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Abstract

The paper investigates the long time average of the solutions of Hamilton–Jacobi equations with a noncoercive, nonconvex
Hamiltonian in the torus R2/Z2. We give nonresonance conditions under which the long-time average converges to a constant.
In the resonant case, we show that the limit still exists, although it is nonconstant in general. We compute the limit at points where
it is not locally constant.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

Nous considérons le comportement en temps grand de la moyenne temporelle de solutions d’équations de Hamilton–Jacobi pour
un hamiltonien non convexe et non coercif dans le tore R2/Z2. Nous mettons en évidence des conditions de non-résonnance sous
lesquelles cette moyenne converge vers une constante. Dans le cas où il y a résonnance, nous montrons que la limite existe, bien
qu’étant non constante en général. Nous calculons la limite aux points où celle-ci est non localement constante.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Since the pioneering work of Lions, Papanicolaou and Varadhan [12], the ergodic problem for Hamilton–Jacobi
equations has attracted considerable attention. For equations of evolutionary type:{

ut + H(x,Du) = 0 in RN × (0,+∞),

u(x,0) = 0 in RN
(1)

where H : RN × RN → R is continuous, one is interested in the long time behavior of the time average u(x, t)/t . For
equations of stationary type:

λvλ + H(x,Dvλ) = 0 in RN, (2)

the object of investigation is the limiting behavior, when the discount factor λ vanishes, of the quantity λvλ.
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A typical result in this framework is the following: If H(·,p) is ZN -periodic and H(x, ·) is coercive:

lim|p|→+∞H(x,p) = +∞ uniformly with respect to x, (3)

the following ergodicity property holds:

lim
t→+∞

u(x, t)

t
= lim

λ→0
λvλ(x) = c uniformly with respect to x, (4)

where c is the unique constant for which equation

H(x,Dχ) = −c in RN (5)

has a continuous, periodic solution χ . The periodicity condition has been relaxed in many situations (compact man-
ifolds, almost periodic setting, stochastic homogenization, . . .). However, for first order Hamilton–Jacobi equations,
the coercivity of H(x, ·) plays a central role. Indeed, as can readily be seen from the equation, this condition ensures
the family of functions {vλ} to be equicontinuous, which in turn implies the existence of a corrector (or approximate
corrector in more general frameworks), i.e., a solution of (5).

When the Hamiltonian is not coercive, this crucial equicontinuity property fails and few results are available. Most
of them rely on some partial coercivity or on some reduction property, which, somehow, compensates the lack of co-
ercivity: let us quote Alvarez and Bardi [1,2], Alvarez and Ishii [3], Artstein and Gaitsgory [5], Bardi [6], Barles [7],
Birindelli and Wigniolle [8], Gomes [10] and Imbert and Monneau [11]. We follow here a completely different ap-
proach, based on nonresonance conditions, initiated for Hamilton–Jacobi equations by Arisawa and Lions [4]. In [4]
the authors investigate—among other problems—Eqs. (1) and (2) for Hamiltonians of the form

H(x,p) = H(p) − �(x), ∀(x,p) ∈ RN × RN,

where � : RN → R is continuous, ZN -periodic and H : RN → R is positively homogeneous and convex. Under these
assumptions, (4) holds as soon as

∀k ∈ ZN\{0}, ∃a ∈ ∂H(0) with 〈k, a〉 	= 0. (6)

This is the nonresonance condition.
The first aim of our paper is to investigate nonresonance conditions for Hamilton–Jacobi equations with nonconvex

Hamiltonians. Since this is a very delicate issue, we concentrate on plane problems and on equations of the form{
ut + H(Du) − �(x) = 0 in R2 × (0,+∞),

u(x,0) = 0
(7)

and of the form

λvλ + H(Dvλ) − �(x) = 0 in R2, (8)

where H : R2 → R is locally Lipschitz continuous and � : R2 → R is continuous and Z2-periodic. We now present our
main result. Let us assume that there is some k � 1 and some k-positively homogeneous, locally Lipschitz continuous
Hamiltonian H∞ : R2 → R such that

lim
s→0+ skH(p/s) = H∞(p) locally uniformly in p

and such that

∀p̄ ∈ R2\{0} with H∞(p̄) = 0, DH∞(p̄) exists and is nonzero.

Let us set

P = {
p = (p1,p2) ∈ R2

∣∣ |p| = 1, H∞(p) = H∞(−p) = 0, [p2 = 0 or p1/p2 ∈ Q]}. (9)

Then we show (Theorem 4.1) that if either P = ∅ or

∀p ∈ P , lim+

∣∣∣∣H
(

p
)∣∣∣∣ = +∞ (10)
s→0 s
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then ergodicity (4) holds for any � : R2 → R. For instance condition P = ∅ holds for H(p1,p2) = −|p1| + α|p2| if
and only if α > 0 is irrational. For H(p1,p2) = −(p1 + a)2 + (p2 + b)2, we have P = {(±1,±1)} and condition (10)
holds if and only if |a| 	= |b|.

In order to underline the difference between our result and the nonresonance condition of [4] described above, let
us explain the main ideas of the proofs. As pointed out in [4], the interesting feature of Eqs. (7) and (8) is that they
provide uniform continuity of u(·, t)/t in R2 for any t � 1 and of λvλ in R2 for any λ ∈ (0,1] (this holds true in any
space dimension). Let now w be a uniform limit of some subsequence (λnvλn). Then classical arguments of viscosity
solutions show that w is a Lipschitz continuous, periodic solution of

H∞(Dw) = 0 in R2. (11)

The main issue amounts to establish some rigidity properties for the solutions of this equation. When H∞ is convex
and 1-positively homogeneous, then it is proved in [4] that any continuous, periodic solution w of (11) is also a
solution of

〈a,Dw〉 = 0 in R2 (12)

for any a ∈ ∂H∞(0). Indeed, w is a viscosity subsolution of (12), hence a subsolution in the sense of distributions,
and, integrating (12) over [0,1]2 readily gives that equality holds by periodicity. Note that Eq. (12) means that w is
constant along the lines t → x + ta for any a ∈ ∂H∞(0). In particular, if (6) holds, one can cover the torus by such
lines and any continuous periodic solutions of (11) has to be constant.

If now H is nonconvex, then the reduction to linear equations of the form (12) does not hold. However we are
able to show in the plane that, if (9) holds and if w is a Lipschitz continuous solution of Eq. (11), then at any point
x̄ at which w has a nonzero derivative, the map t → w(x̄ − tDH(Dw(x̄))) is constant on [0,+∞) (see Lemma 3.1).
This result is somewhat surprising since the map t → w(x̄ + tDH(Dw(x̄))) need not be constant on [0,+∞). As a
consequence we prove in Theorem 3.3 that any nonconstant, periodic solution of (11) is of the form w(x) = w̄(〈p̄, x〉)
for some map w̄ : R → R and some p̄ ∈ P . In particular, if P = ∅, any limit of (λvλ) is constant, which implies (4).
Ergodicity in the case (10) is more subtle and relies on the fact that any cluster point w of the (λvλ) for the uniform
topology has to be of the form w(x) = w̄(〈p̄, x〉) for some p̄ ∈ P and some w̄ : R → R.

The second aim of our paper is to analyse the behavior of the solutions of (7) and (8) in the resonant case (P 	= ∅).
In this case, we cannot expect ergodicity to hold in general: for instance, if H(p1,p2) = −|p1|+ |p2| and �(p1,p2) =
�̄(p1 − p2) for some continuous periodic function �̄ : R → R, then one easily checks that vλ = �/λ, so that (4) does
not hold. In this resonant case, very few is known. The only work we are aware of is due to Quincampoix and Renault
who show in [13] that, if H is convex with respect to the gradient variable and has a “weak dependence” with respect
to x, then the limit of (u(·, t)/t) as t → +∞ exists. We give a similar result for nonconvex H in dimension 2:
under suitable assumptions on H , the limits of u(·, t)/t and of λvλ as t → +∞ and λ → 0+ exist and are equal
(Theorem 5.1). Of course this common limit w need not be constant in general. However, since w is a Lipschitz
continuous, periodic solution of (11), our rigidity result implies that w has to be of the form w(x) = w̄(〈p̄, x〉) for
some function w̄ : R → R and some p̄ ∈ P . In fact we can compute explicitely w̄ at any point s ∈ R at which w̄ is not
locally constant. The quantity w̄(s) is the sum of two terms: one is the average of � over the line 〈p̄, x〉 = s; the other
is related to the behavior of H(p) when |p| → +∞. The proof of these results relies on the existence of “correctors”
of a linearized equation along the lines 〈p̄, x〉 = s. We use these correctors in order to build sub-solutions with state
constraints on sets of the form {w � θ}.

The paper is organized in the following way. We first recall in Section 2 some well-known results on Eqs. (7)
and (8). Then we establish in Section 3 the rigidity property of Eq. (11). The proof of ergodicity is given in Section 4,
while Section 5 is devoted to resonant case. We complete the paper by a discussion on some open problems.

2. Generalities

In this section, we recall some known results on the Hamilton–Jacobi equations (7) and (8) (see also in particu-
lar [4]). We always work in the framework of viscosity solutions [9]. Let us first focus on the stationary equation:

λvλ + H(Dvλ) = �(x) in RN.
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In the above equation, H : RN → R is continuous and � : RN → R is continuous and ZN -periodic. Under these
assumptions, (8) has a unique viscosity solution vλ. This solution is continuous and ZN -periodic. We set wλ = λvλ.

Lemma 2.1. The map wλ is continuous, uniformly with respect to λ. Moreover, if � is Lipschitz continuous, then so
is wλ, with a Lipschitz constant independent of λ.

Proof. Let ω be a modulus of continuity of �. For any z ∈ RN , vλ(· + z) + ω(|z|)/λ (resp. vλ(· + z) − ω(|z|)/λ) is a
supersolution (resp. a subsolution) of (8). By comparison, we get

vλ(x + z) − ω
(|z|)/λ � vλ(x) � vλ(x + z) + ω

(|z|)/λ ∀x ∈ RN,

which implies that ω is a modulus of continuity for wλ for any λ > 0. Note that if � is Lipschitz continuous with a
Lipschitz constant L, then we can take ω(t) = Lt , so that the wλ are all L-Lipschitz continuous. �

From now on we assume that H has a recession function: there exists a continuous function H∞ : RN → R and
k � 1 such that

lim
s→0+ skH(p/s) = H∞(p) locally uniformly in p. (13)

Note that H∞ is k-positively homogeneous.

Lemma 2.2. Under assumption (13), if w is any limit of a uniformly converging subsequence of (wλ) as λ → 0+, then
w satisfies

H∞(Dw) = 0. (14)

Proof. Indeed wλ solves

λkwλ + λkH(Dwλ/λ) = λk� in RN.

Letting λ → 0 gives the result. �
Lemma 2.3. Let w be any limit of a uniformly converging subsequence of (wλ) as λ → 0+. Then

lim sup
λ→0

max
x∈RN

wλ(x) = max
x∈RN

w(x) and lim inf
λ→0

min
x∈RN

wλ(x) = min
x∈RN

w(x).

In particular, if w is constant, then (wλ) uniformly converges to the constant w as λ → 0+.

Proof. For any λ,n, let xλ,n be a maximum point of vλ − vλn . We have (formally)

Dvλ(xλ,n) = Dvλn(xλ,n).

From the equations satisfied by vλ and vλn we also have

λvλ(xλ,n) − λnvλn(xλ,n) � −H
(
Dvλ(xλ,n)

) + H
(
Dvλn(xλ,n)

) = 0.

Hence

maxλvλ � λmax
x

(vλ − λvλn) + λmax
x

vλn

� λvλ(xλ,n) − λvλn(xλ,n) + λmaxvλn

� λnvλn(xλ,n) + 2λ|vλn |∞.

When λ → 0, xλ,n → xn (up to some subsequence) and we get

lim sup
λ→0+

maxλvλ � λnvλn(xn).

Letting finally n → +∞ we obtain
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lim sup
λ→0+

maxλvλ � max
x

w.

The above argument can be made rigorous by using standard technique of doubling variables. The reverse inequality

lim inf
λ→0+ minλvλ � min

x
w

can be proved in the same way by minimizing vλ − vλn . �
We now turn to the analysis of the solutions of the evolution equation{

ut + H(Du) − �(x) = 0 in RN × [0,+∞[,
u(x,0) = 0 in RN

where, as before, H : RN → R is continuous, � : RN → R is continuous and ZN -periodic.

Lemma 2.4. Under the above assumptions, the map u(·, t)/t is ZN -periodic, bounded and continuous in x uniformly
with respect to t � 1.

Proof. By comparison principle, |u(x, t)| � t‖�‖∞. So u(·, t)/t is bounded by ‖�‖∞ for t � 1. Let ω be a modulus
of continuity of �. Then, for any z ∈ RN , (x, t) → u(x + z, t) + ω(z)(1 + t) is a super-solution of (7). So u(x, t) �
u(x + z, t) + ω(z)(1 + t), which proves that u(·, t)/t has ω as a modulus of continuity with respect to x for any
t � 1. �
3. Rigidity of equation H∞(Dw) = 0

From now on we work in the plane. We denote by (x1, x2) or (p1,p2) a generic element of R2. The aim of this
section is to investigate the continuous periodic solutions of equation H∞(Dw) = 0. In order to simplify the notations,
we denote by H the Hamiltonian of this section. Our assumptions on H : R2 → R are:

H is locally Lipschitz continuous, k-positively homogeneous, for some k � 1. (15)

Lemma 3.1. Let H : R2 → R satisfying (15). Let w be a locally Lipschitz continuous viscosity solution of H(Dw) = 0
in R2 and x̄ be a point of differentiability of w with Dw(x̄) 	= (0,0). If DH(Dw(x̄)) exists, then

w
(
x̄ − tDH

(
Dw(x̄)

)) = w(x̄) ∀t � 0.

Remarks.

1. Equality w(x̄+ tDH(Dw(x̄))) = w(x̄) ∀t � 0 does not hold in general. For instance, if H(p1,p2) = −|p1|+|p2|,
then w(x1, x2) = max{x1 + x2, x2 − x1} is a viscosity solution to H(Dw) = 0 in R2 and (1,1) is a point of
differentiability of w with Dw(1,1) = (1,1) and DH(Dw(x̄)) = (−1,1). However

w
(
(1,1) + tDH

(
Dw(x̄)

)) = max{2,2t} > 2 = w(1,1) ∀t > 1.

2. Our result also holds if w is a solution of H(Dw) = 0 in an open set O ⊂ R2. In this case, we have
w(x̄ − tDH(Dw(x̄))) = w(x̄) for any t > 0 such that x̄ − sDH(Dw(x̄)) ∈ O for all s ∈ [0, t]. The proof is
exactly the same.

Proof of Lemma 3.1. Replacing H by H̃ (p) = |p|H(p/|p|) if necessary, we can assume that H is 1-positively
homogeneous. Moreover, H is then globally Lipschitz continuous. Let (e1, e2) be the canonical basis of R2 and let us
set p̄ = Du(x̄) and ξ = DH(Dw(x̄)). Without loss of generality we can also suppose that u(x̄) = 0 and p̄ = e1. Since
H is positively homogeneous, we note for later use that 〈p̄, ξ 〉 = H(p̄) = 0.

Step 1. We claim that, for any ε > 0 small enough there is some convex and positively homogeneous map H+
ε : R2 →

R such that
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H � H+
ε , H+

ε (p̄) = 0, ∂H+
ε (p̄) ⊂ B(ξ, ε) and 0 /∈ ∂H+

ε (0), (16)

where B(ξ, ε) denotes the closed ball centered at ξ and of radius ε.

Proof of Step 1. Since H is differentiable at p̄, for any ε > 0 we can find η > 0 such that∣∣H(p) − 〈
ξ, (p − p̄)

〉∣∣ � ε|p − p̄| ∀p ∈ B(p̄, η). (17)

Let us denote by Cη the convex cone {p = (p1,p2) ∈ R2 | |p2| � ηp1}. By homogeneity of H and using the fact that
〈ξ, p̄〉 = 0 and p̄ = e1, (17) leads to

H(p) � 〈ξ,p〉 + ε|p2| ∀p = (p1,p2) ∈ Cη.

Then, since H is Lipschitz continuous, we can choose a constant M such that H � H+
ε where

H+
ε (p) = 〈ξ,p〉 + ε|p2| + MdCη(p) ∀p ∈ R2,

where dCη(p) denotes the distance from p to Cη. We note that H+
ε is convex and positively homogeneous. Moreover,

H+
ε (p̄) = 0 and ∂H+

ε (p̄) ⊂ B(ξ, ε) by construction. Finally, we note that, if we had 0 ∈ ∂H+
ε (0), then this would

imply that, for any h > 0 sufficiently small,

0 = 〈
0, (p̄ − hξ)

〉
� H+

ε (p̄ − hξ) = −h|ξ |2 + εh|ξ | < 0,

a contradiction if we choose ε > 0 small. So 0 /∈ ∂H+
ε (0). �

Step 2. Let us fix δ > 0 small and let us denote by ȳδ and z̄δ a projection of x̄ onto the sets {w � −δ} and {w � δ}.
Since w is differentiable at x̄ with |p̄| = |Dw(x̄)| = 1, we have

lim
δ→0+

x̄ − ȳδ

δ
= lim

δ→0+
z̄δ − x̄

δ
= p̄

|p̄|2 = p̄. (18)

In particular, for δ > 0 sufficiently small, we have

−δ < w(z) < δ ∀z ∈ ]ȳδ, z̄δ[. (19)

We claim that〈
(ȳδ − x̄), ξ

〉
� 0 while

〈
(z̄δ − x̄), ξ

〉
� 0. (20)

Proof of claim (20). Let 1{w>−δ} denote the indicatrix function of the set {w > −δ}. From classical stability result the
map 1{w>−δ} is a super-solution of H(Dw) = 0. For δ > 0 small, the map

z(x) = −δ + (
δ2 + |x̄ − ȳδ|2 − |x̄ − x|2) 1

2

satisfies:

z(x) � |x̄ − ȳδ| � 1 = 1{w>−δ}(x) if |x̄ − x| < |x̄ − ȳδ|
by definition of yδ and

z(x) � 0 � 1{w>−δ}(x) if |x̄ − x| � |x̄ − ȳδ|.
Since moreover z(ȳδ) = 0 = 1{w>−δ}(ȳδ), we have by definition of supersolutions:

H
(
Dz(ȳδ)

) = H

(
x̄ − ȳδ

δ

)
� 0.

Now we use the fact that we are in dimension 2, that H(p̄) = 0, ξ = DH(p̄) 	= 0, (x̄ − ȳδ)/δ → p̄ and that H is
homogeneous, to get that 〈(ȳδ − x̄), ξ 〉 � 0. The other inequality of (20) can be proved in a symmetric way. �
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To proceed further we need the following lemma, the proof of which is postponed:

Lemma 3.2. Let G : RN → R be a convex positively homogeneous map and w be a continuous super-solution of
G(Dw) = 0. Then, for any x0 ∈ RN , there is an absolutely continuous map x : [0,+∞) → RN such that x(0) = x0,

x′(t) ∈ −∂G(0) for almost all t � 0 and t → w
(
x(t)

)
is nonincreasing on [0,+∞).

Step 3. Let H+
ε : R2 → R2 be the convex, positively homogeneous map defined in Step 1. Since H � H+

ε , w is
a supersolution of H+

ε (Dw) = 0. From Lemma 3.2 there is some absolutely continuous map yδ : [0,+∞) → R2

starting from ȳδ with

y′
δ(t) ∈ −∂H+

ε (0) for almost all t � 0 and t → w
(
yδ(t)

)
is nonincreasing on [0,+∞).

Let us fix T > 0 and let Qδ be the closed quadrilateral with vertices ȳδ , z̄δ , z̄δ − T ξ , ȳδ − T ξ . We set

θ−
δ = inf

{
t � 0

∣∣ yδ(t) /∈ Qδ

}
.

Since 0 /∈ ∂H+
ε (0), the separation theorem states that there is some η > 0 and there is some direction ζ ∈ R2\{0}

such that 〈y′
δ(t), ζ 〉 � η for almost all t � 0. Thus θ−

δ is well defined and finite because Qδ is bounded. We claim that
yδ(θ

−
δ ) ∈ [z̄δ, z̄δ − T ξ ] ∪ [z̄δ − T ξ, ȳδ − T ξ ].

Proof of the claim. By construction we have w(yδ(t)) � −δ for any t � 0. From (19) this implies that yδ(θ
−
δ ) /∈ ]ȳδ, z̄δ].

Since y′
δ(t) ∈ −∂H+

ε (0) a.e., we have〈
y′
δ(t), p̄

〉
� −H+

ε (p̄) = 0 a.e.,

so that 〈(yδ(t) − ȳδ), p̄〉 � 0 for any t � 0. Thus yδ(θ
−
δ ) /∈ ]ȳδ − T ξ, ȳδ[.

It remains to show that yδ(θ
−
δ ) 	= ȳδ . For this it is enough to prove that, if yδ(θ) = ȳδ for some θ � 0, then there

is some σ > 0 such that yδ(θ + s) ∈ Qδ for any s ∈ [0, σ ]. Let us fix θ � 0 such that yδ(θ) = ȳδ . Since the open ball
B̊(x̄, |ȳδ − x̄|) is contained in {w > −δ}, we have yδ(t) /∈ B̊(x̄, |ȳδ − x̄|) for any t � 0. We now consider two cases. If
〈(ȳδ − x̄), ξ 〉 < 0, then there is some η > 0 such that{

z ∈ B(ȳδ, η)
∣∣ z /∈ B̊

(
x̄, |ȳδ − x̄|) and

〈
(z − ȳδ), p̄

〉
� 0

} ⊂ Qδ.

Since, for s > 0 small, the point yδ(θ + s) belongs to the set in the left-hand side, we have yδ(θ + s) ∈ Qδ for any
s ∈ [0, σ ] for some σ > 0. Let us now suppose that 〈(ȳδ − x̄), ξ 〉 = 0. This implies that ȳδ − x̄ = −|ȳδ − x̄|p̄. Let z be
an accumulation point of (yδ(t) − ȳδ)/(t − θ) as t → θ+. Then z ∈ −∂H+

ε (0). In particular 〈z, p̄〉 � −H+
δ (p̄) = 0.

Since yδ(t) /∈ B̊(x̄, |ȳδ − x̄|) for any t � 0, we also have

0 �
〈
(ȳδ − x̄), z

〉
� −|ȳδ − x̄|〈p̄, z〉.

Hence 〈z, p̄〉 = 0 and z = λξ for some λ ∈ R. Since ∂H+
ε (p̄) ⊂ B(ξ, ε) we can find η > 0 such that ∂H+

ε (p̄ − hξ) ⊂
B(ξ,2ε) for any h ∈ [0, η]. So, for any h ∈ (0, η], we have〈

z, (p̄ − hξ)
〉
� −H+

ε (p̄ − hξ) = −H+
ε (p̄) + 〈(

p̄ − (p̄ − hξ)
)
, qh

〉
for some qh ∈ ∂H+

ε (p̄ + hξ) ⊂ B(ξ,2ε). Thus

−λh|ξ |2 = 〈
z, (p̄ − hξ)

〉
� h〈ξ, qh〉 ∀h ∈ (0, η],

which entails that λ � −|ξ |2 + 2ε|ξ | < 0. Therefore we have proved that any limit point z of (yδ(t) − ȳδ)/(t − θ) as
t → θ+ is of the form z = λξ where λ < 0. The definition of Qδ then easily implies that there is some σ > 0 such that
yδ(θ + s) ∈ Qδ for any s ∈ [0, σ ]. �
Step 4. We now note that −w is a solution to −H(−Dw) = 0. Arguing as above with −w, −H(−·) and z̄δ instead
of w, H and ȳδ , we can find some absolutely continuous arc zδ : [0,+∞) → R2 starting from z̄δ such that w(zδ(t)) � δ

for any t � 0 and such that, if we set
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θ+
δ = inf

{
t � 0

∣∣ zδ(t) /∈ Qδ

}
,

then θ+
δ is finite and zδ(θ

+
δ ) ∈ [ȳδ, ȳδ −T ξ ]∪[z̄δ −T ξ, ȳδ −T ξ ]. Since w(yδ(t)) � −δ and w(zδ(t)) � δ for any t � 0,

yδ([0, θ−
δ ]) ∩ zδ([0, θ+

δ ]) = ∅. Since we are in the plane, this implies that yδ(θ
−
δ ) ∈ [z̄δ − T ξ, ȳδ − T ξ ] and zδ(θ

+
δ ) ∈

[z̄δ − T ξ, ȳδ − T ξ ]. Letting δ → 0+, the maps yδ and zδ converge, up to subsequence, to some absolutely continuous
maps y and z, while θ−

δ → θ− and θ+
δ → θ+ with y(t) ∈ [x̄, x̄ − T ξ ] for any t ∈ [0, θ−] and y(θ−) = x̄ − T ξ , while

z(t) ∈ [x̄, x̄ − T ξ ] for any t ∈ [0, θ+] and z(θ+) = x̄ − T ξ . Moreover, w(y(t)) � w(x̄) for any t ∈ [0, θ−] while
w(z(t)) � w(x̄) for any t ∈ [0, θ+]. Therefore w(x̄ − tξ ) = w(x̄) for any t ∈ [0, T ]. This completes the proof since T

is arbitrary. �
Proof of Lemma 3.2. Since G is defined on RN , convex and positively homogeneous, ∂G(0) is a convex compact
subset of RN . Let z : RN → R be the solution to{

zt + G(Dz) = 0 in RN × (0,+∞),

z(·,0) = w in RN.

Since w satisfies G(Dw) � 0, we have w(x) � z(x, t) for any (x, t). From Lax representation formula we get

w(x) � z(x, t) = min
(x−y)∈t∂G(0)

w(y) ∀(x, t) ∈ RN × (0,+∞).

In particular we have proved that, for any x ∈ RN and any τ > 0, there is some y ∈ RN such that (x − y)/τ ∈ ∂G(0)

and w(x) � w(y).
By induction, we can then show that there is a sequence (yn)n such that y0 = x0, yn+1 ∈ yn − τ∂G(0) and

w(yn+1) � w(yn) for any n ∈ N. Let xτ : [0,+∞) be an affine interpolation of (yn) such that xτ (nτ) = yn for any
n ∈ N. Note that x′

τ (t) ∈ −∂G(0) for almost all t � 0. In particular the family xτ is equi-Lipschitz continuous and a
subsequence converge to some x : [0,+∞) → RN such that x(0) = x0, x′(t) ∈ −∂G(0) for almost every t � 0 and
w(x(t)) � w(x(s)) whenever t � s. �

As a consequence of Lemma 3.1, we get the following rigidity result:

Theorem 3.3. Let H : R2 → R satisfy (15) and such that

∀p̄ ∈ R2\{0} with H(p̄) = 0, DH(p̄) exists and is nonzero. (21)

Then equation

H(Dw) = 0 in R2 (22)

admits a nonconstant, Lipschitz continuous, Z2-periodic solution if and only if there is some p̄ = (p̄1, p̄2) ∈ R2\{0}
such that H(p̄) = H(−p̄) = 0 and such that either p̄2 = 0 or p̄1/p̄2 ∈ Q.

In this case, any continuous, periodic solution w of (22) is one-dimensional: namely, there is some map w̄ : R → R

and some p̄ ∈ R2\{0} with H(p̄) = H(−p̄) = 0, and either p̄2 = 0 or p̄1/p̄2 ∈ Q, such that

w(x) = w̄
(〈x, p̄〉) ∀x ∈ R2.

For instance, if H(p) = −|p1|+α|p2| for some α > 0, then Eq. (22) admits a nonconstant, Z2-periodic Lipschitz
continuous solution if and only if α ∈ Q.

Proof of Theorem 3.3. Let w be a nonconstant, Lipschitz continuous and periodic solution of (22). Then there is
some point of differentiability x̄ ∈ R2 of w such that p̄ := Dw(x̄) 	= 0. From Lemma 3.1, we have

w(x̄ − tξ ) = w(x̄) ∀t � 0 (23)

where ξ = DH(Dw(x̄)). Let us consider the set

E = {
x ∈ R2/Z2

∣∣ ∃tn → +∞, x̄ − tnξ → x in R2/Z2}.
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Then E is a closed subset of R2/Z2 and w = w(x̄) on E. Moreover E satisfies

x − tξ ∈ E ∀x ∈ E, ∀t ∈ R.

It is known that a set of the form {x − tξ | t ∈ R} is dense in R2/Z2 if and only if ξ has rationally independent
coordinates. In this case, w has to be constant, which contradicts of assumption. So the pair (ξ1, ξ2) is not rationally
independent, which amounts to saying that either ξ2 = 0 or ξ1/ξ2 ∈ Q. Since 〈p̄, ξ〉 = 0 and p̄ 	= 0, this also implies
that either p̄2 = 0 or p̄1/p̄2 ∈ Q.

We now claim that w is one-dimensional. Indeed let x̄′ be another point of differentiability of w such that
w(x̄′) 	= w(x̄) and p̄′ = Dw(x̄′) 	= 0. Let ξ ′ = DH(p̄′). According to the previous discussion, we have either ξ ′

2 = 0
or ξ ′

1/ξ
′
2 ∈ Q. Let

E′ = {
x ∈ R2/Z2

∣∣ ∃tn → +∞, x̄′ − tnξ
′ → x in R2/Z2}.

As before we have w = w(x̄′) in E′. From the particular form of ξ and ξ ′ we also have

E = x̄ + Rξ and E′ = x̄′ + Rξ ′.

Note that E ∩ E′ = ∅ because w = w(x̄) on E and w = w(x̄′) on E′ and w(x̄) 	= w(x̄′). So ξ and ξ ′ are parallel,
which implies that p̄ and p̄′ are also parallel: indeed we have 〈ξ, p̄〉 = 0 and 〈ξ ′, p̄′〉 = 0 and we are in dimension 2.
This shows that any level-set of w is invariant by the flow x → x + tξ , which implies that w is one-dimensional: there
is some w̄ : R → R such that w(x) = w̄(〈p̄, x〉) for any x.

We now check that H(−p̄) = 0. Indeed, otherwise, one has H(−λp̄) 	= 0 for any λ > 0 because H is homogeneous.
Since H(Dw) = H(w̄′p̄) = 0, this implies that, for almost all s ∈ R, w̄′(s) � 0. Hence w̄ is non-nondecreasing, which
contradicts the assumption that w is periodic and nonconstant.

Conversely, let us assume that there exists p̄ = (p̄1, p̄2) ∈ R2\{0} such that H(p̄) = H(−p̄) = 0, and either p̄2 	= 0
or p̄1/p̄2 ∈ Q. Let (a, b) ∈ Z × N with either p2 = b = 0 or a/b = p̄1/p̄2. Then

w(x) = sin
(〈
(a, b), x

〉)
is a periodic, nonconstant Lipschitz continuous solution of H(Dw) = 0 because w is smooth and

H
(
Dw(x)

) =
(

b

p̄2

)k

H
(
cos

(〈
(a, b), x

〉)
p̄
) = 0 ∀x ∈ R2. �

4. Ergodicity

In this section we investigate conditions under which Eqs. (7) and (8) have an ergodic behavior. Recall that u =
u(x, t) is the solution of the evolution equation (7) while, for any λ > 0, vλ = vλ(x) is the solution of (8).

Let H : R2 → R be locally Lipschitz continuous such that there is some k � 1 and some k-positively homogeneous,
locally Lipschitz continuous Hamiltonian H∞ : R2 → R with

lim
s→0+ skH(p/s) = H∞(p) locally uniformly in p.

We also assume that H∞ satisfies

∀p̄ ∈ R2\{0} with H∞(p̄) = 0, DH∞(p̄) exists and is nonzero. (24)

In view of Theorem 3.3 we introduce the notation:

P = {
p = (p1,p2) ∈ R2

∣∣ |p| = 1, H∞(p) = H∞(−p) = 0, [p2 = 0 or p1/p2 ∈ Q]}. (25)

Then equation H∞(Dw) = 0 admits a nonconstant, Lipschitz continuous, Z2-periodic solution if and only if P 	= ∅.
In particular, if P = ∅, then combining Lemma 2.3 and Theorem 3.3 readily entails the convergence of the (λvλ)

towards a constant as λ → 0. Hence condition P = ∅ can be understood as a nonresonance condition.
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Very surprizingly, ergodicity actually holds under a much weaker assumption. Namely:

Theorem 4.1. Assume that either P = ∅ or that

∀p ∈ P , lim
s→0+

∣∣∣∣H
(

p

s

)∣∣∣∣ = +∞. (26)

Then the (λvλ) and the u(t, ·)/t converge to the same constant as λ → 0 and T → +∞.

For instance, if H∞ is some k-positively homogeneous Hamiltonian (for some k > 1) satisfying (24) and H(p) =
H∞(p + a) where 〈DH∞(p), a〉 	= 0 for any p ∈ P , then (26) holds, because∣∣∣∣H

(
p

s

)∣∣∣∣ = (1/s)k
∣∣H∞(p + sa)

∣∣ = (1/s)k
∣∣H∞(p) + s

〈
DH∞(p), a

〉 + o(s)
∣∣

= (1/s)k−1
∣∣〈DH∞(p), a

〉 + o(1)
∣∣ → +∞ as s → 0+.

Proof of Theorem 4.1. We first analyse the behaviour of the (λvλ). For this we assume that � : R2 → R is Lipschitz
continuous. This assumption is removed later.

Let w be the uniform limit of some sequence (λnvλn) where λn → 0. Let us assume that w is not constant.
Since the λvλ are uniformly Lipschitz continuous and Z2-periodic, so is w. Since, from Lemma 2.2, w is a solution
of H∞(Dw) = 0, Theorem 3.3 states that there is some p̄ ∈ P and some continuous map w̄ : R → R such that
w(x) = w̄(〈p̄, x〉) for any x ∈ R2. To fix the ideas, let us assume for instance that

lim
s→0+ H

(
p̄

s

)
= +∞.

We claim that, for any smooth test function ϕ : R → R such that w̄ − ϕ has a strict local maximum at some point z̄,
we have ϕ′(z̄) � 0. Indeed assume on the contrary that ϕ′(z̄) > 0. From standard perturbation arguments, there is a
sequence (xn) such that λnvλn − ϕ(〈p̄, ·〉) has a maximum at xn and 〈xn, p̄〉 → z̄. Then, setting zn = 〈xn, p̄〉, we have

ϕ(zn) + H

(
1

λn

ϕ′(zn)p̄

)
− �(xn) � 0.

Since ϕ′(zn) → ϕ′(z̄) > 0, our assumption states that

lim
n

H

(
1

λn

ϕ′(zn)p̄

)
= +∞,

which leads to a contradiction since ϕ(zn) → ϕ(z̄) and � is bounded.
So for any smooth test function ϕ : R → R such that w̄ − ϕ has a strict local maximum at some point z̄, we

have ϕ′(z̄) � 0. This implies that w̄ is nonincreasing. But the function w(x) = w̄(〈p̄, x〉) is Z2-periodic. Hence w is
constant. Thanks to Lemma 2.3 we can now complete the proof of the convergence of the (λvλ) towards a constant in
the case where � is Lipschitz continuous.

If � is only continuous, we proceed by approximation: Let (�k) be a sequence of smooth periodic functions con-
verging to � as k → +∞. Let vk

λ be the unique bounded solution to

λvk
λ + H

(
Dwk

λ

) − �k = 0 in R2.

Then from comparison principle we have:∥∥λvk
λ − λvλ

∥∥∞ � ‖�k − �‖∞ ∀k � 0, ∀λ > 0. (27)

Since �k is smooth, we already know that the (λvk
λ) converge to a constant ck as λ → 0+. From (27) we easily see that

(ck) is a Cauchy sequence and hence converges to some c ∈ R. Since

‖c − λvλ‖∞ � |c − ck| +
∥∥ck − λvk

λ

∥∥∞ + ∥∥λvk
λ − λvλ

∥∥∞,

inequality (27) shows that the (λvλ) converge to c as λ → 0+.
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We now consider the convergence of the u(t, ·)/t . Let us denote by c ∈ R the limit of the λvλ. The proof is then
standard: let us fix ε > 0 and let λ sufficiently small so that ‖λvλ − c‖∞ � ε. Let

Z(x, t) = vλ + (c − ε)t − ‖vλ‖∞.

Then Z is a sub-solution of (7) because Z(x,0) � 0 and

Zt + H(DZ) − � = c − ε + H(Dvλ) − � = c − ε − λvλ � 0.

By comparison, we have u(x, t) � Z(x, t) for any (x, t) ∈ R2 × [0,+∞). Thus

lim inf
t→+∞ min

x∈R2

u(x, t)

t
� lim inf

t→+∞ min
x∈R2

Z(x, t)

t
= c − ε.

In the same way one can show that

lim sup
t→+∞

max
x∈R2

u(x, t)

t
� c + ε,

which completes the proof since ε is arbitrary. �
Remark 4.2. In fact we have proved the following result: if there is a sequence λn → 0+, p̄ ∈ P and a nonconstant,
periodic map w(x) = w̄(〈p̄, x〉) such that the sequence (λnvλn) uniformly converges to w, then

lim inf
s→0+

∣∣∣∣H
(

p̄

s

)∣∣∣∣ < +∞ and lim inf
s→0+

∣∣∣∣H
(−p̄

s

)∣∣∣∣ < +∞.

We use this remark in the next section.

Application to homogenization. Theorem 4.1 can be applied to the homogenization of HJ equations of the form{
zε
t + H

(
Dzε(x)

) − �(x/ε) = 0 in R2 × (0, T ),

zε(x,0) = z0(x) in R2
(28)

where H and � are as above.

Corollary 4.3. Let H : R2 → R be a Lipschitz continuous map. Let us assume that (24) holds with k = 1 and that
P = ∅, where P is defined by (25). Then there is a Lipschitz continuous Hamiltonian h : R2 → R such that, for any
bounded uniformly continuous map z0 : R2 → R, the solution zε to (28) uniformly converges to the solution z of{

zt + h
(
Dz(x)

) = 0 in R2 × (0, T ),

z(x,0) = z0(x) in R2.

Remark. We do not known if the result holds true when H is only locally Lipschitz continuous.

Proof of Corollary 4.3. For any p ∈ R2, let v
p
λ be the unique continuous Z2-periodic solution of

λv
p
λ + H

(
Dv

p
λ + p

) − � = 0 in R2.

From Theorem 4.1, we know that λv
p
λ uniformly converges to some constant that we denote −h(p). Since H is

Lipschitz continuous, then so is h because, for any p,p′ ∈ R2, we have by comparison principle:

∥∥λv
p
λ − λv

p′
λ

∥∥∞ � Lip(H)
∣∣p − p′∣∣.

The rest of the proof is standard. �
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5. Case of resonance

Let again u = u(x, t) and vλ = vλ(x) denote the solution to (7) and (8) respectively. In this section we investigate
the existence of a limit for u/t and λvλ in case of resonance.

For this we assume that H : R2 → R is locally Lipschitz continuous and that there is some 1-positively homoge-
neous, Lipschitz continuous Hamiltonian H∞ : R2 → R such that

lim
s→0+ sH(p/s) = H∞(p) locally uniformly in p.

We also assume that H∞ satisfies

∀p̄ ∈ R2\{0} with H∞(p̄) = 0, DH∞(p̄) exists and is nonzero. (29)

We still use the notation:

P = {
p = (p1,p2) ∈ R2

∣∣ |p| = 1, H∞(p) = H∞(−p) = 0, [p2 = 0 or p1/p2 ∈ Q]}
and we denote by P0 the subset of p ∈ P such that

lim inf
s→0+

∣∣∣∣H
(

p

s

)∣∣∣∣ < +∞ and lim inf
s→0+

∣∣∣∣H
(−p

s

)∣∣∣∣ < +∞.

We have seen in Theorem 4.1 that, if P0 = ∅, then the (u/t) and (λvλ) converge to a constant. In order to investigate
the resonant case, we assume that P0 	= ∅ and that, for any p̄ ∈ P0, there are α(p̄) ∈ R2\{0} and β(p̄) ∈ R such that,
for any M > 0, the convergence

lim
s→0+ H

(
θp̄

s
+ b

)
= 〈

α(p̄), b
〉 + β(p̄) (30)

holds uniformly with respect to θ � 1/M and b ∈ R2 with |b| � M .

Example. Let us assume that H∞ : R2 → R is positively homogeneous, satisfies (29) and that P 	= ∅. Let H(p) =
H∞(p + a) for some a ∈ R2. Then (30) holds because P0 = P and

H

(
θp̄

s
+ b

)
= θ

s
H∞

(
p̄ + s

θ
(a + b)

)
= θ

s

(
H∞(p̄) + s

θ

〈
DH∞(p̄), (a + b)

〉 + o

(
s

θ

))
= 〈

α(p̄), b
〉 + β(p̄) + o(1)

where α(p̄) = DH∞(p̄) 	= 0 and β(p̄) = 〈DH∞(p̄), a〉.

Our main result in the case of resonance is the following:

Theorem 5.1. Under the above assumptions, there is a continuous Z2-periodic function w : R2 → R such that

w(x) = lim
t→+∞

u(x, t)

t
= lim

λ→0+ vλ(x) uniformly w.r.t. x ∈ R2. (31)

In order to describe the limit function w, we need a remark and some terminology.

Remark 5.2. From assumption (30), we have 〈α(p̄), p̄〉 = 0. In particular, since p̄ ∈ P and α(p̄) 	= 0, we have
α(p̄) = (α1, α2) with either α2 = 0 or α1/α2 ∈ Q. Hence there is some T (p̄) > 0 such that T (p̄)α(p̄) ∈ Z2.

We will say that a map w̄ : R → R has a point of increase at s̄ ∈ R if there is a sequence sn → s̄ and a sequence
hn → 0+ such that w̄(sn + hn) > w̄(sn). The map w̄ has a point of decrease at s̄ if −w̄ has a point of increase at s̄.
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Proposition 5.3. Let w be defined by (31). There is some p̄ ∈ P0 and some continuous map w̄ : R → R such that

w(x) = w̄
(〈p̄, x〉) ∀x ∈ R2.

Moreover, we have at any point of increase s of w̄:

w̄(s) = 1

T (p̄)

T (p̄)∫
0

�
(
sp̄ + tα(p̄)

)
ds − β(p̄),

while at any point of decrease s we have:

w̄(s) = 1

T (p̄)

T (p̄)∫
0

�
(
sp̄ + tα(p̄)

)
ds − β(−p̄).

The proofs of Theorem 5.1 and of Proposition 5.3 require several steps. From now on we assume that � is a smooth
function. This restriction is removed at the end of the proof. Recall that wλ = λvλ. Let W be the set of cluster points
in the uniform topology of wλ as λ → 0. The key step in the proof amounts to show that W consists in a singleton.
From Lemma 2.2 we know that H∞(Dw) = 0 for any w ∈ W .

Lemma 5.4. There is some p̄ ∈ P0 such that, for any w ∈ W , w(x) = w̄(〈p̄, x〉) for some w̄ : R → R.

Proof. If W contains a constant function w̄, then Lemma 2.3 states that W = {w̄}, and the result is obvious. Oth-
erwise, for any p̄ ∈ P0, let Wp̄ be the set of w ∈ W such that w(x) = w̄(〈p̄, x〉) for some w̄ : R → R. Combining
Theorem 3.3 and Remark 4.2, we have⋃

p̄∈P0

Wp̄ = W .

Moreover the Wp̄ are closed in W . Since we work in the plane, for any p̄ 	= p̄′ ∈ P0, either p̄ = −p̄′, in which
case Wp̄ = Wp̄′ , or the set Wp̄ ∩ Wp̄′ only consists of constant functions. So we actually have either Wp̄ = Wp̄′ or
Wp̄ ∩ Wp̄′ = ∅. Since the set W is connected, this implies that Wp̄ = W for some p̄ ∈ P0. �

From now on we fix p̄ as in Lemma 5.4. In order to simplify the notations, we set α± = α(±p̄), T ± = T (±p̄) and
β± = β(±p̄). We note that, since 〈α+, p̄〉 = 〈α−, p̄〉 = 0, the vectors α+ and α− are in fact proportional. Finally we
set α̂± = α±/|α±|. Recall that |p̄| = 1.

The first step of the proof consists in building special sub- and super-solutions of the Hamilton–Jacobi equation (8).
Let us set

c̄(s) = 1

T +

T +∫
0

�
(
sp̄ + tα+)

dt ∀s ∈ R, (32)

χ±(x) =
〈α̂±,x〉/|α±|∫

0

�
((〈p̄, x〉)p̄ + tα±)

dt − 〈α̂±, x〉
|α±| c̄

(〈p̄, x〉) ∀x ∈ R2. (33)

We note that c̄(s) is the average of � on the set 〈p̄, x〉 = s.

Lemma 5.5. The χ± are smooth and the maps x → c̄(〈p̄, x〉) and χ± are mZ2-periodic for some m ∈ N∗. Moreover,〈
α±,Dχ±(x)

〉 = �(x) − c̄
(〈p̄, x〉) ∀x ∈ R2. (34)
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Proof. By definition of T +, (a, b) := T +α+ ∈ Z2\{0}. Let us assume to fix the ideas that b 	= 0 (the proof being

easier if b = 0). Since 〈α+, p̄〉 = 0, we have p̄2 = −p̄1a/b, and, since |p̄| = 1, p̄1 = ±(1 + (a/b)2)− 1
2 . We also note

that α̂+/|α+| = T +(a, b)/(a2 + b2). Setting m = (a2 + b2) ∈ N∗ we get

(〈p̄, k〉)p̄ ∈ Z2 and
〈α̂+, k〉
|α+| ∈ T +Z ∀k ∈ mZ2.

This proves the mZ2-periodicity of x → c̄(〈p̄, x〉) and of χ+. The periodicity of χ− can be established with similar
arguments (changing m if necessary), and assertion (34) is straightforward. �
Lemma 5.6. Let ε ∈ {+,−} and ϕ : [c, d] → R be a smooth function such that εϕ′ > 0 and ϕ � c̄−βε in [c, d]. Then,
for any η > 0 there is some λ̄ > 0 such that, for any λ ∈ (0, λ̄), the map

x → 1

λ

(
ϕ
(〈p̄, x〉) − η

) + χε(x) − ∥∥χε
∥∥∞

is a sub-solution with state-constraints of (8) in the set {x ∈ R2 | c � 〈p̄, x〉 < d} if ε = + and in the set {x ∈ R2 | c <

〈p̄, x〉 � d} if ε = −.

Proof. Let us assume for instance that ε = − and that ϕ : [c, d] → R is a smooth function such that ϕ′ < 0 and
ϕ � c̄ − β− in [c, d]. For any λ > 0, let us set

ζλ(x) = 1

λ

(
ϕ
(〈p̄, x〉) − η

) + χ−(x) − ∥∥χ−∥∥∞ ∀x ∈ R2.

Let M > 0 be such that∥∥χ−(x)
∥∥∞ � M and ϕ′(t) � − 1

M
∀t ∈ [c, d].

From assumption (30) we can find λ̄ > 0 such that

H

(
−θp̄

λ
+ b

)
�

〈
α−, b

〉 + β− + η ∀|b| � M, θ � 1

M
, λ ∈ (0, λ̄).

Then for any λ ∈ (0, λ̄) and at any point x ∈ R2 with c < 〈p̄, x〉 < d , we have

λζλ + H(Dζλ) − � = ϕ − η + λ
(
χ− − ∥∥χ−∥∥∞

) + H

(
φ′

λ
p̄ + Dχ−

)
− �

� ϕ − η + (〈
α−,Dχ−〉 + β− + η

) − �

� ϕ − η + (
� − c̄ + β− + η

) − � � 0

where we have used the definition of λ̄, (34) and the fact that φ̄ � c̄ − β− respectively.
Let now λ ∈ (0, λ̄), x̄ ∈ R2 such that 〈p̄, x̄〉 = d and ψ be a smooth test function such that ζλ − ψ has a local

maximum at x̄ on the set {c < 〈p̄, x〉 � d}. Then there is some θλ � 0 such that

D(ζλ − ψ)(x̄) = θλp̄.

Arguing as above, we get

λζλ + H(Dψ) − � = ϕ − β− − η + λ
(
χ− − ∥∥χ−∥∥∞

) + H

((
φ′

λ
− θλ

)
p̄ + Dχ−

)
− �

� ϕ − β− − η + (〈
α−,Dχ−〉 + β− + η

) − �

� ϕ − β− − η + (
� − c̄ + β− + η

) − � � 0. �
Lemma 5.7. Let ε ∈ {+,−}, w ∈ W , w̄ : R → R be such that w(x) = w̄(〈p̄, x〉) and ψ : R → R be a smooth test
function such that ψ � w̄ (resp. ψ � w̄) with an equality at s̄ ∈ R. If εψ ′(s̄) > 0, then

w̄(s̄) � c̄(s̄) − βε
(
resp. w̄(s̄) � c̄(s̄) − βε

)
,

where c̄ is defined by (32).
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Proof. To fix the ideas we work in the case ε = + and suppose that ψ : R → R is a smooth test function such that
ψ � w̄ with an equality at s̄ ∈ R and that ψ ′(s̄) > 0. Without loss of generality, we also assume that there is some
δ ∈ (0,1/2) such that ψ(t) < w̄(t) for t ∈ [s̄ − δ, s̄ + δ]\{s̄}, ψ(s̄) = w̄(s̄) and ψ ′(t) > 0 for t ∈ [s̄ − δ, s̄ + δ]. Let
λn → 0 be such that (λnvn := λnvλn) uniformly converges to w and let χ+ be defined by (33). For n large enough,
the function

ζn(x) = vn(x) −
(

1

λn

ψ
(〈p̄, x〉) + χ+(x)

)

is mZ2-periodic for some m ∈ N∗ in the set {|〈p̄, x〉 − s̄| � δ}. So ζn has a minimum point in {|〈p̄, x〉 − s̄| � δ} at a
point xn such that |〈α+, xn〉| � m. In particular the sequence (xn) is bounded. Since the function χ+ is also bounded,
(xn) converges, up to a subsequence, to a maximum point of x → w(x) − ψ(〈p̄, x〉) in {|〈p̄, x〉 − s̄| � δ}. Hence
(〈p̄, xn〉) converges to s̄ and xn is an interior maximum point of ζn for any n large enough.

Since vn is the solution of (8) we have, for n large enough,

λnvn(xn) + H

(
ψ ′(〈p̄, xn〉)

λn

p̄ + Dχ+(xn)

)
− �(xn) � 0.

Arguing as in the proof of Lemma 5.6, for any η > 0 we have, for n large enough:

λnvn(xn) − c̄
(〈p̄, xn〉

) + β+ − η � 0.

Letting n → +∞ and then η → 0+ gives the desired result. �
Corollary 5.8. Let w ∈ W and w̄ be such that w(x) = w̄(〈p̄, x〉). If w̄ has a point of increase (resp. decrease) at s̄,
then

w̄(s̄) = c̄(s̄) − β+ (
resp. w̄(s̄) = c̄(s̄) − β−)

,

where c̄ is defined by (32). In particular, the range of w̄ is contained in the intersection of the range of s → c̄(s) − β+
and of the range of s → c̄(s) − β−.

Proof. Since w̄ has a point of increase at s̄, there are sn → s̄ and hn → 0+ such that w̄(sn + hn) > w̄(sn). Hence one
can find some smooth functions φn and ψn and points an, bn ∈ (sn, sn + hn) such that

• φn � w̄ on (sn, sn + hn) with an equality at an and φ′
n(an) > 0,

• ψn � w̄ on (sn, sn + hn) with an equality at bn and ψ ′
n(bn) > 0.

From Lemma 5.7 we have

w̄(an) � c̄(an) − β+ and w̄(bn) � c̄(bn) − β+.

Letting n → +∞ gives the result. �
Recall that the integer m ∈ N∗ is given by Lemma 5.5.

Lemma 5.9. Let w ∈ W and λn → 0 be such that (λnvλn) uniformly converges to w as n → +∞. Then for any θ ∈
(minw,maxw), η > 0 sufficiently small and n large enough, there is a Lipschitz continuous, mZ2-periodic function
ṽλn which is a state-constraint viscosity sub-solution of (8) in some closed, periodic, neighbourhood K of {w � θ}
and such that λnṽλn � θ − η in K .

Proof. Let w̄ : R → R be such that w(x) = w̄(〈p̄, x〉) and let θ ∈ (minw,maxw). From Corollary 5.8 θ lies in the
intersection of the ranges of c̄ − β+ and of c̄ − β−. Hence, perturbing slightly θ if necessary, we can assume without
loss of generality that θ is a noncritical value of c̄ − β+ and of c̄ − β−. Let E+ = {w � θ}. Since w(x) = w̄(〈p̄, x〉)
is periodic and p̄ ∈ P , the set E+ is of the form

E+ = {
x ∈ R2

∣∣ 〈p̄, x〉 ∈ I+}



852 P. Cardaliaguet / Ann. I. H. Poincaré – AN 27 (2010) 837–856
where I+ is a closed, periodic subset of R (the period is not 1 in general). From Corollary 5.8, w(x) = θ ∈
{c̄(〈p̄, x〉) − β+, c̄(〈p̄, x〉) − β−} for any x ∈ ∂E+. The value θ being noncritical for c̄ − β+ and for c̄ − β−, the
sets (c̄ − β+)−1(θ) and (c̄ − β−)−1(θ) are locally finite and thus the set I+ consists locally in a finite number of
closed, disjoint intervals. Let [a, b] be such an interval. Then c̄′(a) 	= 0 and c̄′(b) 	= 0. From Corollary 5.8 again, we
can find η ∈ (0,1) such that

• w̄(s) = c̄(s) − β+ and c̄′(s) > 0 if s ∈ [a − 2η, a],
• w̄(s) = c̄(s) − β− and c̄′(s) < 0 if s ∈ [b, b + 2η].

We also choose σ > 0 so small that, if we set

ϕb(s) := c̄(s) − β− − σ(b + η − s)2 and ϕa(s) = c̄(s) − β+ − σ(s − a + η)2,

then ϕ′
b < 0 on [b, b + 2η] and ϕ′

a > 0 on [a − 2η, a]. Then Lemma 5.6 states that, for any n sufficiently large,

ξn
b (x) := 1

λn

(
ϕb

(〈p̄, x〉) − η
) + χ−(x) − ∥∥χ−∥∥∞

is a state-constraint sub-solution in {b < x − y � b + η} while

ξn
a (x) = 1

λn

(
ϕa

(〈p̄, x〉) − η
) + χ+(x) − ∥∥χ+∥∥∞

is a state-constraint sub-solution in {a − η � x − y < a}. Let us finally set

ṽλn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{vλn(x) − η+ση4

λn
, ξn

b (x)} if b < 〈p̄, x〉 � b + η,

max{vλn(x) − η+ση4

λn
, ξn

a (x)} if a − η � 〈p̄, x〉 < a,

vλn(x) − η+ση4

λn
if a � 〈p̄, x〉 � b.

We note that, if 〈p̄, x〉 = b + η, then

lim
n→+∞λn

(
vλn(x) − η + ση4

λn

)
= c̄(b + η) − β− − η − ση4 and lim

n→+∞λnξ
n
b (x) = c̄(b + η) − β− − η,

while, if 〈p̄, x〉 = b, then

lim
n→+∞λn

(
vλn(x) − η + ση4

λn

)
= c̄(b) − β− − η − ση4 and lim

n→+∞λnξ
n
b (x) = c̄(b) − β+ − η − ση2.

Since η ∈ (0,1), for n large enough we have

ṽλn(x) = ξn
b (x) for 〈p̄, x〉 close to b + η

and

ṽλn(x) = vλn(x) − (
η + ση4)/λn for 〈p̄, x〉 close to b.

Therefore ṽλn is a Lipschitz continuous state-constraint sub-solution of (8) in {a < 〈p̄, x〉 � b+η} if n is large enough.
Arguing in the same way we can show that ṽλn is a sub-solution of (8) with state-constraints in {a −η � 〈p̄, x〉 < b} if
n is large enough. Doing the same construction on each connected component of I+ then completes the proof thanks
to the periodicity of I+. �
Proof of the existence of a limit of the (vλ) for smooth �’s. Let us fix w ∈ W and let λn → 0 be such that λnvλn → w̄

uniformly. Let m ∈ N∗ be defined by Lemma 5.5, θ ∈ (min w̄,max w̄) and let η > 0 be sufficiently small. From
Lemma 5.9, for n large enough one can find some Lipschitz continuous, mZ2-periodic function ṽλn which is a sub-
solution with state-constraints of (8) in a closed, periodic, neighbourhood K of {w � θ} and which is such that
ṽλn � θ − η in K . Let us fix such a n.
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For σ,μ > 0 let us consider a minimum point (xμ,σ , x′
μ,σ ) on the set R2 × K of the function

Φσ

(
x, x′) = vμ(x) − ṽλn

(
x′) − 1

2σ

∣∣x − x′∣∣2
.

Since vμ and ṽλn are mZ2-periodic, we can assume that (xμ,σ ) and (x′
μ,σ ) are bounded and converge up to some

subsequence to some xμ as σ → 0. Then xμ is a minimum point of vμ − ṽλn on K :

min
x∈K

(vμ − ṽλn)(x) = (vμ − ṽλn)(xμ). (35)

Since vμ is a solution of (8) and ṽλn is a subsolution with state constraints in K of (8) we have

μvμ(xμ,σ ) + H

(
1

σ

(
xμ,σ − x′

μ,σ

)) − �(xμ,σ ) � 0

while

λnṽλn

(
x′
μ,σ

) + H

(
1

σ

(
xμ,σ − x′

μ,σ

)) − �
(
x′
μ,σ

)
� 0,

where∣∣xμ,σ − x′
μ,σ

∣∣ � 2
(‖vμ‖∞ + ‖ṽλn‖∞

) 1
2
√

σ .

This implies that

μvμ(xμ,σ ) − λnṽλn

(
x′
μ,σ

)
� −2 Lip(�)

(‖vμ‖∞ + ‖ṽλn‖∞
) 1

2
√

σ .

Letting η → 0 and using the definition ṽλn leads to

μvμ(xμ) � λnṽλn(xμ) � θ − η. (36)

Let now ŵ ∈ W and μp → 0 be such that μpvμp → ŵ uniformly. Then

min
K

ŵ = lim
p

min
K

μpvμp � lim inf
p

min
K

μp(vμp − ṽλn) = lim inf
p

μp(vμp − ṽλn)(xμp),

where the last equality comes from (35). Note that, from (36), we have

lim inf
p

μp(vμp − ṽλn)(xμp ) � θ − η − lim sup
p

μpṽλn(xμp) = θ − η.

So minK ŵ � θ − η. Letting ε → 0 then gives

ŵ � θ in {w � θ} ∀θ ∈ (minw,maxw). (37)

Combining the above inequality with Lemma 2.3 we get ŵ � w. Reversing the roles of w and ŵ finally shows w = ŵ,
i.e., that W is a singleton. �
Proof of the existence of a limit of the (vλ) for general �’s. We proceed by approximation. Let (�k) be a sequence
of smooth periodic functions converging to � as k → +∞. Let wk

λ be the unique bounded solution to

λwk
λ + H

(
Dwk

λ

) − �k = 0 in R2.

Then from the comparison principle we have:∥∥wk
λ − wλ

∥∥∞ � ‖�k − �‖∞ ∀k � 0, ∀λ > 0. (38)

Since �k is smooth, we already know that wk
λ converges to a limit wk as λ → 0+. From (38) we easily see that (wk)

is a Cauchy sequence. Hence (wk) uniformly converges to some continuous periodic function w. Since

‖w − wλ‖∞ �
∥∥w − wk

∥∥∞ + ∥∥wk − wk
λ

∥∥∞ + ∥∥wk
λ − wλ

∥∥∞,

inequality (38) shows that wλ converges to w as λ → 0+.
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Let us now assume that w is not constant. Then wk is not constant for k large enough. Since the �k are smooth there
is some p̄k ∈ P0 and some w̄k : R → R such that wk(x) = w̄k(〈p̄k, x〉). From assumption (29) the set P0 is finite. So
we can as well assume that p̄k is constant: p̄k = p̄ for all k � 0 where p̄ ∈ P0. We note that w̄k uniformly converges
to w̄.

Let now s̄ be a point of increase of w̄: there exist a sequence sn → s and a sequence hn → 0+ such that
w̄(sn + hn) > w̄(sn). Let us fix n. Then for k large enough, w̄k(sn + hn) > w̄k(sn). This means that there is a point of
increase tnk ∈ (sn, sn + hn) for w̄k . Hence, from Corollary 5.8

w̄k(tnk) = 1

T (p̄)

T (p̄)∫
0

�k

(
tnkp̄ + tα(p̄)

)
dt − β(p̄).

(Indeed the quantities T (p̄), α(p̄), β(p̄) only depend on H and p̄, which are fixed here.) Letting first tnk → tn ∈
[sn, sn + hn] up to a subsequence as k → +∞, and then tn → s̄ gives the desired equality:

w̄(s̄) = 1

T (p̄)

T (p̄)∫
0

�
(
s̄p̄ + tα(p̄)

)
dt − β(p̄).

The proof of the symmetric equality in the case of decrease can be obtained in the same way. �
Proof of the existence of a limit of the (u(·, t)/t). We again assume that � is a smooth function: this restriction
can be removed exactly as for the (vλ). Let w be the limit of the (λvλ) and p̄ ∈ P0 and w̄ : R → R be such that
w(x) = w̄(〈p̄, x〉) for any x ∈ R2.

We first note that

min
x

w(x) � lim inf
t→+∞ min

x

u(x, t)

t
� lim sup

t→+∞
min

x

u(x, t)

t
� max

x
w(x). (39)

Indeed, let η > 0 and λ small enough such that λvλ � maxw + η. Then the map

Z(x, t) = t (maxw + η) + vλ + ‖vλ‖∞
is a supersolution of (8). By comparison we get

lim sup
t→+∞

max
x

u(x, t)

t
� lim sup

t→+∞
max

x

Z(x, t)

t
= maxw + η.

Whence the right-hand side of (39) since η is arbitrary. The left-hand side can be proved by symmetric argu-
ments.

Let now θ ∈ (minw,maxw). From Lemma 5.9, for any η > 0 and for any λ > 0 small enough, there is some
Lipschitz continuous, periodic function ṽλ which is state-constraint sub-solution of (8) in a closed, periodic, neigh-
bourhood K of {w � θ} and which is such that ṽλ � θ − η in K .

As in the proof of Theorem 4.1 one can check that

Z(x, t) = t (θ − η) + ṽλ(x) − ‖ṽλ‖∞
is a state-constraint sub-solution of (7) in K × (0,+∞). By comparison we get

u(x, t) � Z(x, t) ∀(x, t) ∈ K × [0,+∞).

This implies that

lim inf
t→+∞

u(x, t)

t
� θ − η in K.

Since η is arbitrary, we have

lim inf
u(x, t) � θ in {w � θ} ∀θ ∈ (minw,maxw). (40)
t→+∞ t
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In the same way, working with −u instead of u, we can prove that

lim sup
t→+∞

u(x, t)

t
� θ in {w � θ} ∀θ ∈ (minw,maxw). (41)

Combining (39), (40) and (41) finally gives the equality

lim
t→+∞

u(x, t)

t
= w(x) ∀x ∈ R2. �

6. Conclusion and open problems

In this paper we have addressed two questions: the first one is the existence of an ergodic limit for Hamilton–Jacobi
equations with nonconvex Hamiltonians; the second one is related to the existence of a (possibly nonconstant) limit for
the quantities u(x,t)

t
and λvλ(x) as t → +∞ and λ → 0. Although our results shed some new light on these problems

in the plane, we are very far from having a complete picture.
First the case of higher dimension problems is completely open: we suspect that our rigidity result (Lemma 3.1)

still holds for N � 3. However the consequence of such a result on the ergodic problem is not clear.
Second, even in dimension 2, our analysis is not complete:

• When P = ∅, we have no characterization of the limit constant c. In particular, we do not know if one can associate
to the constant c a cell-problem of the form (5).

• We are able to treat the resonant case only under a global Lipschitz continuity assumption on H : for instance we
cannot deal with H(p1,p2) = −p2

1 + p2
2.

• Even when we know in the resonant case that there exist a limit and that this limit is of the form w = w̄(〈p̄, x〉)
for some p̄ ∈ P , we do not know how this vector p̄ is related to the function �. For instance, when H(p1,p2) =
−|p1| + |p2|, then P = {±1,±1}; is there a criterium on � to explain that the limit is of the form w̄(x − y) or of
the form w̄(x + y)?

• Finally, although we can compute explicitely the limit function w̄ at points s where w̄ has a point of increase or
of decrease, we do not know how to compute w̄ at points where w̄ is locally constant. In particular what are the
maxima and minima of w̄?
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