≤T
(
‖ψ ∗ u0‖L∞ + sup

1≤j≤j0

2j‖φj ∗ u0‖L∞
)

+ C sup
j>j0

‖e−ct2j ‖L1(0,T )2
j‖φj ∗ u0‖L∞

≤T 2j0‖u0‖B0∞,∞ + C sup
j>j0

‖φj ∗ u0‖L∞ .

By taking j0 large and choosing T sufficiently small T � 2−j0‖u0‖B0∞,∞ , we get (2.13). �
3. Local solvability and analyticity for Burgers equation

In this section, we prove the local in time solvability and analyticity in Theorem 1.1. Only in this section, let {φj }∞j=0
be the Littlewood Paley dyadic decomposition for inhomogeneous spaces, namely, φ0 is taken as φ0 = ψ , where ψ
satisfy (1.3). Put Sj := ∑j

k=0 φj∗ for j = 0, 1, 2, · · · and Sj = 0 for j = −1, −2, · · · for the sake of simplicity. 
Consider a sequence {un}∞n=1 such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1 = e−t�S1u0,

∂tun+1 + �un+1 +
∑
l≥0

(
Sl−3un

)
∂xφl ∗ un+1

= −
∑
l≥0

( ∑
k≥l+3

φk ∗ un

)
∂xφl ∗ un − 1

2
∂x

∑
|l−k|≤2

(φk ∗ un)(φl ∗ un),

un(0) = Snu0.

(3.1)

Existence of un+1 for given un is assured by smoothness of the initial data Snu0, and we need to obtain a priori 
estimate. It follows from the boundedness of e−t� and the maximal regularity estimate in B0∞,∞(R) that

‖u1‖L̃∞([0,T ];B0∞,∞)∩L̃1(0,T ;B1∞,∞) + ‖∂tu1‖L̃1(0,T ;B0∞,∞) ≤ C‖u0‖B0∞,∞ .

We need to estimate un (n = 2, 3, · · · ) and the difference um+1 − un+1. For this purpose, we prepare the following 
lemma.

Lemma 3.1. Let T > 0, 1 ≤ q, r ≤ ∞, s > −1 and 0 < δ < 1/2. Then there exist positive constant C, c such that the 
following three inequalities hold.

‖un+1‖L̃∞(0,T ;Bs∞,q ) ≤‖u0‖Bs∞,q
+ C‖un‖

L̃2(0,T ;B
1
2∞,∞)

‖un+1‖
L̃2(0,T ;B

1
2 +s

∞,q )

+ C‖un‖
L̃2(0,T ;B

1
2∞,∞)

‖un‖
L̃2(0,T ;B

1
2 +s

∞,q )

,
(3.2)

‖un+1‖
L̃r (0,T ;B

1
r +s
∞,q )

≤‖e−tc�u0‖
L̃r (0,T ;B

1
r +s
∞,q )

+ C‖un‖
L̃2(0,T ;B

1
2∞,∞)

‖un+1‖
L̃2(0,T ;B

1
2 +s

∞,q )

+ C‖un‖˜2
1
2

‖un‖˜2
1
2 +s

,
(3.3)
L (0,T ;B∞,∞) L (0,T ;B∞,q )
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‖un+1 − um+1‖L̃2(0,T ;B−δ∞,q )
≤C‖e−tc�(Sn+1u0 − Sm+1u0)‖L̃2(0,T ;B−δ∞,q )

+ C‖un‖
L̃2(0,T ;B

1
2∞,∞)

‖un+1 − um+1‖L̃2(0,T ;B−δ∞,q )

+ C
(‖un‖

L̃2(0,T ;B
1
2∞,∞)

+ ‖um‖
L̃2(0,T ;B

1
2∞,∞)

+ ‖um+1‖
L̃2(0,T ;B

1
2∞,∞)

)‖un − um‖
L̃2(0,T ;B−δ∞,q )

.

(3.4)

Remark. The above lemma is concerned with the inhomogeneous Besov spaces, so that the constant C depends on 
the time T > 0. On the other hand, we can also consider the homogeneous Besov spaces. In that case, the constant C
is independent of T .

Proof. First we show the inequality (3.2). For j = 5, 6, 7, · · · , it follows from the recurrence relation (3.1) that

∂tφj ∗ un+1 + �φj ∗ un+1 + (
Sj−3un

)
∂xφj ∗ un+1

=(
Sj−3un

)
∂xφj ∗ un+1 − φj ∗

∑
l≥0

(
Sl−3un

)
∂xφl ∗ un+1

− φj ∗
∑
l≥0

( ∑
k≥l+3

φk ∗ un

)
∂xφl ∗ un − 1

2
φj ∗ ∂x

∑
|k−l|≤2

(φk ∗ un)(φl ∗ un).

(3.5)

By Proposition 2.1, we get that

∂t‖φj ∗ un+1‖L∞ + c2j‖φj ∗ un+1‖L∞

≤
∥∥∥(

Sj−3un

)
∂xφj ∗ un+1 − φj ∗

∑
l≥0

(
Sl−3un

)
∂xφl ∗ un+1

∥∥∥
L∞

+
∥∥∥φj ∗

∑
l∈Z

( ∑
k≥l+3

φk ∗ un

)
∂xφl ∗ un

∥∥∥
L∞ + 1

2

∥∥∥φj ∗ ∂x

∑
|k−l|≤2

(φk ∗ un)(φl ∗ un)

∥∥∥
L∞ .

Noting that the left member is e−tc2j
∂t (e

tc2j ‖φj ∗ un+1‖L∞), multiplying by etc2j
and integrating in both sides, we 

have that

‖φj ∗ un+1(t)‖L∞ ≤ e−tc2j ‖φj ∗ u0‖L∞ + I(t) + II(t) + III(t), (3.6)

where

I(t) :=
t∫

0

e−(t−τ)c2j
∥∥∥(

Sj−3un

)
∂xφj ∗ un+1 − φj ∗

∑
l≥0

(
Sl−3un

)
∂xφl ∗ un+1

∥∥∥
L∞dτ,

II(t) :=
t∫

0

e−(t−τ)c2j
∥∥∥φj ∗

∑
l∈Z

( ∑
k≥l+3

φk ∗ un

)
∂xφl ∗ un

∥∥∥
L∞dτ,

III(t) :=
t∫

0

e−(t−τ)c2j 1

2

∥∥∥φj ∗ ∂x

∑
|k−l|≤2

(φk ∗ un)(φl ∗ un)

∥∥∥
L∞dτ.

We estimate the above three by the use of the Fourier multiplier theorem and the Hölder inequality. The first term I is 
estimated with a kind of commutator estimates (see e.g. (3.4) and (3.5) in [24]) as
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I(t) ≤C

t∫
0

‖∂xSj−3un‖L∞
3∑

μ=−3

‖φj+μ ∗ un+1‖L∞dτ

≤C

t∫
0

∑
k≤j−3

2k‖φk ∗ un‖L∞
3∑

μ=−3

‖φj+μ ∗ un+1‖L∞dτ

≤C
∑

k≤j−3

2k‖φk ∗ un‖L2(0,T ;L∞)

3∑
μ=−3

‖φj+μ ∗ un+1‖L2(0,T ;L∞)

≤C‖un‖
L̃2(0,T ;B

1
2∞,∞)

∑
k≤j−3

2
1
2 k

3∑
μ=−3

‖φj+μ ∗ un+1‖L2(0,T ;L∞).

Above, we notice that there is a difference between Sj−3 and Sj−8 from [24], but the finite dyadic numbers of 
frequency component does not disturb the estimates, and we can estimate similarly. We multiply by 2sj and take the 
sequence norm 	q(Z) after the supremum for t to get

{∑
j≥5

(
2sj sup

t∈(0,T )

I(t)
)q

} 1
q ≤ C‖un‖

L̃2(0,T ;B
1
2∞,∞)

‖un+1‖
L̃2(0,T ;B

1
2 +s

∞,q )

.

Since φj ∗ ∑
l≥0

(∑
k≥l+3 φk ∗ un

)
∂xφl ∗ un = φj ∗ (∑j+3

k=j−3(φk ∗ un) 
∑

l≤k−3 ∂xφl ∗ un

)
, the second term II is also 

handled in the similar way to the first one I(t):

(∑
j≥5

(
2sj sup

t∈(0,T )

II(t)
)q

} 1
q ≤C‖un‖

L̃2(0,T ;B
1
2∞,∞)

‖un‖
L̃2(0,T ;B

1
2 +s

∞,q )

.

As to the third term III, we also apply the Fourier multiplier theorem and the Hölder inequality to get that

III(t) ≤C
∑

k≥j−5

k+2∑
l=k−2

t∫
0

2j‖φk ∗ un‖L∞‖φl ∗ un‖L∞dτ

≤C
∑

k≥j−5

2−(k−j)2k
k+2∑

l=k−2

‖φk ∗ un‖L2(0,T ;L∞)‖φl ∗ un‖L2(0,T ;L∞)

≤C
∑

m≥−5

2−m · 2j+m
2∑

μ=−2

‖φj+m ∗ un‖L2(0,T ;L∞)‖φj+m+μ ∗ un‖L2(0,T ;L∞).

By multiplying by 2sj and taking the sequence norm of 	q(Z) after the supremum for t , we obtain that

{∑
j≥5

(
2sj sup

t∈(0,T )

III(t)
)q

} 1
q

≤C
∑

m≥−5

2−(1+s)m
{∑

j≥5

(
2(1+s)(j+m)

2∑
μ=−2

‖φj+m ∗ un‖L2(0,T ;L∞)‖φj+m+μ ∗ un‖L2(0,T ;L∞)

)q} 1
q

≤C‖un‖
L̃2(0,T ;B

1
2∞,∞)

‖un‖
L̃2(0,T ;B

1
2 +s

∞,q )

.

By the above estimates for I, II, III and the inequality (3.6), we obtain the inequality (3.2) for the frequency away 
from the origin. As to the frequency around the origin, we apply (2.1), (2.2) to (3.5) and integrate to get that for 
j = 0, 1, 2, 3, 4
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‖φj ∗ un+1‖L∞ ≤‖φj ∗ u0‖L∞ +
t∫

0

(∥∥∥φj ∗
∑
l≥0

(
Sl−3un

)
∂xφl ∗ un+1

∥∥∥
L∞

+
∥∥∥φj ∗

∑
l≥0

( ∑
k≥l+3

φk ∗ un

)
∂xφl ∗ un

∥∥∥
L∞

+ 1

2

∥∥∥φj ∗ ∂x

∑
|k−l|≤2

(φk ∗ un)(φl ∗ un)

∥∥∥
L∞

)
dτ

≤‖φj ∗ u0‖L∞ + C

t∫
0

( 5∑
l=0

2∑
k=0

‖φk ∗ un‖L∞‖φl ∗ un+1‖L∞

+
5∑

k=0

2∑
l=0

‖φk ∗ un‖L∞‖φl ∗ un‖L∞

+
∑

|k−l|≤2

2−(1+s)k · 2
1
2 k‖φk ∗ un‖L∞2( 1

2 +s)l‖φl ∗ un)‖L∞
)
dτ.

(3.7)

Hence, we obtain that{ 4∑
j=0

(
2sj‖φj ∗ un+1‖L∞(0,T ;L∞)

)q} 1
q ≤‖u0‖Bs∞,q

+ C‖un‖
L̃2(0,T ;B

1
2∞,∞)

‖un‖
L̃2(0,T ;B

1
2 +s

∞,q )

+ C‖un‖
L̃2(0,T ;B

1
2∞,∞)

‖un‖
L̃2(0,T ;B

1
2 +s

∞,q )

,

which prove the estimate of (3.2) for low frequency part. We complete the proof of (3.2).
We next prove the estimate (3.3). By taking Lr(0, T ) norm for the estimate (3.6), applying the inequality (2.12) to 

the first term in the right member of (3.6) and order exchanging of integration for integrals of I, II and III, we have 
that for j = 5, 6, · · ·

‖φj ∗ un+1(t)‖Lr(0,T ;L∞) ≤ C
(
‖φj ∗ e−tc�u0‖L̃r (0,T ;L∞) + 2− 1

r
j
(̃

I(T ) + ĨI(T ) + ĨII(T )
))

, (3.8)

where ̃I, ̃II, ĨII are similar to I, II, III such that e−(t−τ)c2j
is replaced with 1. By multiplying this inequality by 2( 1

r
+s)j , 

and taking the sequence norm of 	q(Z), the same argument as before enables us to get the estimate of high frequency 
part of (3.3). As to the low frequency, we can also apply the argument (3.7) to obtain the required estimate.

Let us prove the last estimate (3.4). By the recurrence relation (3.1), we write

∂t (un+1 − um+1) + �(un+1 − um+1) +
∑
l∈Z

(
Sl−3un

)
∂xφl ∗ (un+1 − um+1)

= −
∑
l∈Z

(
Sl−3(un − um)

)
∂xφl ∗ um+1

−
∑
l∈Z

( ∑
k≥l+3

φk ∗ (un − um)
)
∂xφl ∗ un −

∑
l∈Z

( ∑
k≥l+3

φk ∗ um

)
∂xφl ∗ (un − um)

− 1

2
∂x

∑
|l−k|≤2

(
φk ∗ (un − um)

)
(φj ∗ un) − 1

2
∂x

∑
|l−k|≤2

(φk ∗ um)
(
φj ∗ (un − um)

)
.

The similar arguments to the proof of (3.2), (3.3) and Step 3 in the proof of Theorem 1.3 in [34] are applicable, each 
terms can be handled analogously to the previous estimates, and we obtain the estimate (3.4). �
Proof of unique solvability in Theorem 1.1. First we derive a uniform boundedness of {un}∞n=1 to construct a solu-
tion. We consider the estimates that

‖un‖L̃∞(0,T ;B0∞,∞) ≤ C0‖u0‖B0∞,∞, ‖un‖˜2
1
2

≤ 2ε, (3.9)

L (0,T ;B∞,∞)
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where the constant C0 ≥ 2 is larger than absolute constants appearing in the propositions and lemmas and ε will be 
fixed as a small constant.

When n = 1, (3.9) is possible to be obtained, since the first one is just the boundedness of e−t� and the second one 
for small T is assured by (2.13) and the interpolation inequality,

‖f ‖
L̃2(0,T ;B

1
2∞,∞)

≤ ‖f ‖
1
2

L̃∞(0,T ;B0∞,∞)
‖f ‖

1
2

L̃1(0,T ;B1∞,∞)
,

which is on the controllability of the norm of L̃2(0, T ; B
1
2∞,∞(R)) by L̃∞(0, T ; B0∞,∞(R)) ∩ L̃1(0, T ; B1∞,∞(R)). 

We also take T smaller such that the inequality ‖e−tc�u0‖
L̃2(0,T ;B

1
2∞,∞)

≤ ε holds, where c > 0 is a small constant 

appearing in (3.3).
We fix ε > 0 small enough such that ε � (C0)

−1, which gives the bounds

‖un‖
L̃2(0,T ;B

1
2∞,∞)

≤ 1

16C0
.

Let us consider the estimates for un+1 under the assumption (3.9) for un. It follows from the inequality (3.2) for 
s = 0 and the assumption for un that

‖un+1‖L̃∞(0,T ;B0∞,∞) ≤‖u0‖B0∞,∞ + C0
1

16C0
‖un+1‖

L̃2(0,T ;B
1
2∞,∞)

+ C0
1

16C0
‖un‖

L̃2(0,T ;B
1
2∞,∞)

,

‖un+1‖L̃∞(0,T ;B0∞,∞) ≤2‖u0‖B0∞,∞ .

We also apply (3.3) for s = 0 to get that

‖un+1‖
L̃2(0,T ;B

1
2∞,∞)

≤ε + C0 · 1

16C0
‖un+1‖

L̃2(0,T ;B
1
2∞,∞)

+ C0 · 1

16C0
‖un‖

L̃2(0,T ;B
1
2 −s

∞,∞)

,

‖un+1‖
L̃2(0,T ;B

1
2∞,∞)

≤2ε.

Hence, the uniform estimates (3.9) is proved.
We next consider the convergence of un in ̃L2(0, T ; B−δ∞,∞(R)). For fixed 0 < δ < 1/2, we have from the inequality 

(3.4) that

‖un+1 − um+1‖L̃2(0,T ;B−δ∞,∞)
≤C0‖e−tc�(Sn+1u0 − Sm+1u0)‖L̃2(0,T ;B−δ∞,∞)

+ C0 · 1

16C0
‖un+1 − um+1‖L̃2(0,T ;B−δ∞,∞)

+ C0 · 3

16C0
‖un − um‖

L̃2(0,T ;B−δ∞,∞)
,

15

16
‖un+1 − um+1‖L̃2(0,T ;B−δ∞,∞)

≤C‖(Sn+1 − Sm+1)u0‖
B

− 1
2 −δ

∞,∞

+ 3

16
‖un − um‖

L̃2(0,T ;B−δ∞,∞)
,

‖un+1 − um+1‖L̃2(0,T ;B−δ∞,∞)
≤C2−min{n,m}‖u0‖B0∞,∞ + 1

5
‖un − um‖

L̃2(0,T ;B−δ∞,∞)
.

The above inequality yields that

‖un+1 − un‖L̃2(0,T ;B−δ∞,∞)
≤ C2−n‖u0‖B0∞,∞,

which prove the existence of the following limit

u := lim
n→∞un = lim

n→∞u1 +
n−1∑

(uk+1 − uk) in L̃2(0, T ;B−δ∞,∞(R).
k=1
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It can be checked that u also satisfies the same inequality as (3.9), and the standard limit argument ensures that u
satisfies (1.1) in the sense of distribution. The uniqueness is proved by applying the inequality like (3.4) for the same 
initial data. �

We next study the analyticity of solutions. Let us prepare a lemma and a proposition.

Proposition 3.2. Let α, β ∈ N ∪{0} and 1 ≤ q ≤ ∞. Then there exists a positive constant C0 independent of α, β such 
that for any u0 ∈ B0∞,q (R)

‖tα+β∂α
t ∂β

x e−t�u0‖B0∞,q
+ ‖tα+β∂α

t ∂β
x e−t�u0‖L̃1(0,T ;B1∞,q ) ≤ C

α+β
0 (α + β)! ‖u0‖B0∞,q

. (3.10)

Proof. It follows from ∂t e
−t� = −�e−t� that

‖∂α
t ∂β

x e−t�u0‖B0∞,q
= ‖�α∂β

x e−t�u0‖B0∞,q
= ‖(�e

− t
α+β

�
)α(∂xe

− t
α+β

�
)βu0‖B0∞,q

.

The smoothing effect of e−t� implies that

‖∂α
t ∂β

x e−t�u0‖B0∞,q
≤ Cα+β

(α + β

t

)α+β‖u0‖B0∞,q
.

The above inequality and Stirling’s approximation yield the desired estimate of the first term in the left member of 
(3.10). As for the second term, we also have from the above estimate and the maximal regularity estimate in the 
Chemin-Lerner spaces that

‖tα+β∂α
t ∂β

x e−t�u0‖L̃1(0,T ;B1∞,q ) =‖(�e
− t

2(α+β)
�
)α(∂xe

− t
2(α+β)

�
)βe− t

2 �u0‖L̃1(0,T ;B1∞,q )

≤Cα+β(α + β)α+β‖e− t
2 �u0‖L̃1(0,T ;B1∞,q )

≤CCα+β(α + β)α+β‖u0‖B0∞,q
.

Therefore we obtain the inequality (3.10). �
Based on the proof of Lemma 3.1, we show the following nonlinear estimates to obtain the analyticity.

Proposition 3.3. Let ∂α
t,x = ∂

α0
t ∂

α1
x , α! := α0!α1! and |α| = α0 +α1 for α = (α0, α1) ∈ (N∪{0})2. Assume that |α| ≥ 1. 

Then there exists a positive constant C independent of α such that for any 1 ≤ q ≤ ∞

‖t |α|∂α
t,xun+1‖L̃∞(0,T ;B0∞,q )∩L̃1(0,T ;B1∞,q )

≤C|α|‖t |α|−1∂α
t,xun+1‖L̃1(0,T ;B0∞,q )

+ C‖un‖L̃1(0,T ;B1∞,1)
‖t |α|∂α

t,xun+1‖L̃∞(0,T ;B0∞,q )

+ C
∑

β �=0, β+γ=α

α!
β!γ ! ‖t

|β|∂β
t,xun‖L̃∞(0,T ;B0∞,1)

‖t |γ |∂γ
t,xun+1‖L̃1(0,T ;B1∞,q )

+ C
∑

β+γ=α

α!
β!γ ! ‖t

|β|∂β
t,xun‖

L̃2(0,T ;B
1
2∞,∞)

‖t |γ |∂γ
t,xun‖

L̃2(0,T ;B
1
2∞,q )

,

(3.11)
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Proof. By applying ∂α
t,x to the recurrence relation (3.1) and the similar argument as in (3.5), we write

∂tφj ∗ (∂α
t,xun+1) + �φj ∗ (∂α

t,xun+1) + (
Sj−3un

)
∂xφj ∗ (∂α

t,xun+1)

=(
Sj−3un

)
∂xφj ∗ (∂α

t,xun+1) − φj ∗
∑
l∈Z

(
Sl−3un

)
∂xφl ∗ (∂α

t,xun+1)

+ φj ∗
∑
l∈Z

(
Sj−3un

)
∂xφl ∗ (∂α

t,xun+1) − ∂α
t,xφj ∗

∑
l∈Z

(
Sj−3un

)
∂xφl ∗ un+1

− ∂α
t,xφj ∗

∑
l∈Z

( ∑
k≥l+3

φk ∗ un

)
∂xφl ∗ un − ∂α

t,x

1

2
φj ∗ ∂x

∑
|k−l|≤2

(φk ∗ un)(φl ∗ un).

It follows from Proposition 2.1 and the Leibniz rule that for j = 5, 6, · · ·
∂t‖φj ∗ (∂α

t,xun+1)‖L∞ + c2j‖φj ∗ (∂α
t,xun+1)‖L∞

≤
∥∥∥(

Sj−3un

)
∂xφj ∗ (∂α

t,xun+1) − φj ∗
∑
l∈Z

(
Sl−3un

)
∂xφl ∗ (∂α

t,xun+1)

∥∥∥
L∞

+
∑

β �=0, β+γ=α

α!
β!γ !

∥∥∥φj ∗
∑
l∈Z

(
Sl−3∂

β
t,xun

)
∂xφl ∗ (∂

γ
t,xun+1)

∥∥∥
L∞

+
∑

β+γ=α

α!
β!γ !

∥∥∥φj ∗
∑
l∈Z

( ∑
k≥l+3

φk ∗ ∂
β
t,xun

)
∂xφl ∗ (∂

γ
t,xun

)∥∥∥
L∞

+ 1

2

∑
β+γ=α

α!
β!γ !

∥∥∥φj ∗ ∂x

∑
|k−l|≤2

(φk ∗ ∂
β
t,xun)(φl ∗ ∂

γ
t,xun)

∥∥∥
L∞ .

Multiplying the above inequality by t |α| and noting that t |α|∂tf = ∂t (t
|α|f ) − |α|t |α|−1f with f = ‖φj ∗

(∂α
t,xun+1)‖L∞ and t |α| = t |β|t |γ |, we have that

∂t‖φj ∗ (t |α|∂α
t,xun+1)‖L∞ + c2j‖φj ∗ (t |α|∂α

t,xun+1)‖L∞

≤|α|‖φj ∗ (t |α|−1∂α
t,xun+1)‖L∞

+
∥∥∥(

Sj−3un

)
∂xφj ∗ (t |α|∂α

t,xun+1) − φj ∗
∑
l∈Z

(
Sl−3un

)
∂xφl ∗ (t |α|∂α

t,xun+1)

∥∥∥
L∞

+
∑

β �=0, β+γ=α

α!
β!γ !

∥∥∥φj ∗
∑
l∈Z

(
Sl−3t

|β|∂β
t,xun

)
∂xφl ∗ (t |γ |∂γ

t,xun+1)

∥∥∥
L∞

+
∑

β+γ=α

α!
β!γ !

∥∥∥φj ∗
∑
l∈Z

( ∑
k≥l+3

φk ∗ t |β|∂β
t,xun

)
∂xφl ∗ (t |γ |∂γ

t,xun

)∥∥∥
L∞

+ 1

2

∑
β+γ=α

α!
β!γ !

∥∥∥φj ∗ ∂x

∑
|k−l|≤2

(φk ∗ t |β|∂β
t,xun)(φl ∗ t |γ |∂γ

t,xun)

∥∥∥
L∞ .

By t |α|∂α
t,xun+1 = 0 for t = 0 and the analogous argument to the estimates of I, II, III and ̃I, ĨI, ĨII appearing in (3.6)

and (3.8), we obtain the desired inequality (3.11) for the frequency away from the origin. As for the frequency around 
the origin, we apply the similar inequality to (3.7) to get the required inequality. The proof is finished. �

Let us turn to prove the analyticity.

Proof of analyticity in Theorem 1.1. The solution u constructed in the previous proof of unique solvability satisfies 
u(t) ∈ B0

∞,1(R) for almost every t ∈ (0, T ] since L̃1(0, T ; B1∞,∞(R)) is embedded to L1(0, T ; B0
∞,1(R)). Hence, the 

problem is reduced to the one for initial data u0 ∈ B0
∞,1(R).

For initial data u0 ∈ B0
∞,1(R), we consider the sequence {un}∞n=1 in (3.1) again to obtain the uniform boundedness 

in L̃∞(0, T ; B0 (R)) ∩ L̃1(0, T ; B1 (R)) like (3.9):
∞,1 ∞,1
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‖un‖L̃∞([0,T ];B0∞,1)
≤ C0‖u0‖B0∞,1

, ‖un‖L̃1(0,T ;B1∞,1)
≤ 2ε, (3.12)

with small fixed constant ε > 0. By Lemma 3.1 and the similar argument to unique solvability, we obtain the uniform 
boundedness of {un}∞n=1 in the space L̃∞(0, T ; B0∞,q (R)) ∩ L̃1(0, T ; B1∞,q (R)) for q = 1, ∞. In addition, we also 
derive another boundedness for analyticity, namely, we will show that there exist C0, C1 > 0 such that

‖t |α|∂α
t,xun‖L̃∞(0,T ;B0∞,1)∩L̃1(0,T ;B1∞,1)

≤ C
|α|−1
0 C

|α|
1 α!

(1 + |α|)4 (3.13)

for any n ∈ N , α = (α0, α1) ∈ (N ∪ {0})2, where ∂α
t,x = ∂

α0
t ∂

α1
x , C0 and C1 are fixed sufficiently large and depend on 

‖u0‖B0∞,1
.

We prove (3.13) by induction argument with respect to n and α. When n = 1, (3.13) is proved by Proposition 3.2. 
When |α| = 0, the inequality (3.13) is true by (3.12). Here take n′ ∈N and α′ ∈ (N ∪{0})2 \ {(0, 0)} and let us assume 
that (3.13) is true for un′ with all α ∈ (N ∪ {0})2 and for un′+1 with all α such that |α| ≤ |α′| − 1. We need to consider 
the estimate (3.13) for un′+1 with α = α′. It follows from the inequality (3.11) and the assumption of induction and 
(3.12) that

‖t |α′|∂α′
t,xun′+1‖L̃∞(0,T ;B0∞,1)∩L̃1(0,T ;B1∞,1)

≤C|α′|‖t |α′|−1∂α′
t,xun′+1‖L̃1(0,T ;B0∞,1)

+ C‖un′ ‖L̃1(0,T ;B1∞,1)
‖t |α′|∂α′

t,xun′+1‖L̃∞(0,T ;B0∞,1)

+ C
∑

β �=0,β+γ=α′

α′!
β!γ !

C
|β|−1
0 C

|β|
1 β!

(1 + |β|)4

C
|γ |−1
0 C

|γ |
1 γ !

(1 + |γ |)4

+ C
∑

β+γ=α′

α′!
β!γ !

C
|β|−1
0 C

|β|
1 β!

(1 + |β|)4

C
|γ |−1
0 C

|γ |
1 γ !

(1 + |γ |)4 .

≤C|α′|‖t |α′|−1∂α′
t,xun′+1‖L̃1(0,T ;B0∞,1)

+ C · 2ε‖t |α′|∂α′
t,xun′+1‖L̃∞(0,T ;B0∞,1)

+ CC
|α′|−2
0 C

|α′|
1 α′!

(1 + |α′|)4 ,

and

‖t |α′|∂α′
t,xun′+1‖L̃∞(0,T ;B0∞,1)∩L̃1(0,T ;B1∞,1)

≤C|α′|‖t |α′|−1∂α
t,xun′+1‖L̃1(0,T ;B0∞,1)

+ C

C0
· C

|α′|−1
0 C

|α′|
1 α′!

(1 + |α′|)4 ,

since we can take ε sufficiently small. Hence, we need to estimate |α′|‖t |α′|−1∂α′
t,xun′+1‖L̃1(0,T ;B0∞,q ). For α′ = (α′

0, α
′
1), 

we have

|α′|‖t |α′|−1∂α′
t,xun′+1‖L1(0,T ;B0∞,1)

=α′
0‖tα

′
0−1+α′

1∂t (∂
α′

0−1
t ∂

α′
1

x )un′+1‖L1(0,T ;B0∞,1)
+ α′

1‖tα
′
0+α′

1−1∂x(∂
α′

0
t ∂

α′
1−1

x )un′+1‖L1(0,T ;B0∞,1)
.

For the first term in the right member, by operating tα
′
0−1+α′

1∂
α′

0−1
t ∂

α′
1

x to (3.1), estimating directly with taking the 
norm of L1(0, T ; B0

∞,1(R)), and applying the assumption of the induction for α with |α| ≤ (α′
0 − 1) + α′

1 = |α′| − 1, 
we get that
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α′
0‖tα

′
0−1+α′

1∂t (∂
α′

0−1
t ∂

α′
1

x )un′+1‖L1(0,T ;B0∞,1)

≤Cα′
0‖tα

′
0−1+α′

1∂
α′

0−1
t ∂

α′
1

x un′+1‖L1(0,T ;B1∞,1)

+ C
∑

β+γ≤(α′
0−1,α′

1)

(α′
0 − 1)!α′

1!
β!γ ! ‖t |β|∂β

t,xun′ ‖L̃∞(0,T ;B0∞,1)
‖t |γ |∂γ

t,xun′+1‖L̃1(0,T ;B1∞,1)

+ C
∑

β+γ≤(α′
0−1,α′

1)

(α′
0 − 1)!α′

1!
β!γ ! ‖t |β|∂β

t,xun′ ‖L̃∞(0,T ;B0∞,1)
‖t |γ |∂γ

t,xun′ ‖L̃1(0,T ;B1∞,1)

≤Cα′
0 · C

|α′|−2
0 C

|α′|−1
1 (α′

0 − 1)!α′
1!

(1 + |α′| − 1)4 + C

C0
· C

|α′|−2
0 C

|α′|−1
1 α′!

(1 + |α′|)4

= 2C

C2
0C1

· C
|α′|−1
0 C

|α′|
1 α′!

(1 + |α′|)4 .

As for the second, since ∂x is a mapping from B1∞,1(R) to B0
∞,1(R), the following holds:

α′
1‖tα

′
0+α′

1−1∂x(∂
α′

0
t ∂

α′
1−1

x )un′+1‖L1(0,T ;B0∞,1)
≤Cα′

1‖tα
′
0+α′

1−1∂
α′

0
t ∂

α′
1−1

x un′+1‖L1(0,T ;B1∞,1)

≤Cα′
1 · C

|α′|−2
0 C

|α′|−1
1 α′

0!(α′
1 − 1)!

(1 + |α′| − 1)4

= C

C0C1
· C

|α′|−1
0 C

|α′|
1 α′!

(1 + |α′|)4 .

Hence, the above four inequalities yield that

‖t |α′|∂α′
t,xun′+1‖L̃∞(0,T ;B0∞,1)∩L̃1(0,T ;B1∞,1)

≤
( C

C0
+ C

C2
0C1

)C
|α′|−1
0 C

|α′|
1 α′!

(1 + |α′|)4

≤C
|α′|−1
0 C

|α′|
1 α′!

(1 + |α′|)4 ,

where C0, C1 are taken sufficiently large. Therefore, we obtain the estimate (3.13) for all n ∈N and α ∈ (N ∪ {0})2.
The estimates (3.12) implies the solvability of solution in the space C([0, T ], B0

∞,1(R)) ∩ L̃1(0, T ; B1∞,1(R)), and 
(3.13) for all n ∈ N enables us to get the same boundedness of the solution, which verifies the analyticity of solution 
in space-time. The proof of analyticity is completed. �
4. Large time behavior for Burgers equation

We start by considering the initial data u0 ∈ L1(R) ∩ B0
∞,1(R), since initial data in L1(R) with (1.4) can be 

approximated by functions in L1(R) ∩ B0
∞,1(R). Let u0 ∈ L1(R) ∩ B0

∞,1(R) and we consider a solution u of (1.1)
such that

u ∈ C([0,∞),B0
∞,1(R)) ∩ L1

loc([0,∞),B1∞,1(R)), (4.1)

noting that the argument of solvability in section 3 is applicable to that in B0
∞,1(R) and the global regularity (see e.g. 

[28,31]) assures the global existence. We prepare the following lemma to guarantee the integrability of the solution 
for all the positive time.

Lemma 4.1. Let u0 ∈ L1(R) ∩ B0
∞,1(R). Then there exists a unique global solution u ∈ C([0, ∞), L1(R) ∩

B0 (R)) ∩ L1 (0, ∞; B1 (R)) of the integral equation
∞,1 loc ∞,1
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u(t) = e−t�u0 − 1

2

t∫
0

e−(t−τ)�∂xu(τ)2 dτ. (4.2)

Proof. We start by the local solvability in L1(R) ∩ B0
∞,1(R). We consider a sequence of approximating solutions in 

the framework of B1∞,1(R) by the similar argument of the local solvability in Section 3 together with the boundedness 
in L1(R). Let {un}∞n=1 be defined by (3.1). On the estimates in L1(R), we estimate the corresponding integral equation 
in (3.1) that

‖u1(t)‖L1 = ‖e−t�u0‖L1 ≤ ‖u0‖L1,

‖un+1(t)‖L1 ≤‖u0‖L1 + C

t∫
0

‖un‖L1(‖un+1‖Ḃ1∞,1
+ ‖un‖Ḃ1∞,1

)dτ

≤‖u0‖L1 + C(‖un+1‖L1(0,t;Ḃ1∞,1)
+ ‖un‖L1(0,t;Ḃ1∞,1)

)‖u‖L∞(0,t;L1).

Following the proof of unique solvability in section 3, we have from Lemma 3.1 for q = 1 that

‖un‖L̃∞(0,T ;B0∞,1)
≤ C‖u0‖B0∞,1

, ‖un‖L̃1(0,T ;B1∞,1)
≤ 2ε,

‖un+1 − um+1‖L̃2(0,T ;B−δ
∞,1)

≤C2−min{n,m}‖u0‖B0∞,1
+ 1

5
‖un − um‖

L̃2(0,T ;B−δ
∞,1)

,

where ε > 0 is a fixed sufficiently small constant, T is small and is depending on u0. Hence we deduce from the above 
four estimates that for some fixed small constant ε > 0 and small T , un satisfies that

‖un‖L∞(0,T ;L1) ≤ C‖u0‖L1 , ‖un‖L̃∞(0,T ;B0∞,1)
≤ C‖u0‖B0∞,1

, ‖un‖L̃1(0,T ;B1∞,1)
≤ 2ε,

‖un+1 − un‖L̃2(0,T ;B−δ
∞,1)

≤ C2−n.

So we get a solution u ∈ L∞(0, T ; B0
∞,1(R)) ∩ L1(0, T ; B1∞,1(R)). Noting that un is a bounded sequence in L∞(R)

the dual of L1(R), we see that un may converge to u in the topology of dual weak sense in L∞(R) by taking a 
subsequence if necessary, so un(t, x) converges to u(t, x) for almost everywhere x ∈R. The Fatou lemma yields that

‖u(t)‖L1 ≤ lim inf
n→∞ ‖un(t)‖L1 ≤ C‖u0‖L1 .

This inequality proves u(t) ∈ L1(R), and we have that u satisfies the integral equation (4.2) thanks to the following 
estimate of nonlinear term

t∫
0

‖e−(t−τ)�∂xu(τ)2‖L1∩B0∞,1
dτ ≤C

t∫
0

‖u‖L1∩B0∞,1
‖u‖B1∞,1

dτ

≤C‖u‖L∞(0,T ;L1∩B0∞,1)
‖u‖L1(0,T ;B1∞,1)

,

although we omit the detail. This estimates also implies the time continuity of u in L1(R) ∩B0
∞,1(R), since the linear 

part e−t�u0 is continuous in L1(R) ∩ B1∞,1(R). To verify larger existence time, we apply the global regularity; The 
boundedness of the derivative (see Corollary 3.5 from [28], page 1690 from [28,31]):

L := sup
t>T0

‖∂xu(t)‖L∞ < ∞, for each T0 > 0.

Let us fix T0. The above boundedness and the L∞-maximum principle allow us to obtain local solution with the data 
u(t0) (t0 ≥ T0) in a time interval [t0, t0 + T̃ ] with a constant length T̃ independent of t0. In fact, we can control the 
linear part as follows.

‖e−t�u(t0)‖L1(0,T̃ ;B1∞,1)
≤ C‖t− 1

2 ‖u(t0)‖
B

1
2

‖L1(0,T̃ ) ≤ CT̃
1
2 sup ‖u(t)‖W 1,∞
∞,∞ t>T0
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by which we can perform the fixed point argument any number of times. We then have u ∈ L1
loc([0, ∞), Ḃ1∞,1(R)), 

which proves Lemma 4.1. �
The following proposition is essential to handle the large time behavior of solutions.

Proposition 4.2. Let u be a solution of the integral equation (4.2) obtained in Lemma 4.1. Then u ∈ L1(0, ∞;
Ḃ1∞,1(R)).

Sketch of proof. We start by proving the decay estimate of the solution in L∞(R) along the paper [15]. By taking xt

such that |u(t, xt )| = ‖u(t)‖L∞ , we have from the equation that

∂t‖u(t)‖L∞ ≤ −�u(t, xt ) sgn(u(t, xt )). (4.3)

Without loss of generality, we can assume that u(t, xt) ≥ 0, since it suffices to consider −u(t, xt ) otherwise, so let 
u(t, xt ) ≥ 0. We also put

Bδ(xt ) := {y ∈ R | |y − xt | ≤ δ}, �1 := {y ∈ Bδ(xt ) |u(t, xt ) − u(t, y) ≥ u(t, xt )/2},
where δ will be taken later. Then it follows from u(t, xt) ≥ u(t, y) for all y ∈R that

�u(t, xt ) ≥ P.V .

∫
�1

u(t, xt ) − u(t, y)

|xt − y|2 dy ≥ u(t, xt )

2δ2

∫
�1

dy.

On the other hand, we have from the maximum principle in L1(R) that

‖u0‖L1 ≥ ‖u(t)‖L1 ≥
∫

Bδ(xt )\�1

|u(t, y)|dy ≥ u(t, xt )

2

( ∫
Bδ(xt )

dy −
∫
�1

dy
)
.

The above inequalities, (4.3) and 
∫
Bδ(xt )

dy = 2δ imply that

∂t‖u(t)‖L∞ ≤ −u(t, xt )

2δ2

∫
�1

dy ≤ u(t, xt )

2δ2

(2‖u0‖L1

u(t, xt )
− 2δ

)
.

By taking δ = 2‖u0‖L1/u(t, xt ), we get that

∂t‖u(t)‖L∞ ≤ −u(t, xt )

2δ2

2‖u0‖L1

u(t, xt )
= − ‖u‖2

L∞
4‖u0‖L1

,

‖u(t)‖L∞ ≤ ‖u0‖L∞

1 + ‖u0‖L∞
4‖u0‖L1

t
, (4.4)

which completes the proof of time decay estimate of u in L∞(R).
We turn to prove u ∈ L1(0, ∞; Ḃ1∞,1(R)), dividing into two cases; ‖u0‖L∞ ≤ δ0, and ‖u0‖L∞ > δ0, where δ0 is a 

small constant which will be taken later.
If ‖u0‖L∞ ≤ δ0, the solution also satisfies ‖u(t)‖L∞ ≤ δ thanks to the maximum principle in L∞(R). Then we 

can estimate directly the integral equation by the maximal regularity estimate Ḃ0
∞,1(R) and the bilinear estimate 

‖u2‖Ḃ1∞,1
≤ ‖u‖L∞‖u‖Ḃ1∞,1

that

‖u‖L∞(0,∞;Ḃ0∞,1)∩L1(0,∞;Ḃ1∞,1)
≤C‖u0‖Ḃ0∞,1

+ C

∞∫
0

‖∂xu
2‖Ḃ0∞,1

dτ

≤C‖u0‖Ḃ0∞,1
+ C‖u‖L∞(0,∞;L∞)‖u‖L1(0,∞;Ḃ0∞,1)

≤C‖u0‖Ḃ0∞,1
+ Cδ0‖u‖L∞(0,∞;Ḃ0∞,1)∩L1(0,∞;Ḃ1∞,1)

.

By taking δ0 such that Cδ0 ≤ 1/2, we have that
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‖u‖L∞(0,∞;Ḃ0∞,1)∩L1(0,∞;Ḃ1∞,1)
≤ 2C‖u0‖Ḃ0∞,1

,

which proves u ∈ L1(0, ∞; Ḃ1∞,1(R)).
If ‖u0‖L∞ > δ0, we apply the estimate (4.4) to get that

‖u(t0)‖L∞ ≤ δ0 for t0 = 4‖u0‖L1

‖u0‖L∞

(‖u0‖L∞

δ0
− 1

)
.

Hence, the previous case of small initial data implies that u ∈ L1(t0, ∞; Ḃ1∞,1(R)), which assures u ∈ L1(0, ∞;
Ḃ1∞,1(R)). �

We next prove the decay estimates of solutions.

Proposition 4.3. Let u be a solution of the integral equation (4.2) obtained in Lemma 4.1 such that u ∈
C([0, ∞), Ḃs

∞,1(R)) for any s > 0. Let α > 0 and 1 ≤ p ≤ ∞. Then

‖u(t)‖Lp ≤ Ct
−(1− 1

p
) for any t ≥ 1. (4.5)

∞∫
0

‖tαu(t)‖
Ḃ1+α

∞,1
dt < ∞ and ‖|∇|αu(t)‖Lp ≤ Ct

−α−(1− 1
p

) for any t ≥ 1. (4.6)

Proof. The decay estimate (4.5) is a consequence of (4.4) or Proposition 5.2 in [24], since u ∈ L1(0, ∞; Ḃ1∞,(R)) by 
Proposition 4.2. We also notice that the decay estimate of ‖|∇|αu(t)‖L∞ in (4.6) can be proved by Proposition 5.2 in 
[24] once the integrability in (4.6) is obtained. Hence, all we have to do is to prove the former part of (4.6).

We prove the integrability in (4.6). Since u is smooth, it is sufficient to consider the integrability for large t . By the 
decay estimate (4.5), we see that for any δ > 0, there exists tδ > 0 such that ‖u(t)‖L∞ ≤ δ for any t ≥ tδ , so we may 
consider the integrability on the time interval with smallness of L∞ norm. Put

v(t) := u(tδ + t) for t ≥ 0.

For any T > 0, we estimate the integral equation for v similarly to the proof of Proposition 5.2 in [24]. For the 
linear part, it follows from the smoothing effect and the maximal regularity for e−t� that

T∫
0

‖tαe−t�v(0)‖
Ḃ1+α

∞,1
dt ≤ C

T∫
0

‖e− t
2 �v(0)‖Ḃ1∞,1

dt ≤ C‖v(0)‖Ḃ0∞,1
.

As to the nonlinear part, we decompose [0, t] into [0, t/2] and [t/2, t] to have that

T∫
0

∥∥∥tα

t
2∫

0

e−(t−τ)�∂xv(τ )2 dτ

∥∥∥
Ḃ1+α

∞,1

dt

≤C

T∫
0

tα

t
2∫

0

(t − τ)−α‖e− t−τ
2 �v(τ)2‖Ḃ2∞,1

dτ dt ≤ C

T∫
0

T∫
2τ

‖e− t−τ
2 �v(τ)2‖Ḃ2∞,1

dt dτ

≤C

T∫
0

‖v(τ)2‖Ḃ1∞,1
dτ ≤ C‖v‖L∞(0,T ;L∞)‖v‖L1(0,T ;Ḃ1∞,1)

,

where we have used the smoothing effect and the maximal regularity estimate for e− t−τ
2 � and the bilinear estimate 

‖v2‖Ḃ1∞,1
≤ ‖v‖L∞‖v‖Ḃ1∞1

. On the integral on [t/2, t], it follows from tα ≤ 2ατα for t/2 ≤ τ ≤ t , the maximal regu-

larity estimate in Ḃα+1
∞,1 (R) and the bilinear estimate ‖v2‖

Ḃ1+α ≤ C‖v‖L∞‖v‖
Ḃ1+α that
∞,1 ∞,1
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T∫
0

∥∥∥tα

t∫
t
2

e−(t−τ)�∂xv(τ )2 dτ

∥∥∥
Ḃ1+α

∞,1

dt ≤C

T∫
0

t∫
t
2

‖e−(t−τ)�ταv(τ )2‖
Ḃ2+α

∞,1
dτ dt

≤C

T∫
0

T∫
τ

‖e−(t−τ)�ταv(τ )2‖
Ḃ2+α

∞,1
dt dτ

≤C

T∫
0

‖ταv(τ )2‖
Ḃ1+α

∞,1
dt dτ

≤C‖v‖L∞(0,T ;L∞)

T∫
0

τα‖v‖
Ḃ1+α

∞,1
dτ.

We also have on the norm of L1(0, T ; Ḃ1∞,1(R)) from the maximal regularity estimate in Ḃ0
∞,1(R) and the bilinear 

estimate ‖v2‖Ḃ1∞,1
≤ C‖v‖L∞‖v‖Ḃ1∞,1

that

‖v‖L1(0,T ;Ḃ1∞,1)
≤ C‖v(0)‖Ḃ0∞,1

+ C‖v‖L∞(0,T ;L∞)‖v‖L1(0,T ;Ḃ1∞,1)
.

The above four estimates and ‖v(t)‖L∞ ≤ δ yield that

‖tαv(t)‖
L1

t (0,T ;Ḃ1+α
∞,1 )

+ ‖v(t)‖L1(0,T ;Ḃ1∞,1)

≤C‖v(0)‖Ḃ0∞,1
+ Cδ

(‖tαv(t)‖
L1

t (0,T ;Ḃ1+α
∞,1 )

+ ‖v(t)‖L1(0,T ;Ḃ1∞,1)

)
.

(4.7)

Here taking δ such that Cδ ≤ 1/2, where C is a constant appearing in the above estimate, we obtain

‖tαv(t)‖
L1

t (0,T ;Ḃ1+α
∞,1 )

+ ‖v(t)‖L1(0,T ;Ḃ1∞,1)
≤ 2C‖v(0)‖Ḃ0∞,1

for any T > 0.

Hence the integrability in (4.6) is verified and we finish to prove Proposition 4.3. �
Based on the lemma and the propositions, we prove the large time behavior.

Proof of large time behavior (1.5). Let u be a global solution, which is obtained by (i) of Theorem 1.1 and the global 
regularity, with initial data u0 satisfying (1.4) and u0 ∈ L1(R). We see that u(t) ∈ Bs

∞,1(R) for any s ≥ 0, t > 0, since 
we can have regularity as much as it is needed thanks to the analyticity and the global regularity. Once u(t) ∈ L1(R)

for all t near 0 is proved, we are able to apply Lemma 4.1 and Propositions 4.3 by regarding the initial data as u(t0)

for time t0 > 0 near 0 to obtain the decay estimates (4.5) and (4.6), which proves the large time behavior (1.5) in the 
same argument of the paper [24] (see the proof of (1.4)). All we have to do is to prove that u(t) ∈ L1(R) for all t
near 0.

Put u0,N := SNu0, where SN = (ψ + ∑N
j=1 φj )∗. We denote by uN , u the solutions with the initial data u0,N , u0, 

respectively. It follows from u0,N ∈ L1(R) ∩ B0
∞,1(R) and Lemma 4.1 that uN satisfies the energy identity in L2(R)

‖uN(t)‖2
L2 + 2

t∫
0

‖� 1
2 uN‖2

L2dτ ≤ ‖u0,N‖2
L2,

and hence,

‖uN(t)‖2
L2 ≤ ‖u0,N‖2

L2 ≤ ‖u0‖2
L2 .

Since L2(R) is a Hilbert space, we can take a subsequence of {uN(t)}∞N=1, denoted by the same, uN(t) converges to 
an element ̃u(t) of L2(R) in the weak topology of L2(R). On the other hand, we can prove that uN(t) tends to u(t)

in S ′(R) for almost every t . In fact, it follows from the same proof of (3.4) that for q = ∞
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‖uN − u‖
L̃2(0,T ;B−δ∞,q )

≤C‖e−tc�(u0,N − u0)‖L̃2(0,T ;B−δ∞,q )

+ C
(‖uN‖

L̃2(0,T ;B
1
2∞,∞)

+ ‖u‖
L̃2(0,T ;B

1
2∞,∞)

)‖uN − u‖
L̃2(0,T ;B−δ∞,q )

.

(4.8)

We note that

lim
T →0

(
sup
N

‖uN‖
L̃2(0,T ;B

1
2∞,∞)

+ ‖u‖
L̃2(0,T ;B

1
2∞,∞)

)
= 0

which is assured by that u0,N is defined by restricting the frequency of u0. Hence, by taking T = T0 > 0 sufficiently 
small, the inequality (4.8) yields that

‖uN − u‖
L̃2(0,T0;B−δ∞,∞)

≤ 2C‖e−tc�(SNu0 − u0)‖L̃2(0,T0;B−δ∞,∞)
≤ 2CT

1
2

0 ‖u0,N − u0‖B−δ∞,∞ → 0

as N → ∞. So uN(t, x) converges to u(t, x) as N → ∞ in D′((0, T0) ×R). Therefore for almost every t , u(t) = ũ(t)

in S ′(R) and uN(t, x) tends to u(t, x) for almost every x ∈ R by the weak convergence in L2(R) of uN(t) to u(t). By 
applying the Fatou Lemma, we have that

‖u(t)‖L1 ≤ lim inf
N→∞ ‖uN(t)‖L1 ≤ lim inf

N→∞ ‖u0,N‖L1 ≤ C‖u0‖L1 < ∞,

where we have used the maximum principle in L1(R), namely, ‖uN(t)‖L1 ≤ ‖u0,N‖L1 obtained by multiplying the 
equation by u/|u|, integrating and the integration by parts. Therefore, u(t) ∈ L1(R) for almost every t ≤ T0 and 
the smoothness of u assures that u(t) ∈ L1(R) for all t ≤ T0. We complete the proof of the large time behavior in 
Theorem 1.1. �
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