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Abstract

The aim of this paper is to show an existence theorem for a kinetic model of coagulation–fragmentation with initial data satisfying
the natural physical bounds, and assumptions of finite number of particles and finite Lp-norm. We use the notion of renormalized
solutions introduced by DiPerna and Lions (1989) [3], because of the lack of a priori estimates. The proof is based on weak-
compactness methods in L1, allowed by Lp-norms propagation.
© 2009 Elsevier Masson SAS. All rights reserved.

1. Introduction

Coalescence and fragmentation are general phenomena which appear in dynamics of particles, in various fields
(polymers chemistry, raindrops formation, aerosols, . . . ). We can describe them at different scales, which lead to
different mathematical points of view. First, we can study the dynamics at the microscopic level, with a system of N

particles which undergo successives mergers/break ups in a random way. We refer to the survey [1] for this stochastic
approach. Another way to describe coalescence and fragmentation is to consider the statistical properties of the system,
introducing the statistical distribution of particles f (t,m) of mass m > 0 at time t � 0 and studying its evolution in
time. This approach is rather macroscopic. But we can put in an intermediate level, by considering a density f which
depends on more variables, like position x or velocity v of particles, and this description is more precise. Here, we start
by discussing models with density, from the original (with f = f (t,m)) to the kinetic one (with f = f (t, x,m,v)),
which is the setting of this work.

Depending on the physical context, the mass variable is discrete (polymers formation) or continuous (raindrops
formation). It leads to two sorts of mathematical models, with m ∈ N

� or m ∈ (0,+∞), but we focus on the continuous
case. To understand the relationship between discrete and continuous equations, see [16].

1.1. The original model

The discrete equations of coagulation have been originally derived by Smoluchowski in [21,22], by studying the
Brownian motion of colloidal particles. It had been extended to the continuous setting by Müller [20], giving the
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following mathematical model, called the Smoluchowski’s equation of coagulation:

∂f

∂t
(t,m) = Q+

c (f, f ) − Q−
c (f, f ), (t,m) ∈ (0,+∞)2. (1.1)

This equation describes the evolution of the statistical mass distribution in time. At each time t > 0, the term Q+
c (f, f )

represents the gain of particles of mass m created by coalescence between smaller ones, by the reaction{
m�

} + {
m − m�

} → {m}.
The term Q−

c (f, f ) is the depletion of particles of mass m because of coagulation with other ones, following the
reaction

{m} + {
m�

} → {
m + m�

}
.

Namely, we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Q+
c (f, f )(t,m) = 1

2

m∫
0

A
(
m�,m − m�

)
f

(
t,m�

)
f

(
t,m − m�

)
dm�,

Q−
c (f, f )(t,m) =

+∞∫
0

A
(
m,m�

)
f (t,m)f

(
t,m�

)
dm�,

where A(m,m�) is the coefficient of coagulation between two particles, which governs the frequency of coagulations,
according to the mass of clusters. In his original model, Smoluchowski derived the following expression for A:

A
(
m,m�

) = (
m1/3 + m�1/3)(

m−1/3 + m�−1/3)
. (1.2)

In many cases, coalescence is not the only mechanism governing the dynamics of particles, and other effects should
be taken into account. A classical phenomenon which also occurs is the fragmentation of particles in two (or more)
clusters, resulting from an internal dynamic (we do not deal here with fragmentation processes induced by particles
collisions). This binary fragmentation is modeled by linear additional reaction terms in Eq. (1.1), namely⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Q+
f (f )(t,m) =

+∞∫
m

B
(
m′,m

)
f

(
t,m′)dm′,

Q−
f (f )(t,m) = 1

2
f (t,m)B1(m), where B1

(
m′) =

m′∫
0

B
(
m′,m

)
dm.

The function B(m′,m) is the fragmentation kernel, it measures the frequency of the break-up of a mass m′ in two
clusters m and m′ − m, for m < m′. So, at each time t , the term Q+

f (f ) is the gain of particles of mass m, resulting
from the following reaction of fragmentation:{

m′} → {m} + {
m′ − m

}
,

whereas Q−
f (f ) stands for the loss of particles of mass m, because of a break-up into two smaller pieces, by the

following way:

{m} → {
m�

} + {
m − m�

}
, with m� < m.

Thus, the continuous coagulation–fragmentation equation writes

∂f

∂t
(t,m) = Q+

c (f, f ) − Q−
c (f, f ) + Q+

f (f ) − Q−
f (f ), (t,m) ∈ (0,+∞)2. (1.3)

In the 90’s, many existence and uniqueness results have been proved about this problem, see for instance [23], [24],
or [13] for an approach by the semigroups of operators theory. These results are true under various growth hypotheses
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on kernels A and B , but these assumptions often allow unbounded kernels, which is important from a physical point
of view.

However, this coagulation–fragmentation model do not take the spatial distribution of particles into account. This
leads to “spatially inhomogeneous” mathematical models, where the density of particles f (t, x,m) depends also of a
space variable x ∈ R

3.

1.2. Spatially inhomogeneous models

A first example consists of diffusive models, corresponding to the situation where particles follow a Brownian
motion at the microscopic scale, with a positive and mass-dependent coefficient of diffusion d(m). From a physical
point of view, it implies that particles are sufficiently small to undergo the interaction with the medium, i.e. the shocks
with the molecules of the fluid in which the particles evolve. In the statistical description, a spatial-Laplacian appears,
giving the diffusive coagulation–fragmentation equation:

∂f

∂t
(t, x,m) − d(m)�xf (t, x,m) = Q+

c (f, f ) − Q−
c (f, f ) + Q+

f (f ) − Q−
f (f ),

(t, x,m) ∈ (0,+∞) × R
3 × (0,+∞). (1.4)

We refer to [15] for a global existence theorem for the discrete diffusive coagulation–fragmentation equation in L1,
and to [17] for the continuous one, improved in [19] (with less restrictive conditions on the kernels), then in [2] (with
uniqueness of the solution).

The second way to correct the spatially homogeneous problem is to assume that the particles are transported with
a deterministic velocity v. At the statistical level, this adds a linear transport term v.∇xf to Eq. (1.3). This velocity
can be a given velocity v = v(t, x,m) or the inner velocity of the particles. The first case has been studied in [6], with
an existence and uniqueness theorem, and furthermore the continuous dependence on the initial data. Physically, it
corresponds to the dynamics of particles with rather low mass which follow a velocity drift depending only on the
surrounding fluid. In the second case, particles are also identified by their momentum p ∈ R

3 in addition to their
mass m (with v = p/m): we have a kinetic model, which is relevant to describe the dynamics of particles of varying
size/mass according to coagulation/fragmentation events, like in aerosols. At the microscopic scale, the coagula-
tion/fragmentation processes become “multi-dimensional”, with mass-momentum conservation at each merger/break
up according to the following scheme:

Coagulation: {m} + {
m�

} → {
m′},

{p} + {
p�

} → {
p′},

Fragmentation:
{
m′} → {m} + {

m�
}
,{

p′} → {p} + {
p�

}
,

where m′ := m + m�, m > 0, m� > 0, and p′ := p + p�.
Thus, in the statistical description, the density depends on time, position, mass and momentum: f = f (t, x,m,p).

But even if this kind of kinetic models provides a rather good description of phenomena, it is harder to study, so there
are less results than for the diffusive ones. Moreover, it is difficult to know the exact physical form of the kernels. And
finally, the numerical aspects are a real problem on these models: because of a high dimension (at least 7 plus time),
it seems to be very difficult, maybe impossible, to compute the solutions on a long time.

Concerning the results, a global existence theorem for the sole coagulation has been demonstrated in [7]. The proof
is based on Lp-norms dissipation for any formal solution, and on weak-compactness methods in L1. This result has
been extended to a more general class of coalescence operators in [12] (but under stronger restriction on the initial
data), with a very different method of proof. For the sole fragmentation, a difficulty is due to the blow-up of kinetic
energy, which grows at each microscopic event. Thus, it is reasonable to take the internal energy of particles into
account, which balances the gain of kinetic energy during a break up. With that modeling, the work [11] provides
global existence for a kinetic fragmentation model, with general growth assumptions on the kernel B , by using correct
entropies.

The aim of this work is to combine both of these analysis. We deal with assumptions which are similar to [7], but
a little bit more restrictive concerning the kernel A. The obtaining of a priori estimates is strongly inspired from [7],
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with a big difference however. The authors obtained refined estimates, including a dissipative quadratic term thanks
to which coagulation bilinear terms make sense, but which is unfortunately not present here because of the balance
problems between coagulation and fragmentation operators. Thus, this lack of estimates does not allows us to define
well the reaction term of coagulation with only the a priori bounds (specifically, we cannot say that the bilinear
loss term Q−

c (f, f ) lies in L1
loc, as it is shown in Subsection 3.2). That is why we use the DiPerna–Lions theory of

renormalized solutions, introduced in [3] to show global existence for Boltzmann equation, which presents similar
problems.

1.3. Description of the kinetic model and outline of the paper

Now, let us describe precisely the model we study. The parameters which describe the state of a particle are denoted
by

y := (m,p, e) ∈ Y := (0,+∞) × R
3 × (0,+∞),

m for the mass, p the impulsion, and e the internal energy. At the microscopic scale, coalescence and fragmentation
conserve total energy (kinetic energy + internal energy), thus we can compute the internal energy of daughter(s)
particle(s).

Coagulation: {e} + {
e�

} → {
e′}.

We have

|p|2
2m

+ e + |p�|2
2m�

+ e� = |p + p�|2
2(m + m�)

+ e′,

thus

e′ = e + e� + E−
(
m,m�,p,p�

)
, where E−

(
m,m�,p,p�

) := |m�p − mp�|2
2mm�(m + m�)

� 0

(E− is the loss of kinetic energy resulting from the merger).

Fragmentation:
{
e′} → {e} + {

e�
}
.

We have

|p′|2
2m′ + e′ = |p|2

2m
+ e + |p′ − p|2

2(m′ − m)
+ e�,

thus

e� = e′ − e − E+
(
m′,m,p′,p

)
, where E+

(
m′,m,p′,p

) := |m′p − mp′|2
2mm′(m′ − m)

� 0

(E+ is the gain of kinetic energy resulting from the break up).

Remark 1.1. Let us point out the following symmetries:

E−
(
m�,m,p�,p

) = E−
(
m,m�,p,p�

)
and E+

(
m′,m,p′,p

) = E+
(
m′,m′ − m,p′,p′ − p

)
,

and the relation: E−(m,m�,p,p�) = E+(m + m�,m,p + p�,p), which is consistent with the two phenomena’s
reciprocity.

We use the following notations:

• if y = (m,p, e), y� = (m�,p�, e�), then we denote

y′ := y + y� := (
m + m�,p + p�, e + e� + E−

(
m,m�,p,p�

))
,
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• if y = (m,p, e), y′ = (m′,p′, e′), with m < m′ and e < e′ − E+(m′,m,p′,p), then we say that y < y′ and we
denote

y� := y′ − y := (
m′ − m,p′ − p, e′ − e − E+

(
m′,m,p′,p

))
.

With this formalism, we naturally have (y′ − y) + y = y′, but note carefully that y < y′ is not an order relation on Y .

Remark 1.2. For all y′ ∈ Y , {y ∈ Y, y < y′} ⊂ (0,m′) × B√
2m′e′+|p′|2 × (0, e′). Denoting YR := (0,R) × BR ×

(0,R) ⊂ Y , we have

y < y′, y′ ∈ YR 	⇒ y ∈ (0,R) × B√
3R

× (0,R) ⊂ Y2R. (1.5)

Finally, we point out that the map (m′,m,p′,p, e′, e) �→ (m′,m�,p′,p�, e′, e�) is a diffeomorphism with C∞
regularity within the domain{

0 < m < m′, p,p′ ∈ R
3, 0 < e < e′ − E+

(
m′,m,p′,p

)} ⊂ Y 2

which preserves volume.
We denote by f (t, x,m,p, e) = f (t, x, y) the particles density, which is a nonnegative function depending on

time t � 0, position x ∈ R
3, and the mass-momentum-energy variable y. To shorten the notations, we set for each t , x,

f (y) = f (t, x, y), or f = f (t, x, y), f � = f (t, x, y�), and f ′ = f (t, x, y′). The complete model then reads:{
∂tf + p

m
.∇xf = Q+

c (f, f ) − Q−
c (f, f ) + Q+

f (f ) − Q−
f (f ),

t ∈ (0,+∞), x ∈ R
3, y = (m,p, e) ∈ Y,

(ECF)

with ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q+
c (f, f )(y) = 1

2

∫
Y

A
(
y�, y − y�

)
f

(
y�

)
f

(
y − y�

)
1{y�<y} dy�,

Q−
c (f, f )(y) = f (y)Lf (y), Lf (y) :=

∫
Y

A
(
y, y�

)
f

(
y�

)
dy�,

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q+
f (f )(y) =

∫
Y

B
(
y′, y

)
f

(
y′)1{y′>y} dy′,

Q−
f (f )(y) = 1

2
B1(y)f (y), B1

(
y′) :=

∫
Y

B
(
y′, y

)
1{y<y′} dy.

Functions A et B are respectively the coagulation and fragmentation kernels. They are nonnegative functions, inde-
pendent of (t, x), which satisfy the natural properties of symmetry:

∀(
y, y�

) ∈ Y 2, A
(
y, y�

) = A
(
y�, y

)
, (1.6)

∀(
y, y′) ∈ Y 2, y < y′, B

(
y′, y

) = B
(
y′, y�

)
. (1.7)

The kernel A(y,y�) represents the coalescence rate between two particles y and y�, whereas B(y′, y) is the fragmen-
tation rate for a particle y′ which breaks in two clusters y and y�.

We assume that A fulfills the following structure assumption:

∀(
y, y�

) ∈ Y 2, A
(
y, y�

)
� A

(
y, y′) + A

(
y�, y′). (1.8)

Remark 1.3. We can insist on the fact that this assumption is more general than the classical Galkin–Tupchiev mono-
tonicity condition:

∀y < y�, A
(
y, y� − y

)
� A

(
y, y�

)
. (1.9)
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In the “mono-dimensional” case, the Smoluchowski kernel given by (1.2) do not satisfy (1.9) but satisfies (1.8),
that’s why the first existence result established in [17] under Galkin–Tupchiev condition was extended in [19] to
kernels which satisfy (1.8) only.

We also require that A and B have a mild growth:

∀R > 0,

∫
YR

A(y, y�)

|y�| dy −→|y�|→+∞ 0, (1.10)

∀R > 0,

∫
YR

B(y′, y)

|y′| 1{y<y′} dy −→
|y′|→+∞

0, (1.11)

and B is truncated as:

∃C0 > 1,

⎧⎪⎪⎨
⎪⎪⎩

m′ > C0m

or

e′ + |p′|2
2m′ > C0

(
e + |p|2

2m

) 	⇒ B
(
y′, y

) = 0. (1.12)

Remark 1.4. The physical interpretation of this truncature assumption is to prevent the creation of too small clusters
compared to the mother particle. From a mathematical point of view, it allows the total number of particles (the
L1-norm of f ) to be finite at each time t > 0.

We also need to have B1 locally bounded:

∀R > 0, B1 ∈ L∞(YR), (1.13)

as well as A:

∀R > 0, A ∈ L∞(
Y 2

R

)
. (1.14)

Remark 1.5. Unfortunately, these assumptions of growth and boundedness are more restrictive, and in the mono-
dimensional case, the Smoluchowski kernel (1.2) doesn’t satisfy them any more. The examples given in [7] for the
sole coagulation, namely

A
(
m,m�,p,p�

) = (
mα + m�α)2

∣∣∣∣ p

m
− p�

m�

∣∣∣∣, 0 � α < 1/2,

(for the dynamics of liquid droplets carried by a gaseous phase) or

A
(
m,m�,p,p�

) =
(

m + m�

mm�

)α∣∣∣∣ p

m
− p�

m�

∣∣∣∣
γ

, 0 � α � 1, −3 < γ � 0

(for a stellar dynamics context) do not fit neither. Here, we need coalescence kernels which are bounded when
m,m� → 0. But it is difficult to know the exact physical form of the kernels A and B because of the complexity
of this kinetic model. Nevertheless, simple kernels given by A(m,m�) = mα + m�α with 0 < α < 1 fit.

Finally, we assume that A controls B in the following sense:

∃s > 1, ∃0 < δ <
1

6s − 5
< 1,

∀y′ ∈ Y,

∫
Y

B(y′, y)s

A(y, y′)s−1
1{y<y′} dy � 1 + m′ + |p′|2

2m′ + e′ + 1

2
B1

(
y′)δ

. (1.15)

Remark 1.6. This last assumption is more technical, but seems necessary to balance the contributions of the interaction
terms Qc(f,f ) and Qf (f ), which are difficult to compare because Qc(f,f ) is quadratic whereas Qf (f ) is linear.
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The paper consists in the proof of the following theorem.

Theorem 1.1. Let A and B be kernels satisfying (1.6)–(1.8) and (1.10)–(1.15) and let f 0 be a nonnegative initial
data which satisfies

K
(
f 0) :=

∫ ∫
R3×Y

((
1 + m + |p|2

2m
+ e + m|x|2

)
f 0(x, y) + f 0(x, y)s

)
dx dy < ∞, (1.16)

then for all T > 0, there exists f ∈ C([0, T ],L1(R3 × Y)) such that f (0) = f 0 and f is a renormalized solution to
(ECF). Moreover,

a.e. t ∈ (0, T ),

∫ ∫
R3×Y

(
1 + m + |p|2

2m
+ e + m|x|2

)
f (t, x, y) dx dy � KT , (1.17)

a.e. t ∈ (0, T ),

∫ ∫
R3×Y

f (t, x, y)s dx dy � KT , (1.18)

where the constant KT depends only on C0, T , K(f 0), s and δ (defined in (1.12) and (1.15)).

Beyond existence problems, there are lots of others interesting subjects to explore. A first one concerns the mass
conservation of the solution f , which is still an open problem for such kinetic models, even for the case of the sole
coagulation. In the spatially homogeneous case, it has been shown in [5] that total mass is preserved in time under mild
growth hypotheses on kernels. But we know that in case of strong coagulation (typically the case of multiplicative
kernels), a phenomenon of relation occurs, which force the total mass of the system to decay from a certain time
Tg < +∞. Then, problems of convergence to an equilibrium have been already studied for the spatially homogeneous
equation [18], under a detailed balance condition between kernels A and B . We can also mention existence of self-
similar solutions [8,9,14], always for the spatially homogeneous case.

In a first section, we will derive the a priori estimates from the equation, giving the proper setting of the problem.
Then, the proof of theorem is based on a well-known stability principle which says that if we are able to pass to the
limit in the equation (the set of solutions is closed in a certain sense), then it would be easy to show the existence of
a solution, applying the stability result to a sequence of approached problems which we can solve. So, the aim of the
last section is to prove rigorously such a stability result and in fact, we work in the context of renormalized solutions,
because the reaction term cannot be defined as a distribution simply using the a priori estimates.

1.4. Different notions of solutions

We discuss here on different notions of solutions, recalling the DiPerna–Lions results. We set Q(f,f ) =
Q+

c (f, f ) − Q−
c (f, f ) + Q+

f (f ) − Q−
f (f ).

Definition 1.2. Let f be a nonnegative function, such that f ∈ L1
loc((0,+∞)× R

3 ×Y). We say that f is a renormal-
ized solution of (ECF) if

Q±
c (f, f )

1 + f
∈ L1

loc

(
(0,+∞) × R

3 × Y
)
,

Q±
f (f )

1 + f
∈ L1

loc

(
(0,+∞) × R

3 × Y
)
,

and if the function g := log(1 + f ) satisfies the renormalized equation

∂tg + p

m
.∇xg = Q(f,f )

1 + f
(ECFR)

in D′((0,+∞) × R
3 × Y).

The renormalization makes passing to the limit impossible because of the quotients in the reaction term, that is
why we also need another notion of solution: the mild solutions, which only require local integrability in time and
provide Duhamel’s integral formulations to the problem in which we are able to pass to the limit.
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Definition 1.3. Let f be a nonnegative function, such that f ∈ L1
loc((0,+∞) × R

3 × Y). We say that f is a mild
solution of (ECF) if for almost all (x, y) ∈ R

3 × Y ,

∀T > 0, Q±
c (f, f )�(t, x, y) ∈ L1((0, T )

)
, Q±

f (f )�(t, x, y) ∈ L1((0, T )
)
,

and

∀0 < s < t < ∞, f �(t, x, y) − f �(s, x, y) =
t∫

s

Q(f,f )�(σ, x, y) dσ, (1.19)

where h� denotes the restriction to the characteristic lines of the equation:

h�(t, x,m,p, e) := h

(
t, x + t

p

m
,m,p, e

)
.

The following results are proved in [3]:

Lemma 1.4.

(i) If Q±
c (f, f ) ∈ L1

loc((0,+∞) × R
3 × Y) and Q±

f (f ) ∈ L1
loc((0,+∞) × R

3 × Y), then the following assertions
are equivalent:
• f is a solution of (ECF) in the sense of distributions,
• f is a renormalized solution of (ECF),
• f is a mild solution of (ECF).

(ii) If f is a renormalized solution of (ECF), then for all function β ∈ C1([0,+∞)) such that |β ′(u)| � C
1+u

, the
composed function β(f ) is a solution of

∂tβ(f ) + p

m
.∇xβ(f ) = β ′(f )Q(f,f )

in the sense of distributions (here, the right side lies in L1
loc((0,+∞) × R

3 × Y)).
(iii) f is a renormalized solution of (ECF) if and only if f is a mild solution of (ECF),

Q±
c (f, f )

1 + f
∈ L1

loc

(
(0,+∞) × R

3 × Y
)

and
Q±

f (f )

1 + f
∈ L1

loc

(
(0,+∞) × R

3 × Y
)
.

2. A priori estimates

We consider the Cauchy problem{
(ECF),

f (0, x, y) = f 0(x, y).
(2.20)

We suppose in this section that (2.20) admit a sufficiently smooth solution f in order to handle some formal quantities
which are conserved or propagated by Eq. (ECF). More precisely, we will show the propagation of Lq bounds for the
solution along time:

Proposition 2.1. If the initial data f 0 satisfies

K
(
f 0) :=

∫ ∫
R3×Y

((
1 + m + |p|2

2m
+ e + m|x|2

)
f 0(x, y) + f 0(x, y)s

)
dx dy < ∞, (2.21)

then for all T > 0, any classical solution of the Cauchy problem (2.20) satisfies

sup
t∈[0,T ]

∫ ∫
3

((
1 + m + |p|2

2m
+ e + m|x|2

)
f (t, x, y) + f (t, x, y)q

)
dx dy � KT , (2.22)
R ×Y
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for all the exponents q ∈ (5/6, s], and also

T∫
0

∫
R3

(
D1

(
f (t, x)

) + D2
(
f (t, x)

))
dx dt � KT , (2.23)

where

D1
(
f (t, x)

) := 1

2

∫ ∫
Y×Y

A
(
y, y�

)
sup

(
f,f �

)
inf

(
f,f �

)s
dy� dy � 0, (2.24)

D2
(
f (t, x)

) := s − δ

2

∫ ∫
Y×Y

B
(
y′, y

)
f

(
t, x, y′)s1{y<y′} dy′ dy � 0, (2.25)

and the constant KT depends only on C0, T , K(f 0), s and δ.

2.1. Basic physical estimates

We start with a fundamental formula, which gives the variation in time of some integral quantities involving the
solution f .

Lemma 2.2. Let H(u) be a function with C1 regularity on [0,+∞) and Φ(y) a real or vectorial function. We have

d

dt

∫ ∫
R3×Y

Φ(y)H
(
f (t, x, y)

)
dx dy

= 1

2

∫ ∫ ∫
R3×Y×Y

Aff �
(
Φ ′ duH

(
f ′) − Φ duH(f ) − Φ� duH

(
f �

))
dy� dy dx

+ 1

2

∫ ∫ ∫
R3×Y×Y

Bf ′(Φ duH(f ) + Φ� duH
(
f �

) − Φ ′ duH
(
f ′))1{y<y′} dy dy′ dx, (2.26)

where duH = dH
du

.

Proof. Using (ECF), we have

d

dt

∫ ∫
R3×Y

Φ(y)H(f )dx dy =
∫ ∫

R3×Y

Φ(y)duH(f ) ∂tf dy dx

=
∫ ∫

R3×Y

Φ(y)duH(f )
(
Q+

c (f, f ) − Q−
c (f, f )

)
dy dx

+
∫ ∫

R3×Y

Φ(y)duH(f )
(
Q+

f (f ) − Q−
f (f )

)
dy dx

−
∫ ∫

R3×Y

divx

(
−Φ(y)H(f )

p

m

)
dy dx.

The integral with divergence vanishes thanks to Stokes’ formula. Whence

d

dt

∫ ∫
R3×Y

Φ(y)H(f )dx dy =
∫ ∫

R3×Y

Φ(y)duH(f )
(
Q+

c (f, f ) − Q−
c (f, f )

)
dy dx

+
∫ ∫
3

Φ(y)duH(f )
(
Q+

f (f ) − Q−
f (f )

)
dy dx.
R ×Y
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Using Fubini’s theorem (formally), we can write

d

dt

∫ ∫
R3×Y

Φ(y)H(f )dx dy = 1

2

∫ ∫ ∫
R3×Y×Y

Φ(y)duH(f )A
(
y�, y − y�

)
f

(
y�

)
f

(
y − y�

)
1{y�<y} dy� dy dx

−
∫ ∫ ∫

R3×Y×Y

Φ(y)duH(f )A
(
y, y�

)
f (y)f

(
y�

)
dy� dy dx

+
∫ ∫ ∫

R3×Y×Y

Φ(y)duH(f )B
(
y′, y

)
f

(
y′)1{y′>y} dy′ dy dx

− 1

2

∫ ∫
R3×Y

Φ
(
y′)duH

(
f ′)B1

(
y′)f (

y′)dy′ dx.

If we change variables (y�, y − y�) → (y�, y) in the first integral, we obtain

d

dt

∫ ∫
R3×Y

Φ(y)H(f )dx dy = 1

2

∫ ∫ ∫
R3×Y×Y

Φ
(
y + y�

)
duH

(
f

(
y + y�

))
A

(
y�, y

)
f

(
y�

)
f (y)dy� dy dx

−
∫ ∫ ∫

R3×Y×Y

Φ(y)duH(f )A
(
y, y�

)
f (y)f

(
y�

)
dy� dy dx

+
∫ ∫ ∫

R3×Y×Y

Φ(y)duH(f )B
(
y′, y

)
f

(
y′)1{y′>y} dy′ dy dx

− 1

2

∫ ∫ ∫
R3×Y×Y

Φ
(
y′)duH

(
f ′)B

(
y′, y

)
f

(
y′)1{y<y′} dy dy′ dx.

The symmetry of A allows us to write∫ ∫ ∫
R3×Y×Y

Φ(y)duH(f )A
(
y, y�

)
f (y)f

(
y�

)
dy� dy dx

= 1

2

∫ ∫ ∫
R3×Y×Y

Φ(y)duH(f )A
(
y, y�

)
f (y)f

(
y�

)
dy� dy dx

+ 1

2

∫ ∫ ∫
R3×Y×Y

Φ
(
y�

)
duH

(
f �

)
A

(
y, y�

)
f (y)f

(
y�

)
dy� dy dx,

using the change of variables (y, y�) → (y�, y).
The same applies to B with (y′, y) → (y′, y′ − y):∫ ∫ ∫

R3×Y×Y

Φ(y)duH(f )B
(
y′, y

)
f

(
y′)1{y′>y} dy′ dy dx

= 1

2

∫ ∫ ∫
R3×Y×Y

Φ(y)duH(f )B
(
y′, y

)
f

(
y′)1{y′>y} dy′ dy dx

+ 1

2

∫ ∫ ∫
3

Φ
(
y′ − y

)
duH

(
f

(
y′ − y

))
B

(
y′, y

)
f

(
y′)1{y′>y} dy′ dy dx. �
R ×Y×Y
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Applying this lemma with H(u) = u, it gives

d

dt

∫ ∫
R3×Y

Φ(y)f dx dy = 1

2

∫ ∫ ∫
R3×Y×Y

Aff �
(
Φ ′ − Φ − Φ�

)
dy� dy dx

+ 1

2

∫ ∫ ∫
R3×Y×Y

Bf ′(Φ + Φ� − Φ ′)1{y<y′} dy′ dy dx. (2.27)

Choosing Φ(y) = m, we obtain mass conservation:

d

dt

∫ ∫
R3×Y

mf (t, x, y) dx dy = 0. (2.28)

With Φ(y) = p, we also get the momentum conservation:

d

dt

∫ ∫
R3×Y

pf (t, x, y) dx dy = 0. (2.29)

Then, choosing Φ(y) = |p|2
2m

+ e, we recover the total energy conservation:

d

dt

∫ ∫
R3×Y

( |p|2
2m

+ e

)
f (t, x, y) dx dy = 0. (2.30)

Moreover, we can control space momenta:

Lemma 2.3. For all T > 0, there exists a constant CT > 0 such that

∀t ∈ [0, T ],
∫ ∫

R3×Y

m|x|2f (t, x, y) dx dy � CT . (2.31)

Proof. In view of Eq. (ECF) and the Stokes formula, we have

d

dt

∫ ∫
R3×Y

m|x|2f dx dy = −
∫ ∫

R3×Y

|x|2p.∇xf dx dy

= 2
∫ ∫

R3×Y

x.pf (t, x, y) dx dy

� 2

( ∫ ∫
R3×Y

m|x|2f dx dy

)1/2( ∫ ∫
R3×Y

|p|2
m

f dx dy

)1/2

,

and we conclude with (2.30) and Gronwall’s lemma. �
Finally, we can control the number of particles in finite time:

Lemma 2.4. We set

N0 :=
∫ ∫

R3×Y

f 0(x, y) dx dy, M0 :=
∫ ∫

R3×Y

mf 0(x, y) dx dy,

E0 :=
∫ ∫
3

( |p|2
2m

+ e

)
f 0(x, y) dx dy.
R ×Y



820 D. Broizat / Ann. I. H. Poincaré – AN 27 (2010) 809–836
Then, there exists a constant C > 0 depending only on C0 such that

∀T > 0, ∀t ∈ [0, T ],
∫ ∫

R3×Y

f (t, x, y) dx dy �
(
N0 + CT (M0 + E0)

)
eCT + M0 + E0. (2.32)

Proof. We use formula (2.27) with Φ(y) = 1{m�1, e+ |p|2
2m

�1}. Since Φ is nonnegative and subadditive in the sense of

coalescence (i.e. Φ ′ � Φ + Φ�), we have

d

dt

∫ ∫
R3×Y

1{m�1, e+ |p|2
2m

�1}f dy dx � 1

2

∫ ∫ ∫
R3×Y×Y

Bf ′(Φ + Φ� − Φ ′)1{y<y′} dy dy′ dx

=
∫ ∫ ∫

R3×Y×Y

Bf ′
(

Φ − Φ ′

2

)
1{y<y′} dy dy′ dx

�
∫ ∫ ∫

R3×Y×Y

Bf ′Φ1{y<y′} dy dy′ dx

=
∫ ∫ ∫

R3×Y×Y

Bf ′1{y<y′, m�1, e+ |p|2
2m

�1} dy dy′ dx.

In the last integral, if m′ > C0, then, since m � 1, we have B(y′, y) = 0 according to assumption (1.12). The same

applies if e′ + |p′|2
2m′ > C0. Thus,

d

dt

∫ ∫
R3×Y

f (t, x, y)1{m�1, e+ |p|2
2m

�1} dy dx

�
∫ ∫

R3×Y

(∫
Y

B
(
y′, y

)
1{y<y′} dy

)
f

(
t, x, y′)1{m′�C0, e′+ |p′|2

2m′ �C0} dy′ dx

=
∫ ∫

R3×Y

B1
(
y′)f (

t, x, y′)1{m′�C0, e′+ |p′ |2
2m′ �C0} dy′ dx.

Denoting C := supy′∈Y2C0
B1(y

′), we obtain

d

dt

∫ ∫
R3×Y

f (t, x, y)1{m�1, e+ |p|2
2m

�1} dy dx

� C

∫ ∫
R3×Y

f (t, x, y) dy dx

� C

( ∫ ∫
R3×Y

f (t, x, y)1{m�1, e+ |p|2
2m

�1} dy dx +
∫ ∫

R3×Y

mf (t, x, y) dy dx

+
∫ ∫

R3×Y

(
e + |p|2

2m

)
f (t, x, y) dy dx

)
.

Using (2.28) and (2.30), we have

d

dt

∫ ∫
3

f (t, x, y)1{m�1, e+ |p|2
2m

�1} dy dx � C

∫ ∫
3

f (t, x, y)1{m�1, e+ |p|2
2m

�1} dy dx + C(M0 + E0).
R ×Y R ×Y
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We integrate this inequality in time. Then, Gronwall’s lemma provides

∀T > 0, ∀t ∈ [0, T ],
∫ ∫

R3×Y

f (t, x, y)1{m�1, e+ |p|2
2m

�1} dy dx �
(
N0 + CT (M0 + E0)

)
eCT .

We conclude noting that∫ ∫
R3×Y

f (t, x, y) dy dx �
∫ ∫

R3×Y

f (t, x, y)1{m�1, e+ |p|2
2m

�1} dy dx +
∫ ∫

R3×Y

(
m + e + |p|2

2m

)
f (t, x, y) dy dx,

and using (2.28) and (2.30) again. �
To summarize, if we set E(x, y) = 1 + m + |p|2

2m
+ e + m|x|2, and if we suppose that the initial data satisfies

K
(
f 0) :=

∫ ∫
R3×Y

E(x, y)f 0(x, y) dx dy < +∞,

then, for all T > 0, there exists a constant KT (depending on T , C0 and K(f 0)) such that

sup
t∈[0,T ]

∫ ∫
R3×Y

E(x, y)f (t, x, y) dx dy � KT . (2.33)

Remark 2.1. For γ > 5, we have∫ ∫
R3×Y

1

Eγ (x, y)
dx dy < +∞. (2.34)

It will be very useful to show that some Lq bounds of f (for 5/6 < q < 1 and q = s > 1) also propagate in time.

2.2. Lq bounds

Obtaining Lq bounds propagation is more technical, that is why we split the proof in several lemmas.

Lemma 2.5. Let β ∈ (5/6,1). Then, for all T > 0, there exists a constant KT (depending on T , C0 and K(f 0)) such
that

sup
t∈[0,T ]

∫ ∫
R3×Y

f β(t, x, y) dx dy � KT . (2.35)

Proof. Writing∫ ∫
R3×Y

f β(t, x, y) dx dy =
∫ ∫

R3×Y

f β(t, x, y)
Eβ(x, y)

Eβ(x, y)
dx dy,

we use Young inequality

∀α > 1, ∀u � 0, ∀v � 0, uv � uα

α
+ vα�

α�
(2.36)

with u = f β(t, x, y)Eβ(x, y), v = 1
Eβ(x,y)

, and α = 1
β

> 1, and obtain∫ ∫
R3×Y

f β(t, x, y) dx dy � β

∫ ∫
R3×Y

E(x, y)f (t, x, y) dx dy + (1 − β)

∫ ∫
R3×Y

1

E
β

1−β (x, y)

dx dy.

We conclude with (2.33) and (2.34). �
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Lemma 2.6. For any convex and nonnegative function H ∈ C1([0,+∞)) such that H(0) = 0, and for all t > 0, we
have

∫ ∫
R3×Y

H
(
f (t, x, y)

)
dx dy �

∫ ∫
R3×Y

H
(
f 0(x, y)

)
dx dy − 1

2

t∫
0

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
H

(
inf

(
f,f �

))
dy� dy dx dτ

+
t∫

0

∫ ∫ ∫
R3×Y×Y

A′H
(

B

A′

)
f ′1{y<y′} dy dy′ dx dτ

− 1

2

t∫
0

∫ ∫ ∫
R3×Y×Y

Bf ′ duH
(
f ′)1{y<y′} dy dy′ dx dτ, (2.37)

where A = A(y,y�), A′ = A(y,y′), B = B(y′, y).

Proof. The formula (2.26) yields

d

dt

∫ ∫
R3×Y

H(f )dx dy =
∫ ∫ ∫

R3×Y×Y

Aff �

(
duH(f ′)

2
− duH(f )

)
dy� dy dx

+
∫ ∫ ∫

R3×Y×Y

Bf ′
(

duH(f ) − duH(f ′)
2

)
1{y<y′} dy dy′ dx. (2.38)

Let us rewrite the term I1 := ∫∫∫
R3×Y×Y

Aff � duH(f ′) dy� dy dx, by the following way:

I1 =
∫ ∫ ∫

R3×Y×Y

A inf
(
f,f �

)
sup

(
f,f �

)
duH

(
f ′)dy� dy dx.

We use the Young inequality:

∀u > 0, ∀v > 0, uv � H(u) + H�(v) (2.39)

with u = sup(f,f �) and v = duH(f ′), where H� stands for the convex conjugate function of H . A simple calculus
shows that

H�
(
duH(u)

) = uduH(u) − H(u),

and this quantity is nonnegative, by the assumptions on H . We denote

Θ(u) := H�
(
duH(u)

)
� 0.

It leads to the inequality:

I1 �
∫ ∫ ∫

R3×Y×Y

A inf
(
f,f �

)
H

(
sup

(
f,f �

))
dy� dy dx +

∫ ∫ ∫
R3×Y×Y

A inf
(
f,f �

)
Θ

(
f ′)dy� dy dx.

We can dominate the second term of the right member using the hypothesis (1.8) by the following way:∫ ∫ ∫
R3×Y×Y

A inf
(
f,f �

)
Θ

(
f ′)dy� dy dx

�
∫ ∫ ∫
3

(
A

(
y, y + y�

) + A
(
y�, y + y�

))
inf

(
f,f �

)
Θ

(
f ′)dy� dy dx
R ×Y×Y
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�
∫ ∫ ∫

R3×Y×Y

A
(
y, y + y�

)
f Θ

(
f ′)dy� dy dx +

∫ ∫ ∫
R3×Y×Y

A
(
y�, y + y�

)
f �Θ

(
f ′)dy� dy dx

= 2
∫ ∫ ∫

R3×Y×Y

A
(
y�, y + y�

)
f

(
y�

)
Θ

(
f

(
y + y�

))
dy� dy dx

= 2
∫ ∫ ∫

R3×Y×Y

A
(
y�, y

)
f

(
y�

)
Θ

(
f (y)

)
1{y�<y} dy� dy dx

(the last identity resulting from the change of variables (y�, y + y�) → (y�, y)).
This yields

I1 �
∫ ∫ ∫

R3×Y×Y

A inf
(
f,f �

)
H

(
sup

(
f,f �

))
dy� dy dx + 2

∫ ∫ ∫
R3×Y×Y

Af �Θ(f )1{y�<y} dy� dy dx.

Thus, we have the following control of the coagulation contribution in (2.38):∫ ∫ ∫
R3×Y×Y

Aff �

(
duH(f ′)

2
− duH(f )

)
dy� dy dx

� 1

2

∫ ∫ ∫
R3×Y×Y

A inf
(
f,f �

)
H

(
sup

(
f,f �

))
dy� dy dx +

∫ ∫ ∫
R3×Y×Y

Af �Θ(f )1{y�<y} dy� dy dx

−
∫ ∫ ∫

R3×Y×Y

Aff � duH(f )dy� dy dx.

Now, we can write the right member of this inequality by the following way:

= −1

2

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
H

(
inf

(
f,f �

))
dy� dy dx

+ 1

2

∫ ∫ ∫
R3×Y×Y

Af H
(
f �

)
dy� dy dx + 1

2

∫ ∫ ∫
R3×Y×Y

Af �H(f )dy� dy dx

+
∫ ∫ ∫

R3×Y×Y

Af �Θ(f )1{y�<y} dy� dy dx −
∫ ∫ ∫

R3×Y×Y

Aff � duH(f )dy� dy dx

= −1

2

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
H

(
inf

(
f,f �

))
dy� dy dx

+
∫ ∫ ∫

R3×Y×Y

Af �Θ(f )1{y�<y} dy� dy dx −
∫ ∫ ∫

R3×Y×Y

Af �Θ(f )dy� dy dx.

We deduce∫ ∫ ∫
R3×Y×Y

Aff �

(
duH(f ′)

2
− duH(f )

)
dy� dy dx

� −1

2

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
H

(
inf

(
f,f �

))
dy� dy dx +

∫ ∫ ∫
R3×Y×Y

Af �Θ(f )1{y�<y} dy� dy dx

−
∫ ∫ ∫
3

Af �Θ(f )dy� dy dx. (2.40)
R ×Y×Y
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Then, we can also control the fragmentation contribution:∫ ∫ ∫
R3×Y×Y

Bf ′ duH(f )1{y<y′} dy dy′ dx −
∫ ∫ ∫

R3×Y×Y

Bf ′ duH(f ′)
2

1{y<y′} dy dy′ dx.

We rewrite the first term by the following way:∫ ∫ ∫
R3×Y×Y

Bf ′ duH(f )1{y<y′} dy dy′ dx =
∫ ∫ ∫

R3×Y×Y

B

A′ A
′f ′ duH(f )1{y<y′} dy dy′ dx

and we use (2.39) again, with u = B
A′ and v = duH(f ), whence

∫ ∫ ∫
R3×Y×Y

Bf ′
(

duH(f ) − duH(f ′)
2

)
1{y<y′} dy dy′ dx

�
∫ ∫ ∫

R3×Y×Y

H

(
B

A′

)
A′f ′1{y<y′} dy dy′ dx +

∫ ∫ ∫
R3×Y×Y

A′f ′Θ(f )1{y<y′} dy dy′ dx

−
∫ ∫ ∫

R3×Y×Y

Bf ′ duH(f ′)
2

1{y<y′} dy dy′ dx. (2.41)

Eventually, using (2.38), (2.40) and (2.41), we infer

d

dt

∫ ∫
R3×Y

H
(
f (t, x, y)

)
dx dy � −1

2

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
H

(
inf

(
f,f �

))
dy� dy dx

−
∫ ∫ ∫

R3×(Y 2−({y<y�}∪{y�<y}))
Af �Θ(f )dy dy� dx

+
∫ ∫ ∫

R3×Y×Y

A′H
(

B

A′

)
f ′1{y<y′} dy dy′ dx

−
∫ ∫ ∫

R3×Y×Y

Bf ′ duH(f ′)
2

1{y<y′} dy dy′ dx. � (2.42)

Lemma 2.7. For all T > 0, there exists a constant CT > 0 depending only on T , the initial values N0, M0, E0 and
the truncature parameter C0 such that for all t ∈ [0, T ],∫ ∫

R3×Y

f (t, x, y)s dx dy �
∫ ∫

R3×Y

f 0(x, y)s dx dy + CT

− 1

2

T∫
0

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
inf

(
f,f �

)s
dy� dy dx dτ

−
∣∣∣∣ s − δ

2

∣∣∣∣
T∫

0

∫ ∫ ∫
R3×Y×Y

B
(
f ′)s1{y<y′} dy′ dy dx dτ, (2.43)

where s and δ are given by (1.15).
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Proof. We use the previous lemma with H(u) = us . We obtain

∫ ∫
R3×Y

f (t, x, y)s dx dy �
∫ ∫

R3×Y

f 0(x, y)s dx dy − 1

2

t∫
0

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
inf

(
f,f �

)s
dy� dy dx dτ

+
t∫

0

∫ ∫ ∫
R3×Y×Y

(
Bs

A′s−1

)
f ′1{y<y′} dy dy′ dx dτ

− s

2

t∫
0

∫ ∫
R3×Y

B1
(
y′)(f ′)s

dy′ dx dτ.

According to (1.15) and (2.33),
t∫

0

∫ ∫ ∫
R3×Y×Y

(
Bs

A′s−1

)
f ′1{y<y′} dy dy′ dx dτ

�
t∫

0

∫ ∫
R3×Y

(
1 + m′ + |p′|2

2m′ + e′
)

f ′ dy′ dx dτ + 1

2

t∫
0

∫ ∫
R3×Y

B1
(
y′)δ

f ′ dy′ dx dτ

� T KT + 1

2

t∫
0

∫ ∫
R3×Y

B1
(
y′)δ

f ′sδf ′1−sδ dy′ dx dτ.

We apply the Young inequality again with the exponent 1/δ > 1:

B1
(
y′)δ

f ′sδf ′1−sδ � (B1(y
′)δf ′sδ)1/δ

1/δ
+ (f ′1−sδ)(1/δ)�

(1/δ)�

= δB1
(
y′)f ′s + (1 − δ)f ′ 1−sδ

1−δ .

Thus we deduce∫ ∫
R3×Y

f (t, x, y)s dx dy �
∫ ∫

R3×Y

f 0(x, y)s dx dy − 1

2

t∫
0

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
inf

(
f,f �

)s
dy� dy dx dτ

+ T KT + 1 − δ

2

t∫
0

∫ ∫
R3×Y

f ′ 1−sδ
1−δ dy′ dx dτ

+ δ − s

2

t∫
0

∫ ∫
R3×Y

B1
(
y′)(f ′)s

dy′ dx dτ.

We can use (2.35) since 1−sδ
1−δ

∈ (5/6,1),

∫ ∫
R3×Y

f (t, x, y)s dx dy �
∫ ∫

R3×Y

f 0(x, y)s dx dy + CT − 1

2

t∫
0

∫ ∫ ∫
R3×Y×Y

A sup
(
f,f �

)
inf

(
f,f �

)s
dy� dy dx dτ

+ δ − s

2

t∫
0

∫ ∫
R3×Y

B1
(
y′)(f ′)s

dy′ dx dτ.

We conclude noting that δ < 1 < 1 < s. �
6s−5



826 D. Broizat / Ann. I. H. Poincaré – AN 27 (2010) 809–836
3. A stability result

The proof of Theorem 1.1 relies on a stability theorem, which claims that we can pass to the limit in Eq. (ECF) in
a certain sense, namely in an integral formulation.

Definition 3.1. Let T > 0 and let f 0 be a nonnegative initial data which satisfies (2.21). A weak solution of (2.20)
is a nonnegative function f ∈ C([0, T ],L1(R3 × Y)), verifying the estimates (2.22) and (2.23), satisfying (ECF) in
D′((0,+∞) × R

3 × Y), and such that f (0) = f 0.

Now let us state the result we will prove in this section:

Theorem 3.2. Let (fn)n�1 be a sequence of weak solutions of (2.20), with initial data f 0
n , and such that

∀n ∈ N, fn ∈ W 1,1((0,+∞) × R
3 × Y

)
, (3.44)

sup
n�1

sup
t∈[0,T ]

∫ ∫
R3×Y

((
1 + m + |p|2

2m
+ e + m|x|2

)
fn(t, x, y) + fn(t, x, y)q

)
dx dy � KT , (3.45)

for all the exponents q ∈ (5/6, s], and also

sup
n�1

T∫
0

∫
R3

(
D1

(
fn(t, x)

) + D2
(
fn(t, x)

))
dx dt � KT (3.46)

(the a priori estimates hold uniformly in n).
Then, up to a subsequence, fn ⇀ f weakly in L1((0, T )×R

3
loc ×Y), where f is a renormalized solution of (ECF).

Furthermore, f ∈ C([0, T ],L1(R3 × Y)).

3.1. Weak compactness of (fn)

Let 0 < T < ∞. The bounds on fn provides some weak compactness, and thus the existence of a limit f after
extraction.

Lemma 3.3. For all R > 0, the sequence (fn)n�1 is weakly compact in L1((0, T ) × BR × Y).

Proof. We set Φ(ξ) := ξ s and Ψ (m,p, e) := m + |p|2
2m

+ e. The function Φ is nondecreasing, nonnegative and
Φ(ξ)/ξ −→

ξ→+∞+∞, Ψ is nonnegative and Ψ (y) −→|y|→+∞+∞. The estimate (3.45) gives

sup
n�1

T∫
0

∫
BR

∫
Y

((
1 + Ψ (y)

)
fn + Φ(fn)

)
dt dx dy < +∞,

and we conclude by Dunford–Pettis theorem. �
Thus, there exists a nonnegative function f such that for all R > 0, fn ⇀ f in L1((0, T ) × BR × Y) for a sub-

sequence (not relabeled). Moreover, we can show easily (diagonal extraction) that the subsequence is not depending
on R. Then we notice that in fact, f ∈ L∞((0, T ),L1(R3 × Y)) and

a.e. t ∈ (0, T ),

∫ ∫
R3×Y

(
1 + m + |p|2

2m
+ e + m|x|2

)
f (t, x, y) dx dy � KT . (3.47)

Moreover, since the function ξ �→ |ξ |s is convex, we have

a.e. t ∈ (0, T ),

∫ ∫
R3×Y

f (t, x, y)s dx dy � KT . (3.48)
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3.2. Weak compactness of the renormalized coalescence term

The bounds on fn are not enough to define the term Q−
c (fn, fn) as a distribution, unlike the term Q+

c (fn, fn). In
fact, since for all R,T > 0,

T∫
0

∫
BR

∫
YR

Q−
c (fn, fn) dy dx dt =

T∫
0

∫
BR

∫
YR

∫
Y

A
(
y, y�

)
fn(y)fn

(
y�

)
dy� dy dx dt,

we have a bound on the contribution corresponding to inf(fn, f
�
n ) > 1 due to the estimate (2.23). But the other contri-

bution, where inf(fn, f
�
n ) � 1, requires strong integrability assumptions on A to be finite, which are not reasonable.

So, it seems that renormalization is necessary to obtain well-defined and weakly compact coalescence terms.

Lemma 3.4. For all R > 0, the sequence (Q+
c (fn, fn))n�1 is weakly compact in L1((0, T ) × BR × YR), where

YR := (0,R) × BR × (0,R).

Proof. Let E be a measurable subset of (0, T ) × BR × YR . We set ϕ(t, x, y) := 1E(t, x, y). Performing the change
of variables (y, y�) → (y�, y − y�), we obtain∫

YR

Q+
c (fn, fn)(y)ϕ(y) dy = 1

2

∫
YR

∫
Y

A
(
y�, y − y�

)
fn

(
y�

)
fn

(
y − y�

)
ϕ(y)1{y�<y} dy� dy

= 1

2

∫ ∫ ∫
0<m<R
p∈R

3

0<e<R

∫ ∫ ∫
0<m�<R−m
p�∈B(−p,R)

0<e�<R−e−E−(m,m�,p,p�)

A
(
y, y�

)
fn(y)fn

(
y�

)
ϕ
(
y + y�

)
dy� dy.

In fact, we only integrate over p ∈ B2R because

|p|2
2m

� |p|2
2m

+ |p�|2
2m�

= |p + p�|2
2(m + m�)

+ E−
(
m,m�,p,p�

)
� R2

2(m + m�)
+ R,

which yields

|p|2 � R2 m

m + m�
+ 2mR � 3R2

(and the same applies to p� because of the symmetry in the previous computation).
Thus we have∫

YR

Q+
c (fn, fn)(y)ϕ(y) dy = 1

2

∫ ∫ ∫
0<m<R
p∈B2R
0<e<R

∫ ∫ ∫
0<m�<R−m
p�∈B(−p,R)

0<e�<R−e−E−(m,m�,p,p�)

Afnf
�
n ϕ′ dy� dy.

Using the inequality

Afnf
�
n � 1

Ms−1
A sup

(
fn,f

�
n

)
inf

(
fn,f

�
n

)s1{inf(fn,f �
n )>M} + MA sup

(
fn,f

�
n

)
1{inf(fn,f �

n )�M}, (3.49)

we obtain∫
YR

Q+
c (fn, fn)(y)ϕ(y) dy � D1(fn(t, x))

Ms−1
+ M

2

∫
Y2R

∫
Y2R

A sup
(
fn,f

�
n

)
ϕ′ dy� dy

� D1(fn(t, x))

Ms−1
+ M

∫
Y2R

∫
Y2R

Afnϕ
′ dy� dy

� D1(fn(t, x))

Ms−1
+ M‖A‖∞,Y 2

2R

∫
Y2R

∫
Y2R

fnϕ
′ dy� dy.

We fix ε > 0 and choose M such that 1/Ms−1 � ε.
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So, we can write∫
YR

Q+
c (fn, fn)(y)ϕ(y) dy � εD1

(
fn(t, x)

) + M‖A‖∞,Y 2
2R

∫
Y2R

∫
Y2R

fnϕ
′ dy� dy

� εD1
(
fn(t, x)

) + M‖A‖∞,Y 2
2R

∫
Y

∫
Y

fnϕ
� dy� dy.

Eventually, in view of (3.45) and (3.46), we obtain

T∫
0

∫
BR

∫
YR

Q+
c (fn, fn)ϕ(t, x, y) dy dx dt � M‖A‖∞,Y 2

2R

T∫
0

∫
BR

∫
Y

∫
Y

fnϕ
� dy� dy dx dt + εKT .

We conclude by letting mes(E) → 0 and using the weak compactness of (fn). �
Corollary 3.5. For all R > 0, the sequence (

Q+
c (fn,fn)

1+fn
)n�1 is weakly compact in L1((0, T ) × BR × YR), where

YR := (0,R) × BR × (0,R).

Proof. It’s obvious by the previous lemma and Dunford–Pettis theorem since

Q+
c (fn, fn)

1 + fn

� Q+
c (fn, fn). �

Lemma 3.6. For all R > 0, Lfn ⇀ Lf weakly in L1((0, T ) × BR × YR), where YR := (0,R) × BR × (0,R).

Proof. Let ϕ(t, x, y) ∈ L∞((0, T ) × BR × YR). We have∫
YR

Lfn(y)ϕ(y) dy =
∫
YR

∫
Y

A
(
y, y�

)
fn

(
y�

)
ϕ(y)dy� dy.

We fix ε > 0 and, in view of the assumptions (1.6) and (1.10), we choose R� > 0 such that

∀∣∣y�
∣∣ > R�,

∫
YR

A(y, y�)

|y�| dy � ε.

We can write
T∫

0

∫
BR

∫
YR

Lfn ϕ dy dx dt =
T∫

0

∫
BR

∫
YR

∫
YR�

A
(
y, y�

)
fn

(
y�

)
ϕ(y)dy� dy dx dt

+
T∫

0

∫
BR

∫
YR

∫
Y−YR�

A
(
y, y�

)
fn

(
y�

)
ϕ(y)dy� dy dx dt.

First,
T∫

0

∫
BR

∫
YR

∫
YR�

Afn

(
y�

)
ϕ(y)dy� dy dx dt −→

n

T∫
0

∫
BR

∫
YR

∫
YR�

Af
(
y�

)
ϕ(y)dy� dy dx dt.

Indeed, setting θ(t, x, y�) = ∫
YR

A(y, y�)ϕ(t, x, y) dy, we have

T∫
0

∫
BR

∫
YR

∫
YR�

Afn

(
y�

)
ϕ(y)dy� dy dx dt =

T∫
0

∫
BR

∫
YR�

θ
(
t, x, y�

)
fn

(
t, x, y�

)
dy� dx dt

and we conclude by Lemma 3.3, because the assumption (1.14) implies θ ∈ L∞((0, T ) × BR × YR�).
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Moreover,∣∣∣∣∣
T∫

0

∫
BR

∫
YR

∫
Y−YR�

Afn

(
y�

)
ϕ(y)dy� dy dx dt

∣∣∣∣∣ � ε‖ϕ‖∞
T∫

0

∫
BR

∫
Y−YR�

∣∣y�
∣∣fn

(
y�

)
dy� dx dt

� εT ‖ϕ‖∞ KT ,

and the inequality (3.47) yields∣∣∣∣∣
T∫

0

∫
BR

∫
YR

∫
Y−YR�

Af
(
y�

)
ϕ(y)dy� dy dx dt

∣∣∣∣∣ � εT ‖ϕ‖∞KT .

Finally, we infer∣∣∣∣∣
T∫

0

∫
BR

∫
YR

Lfn ϕ dy dx dt −
T∫

0

∫
BR

∫
YR

Lf ϕ dy dx dt

∣∣∣∣∣ � o(1)
n→+∞

+C(T ,R,ϕ)ε. �

Corollary 3.7. For all R > 0, the sequence (
Q−

c (fn,fn)

1+fn
)n�1 is weakly compact in L1((0, T ) × BR × YR), where

YR := (0,R) × BR × (0,R).

Proof. It’s obvious because Q−
c (fn,fn)

1+fn
= fn

1+fn
Lfn � Lfn. �

3.3. Weak convergence of the fragmentation term

Since they are linear, the fragmentation terms easily pass to the limit, and we have the following lemma.

Lemma 3.8. For all R > 0, we have

(i) Q+
f (fn) ⇀ Q+

f (f ) weakly in L1((0, T ) × BR × YR),

(ii) Q−
f (fn) ⇀ Q−

f (f ) weakly in L1((0, T ) × BR × YR),

where YR := (0,R) × BR × (0,R).

Proof. The part (ii) results immediately from (1.13), and the proof of (i) is the same as Lemma 3.6. �
3.4. Strong compactness of y-averages

Strong compactness is needed to pass to the limit in coalescence terms (because they are quadratic), that’s why we
use the following averaging lemma, inspired by [7,3,4]:

Theorem 3.9. Let (gn) be a bounded sequence in L1((0, T )×R
3 ×Y) and weakly compact in L1((0, T )×BR ×YR),

for all R > 0. Let (Gn) be a bounded sequence in L1((0, T ) × BR × YR) for all R > 0. We assume that

∂tgn + p

m
.∇xgn = Gn in D′((0,+∞) × R

3 × Y
)
.

Then, for any function Ψ ∈ L∞(Y 2), with compact support, the sequence(∫
Y

gn(t, x, y)Ψ
(
y, y�

)
dy

)
n∈N

is strongly compact in L1((0, T ) × BR × YR), for all R > 0.
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This result can be improved:

Corollary 3.10. With the assumptions of Theorem 3.9, we also have: for all R > 0 and for any function Ψ ∈
L∞((0, T ) × BR × Y 2

R), the sequence(∫
Y

gn(t, x, y)Ψ
(
t, x, y, y�

)
dy

)
n∈N

is strongly compact in L1((0, T ) × BR × YR).

Proof. The case of separated variables is obvious. Then, we proceed by a density argument as in [3]. �
Corollary 3.11. With the assumptions of Theorem 3.9, we also have: for all R > 0 and for any sequence (Ψn) bounded
in L∞((0, T ) × BR × YR) which converges a.e. to Ψ ∈ L∞((0, T ) × BR × YR), the sequence(∫

Y

gn(t, x, y)Ψn(t, x, y) dy

)
n∈N

is strongly compact in L1((0, T ) × BR).

Proof. Let ε > 0. The sequence (gn) being weakly compact in L1((0, T ) × BR × YR), there exists δ > 0 such that

∀E ∈ B
(
(0, T ) × BR × YR

)
, |E| < δ, sup

n

∫ ∫ ∫
E

|gn|dt dx dy � ε.

Then, by Egoroff theorem, there exists E0 ∈ B((0, T )×BR ×YR) such that |E0| < δ and Ψn converge uniformly to Ψ

on E1 := ((0, T ) × BR × YR) \ E0. Whence

∥∥∥∥
∫
YR

gnΨn dy −
∫
YR

gnΨ dy

∥∥∥∥
L1((0,T )×BR)

�
T∫

0

∫
BR

∫
YR

|gn||Ψn − Ψ |dy dx dt

� 2Cε + sup
E1

|Ψn − Ψ |
∫ ∫ ∫

E1

|gn|dy dx dt

= 2Cε + o(1)
n→+∞

.

We infer∥∥∥∥
∫
YR

gnΨn dy −
∫
YR

gnΨ dy

∥∥∥∥
L1((0,T )×BR)

n−→ 0.

The sequence (
∫
YR

gnΨ dy) being compact in L1((0, T ) × BR) in view of Corollary 3.10, the results follows. �
Now, we are able to establish the strong compactness of the sequence of fn y-averages, and also the (Lfn) one.

Lemma 3.12. For all R > 0, and for all function Ψ ∈ L∞(Y ) with compact support,∫
Y

fn(t, x, y)Ψ (y)dy
n−→

∫
Y

f (t, x, y)Ψ (y)dy in L1((0, T ) × BR

)
.

Proof. Since it is not clear that (Q−
c (fn, fn))n is bounded in L1((0, T ) × BR × YR), we cannot directly apply Theo-

rem 3.9 to the sequence (fn). For ν > 0, we consider the sequence gν
n := 1

ν
log(1 + νfn) and we set

Gν
n := Q+

c (fn, fn) − Q−
c (fn, fn) + Q+

f (fn) − Q−
f (fn)

.

1 + νfn 1 + νfn 1 + νfn 1 + νfn
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By the assumptions on (fn), we have

∂tg
ν
n + p

m
.∇xg

ν
n = Gν

n in D′((0,+∞) × R
3 × Y

)
. (3.50)

Since 0 � gν
n � fn, the weak compactness of (fn) established in Lemma 3.3 implies that (gν

n) is also weakly compact.
Similarly, the sequence (gν

n) is bounded in L1((0, T )×R
3 ×Y). Then, by Corollaries 3.5, 3.7 and Lemma 3.8, (Gν

n) is
bounded in L1((0, T ) × BR × YR). Therefore, Theorem 3.9 applies to (gν

n) for all ν > 0. In particular, for all function
Ψ ∈ L∞(Y ) with compact support and for all ν > 0, the sequence(∫

Y

gν
n(t, x, y)Ψ (y)dy

)
n

is compact in L1((0, T ) × BR), thus, by the uniqueness of weak limit,∫
Y

gν
n(t, x, y)Ψ (y)dy

n−→
∫
Y

gν(t, x, y)Ψ (y)dy in L1((0, T ) × BR

)
, (3.51)

where gν is the weak limit of (gν
n) (up to an extraction).

The result follows because

sup
n

sup
t∈[0,T ]

∫ ∫
R3×Y

∣∣gν
n − fn

∣∣dy dx −→
ν→0

0, (3.52)

which implies the strong compactness in L1((0, T ) × BR) of the sequence(∫
Y

fn(t, x, y)Ψ (y)dy

)
n

.

To show (3.52), we can use the inequality

∀M > 0, 0 � u − 1

ν
log(1 + νu) = νM

2
u1{u�M} + u1{u>M}. (3.53)

Then we obtain, for all n and for all t ∈ [0, T ],∫ ∫
R3×Y

∣∣gν
n − fn

∣∣dy dx � νM

2

∫ ∫
R3×Y

fn dy dx +
∫ ∫

R3×Y

fn1{fn>M} dy dx

� νM

2
KT + 1

Ms−1

∫ ∫
R3×Y

f s
n dy dx

�
(

νM

2
+ 1

Ms−1

)
KT .

We conclude by letting ν → 0, and M → +∞. �
Proposition 3.13. We set ρn(t, x) := ∫

Y
fn(t, x, y) dy and ρ(t, x) := ∫

Y
f (t, x, y) dy.

Then, up to a subsequence, we have, for all R > 0,

ρn → ρ in L1((0, T ) × BR

)
and a.e. (3.54)

Proof. We have

ρn = ρM
n + σM

n , where ρM
n :=

∫
fn(t, x, y) dy.
YM
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By the preceding lemma, ρM
n −→

n
ρM := ∫

YM
f (t, x, y) dy in L1((0, T ) × BR) for all M > 0, and

σM
n :=

∫
Y−YM

fn(t, x, y) dy � 1

M

∫
Y−YM

|y|fn(t, x, y) dy

� Cte

M

∫
Y

(
m + |p|2

2m
+ e

)
fn(t, x, y) dy,

whence σM
n −→

M→+∞ 0 in L1((0, T ) × BR), uniformly in n. �
Lemma 3.14. For all R > 0, we have, up to a subsequence,

Lfn → Lf in L1((0, T ) × BR × YR

)
and a.e. (3.55)

Proof. Applying Corollary 3.10 with Ψ (y,y�) = A(y,y�)1{y∈YR}1{y�∈YR� }, we infer that the sequence( ∫
YR�

gν
n

(
t, x, y�

)
A

(
y, y�

)
dy�

)
n

is compact in L1((0, T ) × BR × YR) for all R� > 0. Using (3.52) again, we obtain, for all R� > 0, the compactness
of (

∫
YR�

fn(t, x, y�)A(y, y�) dy�)n in L1((0, T ) × BR × YR). We conclude similarly as for the proof of Lemma 3.6,
establishing

lim
R�→+∞ sup

n

∥∥∥∥
∫

YR�

Af �
n dy� −

∫
Y

Af �
n dy�

∥∥∥∥
L1((0,T )×BR×YR)

= 0,

and identifying the weak limits. �
3.5. Regularity in time of the limit f

In this subsection, we show the continuity in time of the limit f , which gives a sense to the Cauchy data f (0) = f 0.

Proposition 3.15. In fact, we have f ∈ C([0, T ],L1(R3 × Y)).

Proof. We use the integral formulation. Each gν
n is a distributional solution of the renormalized equation, by (3.50),

so a mild solution. Therefore we have, for a.e. (x, y) ∈ R
3 × Y, and for all t, t + h ∈ [0, T ],

gν�
n (t + h,x, y) − gν�

n (t, x, y) =
t+h∫
t

Gν
n(σ, x, y) dσ,

thus

∥∥gν�
n (t + h) − gν�

n (t)
∥∥

L1(BR×YR)
�

∫ ∫
BR×YR

t+h∫
t

∣∣Gν
n(σ, x, y)

∣∣dσ.

Moreover, by Subsections 3.2 and 3.3, the sequence (Gν
n)n is weakly compact in L1((0, T ) × BR × YR), thus for all

t ∈ [0, T ],
lim sup

∥∥gν�
n (t + h) − gν�

n (t)
∥∥

L1(BR×YR)
= 0.
h→0 n
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Therefore the sequence (g
ν�
n ) is equicontinuous in C([0, T ],L1(BR × YR)). By the compactness of [0, T ], this se-

quence is in fact uniformly equicontinuous, thus

lim
h→0

sup
n

sup
t∈[0,T ]

∥∥gν�
n (t + h) − gν�

n (t)
∥∥

L1(BR×YR)
= 0.

Then, (3.52) and the estimate (3.45) yield

lim
h→0

sup
n

sup
t∈[0,T ]

∥∥f �
n (t + h) − f �

n (t)
∥∥

L1(R3×Y)
= 0.

Ascoli theorem entails that the sequence (f
�
n ) is compact in C([0, T ],L1(R3 × Y)).

The uniqueness of the limit in D′((0,+∞) × R
3 × Y) yields f � ∈ C([0, T ],L1(R3 × Y)), and so f ∈

C([0, T ],L1(R3 × Y)) by change of variables. �
3.6. Passing to the limit in a new integral equation

Even if the renormalization provides weak compactness, a new problem appears: we will not be able to pass to the
weak limit in (ECFR), because of the non-linearity of the factor fn/(1+fn). That’s why we need another formulation
to our problem, which avoids the renormalization. But, remember that the term Q−

c (f, f ) cannot be defined as a
distribution, so we will use an integral equation which doesn’t involve this term. We proceed as in [10].

We denote by T the linear transport operator

T = ∂t + p

m
.∇x.

Let T −1 be the resolvant of transport operator, defined by: for g(t, x, y), we set u = T −1g if u|t=0 = 0 and T u = g.

So, we have

T −1g(t, x,m,p, e) :=
t∫

0

g
(
s, x − (t − s)p/m,m,p, e

)
ds.

T −1 satisfies the following properties:

(i) For all R > 0, T −1(L1((0, T ) × BR × YR)) ⊂ C([0, T ],L1(BR × YR)) continuously and weakly continuously.
(ii) T −1 is nonnegative (∀g � 0, T −1g � 0).

For all F ∈ C([0, T ],L1(BR × YR)) such that T F � 0, we set

T −1
F = e−F T −1eF .

This operator is well defined from L1((0, T ) × BR × YR) to C([0, T ],L1(BR × YR)) and has the same continuity
properties as T −1.

Moreover, if (Fn) is a bounded sequence in C([0, T ],L1(BR ×YR)) such that T Fn � 0, if Fn(t, x, y) → F(t, x, y)

for all t and a.e. (x, y), and if gn ⇀ g weakly in L1((0, T ) × BR × YR), then

∀t ∈ [0, T ], T −1
Fn

gn(t) ⇀ T −1
F g(t) weakly in L1(BR × YR).

The operator T −1
F allows us to build a new formulation of our problem, which is better because it only involves

Q+
c (fn, fn), Q+

f (fn), Q−
c (fn):

Lemma 3.16. f ∈ C([0, T ],L1(R3 × Y)) is a mild solution of (ECF) with initial data f (0) = f 0 if and only if

f = e−F f 0(x − tp/m,y) + T −1
F

(
Q+

c (f, f )
) + T −1

F

(
Q+

f (f )
) − T −1

F

(
Q−

c (f )
)
, (3.56)

where F := T −1(Lf ).
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Proof. The result is deduced from the following fact: if f is a distributional solution of (ECF), then

T
(
eF f

) = T FeF f + eF Tf

= eF
(
f Lf + Q+

c (f, f ) − Q−
c (f, f ) + Q+

f (f ) − Q−
f (f )

)
= eF

(
Q+

c (f, f ) + Q+
f (f ) − Q−

f (f )
)
. �

Now, we can finish the proof of Theorem 3.2.

End of the proof of Theorem 3.2. We will pass to the weak limit in the following equation, satisfied by each (fn):

fn = e−Fnf 0
n (x − tp/m,y) + T −1

Fn

(
Q+

c (fn, fn)
) + T −1

Fn

(
Q+

f (fn)
) − T −1

Fn

(
Q−

c (fn)
)
, (3.57)

where Fn := T −1(Lfn).

Notice that in view of (3.55) and the continuity properties of T −1, the sequence (Fn) is bounded in C([0, T ],
L1(BR × YR)), and Fn(t, x, y) → F(t, x, y) for all t and a.e (x, y). Thus, we can pass to the weak limit in the
terms T −1

Fn
(Q+

f (fn)) and T −1
Fn

(Q−
c (fn)) thanks to Lemma 3.8. The term e−Fnf 0

n (x − tp/m,y) can be treated with

the continuity in t = 0 (for the L1-norm) of each fn and f , established in the previous section. Eventually, the last
term T −1

Fn
(Q+

c (fn, fn)) also pass to the weak limit thanks to the following lemma and proposition, which use the a.e.
convergence of the y-averages obtained in the previous subsection.

Lemma 3.17. For all R > 0 and for all function ϕ ∈ L∞((0, T ) × BR × YR), we have, up to a subsequence,∫
Y

Q+
c (fn, fn)(t, x, y)ϕ(t, x, y) dy

1 + ρn(t, x)

n−→
∫
Y

Q+
c (f, f )(t, x, y)ϕ(t, x, y) dy

1 + ρ(t, x)

in L1((0, T ) × BR) and a.e.

Proof. We have∫
Y

Q+
c (fn, fn)ϕ dy

1 + ρn

= 1

2

∫
Y

fn

(
t, x, y�

)(∫
Y

fn(t, x, y)A(y, y�)ϕ(t, x, y + y�) dy

1 + ρn(t, x)

)
dy�.

Now, we apply Corollary 3.10 with Ψ (t, x, y, y�) = A(y,y�)ϕ(t, x, y + y�) (notice that Ψ ∈ L∞((0, T )×BR ×Y 2
2R)

thanks to (1.5)).
Therefore, the sequence (

∫
Y

gν
n(t, x, y)A(y, y�)ϕ(t, x, y′) dy)n is compact in L1((0, T ) × BR × YR), and we have∫

Y

gν
n(t, x, y)A

(
y, y�

)
ϕ
(
t, x, y′)dy

n−→
∫
Y

gν(t, x, y)A
(
y, y�

)
ϕ
(
t, x, y′)dy (3.58)

in L1((0, T ) × BR × YR), for all ν > 0.
Using (3.52) again, we obtain, up to a subsequence, that∫

Y

fn(t, x, y)A
(
y, y�

)
ϕ
(
t, x, y′)dy

n−→
∫
Y

f (t, x, y)A
(
y, y�

)
ϕ
(
t, x, y′)dy (3.59)

in L1((0, T ) × BR × YR) and a.e.
Up to another extraction, we infer, by (3.59) and (3.54),∫

Y

fn(t, x, y)A(y, y�)ϕ(t, x, y′) dy

1 + ρn(t, x)

n−→
∫
Y

f (t, x, y)A(y, y�)ϕ(t, x, y′) dy

1 + ρ(t, x)
(3.60)

a.e. in (t, x, y) ∈ (0, T ) × BR × YR .
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Applying Corollary 3.11 with

Ψn

(
t, x, y�

) :=
∫
Y

fn(t, x, y)A(y, y�)ϕ(t, x, y′) dy

1 + ρn(t, x)

(which satisfies the required assumptions because ϕ is compact supported and A is locally bounded), we obtain the
compactness of the sequence(∫

Y

gν
n

(
t, x, y�

)
Ψn

(
t, x, y�

)
dy�

)
n∈N

in L1((0, T ) × BR

)
,

and so, by (3.52), we deduce that(∫
Y

fn

(
t, x, y�

)
Ψn

(
t, x, y�

)
dy�

)
n∈N

is compact.
Finally, we conclude that∫

Y

fn

(
t, x, y�

)
Ψn

(
t, x, y�

)
dy� n−→

∫
Y

f
(
t, x, y�

)
Ψ

(
t, x, y�

)
dy� in L1((0, T ) × BR

)
. �

Proposition 3.18. Up to a subsequence, we have, for all R > 0,

Q+
c (fn, fn) ⇀ Q+

c (f, f ) weakly in L1((0, T ) × BR × YR

)
.

Proof. We know by Lemma 3.4 that there exists Q(t, x, y) such that for all R > 0,

Q+
c (fn, fn) ⇀ Q weakly in L1((0, T ) × BR × YR

)
.

By (3.54) and a standard integration argument (we can refer to [17] for a proof), it leads to

Q+
c (fn, fn)

1 + ρn

⇀
Q

1 + ρ
weakly in L1((0, T ) × BR × YR

)
.

Moreover, the previous lemma shows that

Q+
c (fn, fn)

1 + ρn

⇀
Q+

c (f, f )

1 + ρ
weakly in L1((0, T ) × BR × YR

)
.

We conclude identifying weak limits. �
We have shown that f is a mild solution of (ECF). Since Q+

c (fn, fn), Q+
f (fn) and Q−

f (fn) converge weakly to

Q+
c (f, f ), Q+

f (f ) and Q−
f (f ) respectively, these three terms lie in L1

loc, and a fortiori,

Q+
c (f, f )

1 + f
,
Q+

f (f )

1 + f
,
Q−

f (f )

1 + f
∈ L1

loc

(
(0,+∞) × R

3 × Y
)
.

The term Q−
c (f,f )

1+f
is automatically in L1

loc because Lf ∈ L1((0, T ) × BR × YR) for all R > 0 and Q−
c (f,f )

1+f
� Lf .

Thus, f is indeed a renormalized solution of (ECF). �
References

[1] D.J. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagulation): A review of the mean-field theory for prob-
abilists, Bernoulli 5 (1) (1999) 3–48.

[2] H. Amann, C. Walker, Local and global strong solutions to continuous coagulation–fragmentation equations with diffusion, J. Differential
Equations 218 (1) (2005) 159–186.



836 D. Broizat / Ann. I. H. Poincaré – AN 27 (2010) 809–836
[3] R.J. DiPerna, P.L. Lions, On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989)
321–366.

[4] R.J. DiPerna, P.L. Lions, Y. Meyer, Lp regularity of velocity averages, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 271–287.
[5] P.B. Dubovski, I.W. Stewart, Existence, uniqueness and mass conservation for the coagulation–fragmentation equation., Math. Methods Appl.

Sci. 19 (7) (1996) 571–591.
[6] P.B. Dubovski, Solubility of the transport equation in the kinetics of coagulation and fragmentation., Izv. Math. 65 (1) (2001) 1–22.
[7] M. Escobedo, P. Laurençot, S. Mischler, On a kinetic equation for coalescing particles, Comm. Math. Phys. 246 (2) (2004) 237–267.
[8] M. Escobedo, S. Mischler, M. Rodriguez-Ricard, On self-similarity and stationary problem for fragmentation and coagulation models., Ann.

Inst. H. Poincaré Anal. Non Linéaire 22 (1) (2005) 99–125.
[9] N. Fournier, P. Laurençot, Existence of self-similar solutions to Smoluchowski’s coagulation equation., Comm. Math. Phys. 256 (3) (2005)

589–609.
[10] P. Gérard, Solutions globales du problème de Cauchy pour l’équation de Boltzmann, Séminaire Bourbaki 699 (1987–1988) 257–281.
[11] P.E. Jabin, J. Soler, A kinetic description of particle fragmentation, Math. Models Methods Appl. Sci. 16 (6) (2006) 933–948.
[12] P.E. Jabin, C. Klingenberg, Existence to solutions of a kinetic aerosol model, in: Nonlinear Partial Differential Equations and Related Analysis,

in: Contemp. Math., vol. 371, Amer. Math. Soc., Providence, RI, 2005, pp. 181–192.
[13] W. Lamb, Existence and uniqueness results for the continuous coagulation and fragmentation equation, Math. Methods Appl. Sci. 27 (6)

(2004) 703–721.
[14] P. Laurençot, Self-similar solutions to a coagulation equation with multiplicative kernel, Phys. D 222 (1–2) (2006) 80–87.
[15] P. Laurençot, S. Mischler, Global existence for the discrete diffusive coagulation–fragmentation equations in L1, Rev. Mat. Iberoameri-

cana 18 (3) (2002) 731–745.
[16] P. Laurençot, S. Mischler, From the discrete to the continuous coagulation–fragmentation equations, Proc. Roy. Soc. Edinburgh. Sect. A 132 (5)

(2002) 1219–1248.
[17] P. Laurençot, S. Mischler, The continuous coagulation–fragmentation equations with diffusion, Arch. Rational. Mech. Anal. 162 (2002) 45–99.
[18] P. Laurençot, S. Mischler, Convergence to equilibrium for the continuous coagulation–fragmentation equation., Bull. Sci. Math. 127 (3) (2003)

179–190.
[19] S. Mischler, M. Rodriguez-Ricard, Existence globale pour l’équation de Smoluchowski continue non homogène et comportement asympto-

tique des solutions, C. R. Math. Acad. Sci. Paris 336 (5) (2003) 407–412.
[20] H. Müller, Zur allgemeinen Theorie der raschen Koagulation, Kolloidchemische Beihefte 27 (1928) 223–250.
[21] M. Smoluchowski, Drei Vorträge über Diffusion. Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik Zeitschr. 17

(1916) 557–599.
[22] M. Smoluchowski, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Zeitschrift f. physik. Chemie 92

(1917) 129–168.
[23] I.W. Stewart, A global existence theorem for the general coagulation–fragmentation equation with unbounded kernels, Math. Methods Appl.

Sci. 11 (5) (1989) 627–648.
[24] I.W. Stewart, A uniqueness theorem for the coagulation–fragmentation equation, Math. Proc. Cambridge Philos. Soc. 107 (3) (1990) 573–578.


	A kinetic model for coagulation-fragmentation
	Introduction
	The original model
	Spatially inhomogeneous models
	Description of the kinetic model and outline of the paper
	Different notions of solutions

	A priori estimates
	Basic physical estimates
	Lq bounds

	A stability result
	Weak compactness of (fn)
	Weak compactness of the renormalized coalescence term
	Weak convergence of the fragmentation term
	Strong compactness of y-averages
	Regularity in time of the limit f
	Passing to the limit in a new integral equation

	References


