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Abstract

We provide a mathematical analysis for the appearance of motor effects, i.e., the concentration (as Dirac masses) at one side
of the domain, for the solution of a Fokker–Planck system with two components, one with an asymmetric potential and diffusion
and one with pure diffusion. The system has been proposed as a model for motor proteins moving along molecular filaments. Its
components describe the densities of different conformations of proteins.

Contrary to the case with two asymmetric potentials, the case at hand requires a large number of periods in order for the motor
effect to occur. It is therefore posed as a homogenization problem where the diffusion length is at the same scale as the period of
the potential.

Our approach is based on the analysis of a Hamilton–Jacobi equation arising, at the zero diffusion limit, after an exponential
transformation of the phase functions. The homogenization procedure yields an effective Hamiltonian whose properties are closely
related to the concentration phenomena.

MSC: 35B25; 35B27; 49L25; 92C05
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1. Introduction

Living cells are able to generate motion as, for example, in muscle contraction. Even more elementary processes,
known as “motor proteins,” allow for intra-cellular material transport along various filaments that are part of the
cytoskeleton. For example, myosins move along actin filaments and kinesins and dyneins move along micro-tubules.
Experiments in the early 90’s lead to an improved biological understanding of the biomotor process. The experimental
observations made it possible to arrive at mathematical models for molecular motors [4,8,15,16,20,22,23,28]. The
underlying principles are elementary. The filament provides an asymmetric potential (energy landscape) while the
protein can reside in several different conformational states.
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In this paper we consider the following model: A bath of molecules that can reach two configurations with densities
n(1) and n(2) is moving in an asymmetric potential seen only by the first configuration. Fuel consumption triggers a
configuration change between the two states with rates ν(1) and ν(2). Diffusion, denoted by ε, is taken into account.
The potential and the transition rates are assumed to be periodic and may oscillate at scale ε.

These considerations lead to the following simple Fokker–Planck system of elliptic equations for the densities n
(1)
ε

and n
(2)
ε :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εn(1)
ε,xx −

(
ψy

(
x

ε

)
n(1)

ε

)
x

+ 1

ε
ν(1)

(
x

ε

)
n(1)

ε = 1

ε
ν(2)

(
x

ε

)
n(2)

ε ,

in (0,1),

−εn(2)
ε,xx + 1

ε
ν(2)

(
x

ε

)
n(2)

ε = 1

ε
ν(1)

(
x

ε

)
n(1)

ε

εn(1)
ε,x + ψy

(
x

ε

)
n(1)

ε = n(2)
ε,x = 0 for x = 0 or 1.

(1.1)

We assume that

the potential ψ and the strictly positive rates ν(1), ν(2) are smooth and 1-periodic (1.2)

and we choose ε = 1/N for some integer N , so that

ψ

(
1

ε

)
= ψ(0) and ψy

(
1

ε

)
= ψy(0).

System (1.1) is an eigenvalue problem and we choose the solution normalized as

n(1)
ε > 0 and n(2)

ε > 0 in [0,1] and max
[0,1]

(
n(1)

ε + n(2)
ε

) = 1. (1.3)

The zero flux boundary conditions mean that the total number of molecules, in each state, is preserved by the
transport but not the configuration exchange. Adding the equations in (1.1) and using the boundary conditions leads,
after integration, to the total zero flux property

−ε
(
n(1)

ε + n(2)
ε

)
x

− ψy

(
x

ε

)
n(1)

ε = 0 in [0,1]. (1.4)

Several biomotor models, including the one considered here, were analyzed, for fixed ε, in [10,11,21,24,25] using
arguments from optimal transportation. The existence of steady state solutions of (1.1) satisfying (1.3) is proved in,
among other places, [10]. The simplest way to find (n

(1)
ε , n

(2)
ε ) is to consider the adjoint system which admits (trivial)

constant solutions. As a result 0 is the first eigenvalue of the adjoint of (1.1) and, hence, (1.1). The Krein–Rutman
theorem yields (n

(1)
ε , n

(2)
ε ) as the eigenvector of (1.1) corresponding to the 0 eigenvalue.

The typical results obtained about biomotors [10,21,27] without oscillating potentials are that, for small diffusion ε

and under some precise asymmetry assumptions on the potential and rates, the solutions tend to concentrate, as ε → 0,
as Dirac masses at either x = 0 or x = 1. This behavior is referred to as “motor effect.”

The question we are asking here is for which potential ψ and rates ν(1) and ν(2) does (1.1) exhibit motor effect as
ε → 0. In particular, we are investigating for which ψ , ν(1) and ν(2) satisfying (1.2) we have, for i = 1,2,

n(i)
ε = exp

[
−1

ε

(
R + o(i)(1)

)]
, (1.5)

with an “effective rate” R having a strict minimum at one end of the domain—this gives the orientation of the molec-
ular transport.

Restrictions on ψ , ν(1) and ν(2) are definitely necessary. Indeed for any periodic potential ψ choose the rates
ν(1) = νeψ , ν(2) = ν for some constant ν > 0. It is then immediate that

n(1)
ε (x) = exp

(
−ψ

(
x

ε

))
and n(2)

ε (x) = 1

and, clearly, there is no motor effect.
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Fig. 1. Motor effect exhibited by the system (1.1) with 50 periods. The phase functions R(1) (highly oscillating) and R(2) (with nearly linear
growth).

The motor effect can be induced by either asymmetric potentials or asymmetric transitions—we give an example for
either case later in the paper. It is, however, far from easy to give a full description of the class of coefficients (potential
and rates) that produce concentration effects. In this paper we provide a general rigorous characterization of what it is
needed to have a motor effect. We then present two examples where it is possible to check this characterization. We
do not know, however, any specific assumption on the coefficients that imply the general condition. This is different
from the case of two potentials with a fixed number of periods (see [27]).

Our approach is based on the analysis of the homogenization limit, as ε → 0, of the system satisfied by the rate
functions R

(1)
ε and R

(2)
ε defined by the classical transformation

n(1)
ε = exp

(
−1

ε
R(1)

ε

)
and n(2)

ε = exp

(
−1

ε
R(2)

ε

)
. (1.6)

The common limit R of the R
(1)
ε and R

(2)
ε satisfies, in the Crandall–Lions viscosity sense, an averaged Hamilton–

Jacobi equation. We show that the critical condition for motor effect is that the homogenized Hamiltonian has a
nonzero root. Fig. 1 depicts these functions on an example.

Viscosity solutions are the correct class of weak solutions for first- and second-order fully nonlinear degenerate
elliptic PDE. We refer to [13] and the references therein for a good introduction to the theory. Our arguments combine
ideas from the methods used to study front propagation and large deviations [5,19] and homogenization [18].

The appearance of Dirac concentrations in different areas of biology, for example, trait selection in evolution theory,
relies also on introducing a phase function and the study of the viscosity solutions of an appropriate Hamilton–Jacobi
equation [6,14,26].

Other homogenization problems, as in fluid dynamics through porous media [3], are also known to yield an oriented
drift and concentration effects. A single state is enough in this case, a fact which is different from the process we study
here as well as the concentration effect we are interested in.

Another example [1,17,9] is the homogenization of growth-diffusion eigenvalue systems like⎧⎨
⎩−ε2 div

(
Ai

(
x

ε

)
Dn(i)

ε

)
+ Σ

(
x

ε

)
nε = μεσ

(
x

ε

)
nε in Ω (i = 1, . . . , k),

uε = 0 on ∂Ω.

The settings and approaches of [1,17,9] are different than ours. In particular σ �≡ 0 and the boundary conditions
are different. Moreover, the matrix Σ satisfies conditions that guarantee that the first eigenvalue με is nonzero. Note
that in the problem we study here there is no σ and the eigenvalue problem (1.1) has 0 as an eigenvalue. The effective
Hamiltonian we derive here also appears in [1,9] but plays a different role. The critical growth in [1,9] corresponds to
the maximum of the effective Hamiltonian not the nontrivial root. Notice that contrary to the system we are considering
here, a single equation is enough to yield, in certain cases, concentration phenomena provided the diffusion depends
on the small scale. To illustrate this issue, we give an explicit example in Section 6 where this also happens in our
case.
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Substantially different analysis is needed for a seemingly closely related problem which is set in R. Then the issue
is to compute the asymptotic propagation speed for long times. This has been done in [7,12] for the case of flashing
rachets.

The paper is organized as follows: In Section 2 we use some formal arguments to introduce the relevant (effec-
tive) Hamilton–Jacobi equation and we state the main result. Section 3 is devoted to the rigorous study of the phase
functions and their limit and the connection with the effective Hamiltonian. In Section 4 we discuss two particular
examples of coefficients. In Section 5 we prove that the general condition introduced in Section 2 yields a motor
effect. We discuss possible extensions in Section 6.

2. The main result

We begin with a formal discussion which both motivates and introduces the necessary terminology for the statement
of the main result.

The first observation is that, after multiplication by ε, at the limit ε → 0, we must have, in the distributional sense,

ν(1)n(1)
ε − ν(2)n(2)

ε → 0,

a fact that implies that Dirac mass type concentration must occur on both densities if at all.
A simple computation yields that the phase functions R

(1)
ε and R

(2)
ε , defined by (1.6), solve the nonlinear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−εR(1)
ε,xx + ∣∣R(1)

ε,x

∣∣2 − ψy

(
x

ε

)
R(1)

ε,x + ψyy

(
x

ε

)
+ ν(2)

(
x

ε

)
exp

[
ε−1(R(1)

ε − R(2)
ε

)] = ν(1)

(
x

ε

)
,

in (0,1),

−εR(2)
ε,xx + ∣∣R(2)

ε,x

∣∣2 − ν(1)

(
x

ε

)
exp

[
ε−1(R(2)

ε − R(1)
ε

)] = ν(2)

(
x

ε

)

R(1)
ε,x = ψy

(
x

ε

)
and R(2)

ε,x = 0 at x = 0 or 1.

(2.1)

The observation at the beginning of the section, the nonlinear terms exp(±ε−1(R
(1)
ε − R

(2)
ε )) and the positivity of

the transition rates suggest that R
(1)
ε and R

(2)
ε must converge, as ε → 0, along subsequences, if at all, to the same

limit R, i.e., as ε → 0, we must have

R(1)
ε ,R(2)

ε → R in (0,1).

The oscillations in (2.1) suggest then the formal expansion, for i = 1,2,

R(i)
ε (x) = R(x) + εφ(i)

(
x

ε

)
+ O(i)

(
ε2),

with φ(1) and φ(2) 1-periodic (see Fig. 1 for an illustration).
Substituting in (2.1) and looking at the terms multiplying ε0 we find that the 1-periodic vector (φ(1), φ(2)) must

solve the system⎧⎨
⎩

−φ(1)
yy + ∣∣φ(1)

y + Rx

∣∣2 − ψy(y)
(
φ(1)

y + Rx

) + ψyy(y) + ν(2)(y) exp
(
φ(1) − φ(2)

) = ν(1)(y),

−φ(2)
yy + ∣∣φ(2)

y + Rx

∣∣2 + ν(1)(y) exp
(
φ(2) − φ(1)

) = ν(2)(y)
in (0,1),

(2.2)

where we write y for the fast variable x/ε.
As it is usually done in the homogenization theory, we seek a “compatibility”-type condition on p = Rx so that

(2.2) has a periodic solution. This leads to the homogenized equation. Finding the compatibility condition and, hence,
φ(1) and φ(2) is known as solving the cell problem. In the case at hand the cell problem is described as follows:

For each p ∈ R there exists a unique constant H̄ (p) such that the system
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⎧⎨
⎩

−φ(1)
yy + ∣∣φ(1)

y + p
∣∣2 − ψy

(
φ(1)

y + p
) + ψyy + ν(2) exp

(
φ(1) − φ(2)

) = ν(1) + H̄ (p),

−φ2
yy + ∣∣φ(2)

y + p
∣∣2 + ν(1) exp

(
φ(2) − φ(1)

) = ν(2) + H̄ (p)
in R, (2.3)

has an 1-periodic solution (φ(1), φ(2)).
Observe that (2.3) is really a standard Hamilton–Jacobi-type nonlinear eigenvalue problem (see [5]). The connec-

tion with a “real” eigenvalue follows from the observation that, if, for i = 1,2,

χ(i)(y) = e−pyφ(i)(y),

then {−χ(1)
yy − (

ψyχ
(1)

)
y

+ ν(1)χ(1) − ν(2)χ(2) = −H̄ (p)χ(1),

−χ(2)
yy + ν(2)χ(2) − ν(1)χ(1) = −H̄ (p)χ(2)

in R, (2.4)

complemented by the (boundary) condition, for i = 1,2,

y �→ epyχ(i)(y) is 1-periodic and χ(i) > 0. (2.5)

For future reference we also introduce the normalization
1∫

0

(
χ(1) + χ(2)

)
(y) dy = 1. (2.6)

The previous formal analysis then yields that R must solve the equation

H̄ (Rx) = 0 in (0,1). (2.7)

It turns out—we show this later in the paper—that H̄ is strictly convex and H̄ (0) = 0. The goal then is to show
that, for a class of potentials ψ and rates ν(1), ν(2), it is possible for H̄ (p) = 0 to also have a nonzero solution p̄ and
to prove that in this case Rx = p̄.

Note that if H̄ = 0 has only the trivial solution p = 0, then we must have Rx = 0, in which case for i = 1,2,

n(i)
ε (x) = exp

(
−c + o(i)(1)

ε
− φ(i)

(
x

ε

))
,

with φ(i) 1-periodic and c ∈ R. It is then possible that the n
(i)
ε ’s either do not converge to a Dirac mass or they do, but

with rate weaker than we are interested in here.
We continue now with a rigorous discussion about H̄ and some of its properties. The Krein–Rutman theorem yields

that, for each p ∈ R, there exist unique H̄ (p) and (χ(1), χ(2)) satisfying (2.4), (2.5) and (2.6).
Adding the equations in (2.4) and integrating in y we find that there exits a constant F(p), which we call the total

flux associated with (2.2), (2.5) and (2.6), such that, for all y ∈ R,

F(p) = −χ(1)
y − χ(2)

y − ψyχ
(1) + H̄ (p)

y∫
0

(
χ(1) + χ(2)

)
(y) dy. (2.8)

The following lemma, which we prove at the end of this section, summarizes the key properties of H̄ and F that
are needed for our analysis.

We have:

Lemma 2.1. For p ∈ R, let H̄ (p) be the eigenvalue of (2.4) with eigenvector (χ(1), χ(2)) satisfying (2.5) and (2.6).
Then: H̄ ∈ C1(R), H̄ (0) = 0, H̄ (p) = F(p)(e−p − 1), H̄ is strictly convex and H̄ (p) → ∞ as |p| → ∞.

We continue introducing the notion of “asymmetric potential-transition rate.” In Section 4 we give two examples.

Definition 2.2. The triplet (ψ, ν(1), ν(2)) is said to be asymmetric if one of the following three equivalent conditions
hold:
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(i) There exists p̄ �= 0 such that H̄ (p̄) = 0,
(ii) H̄ ′(0) �= 0,

(iii) F(0) �= 0.

The equivalence of (i), (ii) and (iii) above is indeed obvious from Lemma 2.1, since H̄ ′(0) = −F(0) and H̄ is
strictly convex.

Recalling the standard notation δa for the Dirac mass at x = a, we proceed with the main result which is:

Theorem 2.3. Assume that coefficients ψ , ν(1) and ν(2) satisfy (1.2) and are asymmetric in the sense of Definition 2.2.
Then a concentration effect takes place, i.e., for i = 1,2, there exist ρ(i) > 0 such that, as ε → 0,

either n(i)
ε ⇀ ρ(i)δ0 if p̄ > 0, or n(i)

ε ⇀ ρ(i)δ1 if p̄ < 0.

Moreover,

n(i)
ε (x) = exp

[
−1

ε
p̄x − φ(i)

(
x

ε

)
+ o(i)(1)

ε

]
.

We conclude this section with the

Proof of Lemma 2.1. The eigenvalue problem adjoint to (2.4) is⎧⎪⎪⎨
⎪⎪⎩

−v(1)
yy + ψy(y)v(1)

y + ν(1)v(1) = ν(1)v(2) − H̄ (p)v(1),

−v(2)
yy + ν(2)v(2) = ν(2)v(1) − H̄ (p)v(2)

y �→ v(i)(y)e−py 1-periodic and v(i) > 0 for i = 1,2.

in R, (2.9)

It has obviously (1,1) as a solution for p = 0 and this proves that H̄ (0) = 0 by uniqueness of the positive eigenfunc-
tion.

We evaluate next, using (2.6), the total flux equation (2.8) at y = 0 and y = 1 to find

−(
χ(1) + χ(2)

)
y
(0) − ψy(0)χ(1)(0) = F(p) = −(

χ(1) + χ(2)
)
y
(1) − ψy(1)χ(1) + H̄ (p).

Since, in view of (2.5),

χ(1)(1) = epχ(1)(0), χ(1)
y (0) = χ(1)

y (1)ep,

we conclude that

F(p) = F(p)e−p − H̄ (p).

The proof of the strict convexity of H̄ is better seen at the level of the Hamilton–Jacobi system (2.3). Indeed if H̄

were not strictly convex, there would exist p1,p2 ∈ R such that p1 �= p2 and

H̄ (
p1 + p2

2
) � 1

2

(
H̄ (p1) + H̄ (p2)

)
.

Let (φ
(1)
1 , φ

(2)
1 ) and (φ

(1)
2 , φ

(2)
2 ) be periodic solutions of (2.1) for p1 and p2 respectively. Then

−1

2

(
φ

(1)
1 + φ

(1)
2

)
yy

+
∣∣∣∣ (φ

(1)
1 + φ

(1)
2 )y

2
+ p1 + p2

2

∣∣∣∣
2

− ψy

((
φ

(1)
1 + φ

(1)
2

2

)
y

+ p1 + p2

2

)
+ ψyy

+ ν(2) exp
1

2

[(
φ

(1)
1 + φ

(1)
2

) − (
φ

(2)
1 + φ

(2)
2

)]

< −
(

φ
(1)
1 + φ

(1)
2

2

)
yy

+ |φ(1)
1,y + p1|2 + |φ(1)

2,y + p2|2
2

− ψy

((
φ

(1)
1 + φ

(1)
1

2

)
y

+ p1 + p2

2

)
+ ψyy

+ ν(2) [
exp

(
φ

(1)
1 − φ

(2)
1

) + exp
(
φ

(1)
2 − φ

(2)
2

)]

2
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= ν(1) + 1

2

(
H̄ (p1) + H̄ (p2)

)
� ν(1) + H̄

(
p1 + p2

2

)
,

and, similarly,

−
(

φ
(2)
1 + φ

(2)
2

2

)
yy

+
∣∣∣∣
(

φ
(2)
1 + φ

(2)
2

2

)
y

+ p1 + p2

2

∣∣∣∣
2

+ ν(1) exp
1

2

[(
φ

(2)
1 + φ

(2)
2

) − (
φ

(1)
1 + φ

(1)
2

)]

< ν(2) + 1

2

(
H̄ (p1) + H̄ (p2)

)
� ν(2) + H̄

(
p1 + p2

2

)
.

It follows that (
φ

(1)
1 +φ

(1)
2

2 ,
φ

(2)
1 +φ

(2)
2

2 ) is a periodic strict subsolution of (2.1) for p = p1+p2
2 . This is, however, a

contradiction since elementary maximum principle considerations imply that an eigenvalue problem cannot have
strict subsolutions.

Notice that the strict inequalities above are due to the strict convexity of both q �→ |q|2 and z �→ ez and the fact
that, if p1 �= p2, then (φ

(1)
1 , φ

(2)
1 ) �= (φ

(1)
2 , φ

(2)
2 ).

To establish the coercivity of H̄ we rewrite (2.3) as⎧⎨
⎩

−φ(1)
yy + (

φ(1)
y

)2 − (ψy − 2p)φ(1)
y − ψyp + ψyy + ν(2) exp

(
φ(1) − φ(2)

) = ν(1) + H̄ (p) − |p|2,
−φ(2)

yy + ∣∣φ(2)
y

∣∣2 + 2pφ(2)
y + ν(1) exp

(
φ(2) − φ(1)

) = ν(2) + H̄ (p) − |p|2
in R,

and evaluate it at a y0 ∈ [0,1] where max[0,1](φ(1), φ(2)) is attained.
If φ(1)(y0) � φ(2)(y0), then −φ

(1)
yy (y0) � 0 and φ

(1)
y (y0) = 0 and the first equation yields

H̄ (p) � |p|2 − ‖ψy‖|p| − ν(1) − ‖ψyy‖,
while, if φ(1)(y0) < φ(2)(y0), then φ

(2)
yy (y0) � 0, φ

(1)
y (y0) = 0, and the second equation gives

H̄ (p) � |p|2 − ν(2).

In either case we clearly have, for some C > 0, H̄ (p) � |p|2 − C. �
3. The homogenized equation

We study here the properties of the phase functions R
(1)
ε and R

(2)
ε defined by (1.6) as well as their behavior as

ε → 0. For the analysis it is convenient to introduce a phase function Sε for the total density n
(1)
ε + n

(2)
ε , i.e.,

n(1)
ε + n(2)

ε = exp

(
−1

ε
Sε

)
. (3.1)

We have:

Theorem 3.1. Let R
(i)
ε , for i = 1,2, and Sε be defined by (1.6) and (3.1) respectively and assume that ψ , ν(1) and ν(2)

and n
(1)
ε and n

(2)
ε satisfy (1.2) and (1.3). Then, for i = 1,2,

(i) R
(i)
ε and Sε are bounded and Lipschitz continuous in [0,1] uniformly on ε,

(ii) there exists C > 0, independent of ε, such that

max
[0,1]

∣∣R(2)
ε − R(1)

ε

∣∣ � Cε, (3.2)

(iii) along subsequences ε → 0, R
(1)
ε , R

(2)
ε and Sε converge uniformly to a bounded and Lipschitz continuous R

satisfying, in the viscosity sense,

H̄ (Rx) = 0 in (0,1) and min
(0,1)

(−ψy) � Rx � max
(0,1)

(−ψy).
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Proof. Inserting (3.1) in the total flux equation (1.4) we find

Sε,x = −ψy

n
(1)
ε

n
(1)
ε + n

(2)
ε

, (3.3)

and, hence,∣∣Sε,x

∣∣ � ‖ψy‖.
We also observe that the normalization (1.3) implies that min[0,1] Sε = 0. Therefore, we also get

|Sε| � ‖ψy‖ in [0,1].
To obtain a Lipschitz bound for R

(1)
ε and R

(2)
ε , in view of the boundary conditions, it suffices to consider what

happens at interior extrema points of R
(1)
ε,x and R

(2)
ε,x . Since at such points we have R

(1)
ε,xx = 0 and R

(2)
ε,xx , the equations

yield

max
[0,1]

∣∣R(1)
ε,x

∣∣ �
∥∥ν(1)

∥∥ + ‖ψyy‖ and max
[0,1]

∣∣R(2)
ε,x

∣∣ �
∥∥ν(2)

∥∥.

The bounds on R
(1)
ε and R

(2)
ε come from the bounds on Sε and the obvious inequalities

max
(
n(1)

ε , n(2)
ε

)
� n(1)

ε + n(2)
ε � 2 max

(
n(1)

ε , n(2)
ε

)
,

which imply

Sε � min
(
R(1)

ε ,R(2)
ε

)
� Sε + ε ln 2.

It follows that min(R
(1)
ε ,R

(2)
ε ) is bounded, uniformly in ε. Moreover, along subsequences, ε → 0, Sε and

min(R
(1)
ε ,R

(2)
ε ) converge, uniformly in [0,1], to the same limit R.

Next, we add the equations of the system (2.1), integrate over [0,1], use the boundary conditions and the Lipschitz
bounds. This way, because the exponential with a positive argument dominates, we find an exponential decay that
implies, for some C > 0, that

1∫
0

∣∣R(1)
ε − R(2)

ε

∣∣2 � Cε2.

Combining all the above it is now possible to show that both R
(1)
ε and R

(2)
ε converge, along subsequences, uniformly

to R which, as a consequence of (3.3), is Lipschitz continuous. We refer to [27] for the details.
Next we prove that there exists C > 0, independent of ε, such that

max
[0,1]

(
R(2)

ε − R(1)
ε

)
� Cε.

A similar argument gives an upper bound for max(R
(1)
ε − R

(2)
ε ), and, hence, (3.2).

Subtracting the first equation from the second in (2.1) we find

−ε
(
R(2)

ε − R(1)
ε

)
xx

+ (
R(2)

ε,x + R(1)
ε,x

)(
R(2)

ε − R(1)
ε

)
x

− ψy

(
R(1)

ε

)
x

+ ψyy + ν(1)
(
exp

(
ε−1(R(2)

ε − R(1)
ε

)) + 1
)

� ν(2)
(
exp

(
ε−1(R(1)

ε − R(2)
ε

)) + 1
)
. (3.4)

If xε ∈ (0,1) is such that (R
(2)
ε − R

(1)
ε )(xε) = max[0,1](R(2)

ε − R
(1)
ε ), then from (3.4) and the Lipschitz bounds, we

must have

ν(1)
(
exp

(
ε−1(R(2)

ε − R(1)
ε

))
(xε) + 1

)
� ν(2)

(
exp

(
ε−1(R(1)

ε − R(2)
ε

)
(xε)

) + 1
) + C,

and, therefore, for some other C > 0,

max
(
R(2)

ε − R(1)
ε

) = (
R(2)

ε − R(1)
ε

)
(xε) � εC.
[0,1]
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If xε = 0 or 1 or both, then the argument is more complicated. We begin with the latter case, i.e., we assume that(
R(2)

ε − R(1)
ε

)
(0) = (

R(2)
ε − R(1)

ε

)
(1) = max

[0,1]
(
R(2)

ε − R(1)
ε

)
.

Then from the boundary conditions we must have

−ψy(0) = (
R(2)

ε − R(1)
ε

)
x
(0) � 0 �

(
R(2)

ε − R(1)
ε

)
x
(1) = −ψy

(
1

ε

)
= −ψy(0),

and, hence,

ψy(0) = 0.

Consequently, x = 0 is a strict maximum of R
(2)
ε − R

(1)
ε − ε2x2 over [0,1] and, for λ > 0, the function

Wε(x) = (
R(2)

ε − R(1)
ε

)
(x) − ε2x2 + λx

attains its global maximum at some xε,λ ∈ (0,1) such that xε,λ → 0, as λ → 0.
In addition

−εWε
xx + bεWε

x − ψy

(
R(1)

ε

)
x

+ ψyy + ν(1)
(
exp

(
ε−1(Wε + ε2x2 − λx

)) + 1
)

� ν(2)
(
exp

(
ε−1(Wε + ε2x2 − λx

)) + 1
) + (2ε + λ)

∥∥bε
∥∥ + 2ε3,

where

bε = R(2)
ε,x + R(1)

ε,x .

At the maximum point xε,λ we then have, for a uniform constant C′ > 0,

Wε
(
xλ
ε

) − λxε,λ + ε2(xε,λ)
2 � εC′.

Therefore, for all x ∈ [0,1],
R(2)

ε (x) − R(1)
ε (x) + λx − εx2 � εC′ + λxε,λ.

The conclusion now follows, letting λ → 0, for C = C′ + 1.
A slight modification of the above argument yields the conclusion, if the maximum occurs only at either 0 or 1. We

sketch some of the details if the maximum occurs at 0. In this case we must have

−ψ ′
y(0) = (

R(2)
ε − R(1)

ε

)
x
(0) � 0, i.e., ψy(0) � 0.

Then, for any λ > ψy(0), the function

Wε(x) = (
R(2)

ε − R(1)
ε

)
(x) + λx,

which satisfies the inequality

−εWε
xx + bεWε

x − ψy

(
R(1)

ε

)
x

+ ψyy + ν(1)
(
exp

(
ε−1(Wε(x) − λx

)) + 1
)

� ν(2)
(
exp

(
ε−1(Wε(x) − λx

)) + 1
) + λ

∥∥bε
∥∥,

attains its maximum over [0,1] at some xε,λ ∈ (0,1) such that xε,λ → 0 as λ → ψy(0).
As before, at xε,λ, we must have, for some uniform C′ > 0,

Wε(xε,λ) − λxε,λ � εC′

and, hence,

R(2)
ε (x) − R(1)

ε (x) + λx � εC′ + λxε,λ.

The claim (ii) now follows letting λ → ψy(0) and using that ψy(0) � 0 and xε,λ → 0.
Next, using the so-called perturbed test function method (see [18]) and following the strategy of [5], we prove that

the common limit R satisfies the Hamilton–Jacobi equation
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H̄ (Rx) = 0 in (0,1).

Here we only show that R is a viscosity subsolution. The supersolution property follows in a similar way so we
omit the details.

To this end, fix a smooth test function Φ and assume that x0 ∈ (0,1) is an interior maximum point of R − Φ in
(0,1), i.e.,

(R − Φ)(x0) = max
x∈(0,1)

(R − Φ)(x).

Next we perturb the test function using the solution (φ(1), φ(2)) of (2.2) corresponding to p = Φ ′(x0), and, for ε

small enough, we consider a sequence of points xε ∈ (0,1) (this is in fact true along a subsequence but, to keep the
notation simple, we still write ε) such that, as ε → 0, xε → x0 and

R(1)
ε (xε) − Φ(xε) − εφ(1)

(
xε

ε

)
= max

(0,1)

[
R(1)

ε − Φ − εφ(1)

( ·
ε

)]
� max

(0,1)

[
R(2)

ε − Φ − εφ(2)

( ·
ε

)]
,

and, thus,

R(1)
ε (xε) − Φ(xε) − εφ(1)

(
xε

ε

)
= max

(0,1)

[
R(1)

ε − Φ − εφ(1)

( ·
ε

)]
� R(2)

ε (xε) − Φ(xε) − εφ(2)

(
xε

ε

)
. (3.5)

This is possible, inverting if necessary the indices 1 and 2, depending upon which of the two possible maximum
brackets is the largest. Here we choose this order, but the argument is the same in the other case.

Testing the first equation of (2.1) and setting pε = Φx(xε), we find

−εΦxx(xε) − φ(1)
yy

(
xε

ε

)
+

∣∣∣∣pε + φ(1)
y

(
xε

ε

)∣∣∣∣
2

− ψy

(
xε

ε

)(
φ(1)

y

(
xε

ε

)
+ pε

)
+ ψyy

(
xε

ε

)

+ ν2

(
xε

ε

)
exp

(
ε−1(R(1)

ε − R(2)
ε

))
� ν1

(
xε

ε

)
. (3.6)

Since, in view of (3.5),

ε

(
φ(1)

(
xε

ε

)
− φ(2)

(
xε

ε

))
� R(1)

ε (xε) − R(2)
ε (xε),

we finally obtain, for yε = xε/ε,

−εΦxx(xε) − φ(1)
yy (yε) + ∣∣Φx(xε) + φ(1)

y (yε)
∣∣2 − ψy(yε)

(
φ(1)

y (yε) + Φx(xε)
) + ψyy(yε)

+ ν2 exp
(
φ(1) − φ(2)

)
(yε) � ν1. (3.7)

Taking into account the equation that defines the effective Hamiltonian H̄ , we conclude that,

−εΦxx(xε) � −H̄
(
Φx(xε)

)
,

and, in the limit ε → 0,

H̄ (Φx(x0) � 0,

which proves the viscosity subsolution criterion. �
4. Examples of asymmetric triplets

We present here two examples of data (ψ, ν(1), ν(2)) giving rise to effective Hamiltonians satisfying the asymmetry
condition of Definition 2.2. Another example, based on periodic diffusion, is given in Section 6. In the first example,
the potential ψ is “strongly” asymmetric and has a “sawtooth” shape while the rates are constant. In the second
example, the potential is symmetric (even) but the rates ν(1) and ν(2) vary.
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Before proceeding we point out that the “asymmetry condition” is indeed more than saying that ψ cannot be
even. As the second example indicates, it involves some “correlation” between ψ and (ν(1), ν(2)). Indeed, as already
discussed in the Introduction, let

ν(1)(y) = ν̃(1)eψ(y), with ν̃(1), ν(2), χ̃ (1), χ(2) positive constants such that ν̃(1)χ̃ (1) = ν(2)χ(2).

The solution of (2.4) satisfying (2.5) and (2.6) is

χ(1)(y) = χ̃ (1)e−ψ(y) and χ(2),

and the total flux F̄ (0) is zero, i.e.,

F(0) = −χ(1)
y − χ(2)

y − ψyχ
1 = 0.

As a consequence of the Definition 2.2, in this case the Hamiltonian H̄ vanishes only at p = 0 and the limit R of
the R

(1)
ε ,R

(2)
ε is constant.

4.1. Sawtooth potentials

We consider here (discontinuous) periodic sawtooth potentials ψ given by

ψ(y) = αy in (0,1). (4.1)

We have:

Lemma 4.1. Assume that ψ is a periodic sawtooth potential given by (4.1) and ν(1), ν(2) are positive constants. Then,
for sufficiently small α > 0, the triplet (ψ, ν(1), ν(2)) is asymmetric in the sense of Definition 2.2.

Proof. In view of Lemma 2.1, it suffices to show that the unique solution (χ(1), χ(2)) satisfying (2.4), (2.5) and (2.6)
with p = 0 yields nonvanishing flux. We argue by contradiction and assume that there exist 1-periodic χ(1) and χ(2)

such that{(
χ(1) + χ(2)

)
y

+ αχ(1) = 0 in R,

−χ(2)
yy + ν(2)χ(2) = ν(1)χ(1).

(4.2)

The solution χ(1) cannot be smooth (recall that ψ is not smooth) and the periodic boundary condition can be
inferred from the divergence formulation

−(
e−ψ

(
eψχ(1)

)
y

)
y

= ν(2)χ(2) − ν(1)χ(1),

which, by elliptic regularity, yields that (eψχ(1))y is smooth in (0,1) with discontinuities only at y = 0 and y = 1.
Thus eψχ(1) is Lipschitz continuous.

Therefore we have

eψ(1)χ(1)(1) = eψ(0)χ(1)(0).

On the other hand, since χ
(2)
yy has the regularity of χ(1), i.e., it is piecewise smooth, χ(2) ∈ W 2,∞(R) and, thus,

χ(2)(0) = χ(2)(1), χ(2)
y (0) = χ(2)

y (1).

Since (1.1) is equivalent to a third-order differential equation with constant coefficients on (0,1), the three-
dimensional vector space of solutions is spanned by

χ(1)(y) = eλy, χ(2)(y) = aeλy,

where a and λ satisfy the algebraic conditions

λ(1 + a) + α = 0 and − aλ2 + aν(2) = ν(1),
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which are equivalent to

λ2(λ + α) − λ
(
ν(1) + ν(1)

) − αν(2) = 0 with a = −λ−1(a + λ). (4.3)

The polynomial in (4.3) takes positive value for λ = −α. Hence it has three roots, two negative and one positive,
that we denote by λ1, λ2, λ3, with λ1 < λ2 < 0 < λ3.

The generic solution (χ(1), χ(2)) of (4.2) inside (0,1) is given by the formula

χ(1)(y) =
3∑

i=1

ηiλie
λiy and χ(2)(y) =

3∑
i=1

ηiaiλie
λiy with ai = −λ−1

i a − 1,

with the free parameters η1, η2, η3 to be specified by the boundary conditions and periodicity. Notice that in the
expressions for χ(1) and χ(2) we have multiplied by λi to simplify the expressions coming up below.

The periodicity conditions specified above give rise to the linear system

3∑
i=1

ηiλi

(
eλi − e−α

) = 0,

3∑
i=1

ηiaiλi

(
eλi − 1

) = 0,

3∑
i=1

ηiaiλ
2
i

(
eλi − 1

) = 0,

which, for α = 0, reads

3∑
i=1

ηi

(
eλi − 1

) = 0,

3∑
i=1

ηiλ
2
i

(
eλi − 1

) = 0,

and has as solution η1 = η3 = 0 and any η2. It follows that χ(1), χ(2) are constants and λ2 = 0.
We show next that, for sufficiently small α > 0, the system is invertible, by proving that the determinant D(α) of

the matrix(
λ1(e

λ1 − e−α) λ2(e
λ2 − e−α) λ3(e

λ3 − e−α)

(α + λ1)(e
λ1 − 1) (α + λ2)(e

λ2 − 1) (α + λ3)(e
λ3 − 1)

(α + λ1)λ1(e
λ1 − 1) (α + λ2)λ2(e

λ2 − 1) (α + λ3)λ3(e
λ3 − 1)

)

is nonzero.
To this end, set

F(α,λ) = λ(α + λ)−1(eλ − 1
)−1(

eλ − e−α
)

and A(α,λ) = (α + λ)
(
eλ − 1

)
.

A straightforward computation yields

D(α) = Ā(α)D̄(α),

with

D̄(α) = F(α,λ1)(λ3 − λ2) + F(α,λ2)(λ1 − λ3) + F(α,λ3)(λ2 − λ1) and Ā(α) =
3∏

i=1

A(α,λi).

For α = 0 we have

λ1 = −
√

ν(1) + ν(2), λ2 = 0, λ3 =
√

ν(1) + ν(2),

and

∂λ1

∂α
= ∂λ3

∂α
= − ν(1)

2(ν(1) + ν(2))
,

∂λ2

∂α
= − ν(2)

ν(1) + ν(2)
.

Observe next that α = 0 is a zero of order three for D(α). It is easy, however, to see that D(α) does not vanish near
α = 0.

Indeed, F(0, λ1) = F(0, λ2) = F(0, λ3) = 1, therefore D̄(0) = 0. Moreover,
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∂

∂α
F(0, λ) = − 1

α
+ 1

eλ − 1
,

∂

∂α
F(0,0) = −1

2
,

∂

∂λ
F(0, λ) = 0, and

D̄′(0) =
√

ν(1) + ν(2)

[
1 + 1

e
√

ν(1)+ν(2) − 1
+ 1

e−
√

ν(1)+ν(2) − 1

]
�= 0,

therefore

D̄(α) �= 0 for small α > 0.

Finally if Ā(α) = 0, then, for some i = 1,2,3, we must have either λi = −α or λi = 0. It is, however, immediate
that neither one is possible unless α = 0. Consequently, the determinant and, hence, the flux do not vanish for α > 0
small enough. �
4.2. Variable transition rates

We present an example of an even, but not constant, potential, and variable rates which form an asymmetric triplet.
We construct such coefficients by means of a perturbation argument from a “symmetric” triplet.

To make the calculation explicit, consider the potential ψ and the transitions rates ν(1) and ν(2) given by

ψ(y) = sin(2πy), ν(1)(y) = ν(2)eψ(y) and ν(2) ≡ 1.

As discussed earlier, with this choice we have H̄ (0) = 0, the cell problem (2.4) for p = 0 admits the obvious
solution

χ(1) = e−ψ(y), χ(2) = 1,

and the associated total flux obviously vanishes, i.e.,

F̄ (0) = −(
χ(1) + χ(2)

)
y

− ψyχ(1) = 0.

For the same symmetric potential, we consider the family of transition rates

ν(1)(y) = ν(1)(y) + αq(y) and ν(2) = ν(2),

where for α > 0 small enough and the function q is chosen later.
Next we expand in α and set

χ(1) = χ(1) + αη(1) + O
(
α2) and χ(2) = χ(2) + αη(2) + O

(
α2).

The linearized cell problem is⎧⎪⎪⎨
⎪⎪⎩

−η(1)
yy + (

ψy(y)η(1)
)
y

+ ν(1)η(1) + qχ(1) = ν(2)η(2),

−η(2)
yy + ν(2)ζ (2) = ν(1)η(1) + qχ(1) in R,

η(1), η(2) is 1-periodic,

(4.4)

and its total flux is given by

DF(0) = −(
η(1) + η(2)

)
y

− ψyη
(1).

Choose

η(1) = cos(2πy) and
(
η(1) + η(2)

)
y

= sin2(y) −
1∫

0

sin2(z) dz (4.5)

so that

DF(0) = −1 +
1∫

sin2(y) �= 0;

0
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notice that (4.5) yields η(2) implicitly because η(1) + η(2) is a periodic function.
The total flux associated with (4.4) satisfies, for α small enough,

Fα(0) = 0 + αDF(0) + O
(
α2) �= 0.

It remains to check that the above choices of (η(1), η(2)) correspond to a possible solution to the cell problem. Since
the flux equation is satisfied, it is enough, for instance, to check the equation on η(2) which gives the perturbation
direction q . It is now possible to complete the construction.

5. The concentration phenomena

Before we present the proof of Theorem 2.3, we collect some preliminary material that are critical for the argument.
For p̄ ∈ R such that H̄ (p̄) = 0, the Krein–Rutman theorem yields that the adjoint system{

−ζ 1
yy + ψyζ

(1)
y + ν(1)ζ (1) = ν(1)ζ (2),

−ζ 2
yy + ν(2)ζ (2) = ν(2)ζ (1) in R, (5.1)

of (2.4) admits a unique, up to multiplication, solution (ζ (1), ζ (2)) such that

y �→ ζ (1)(y)e−p̄y and y �→ ζ (2)(y)e−p̄y are 1-periodic, and ζ (1) > 0 and ζ (2) > 0. (5.2)

Recall that for p̄ = 0, the solution of (5.1) satisfying (5.2) is simply (1,1). This is not, however, the case when
p̄ �= 0.

We have:

Lemma 5.1. The solution (ζ (1), ζ (2)) of (5.1) and (5.2) is increasing if p̄ > 0 and decreasing if p̄ < 0.

Proof. We only consider here p̄ > 0, since the other case follows similarly.
We observe first that there does not exist y0 ∈ R such that ζ

(1)
y (y0) = ζ

(2)
y (y0) = 0. Indeed if this were the case, then,

after a translation, we could consider (5.1) with Neumann boundary conditions. It would then follow that constants
are the only solutions, a fact which is incompatible with (5.2).

Let y1 ∈ R be such that

ζ (1)(y1) = max
y

(
ζ (1)(y), ζ (2)(y)

);
if the maximum is achieved at ζ (2)(y1) the argument is similar. It follows from the maximum principle that we must
have ζ (2)(y1) � ζ (1)(y1), and, hence, by the previous argument, again a contradiction.

Thus, if one of the ζ (1) and ζ (2) is not increasing—for definiteness we take it to be ζ (1)—and it has, for example,
a first local maximum at y1, then by the previous argument we must have ζ (2)(y1) > ζ (1)(y1). Moreover, the local
maximum has to be followed by a local minimum y2, since the periodicity of y �→ ζ (i)e−p̄y implies that y �→ ζ

(i)
y e−p̄y

is also periodic.
This yields again a contradiction because it is impossible to have ζ (2)(y2) < ζ (1)(y2). Indeed if this were the case,

then ζ (2) would have a local maximum larger than ζ (1) between y1 and y2, a contradiction to the previous conclusion
about the monotonicity of the maximum. At y2 we also get a contradiction to the monotonicity of the minimum. �

We use the adjoint eigenvector to obtain a special identity. We have

Lemma 5.2. The solution (n
(1)
ε , n

(2)
ε ) of (1.1), (1.3) satisfies the identity

ζ (1)
y (0)ep̄/εn(1)

ε (1) + ζ (2)
y (0)ep̄/εn(2)

ε (1) = ζ (1)
y (0)n(1)

ε (0) + ζ (2)
y (0)n(2)

ε (0). (5.3)

Proof. Notice that the pair (ζ (1)( x
ε
)ep̄x/ε, ζ (2)( x

ε
)ep̄x/ε) is a solution to (1.1), but with different, not no-flux, boundary

conditions. Then a direct integration by parts yields (5.3). �
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We now complete the

Proof of Theorem 2.3. Observe that (5.3) implies, after a renormalization, that there exists α > 0 such that

αep̄/εn(1)
ε + (1 − α)ep̄/εn(2)

ε (1) = αn(1)
ε (0) + (1 − α)n(2)

ε (0).

Rewriting this last identity using the phase functions R
(1)
ε and R

(2)
ε we find

αe[−R
(1)
ε (1)+p̄]/ε + (1 − α)e[−R

(2)
ε (1)+p̄]/ε = αe−R

(1)
ε (0)/ε + (1 − α)e−R

(2)
ε (0)/ε.

Since we already know that the R
(i)
ε ’s converge uniformly to the same Lipschitz continuous limit R, we get that

−R(1) + p̄ = −R(0). (5.4)

The strict convexity of the effective Hamiltonian H̄ implies that Rx can only take the values 0 or p̄. It then follows
from (5.4) that Rx ≡ p̄. �
6. Generalizations

Several possible extensions of our results are possible and we discuss some of them in this section. We indicate
them keping in mind that for Dirichlet boundary conditions some localization effect can be expected, see [2].

6.1. Coefficients depending on x

The viscosity method we have used here is particularly well adapted to treat the case of coefficients depending on
x in system (1.1), namely ν(i)(x, x

ε
), ψ(x, x

ε
). Then each cell problem (2.3) yields an effective Hamiltonian H̄ (p, x).

Moreover, the common uniform limit R satisfies in the viscosity sense

H̄ (Rx, x) = 0.

This Hamilton–Jacobi equation has always a trivial solution R ≡ 0 because H̄ (0, x) = 0. As before we may assume
that, for all x the coefficients are asymmetric in the sense of Definition 2.2 and thus there is a nonzero root p̄(x), i.e.,
H̄ (p̄(x), x) = 0.

But we still face the difficulty of proving that the limiting process gives the nonzero viscosity solution. With addi-
tional technical assumptions, one can certainly reach the particular case were the coefficients are such that, uniformly
in x the second root p̄(x) of the effective Hamiltonian has a constant sign and stays away from 0 using the duality
method in Section 5. Since the argument is global on (0,1), it seems more difficult to handle the general case where p̄

may change sign.

6.2. Periodic diffusion

We can make a further connection to the homogenization of eigenvalues in [1,9] by including a periodic diffusion
in our model. The system then has the form⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−ε

(
a(1)

(
x

ε

)
n(1)

ε,x

)
x

−
(

ψy

(
x

ε

)
n(1)

ε

)
x

+ 1

ε
ν(1)

(
x

ε

)
n(1)

ε = 1

ε
ν(2)

(
x

ε

)
n(2)

ε ,

−ε

(
a(2)

(
x

ε

)
n(2)

ε,x

)
x

+ 1

ε
ν(2)

(
x

ε

)
n(2)

ε = 1

ε
ν(1)

(
x

ε

)
n(1)

ε

εa(1)

(
x

ε

)
n(1)

ε,x + ψy

(
x

ε

)
n(1)

ε = a(2)

(
x

ε

)
n(2)

ε,x = 0 for x = 0 or 1,

in (0,1), (6.1)

with

a(1), a(2) > 0 and 1-periodic.

Again most of our analysis goes through in this case. However, instead of showing all the details, here we present
an explicit computation that yields the motor effect.
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It turns out that a single equation is enough in this case, therefore we consider the problem

−ε

(
a

(
x

ε

)
nε,x

)
x

−
(

ψy

(
x

ε

)
nε

)
x

= 0 in (0,1) (6.2)

with the zero flux condition

εa

(
x

ε

)
nε,x + ψy

(
x

ε

)
nε = 0 for x = 0 or 1. (6.3)

In this setting the asymmetry condition is reduced to the explicit assumption that

p̄ =
1∫

0

ψ ′(y)

a(y)
dy �= 0. (6.4)

To see this, we integrate (6.2) and find, using (6.3), that

−εa

(
x

ε

)
nε,x − ψy

(
x

ε

)
nε = 0 and nε(x) = nε(0) exp

(
−

x
ε∫

0

ψ ′(y)

a(y)
dy

)
.

This formula shows directly that

nε(x) = nε(0)e− Rε(x)
ε with Rε(x) = p̄x + εφ

(
x

ε

)
.

The corrector φ is thus explicitly known in this case and, up to an additive constant, we have

φ(y) =
y∫

0

(
ψ ′(z)
a(z)

− p̄

)
dz.

An immediate calculation shows that this φ is indeed the periodic solution to the corresponding cell problem

−a(y)φyy + a(y)|p + φy |2 − (
a′(y) + ψ ′(y)

)
(p + φy) + ψyy = H̄ (p) in R.
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