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Quasistatic evolution in the theory of perfect elasto-plastic plates.
Part II: Regularity of bending moments
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Abstract

We study differentiability of solutions of quasistatic problems for perfect elasto-plastic plates. We prove that in the isotropic
case bending moments has locally square-integrable first derivatives: M ∈ L∞([0, T ];W1,2

loc (Ω;M
2×2
sym )). The result is based on

discretization of time and uniform estimates of solutions of the incremental problems, which generalize the estimates in the static
case of perfect elasto-plastic plates.
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1. Introduction

In this paper we study the regularity of the bending moments of the quasistatic evolution of clamped perfectly
elasto-plastic plates under the action of a time-dependent transversal body force. Before introducing the regularity
result, we describe the mechanical model. The reference configuration is a bounded open set Ω ⊂ R

2 with Lipschitz
boundary and the elastic domain K is a bounded closed convex subset of M

2×2
sym (the space of symmetric 2×2 matrices)

with nonempty interior, whose boundary ∂K plays the role of the yield surface.
Given a scalar valued function f (t, x) defined for t ∈ [0, T ] and x ∈ Ω , which represents the transversal body

force, the strong formulation of the evolution problem consists in finding a scalar valued function u(t, x) (the vertical
displacement) and three matrix-valued functions e(t, x), p(t, x) and M(t, x) (the elastic and plastic curvatures and
the bending moments) such that for every t ∈ [0, T ], for every x ∈ Ω the following conditions hold:

(1) kinematic admissibility: D2u(t, x) = e(t, x) + p(t, x) in Ω , u(t, x) = 0, ∂u
∂ν

(t, x) = 0 on ∂Ω ,
(2) constitutive equation: M(t, x) = Ce(t, x),
(3) equilibrium: div divM(t, x) = f (t, x) in Ω ,
(4) moment constraint: M(t, x) ∈ K,
(5) associative flow rule: ṗ(t, x) ∈ NK(M(t, x)),
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where ν(x) is the outer unit normal to ∂Ω and C is the rigidity tensor. The symbol NK(ξ) denotes the normal cone
to the set K at the point ξ in the sense of convex analysis. The problem is supplemented by initial conditions at time
t = 0.

The boundary conditions u = 0 and ∂u
∂ν

= 0 on ∂Ω reflect the mechanical assumption the plate is clamped.
For the regularity we restrict ourselves to the isotropic case where K is a ball and C is a multiple of identity

tensor 1, which can be reduced to considering

K = B1(0), C = 1.

Existence of weak solutions to problems in perfect plasticity has been extensively studied during last decades (see,
for example, [1,3–5,8,21]). Since the variational formulation of the problem used in the definition of weak solutions
involves an integral with linear growth in D2u, the natural functional spaces for the problem are BH(Ω) of functions
with bounded Hessian for the vertical displacements u, and L2(Ω;M

2×2
sym ) for the bending moments M .

We observe that the question of regularity of weak solutions to the problems in perfect plasticity was first addressed
in [19], where the higher differentiability results have appeared for the first time.

However, in a similar problem for Prandtl–Reuss perfect plasticity it was shown in [2,6] that the stress (which is
the counterpart of the bending moments) belongs to W

1,2
loc (Ω;M

2×2
sym ) (see also [8,14–19] for similar results for some

static models).
In the present paper we study the spatial regularity of the bending moments M(t, ·) for the quasistatic problem for

prefect elasto-plastic plates. The main result obtained (see Theorem 2.2 below) for the model under consideration is

M ∈ L∞([0, T ];W 1,2
loc

(
Ω;M

2×2
sym

))
. (1.1)

As in [6], our strategy for an evolutionary quasistatic problem relies on a regularity result for an analogous static
problem, obtained in [16], where it was shown that in a static situation the bending moments enjoy the following
differentiability condition:

M ∈ W
1,2
loc

(
Ω;M

2×2
sym

)
.

We discretize time by points (tNr )Nr=1

0 = tN0 < tN1 < · · · < T N
N = T

and we approximate the original quasistatic problem by a sequence of incremental “static” problems, finding for each
r = 1, . . . ,N the updated values of (uN

r , eN
r ,pN

r ,MN
r ), provided that (uN

r−1, eN
r−1, pN

r−1, MN
r−1) is already found.

Shortly, the main idea is to generalize the estimates of [16] in order to take into account the influence of the previous
steps.

To be more precise, following [7], we apply the standard method of constructing piecewise constant approximations(
uN(t), eN(t),pN(t),MN(t)

) = (
uN

r , eN
r ,pN

r ,MN
r

)
for tNr � t < tNr+1,

with 0 � r < N , of the continuous-time energy formulation of rate-independent processes (see [11] for the survey of
this approach). Our aim is to get a uniform estimate of the form

sup
N∈N

sup
t∈[0,T ]

∥∥MN(t)
∥∥

W
1,2
loc (Ω;M2×2

sym )
� C, (1.2)

which clearly implies (1.1).
To get (1.2) we consider the updated values of (uN

r , eN
r ,pN

r ,MN
r ) as saddle points of some minimax problem,

similar to the one considered in [8,16] for static cases in perfect plasticity. The main difference from the purely static
problem is the presence of a term which takes into account the outcome of the preceding step. Approximating each
incremental problem with a sequence of regularized problems, depending on a real parameter α ∈ (0,1), we obtain that
their solutions Mα

r converge to MN
r , a solution to the corresponding incremental problem, weakly in L2(Ω;M

2×2
sym ),

as α → 0. Then one can show, that for every incremental problem the bound

sup
α>0

∥∥Mα
r

∥∥
W 1,2(Ω ′;M2×2

sym )
� Cr

holds for any domain Ω ′ � Ω , where the constant Cr depends on the discretization step and on Ω ′. Thus, MN
r is itself

in W
1,2
loc (Ω;M

2×2
sym ), and the compactness of Sobolev embedding improves the convergence of Mα

r to MN
r . Then we

do some analytical work to make the last estimate uniform in r and N , and we obtain (1.2).
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Notice that all the arguments used below are purely local, and cannot be used for studying the behavior of bending
moments up to the boundary ∂Ω (see [13] for the discussion of the global regularity issues in an analogous case of
Hencky perfect plasticity). As far as we know, the only global regularity result in perfect plasticity was obtained in [9]
for Hencky perfect plasticity.

The paper is organized as follows: in Section 2 we introduce the notation and state the main result. We present a
weak formulation of the problem and prove a time-continuity result in Section 3. A minimax formulation of incre-
mental problems in spirit of [8,16] is presented in Section 4. In Section 5 we introduce some regularized problems,
depending on a real parameter α ∈ (0,1), whose solutions are smooth and “approximate”, as α → 0, a solution
(uN

r , eN
r ,pN

r ,MN
r ) of the corresponding incremental problem. We obtain W

1,2
loc estimates of the solutions of regular-

ized problems in Section 6, and conclude that

sup
t∈[0,T ]

∥∥MN(t)
∥∥

W 1,2(Ω ′;M2×2
sym )

� C(N,Ω ′)

for each Ω ′ � Ω and N ∈ N. Section 7 contains some analytical estimates, that will be used for making W
1,2
loc estimates

uniform with respect to N . Finally, in Section 8 we apply the results of Section 7 to obtain the uniform estimates of
Sobolev norms and to conclude the proof of Theorem 2.2.

2. Preliminaries

2.1. Notation and definitions

We adopt the following notation:
R

n denotes the n-dimensional Euclidean space,
M

2×2
sym denotes the space of all 2 × 2 symmetric matrices, equipped with the Hilbert–Schmidt scalar product σ : ξ =

σij ξij ,
a � b stands for the symmetrized tensor product of two vectors a, b ∈ R

n, given by the formula (a � b)ij =
1
2 (aibj + ajbi),

Lp(Ω;R
m) is the Lebesgue space of functions from Ω into R

m, having finite norm (
∫
Ω

|f |p dx)1/p ,
Wl,p(Ω;R

m) is the Sobolev space of all functions from Ω into R
m with the norm

‖f ‖l,p;Ω :=
( ∫

Ω

l∑
α=0

∣∣∇αf
∣∣p)1/p

,

L2 stands for the Lebesgue measure on R2,
H1 is the one-dimensional Hausdorff measure,
Mb(Ω;R

m) is the space of all bounded Radon measures on Ω with values in R
m.

For μ ∈ Mb(Ω;R
m), we denote its total variation by |μ|, which is an element of Mb(Ω), with ‖μ‖1;Ω = |μ|(Ω),

while by μa and μs we denote its absolutely continuous and singular part with respect to L2,
BH(Ω) is the space of all functions in L1(Ω) such that Du ∈ BV(Ω;R

2), with norm ‖u‖2,1;Ω := ‖u‖1,1;Ω +
‖D2u‖1;Ω ,

〈·|·〉 denotes a duality product depending upon the context.

Remark 2.1. We refer to [21, Chapter III] for the main properties of BH(Ω) and for the definition of weak∗ conver-
gence in BH(Ω). Remark, that for u ∈ BH(Ω) we have the following embedding:

u ∈ C(Ω), ∇u ∈ L2(Ω;R
2).

Let us introduce the notation

S(Ω) = {
M ∈ L2(Ω;M

2×2
sym

)
: div divM ∈ L2(Ω)

}
,

K(Ω) = {
m ∈ L2(Ω;M

2×2
sym

)
: m(x) ∈ K for a.e. x ∈ Ω

}
.
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2.2. The main result

We impose the following assumption on the data of the problem:

f ∈ AC
([0, T ];L2(Ω)

) ∩ L∞([0, T ];W 1,2
loc (Ω)

)
. (2.1)

We also assume the so-called uniform safe-load condition:

there exists a function m1 ∈ AC
([0, T ];L2

(
Ω;M

2×2
sym

))
, such that

div divm(t) = f (t) in Ω for every t ∈ [0, T ], and∣∣m1(t, x)
∣∣ � (1 − λ) for some 0 < λ < 1, a.e. x ∈ Ω , for every t ∈ [0, T ]. (2.2)

Here and in the rest of the paper div always denotes the divergence with respect to space variables.
The main result of the paper is the following regularity theorem.

Theorem 2.2. Suppose that the set K is a ball and C is a multiple of the identity, and that assumptions (2.1), (2.2) are
satisfied. Then for the solution (u, e,p) of the quasistatic problem, see Definition 3.4 below, we have

M ∈ L∞([0, T ];W 1,2
loc

(
Ω;M

2×2
sym

))
,

with M(t, x) = Ce(t, x).

Remark 2.3. As already mentioned, we consider the case K = B1(0) and C = 1. It means, that M ≡ e, and we will
be using both notations M and e for the same object.

3. Weak formulation of the quasistatic problem

Below we give the possible definition of weak solution to the quasistatic problem. The formulation we use (see [7])
is expressed in terms of energy balance and energy dissipation.

3.1. Weak formulation: quasistatic evolution

Now we give the definition of a kinematically admissible triple. The first condition describes the additive decom-
position, the second one gives the boundary conditions for u, while the third one reflects the boundary conditions for
Du in a relaxed form, which is typical in the variational theory of functionals with linear growth.

Definition 3.1. A triple (u, e,p) ∈ BH(Ω)×L2(Ω;M
2×2
sym )×Mb(Ω;M

2×2
sym ) is called kinematically admissible, if the

following conditions hold

D2u = e + p in Ω,

u = 0 on ∂Ω,

p = −∇u � νH1 on ∂Ω.

Definition 3.2. For a kinematically admissible triple (u, e,p) and M ∈ S(Ω) we define a measure [M : p] ∈ Mb(Ω)

by putting

[M : p] = M : pa + [
M : D2u

]s = [
M : D2u

] − M : e in Ω,

[M : p] = −∂u

∂ν
Mij νiνj d H1 on ∂Ω , (3.1)

where the measure [M : D2u] is defined in [5].

Thus, a duality pairing between S(Ω) and Π(Ω) is defined by

〈M|p〉 := [M : p](Ω). (3.2)

One can prove the following integration by parts formula (see [7, Proposition 2.8]).
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Proposition 3.3. For a kinematically admissible triple (u, e,p) and M ∈ S(Ω) with div divM = f ∈ L2(Ω) we have

[M : p](Ω) =
∫
Ω

uf dx −
∫
Ω

(M : e) dx. (3.3)

Let us define the functionals which appear in the energy formulation of the problem. The quadratic form
Q :L2(Ω;M

2×2
sym ) → R, corresponding to the stored elastic energy, is defined by

Q(e) = 1

2

∫
Ω

e : e dx.

Since in our case the function H considered in [7, Section 2.1] reduces to the norm in M
2×2
sym , the dissipation in any

time interval [s, t] ⊂ [0, T ] is defined by

D(p; s, t) = sup

{
M∑

j=1

∥∥p(tj ) − p(tj−1)
∥∥

1;Ω : s = t0 � · · · � tM = t, M ∈ N

}
.

Now we are in a position to give a variational formulation of the quasistatic problem. In the following definition
〈·,·〉 denotes the scalar product in L2(Ω).

Definition 3.4. A quasistatic evolution is a function t �→ (u(t), e(t),p(t)) from [0, T ] into BH(Ω)×L2(Ω;M
2×2
sym )×

Mb(Ω;M2×2
sym ) which satisfies the following conditions:

(qs1) for every t ∈ [0, T ] the triple (u(t), e(t),p(t)) is kinematically admissible and

Q
(
e(t)

) − 〈
f (t), u(t)

〉
� Q(η) + ∥∥q − p(t)

∥∥
1;Ω − 〈

f (t), v
〉

(3.4)

for every kinematically admissible triple (v, η, q);
(qs2) the function t �→ p(t) from [0, T ] into Mb(Ω;M

2×2
sym ) has bounded variation and for every t ∈ [0, T ]

Q
(
e(t)

) + D(p;0, t) − 〈
f (t), u(t)

〉 = Q
(
e(0)

) − 〈
f (0), u(0)

〉 − t∫
0

〈
ḟ (s), u(s)

〉
ds. (3.5)

3.2. Existence result and time-discretization

The following theorem establishes the existence of a solution to the quasistatic problem in perfect plasticity.

Theorem 3.5. Let a kinematically admissible triple (u0, e0,p0) satisfy the stability condition

Q(e0) − 〈
f (0), u0

〉
� Q(η) + ‖q − p0‖1;Ω − 〈

f (0), v
〉
,

for every kinematically admissible triple (v, η, q). Then there exists a quasistatic evolution(
u(t), e(t),p(t)

)
,

such that

u(0) = u0, e(0) = e0, p(0) = p0.

Moreover, the elastic part t �→ e(t) of D2u(t) is unique and a quasistatic evolution (u, e,p) as a function from [0, T ]
to BH(Ω) × L2(Ω;M

2×2
sym ) × Mb(Ω;M

2×2
sym ) is absolutely continuous in time.

In [7] this theorem is proved by a discretization of time. We divide the interval [0, T ] into N equal parts of length
T/N by points (tNr )r=0,...,N . For r = 0, . . . ,N we set

f r
N = f

(
tNr

)
and

(
m1)N = m1(tNr )

. (3.6)

r
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For every N we define uN
r , eN

r and pN
r by induction. We set(

uN
0 , eN

0 ,pN
0

) = (u0, e0,p0),

while for every r = 1, . . . ,N we define (uN
r , eN

r ,pN
r ) as a solution to the incremental problem

min
(u,e,p)

{
Q(e) + ∥∥p − pN

r−1

∥∥
1;Ω −

∫
Ω

f N
r udx

}
, (3.7)

where the minimization is carried out over all kinematically admissible triples (see Definition 3.1).

Remark 3.6. We note, that (u, e,p) is a solution to (3.7) if and only if one of the following conditions holds:

(1) for every kinematically admissible triple (v, η, q) one has

−‖q‖1;Ω � 〈e, η〉 − 〈
f N

r , v
〉
� ‖q‖1;Ω ;

(2) e ∈ S(Ω) ∩ K with div div e = −f N
r .

For r = 0, . . . ,N we set MN
r = eN

r and for every t ∈ [0, T ] we define piecewise constant interpolations

uN(t) = uN
r , eN(t) = eN

r , pN(t) = pN
r , MN(t) = MN

r , fN(t) = f N
r , m1

N(t) = (m1)Nr ,

where r is the largest integer such that tNr � t . By definition (uN(t), eN(t),pN(t)) is kinematically admissible for
every t ∈ [0, T ].

In the proof of the existence, it was shown that for approximate solutions one has the estimate

sup
t∈[0,T ]

∥∥eN(t)
∥∥

2;Ω + Var(pN ;0, T ) + sup
t∈[0,T ]

‖uN‖2,1;Ω � C, (3.8)

which is uniform with respect to N , and it was established that these functions converge pointwise (with respect to t )
to a solution of the quasistatic evolution problem.

3.3. Continuity estimates of solutions of the incremental problems

In [7] it was established that the quasistatic evolution is absolutely continuous in time. However, as we will deal
precisely with the solutions of the time-discretized problems, we would need the continuity estimates of solutions at
the level of incremental problems.

The following notation will be often used below: given a function h : [0, T ] → X,

δhN
r := h

(
tNr

) − h
(
tNr−1

)
. (3.9)

We also consider the increment of the data of the problem, defined by

DN
r := ∥∥δ

(
m1)N

r

∥∥
2;Ω + ∥∥δf N

r

∥∥
2;Ω. (3.10)

By (2.1) and (2.2), after time reparametrization, we may assume that

f ∈ Lip
([0, T ];L2(Ω)

) ∩ L∞([0, T ];W 1,2
loc (Ω)

)
,

and

m1 ∈ Lip
([0, T ];L2(Ω;M

2×2
sym

))
.

Indeed, every absolutely continuous function can be made Lipschitz just by time reparametrization, and this leads
to a corresponding reparametrization of the solutions, the problem being rate-independent. In other words, we may
suppose, that

DN
r � C

N
. (3.11)
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Theorem 3.7. For solutions of the incremental problems (uN
r , eN

r ,pN
r ) the following inequality holds:∥∥δeN

r

∥∥
2;Ω + ∥∥δpN

r

∥∥
1;Ω + ∥∥δuN

r

∥∥
2,1;Ω � DN

r , (3.12)

where δhN
r in understood as in (3.9) and DN

r denotes the increment of the data of the problem, defined by (3.10).

Proof. As the triple(
uN

r−1, e
N
r−1,p

N
r−1

)
is kinematically admissible, the minimality condition (3.7) and the integration by parts formula (3.3) imply

Q
(
eN
r

) −
∫
Ω

(
m1)N

r
: eN

r dx + ∥∥pN
r − pN

r−1

∥∥
1;Ω − 〈(

m1)N

r
,pN

r − pN
r−1

〉
� Q

(
eN
r−1

) −
∫
Ω

(
m1)N

r
: eN

r−1 dx.

Developing the quadratic form in the right-hand side we arrive at:

1

2

∫
Ω

MN
r : eN

r dx − 1

2

∫
Ω

MN
r−1 : eN

r−1 dx + H
(
pN

r − pN
r−1

)
�

〈(
m1)N

r
,pN

m − pN
m−1

〉 − ∫
Ω

(
m1)N

r
: eN

r−1 dx +
∫
Ω

(
m1)N

r
: eN

r dx. (3.13)

Now consider the functions

v = uN
r − uN

r−1, η = eN
r − eN

r−1,

q = pN
r − pN

r−1.

Since (v, η, q) is kinematically admissible and (uN
r−1, e

N
r−1,p

N
r−1) is a solution of the corresponding minimum prob-

lem at the previous step, we obtain, by means of Remark 3.6 and the integration by parts formula (3.3)

−
∫
Ω

MN
r−1 : (eN

r − eN
r−1

)
dx +

∫
Ω

(
m1)N

r−1 : (eN
r − eN

r−1

)
dx + 〈(

m1)N

r−1,p
N
r − pN

r−1

〉
� H

(
pN

r − pN
r−1

)
. (3.14)

By combining (3.13) and (3.14) we get the following

Q
(
eN
r − eN

r−1

) = 1

2

∫
Ω

MN
r : eN

r dx − 1

2

∫
Ω

MN
r−1 : eN

r−1 dx −
∫
Ω

MN
r−1 : (eN

r − eN
r−1

)
dx

�
〈(
m1)N

r
,pN

r − pN
r−1

〉 − ∫
Ω

(
m1)N

r
: eN

r−1 dx +
∫
Ω

(
m1)N

r
: eN

r dx

−
∫
Ω

(
m1)N

r−1 : (eN
r − eN

r−1

)
dx − 〈(

m1)N

r−1,p
N
r − pN

r−1

〉
, (3.15)

where 〈·,·〉 is the duality defined in (3.2).
Let us apply the integration by parts formula (3.3) to compute 〈(m1)Nm,pN

m − pN
m−1〉:〈(

m1)N

r
,pN

r − pN
r−1

〉 = −
∫
Ω

(
m1)N

r
: (eN

r − eN
r−1

)
dx +

∫
Ω

f N
r

(
uN

r − uN
r−1

)
dx. (3.16)

A similar formula holds for 〈(m1)Nr−1,p
N
r − pN

r−1〉.
Putting (3.16) into (3.15) we end up with the estimate

Q
(
eN
r − eN

r−1

)
�

∫ (
f N

r − f N
r−1

) · (uN
r − uN

r−1

)
dx + ∥∥f N

r − f N
r−1

∥∥
2;Ω

∥∥uN
r − uN

r−1

∥∥
2,1;Ω. (3.17)
Ω
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Now let us estimate ‖pN
r −pN

r−1‖1;Ω in terms of the data of the problem. First of all, the safe load condition yields

λ
∥∥pN

r − pN
r−1

∥∥
1;Ω � H

(
pN

r − pN
r−1

) − 〈(
m1)N

r
,pN

r − pN
r−1

〉
.

Now, the relation (3.13) and the boundedness of ‖�N
r ‖∞;Ω , ‖eN

r ‖2;Ω and ‖pN
r ‖1;Ω imply∥∥pN

r − pN
r−1

∥∥
1;Ω � C

(∥∥eN
r − eN

r−1

∥∥
2;Ω + DN

r

)
. (3.18)

Taking into account the inequality∥∥uN
r − uN

r−1

∥∥
2,1;Ω � C

(∥∥eN
r − eN

r−1

∥∥
2;Ω + ∥∥pN

r − pN
r−1

∥∥
1;Ω

)
,

proved in [7, estimate (3.9)], the estimate∥∥pN
r − pN

r−1

∥∥
1;Ω + ∥∥eN

r − eN
r−1

∥∥
2;Ω � CDN

r (3.19)

follows now from (3.17), (3.18) and the application of the Cauchy inequality.
To prove∥∥D2uN

r − D2uN
r−1

∥∥
1;Ω � CDN

r , (3.20)

we recall the additive decomposition D2u = e + p and make use of (3.19).
Finally to show the validity of (3.12), it remains to estimate ‖uN

r − uN
r−1‖1;Ω . By the Poincaré inequality for BH

the result follows from (3.11), (3.19), (3.20) and the latter inequality. �
4. Minimax problem

In this section we briefly discuss the minimax formulation of the incremental problem. We follow the general
scheme, described in [8], which was applied in [16] for studying the regularity of solutions of static problems in the
theory of perfect elasto-plastic plates.

We refer to [8, Chapter 1] for the complete exposition of an abstract theory and to [6, Section 4] for its short
presentation. The following calculations follow closely [6, Section 5], making use of constructions developed in [16].

Recall that the time-discretization procedure, that provides us a way of constructing approximate solutions to the
quasistatic problem for perfect elasto-plastic plates, leads one to solving a sequence of the following incremental
problems:

min
(u,M,p)

{
Q(M) + ∥∥p − pN

r−1

∥∥
1;Ω − 〈

f N
r ,u

〉}
, (4.1)

where the minimum is taken over all kinematically admissible triples (see Definition 3.1), with pN
r−1 be a solution of

the corresponding incremental problem, obtained at the previous step.

4.1. Functional setting of the problem

We set

V0 = W
2,1
0 (Ω), U = W

1,2
0 (Ω),

U∗ is the dual space of U . If 1 < p � +∞, the space Lp(Ω), is embedded in U∗ by the usual identification

〈f,u〉 =
∫
Ω

f udx for any u ∈ W
1,2
0 (Ω).

Put

P = L1(Ω;M
2×2
sym

)
P ∗ = L∞(

Ω;M
2×2
sym

)
.

We have the following

the embedding of V0 into U is continuous,

V0 is dense in U . (4.2)
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Let us introduce the functionals G :P → R and L :U → R by

G(m) =
∫
Ω

g
(
m + eN

r−1

)
dx, m ∈ P,

L(v) = −
∫
Ω

f N
r · v dx, v ∈ U. (4.3)

Thus, G and L are continuous and it is easy to see that the Legendre transform of G is

G∗(M) =
∫
Ω

(
g∗(M) − M : eN

r−1

)
dx, for M ∈ P ∗. (4.4)

Here g : M2×2
sym → R has the form

g(m) ≡ g0
(|m|) :=

{ 1
2 |m|2, if |m| � 1;
|m| − 1

2 , if |m| > 1,
(4.5)

while its Legendre transform g∗ : M2×2
sym → R is given by the formula

g∗(M) =
{

1
2 |M|2, if |M| � 1;
+∞, otherwise.

4.2. Saddle-point problem in its strong formulation

Introduce the continuous linear operator A :V0 → P as

Av := D2v, v ∈ V0.

We define the Lagrangian 
 :V × K(Ω) → R by


(v,m) =
∫
Ω

(
D2v : m + m : er−1

N

)
dx −

∫
Ω

g∗(m)dx + L(v),

and consider the following minimax problem{
find a pair (u,M) ∈ V0 × K(Ω) such that

(u,m) � 
(u,M) � 
(v,M), for all v ∈ V0, m ∈ K(Ω).

(4.6)

The minimax problem (4.6) generates a pair of dual problems, the primal one{
find δuN

r ∈ V0 such that
I (δuN

r ) = inf{I (v): v ∈ V0}, (4.7)

where the functional I is given by

I (v) = G(Av) + L(v) =
∫
Ω

g
(
D2v + er−1

N

)
dx −

∫
Ω

f N
r · v dx,

and the dual one{
find MN

r ∈ Qf N
r

∩ K(Ω) such that

R(MN
r ) = sup{R(m): m ∈ Qf N

r
∩ K(Ω)}, (4.8)

where

R(m) =
{


(0,m) = ∫
Ω

(m : eN
r−1 − g∗(m))dx, m ∈ Qf N

r
∩ K(Ω);

−∞, m /∈ Qf N
r

∩ K(Ω),
for m ∈ K(Ω),

with Qf N
r

being defined as

Qf N = {
m ∈ S(Ω): div divm = f N

r

}
.

r
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The following theorem (see [8, Chapter 1]) shows that under very mild assumptions the dual problem (4.8) has a
solution and one can exchange inf and sup signs.

Theorem 4.1. Suppose that the following two conditions hold

C := inf
{
I (v): v ∈ V0

} ∈ R, (4.9)

there exists u1 ∈ V such that G(Au1) < +∞, L(u1) < +∞
and the function p �→ G(Au1 + p) is continuous at zero. (4.10)

Then problem (4.8) has at least one solution and the identity

C = sup
{
R(m): m ∈ P ∗}

is valid.

Condition (4.10) is obviously satisfied. It is easy to see, that the safe load condition (2.2) yields condition (4.9) and
the coercivity of the functional I with respect to the norm of V0. However, as the space V0 is not reflexive, one needs
to construct a suitable relaxation of the variational problem (4.6), (4.7).

4.3. The relaxed problem

We construct a variational extension of the problem. To this aim we construct a relaxation of problem (4.6). We
will make use of an auxiliary space D, defined in the following way: a function m belongs to D if and only if there
exists u∗ ∈ U∗ such that∫

Ω

u∗ v dx =
∫
Ω

m : D2v dx for all v ∈ V0.

Thus,

D = {
M ∈ P ∗: div divM ∈ U∗}.

According to the general procedure (see [8, Chapter 1]) we define an extension V+ of the space V as

V+ =
{
v ∈ U : sup

‖M‖∞;Ω�1, M∈D

∫
Ω

v div divM dx < +∞
}
.

In particular, taking the test fields M ∈ C∞
0 (Ω;M

2×2
sym ) we conclude that v ∈ BH(Ω).

Introduce the relaxed Lagrangian

L(v,m) =
∫
Ω

(
div divm − f r

N

)
v dx +

∫
Ω

m : er−1
N dx −

∫
Ω

g∗(m)dx

for v ∈ V+ and m ∈ K(Ω) ∩ D. Consider the minimax problem for this relaxed Lagrangian L:{
find a pair (u,M) ∈ V+ × (

K(Ω) ∩ D
)

such that
L(u,m) � L(u,M) � L(v,M), for all v ∈ V+, m ∈ K(Ω) ∩ D.

(4.11)

Arguing as in [8, Chapter 1] and [6, Section 5] we conclude that the following result holds (see Theorem 4.2
below): there exists a saddle point u ∈ V+ and M ∈ K(Ω) ∩ D of the Lagrangian L on the set V+ × (K(Ω) ∩ D). In
this case the tensor M is the unique solution of the problem (4.8) and w ∈ V+ is a solution of the problem{

find w ∈ V+ such that
Φ(w) = inf

{
Φ(v): v ∈ V+

}
,

(4.12)

where

Φ(v) := sup
{
L(v,m): m ∈ K(Ω) ∩ D

}
.

The precise result is expressed in the following theorem, which is a consequence of [8, Theorem 1.2.2] (see also
[16, assertions (2.7)–(2.9)] for a similar construction in the static problem).
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Theorem 4.2. Suppose that f N
r ∈ L2(Ω) and condition (2.2) holds. Then there exists at least one solution (δuN

r ,MN
r )

to the minimax problem (4.11) in V+ × (K ∩ D). Moreover, MN
r is the unique solution to the dual variational prob-

lem (4.8) and δuN
r is a solution to (4.12). The identity

Φ
(
δuN

r

) = R
(
MN

r

)
holds. Finally, every minimizing sequence of the problem (4.7) contains a subsequence which converges to some
solution of (4.12) weakly in U and strongly in W

1,p

0 (Ω;R
2) for 1 � p < 2.

We note, that the following approximation result holds for the functions from S(Ω). Remark, that the proof pre-
sented in [21], Chapter III, contains an error. A correct proof was proposed by G. Seregin [20], and we present it here
for completeness.

Lemma 4.3. Let Ω be a bounded Lipshitz domain in R
2 and let M ∈ S(Ω) ∩ K(Ω). Then there exists a sequence

Mk ∈ C∞(Ω;M
2×2
sym ) ∩ K(Ω) satisfying

Mk → M in Lp
(
Ω;M

2×2
sym

)
, for any p < ∞,

div divMk → div divM in L2(Ω),

‖Mk‖L∞ � C ‖M‖L∞ . (4.13)

Proof. Denote the space L2(Ω;M2×2
sym ×R) of vector-valued functions by L. Let D be a subspace of L2(Ω) such that

(m,div divm) ∈ L. Let D0 be the closure of C∞(Ω;M
2×2
sym ) in the norm of the space L.

Assume that there exists an element (m∗,div divm∗) ∈ D \D0. As D0 is closed and convex in L, by Hahn–Banach
theorem there exists a pair (u1, u) ∈ L2(Ω;M2×2

sym ) × L2(Ω,R) (i.e., simply from L) such that∫
Ω

(m∗ : u1 + u div divm∗) dx = 1

and ∫
Ω

(m : u1 + udiv divm)dx = 0

for any m ∈ D0. The last identity shows that u1 = u. So, u ∈ W 2
2 (Ω) and u has usual traces on ∂Ω (u and ν · ∇u),

where ν is the normal to ∂Ω . Those traces of u are zero that follows from the second identity. So, if the domain Ω is
not bad, for example Lipshitz, u belongs to the closure of C∞

0 (Ω) in W 2
2 (Ω) (see [10]). This means that there exist

function v ∈ C∞
0 (Ω) such that∫

Ω

(
m∗ : ∇2v + v div divm∗

)
dx > 1/2.

The left-hand side vanishes by definition of div div, which leads to a contradiction. �
4.4. Saddle points generate solutions of the incremental problems

Let us show, that if we interpret a saddle point (δuN
r ,MN

r ) of (4.11) as the increment of u and the updated value
of M , then we get a solution to the incremental problem (4.1).

Theorem 4.4. Let (δuN
r ,MN

r ) ∈ V+ × (D ∩ K(Ω)) be a saddle point of the relaxed Lagrangian L. Then the triple
(uN

r , eN
r ,pN

r ), constructed as

uN
r = uN

r−1 + δuN
r ,

eN
r = MN

r ,

pN
r = D2uN

r − eN
r in Ω,

pN
r = −∇uN

r � νH1 on ∂Ω
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is kinematically admissible and is a solution to the incremental problem (4.1).

Proof. First of all, kinematic admissibility of the triple (uN
r , eN

r ,pN
r ) is obvious by its construction. Let us prove that

it solves (4.1).
As (δuN

r ,MN
r ) ∈ V+ × (D ∩ K(Ω)) is a saddle point of L, we have

L
(
δuN

r ,m
)
� L

(
δuN

r ,MN
r

)
� L

(
v,MN

r

)
, for all v ∈ V+ and m ∈ (

D ∩ K(Ω)
)
. (4.14)

Since MN
r ∈ D ∩ K(Ω), we already know that MN

r ∈ K(Ω), while the second part of (4.14) implies

div divMN
r = f N

r ∈ L2(Ω). (4.15)

The first part of inequality (4.14) yields∫
Ω

[
div divMN

r · δuN
r − g∗(MN

r

) + MN
r : MN

r−1

]
dx �

∫
Ω

[
div divm · δuN

r − g∗(m) + m : MN
r−1

]
dx (4.16)

for every m ∈ K(Ω) ∩ D.
For δuN

r ∈ BH(Ω) with δuN
r = 0 on ∂Ω and m ∈ S(Ω), the integration by parts formula [5, Proposition 2.3] takes

the form∫
Ω

div divm · δuN
r dx = [

D2(δuN
r

) : m]
(Ω) −

∫
∂Ω

∂(δuN
r )

∂ν
mij νiνj dH1.

Thus, from (4.16) we deduce〈
D2(δuN

r

)
,m − MN

r

〉 − 1

2

∫
Ω

(|m|2 − ∣∣MN
r

∣∣2)
dx +

∫
Ω

(
m − MN

r

) : MN
r−1 dx

−
∫

∂Ω

∂(δuN
r )

∂ν
(mij − Mij )νiνj dH1 � 0.

By taking m̃ = MN
r + α(m − MN

r ) ∈ K ∩ D and letting α → 0 one obtains〈
D2(δuN

r

)
,m − MN

r

〉 − ∫
Ω

(
m − MN

r

) : δeN
r dx −

∫
∂Ω

∂(δuN
r )

∂ν
(mij − Mij )νiνj dH1 � 0,

that is〈
δpN

r ,m − MN
r

〉
� 0

for all m ∈ D ∩ K(Ω). Hence, by [7, Proposition 2.3]∥∥δpN
r

∥∥
1;Ω = 〈

δpN
r ,MN

r

〉
,

and we have∥∥q + δpN
r

∥∥
1;Ω − ∥∥δpN

r

∥∥
1;Ω − 〈

q,MN
r

〉
� 0

for every kinematically admissible triple (v, η, q). The latter inequality and (4.15) imply that (uN
r , eN

r ,pN
r ) is a solu-

tion to problem (4.1). �
5. Approximations

In this section we show that some solutions of the relaxed minimax problem (4.11) can be approximated by more
regular functions in a way that allows us to get higher regularity of bending moments.

We also prove some technical lemmas to be used in the rest of the paper.
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5.1. Regularized problems

As in [16, Section 3] and [6, Section 6] we consider the family of variational problems, depending on a positive
parameter α ∈ (0,1]:{

find uα
r ∈ W

2,2
0 (Ω) such that

Iα(uα
r ) = inf{Iα(v): v ∈ W

2,2
0 (Ω)}, (5.1)

where

Iα(v) = α

2

∫
Ω

∣∣D2v + MN
r−1

∣∣2
dx + I (v)

= α

2

∫
Ω

∣∣D2v + MN
r−1

∣∣2
dx +

∫
Ω

g
(
D2v + MN

r−1

)
dx −

∫
Ω

f N
r v dx. (5.2)

It is easy to see that problem (5.1) has a unique solution uα
r ∈ W

2,2
0 (Ω), which satisfies a nonlinear system of

PDEs:∫
Ω

Mα
r : D2v dx =

∫
Ω

f N
r v dx for all v ∈ C∞

0 (Ω), (5.3)

that is

div divMα
r = f N

r , (5.4)

where

Mα
r = α

(
D2uα

r + MN
r−1

) + ∂g

∂τ

(
D2uα

r + MN
r−1

)
. (5.5)

Lemma 5.1. Under conditions (2.1), (2.2) and (4.5) the following estimates hold
√

α
∥∥uα

r

∥∥
2,2;Ω + ∥∥uα

r

∥∥
2,1;Ω + ∥∥uα

r

∥∥
1,2;Ω + ∥∥uα

r

∥∥∞;Ω � C,

where the constant C = C(‖f N
r ‖2;Ω,‖MN

r−1‖2;Ω;M2×2
sym

) does not depend on the parameter α.

Proof. The safe-load condition (2.2) implies∫
Ω

f r
N uα

r dx =
∫
Ω

m1 : D2uα
r dx,

and using definition (5.2) of Iα we deduce the estimate

I1(0) � Iα

(
uα

r

)
�

∫
Ω

{
α

2

∣∣D2uα
r + MN

r−1

∣∣2 + g
(
D2uα

r + MN
r−1

) − c
∣∣D2uα

r

∣∣}dx.

The claim now follows from the embedding theorems. �
Lemma 5.2. Under the conditions of Lemma 5.1 we can find subsequences, denoted by uα

r and Mα
r , such that as

α → 0 we have

Mα
r ⇀ MN

r weakly in L2
(
Ω;M

2×2
sym

)
, (5.6)

uα
r → δuN

r strongly in W
1,p

0 (Ω), for 1 � p < 2, (5.7)

uα
r ⇀ δuN

r weakly in W
1,2
0 (Ω), (5.8)

∇uα
r

∗
⇀ ∇δuN

r weakly∗ in BV
(
Ω;R

2
)
, (5.9)
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α

∫
Ω

∣∣D2uα
r + MN

r−1

∣∣2
dx → 0, (5.10)

Mα
0 := ∂g

∂τ

(
D2uα

r + MN
r−1

) ∗
⇀ MN

r weakly∗ in L∞(
Ω;M

2×2
sym

)
, (5.11)

where the pair (δuN
r ,MN

r ) is a solution to problem (4.11).

Proof. Assertions (5.6)–(5.9) and (5.11) follow from (5.5), Lemma 5.1 and embedding theorems.
Thus, it remains to prove (5.10) and that the pair (δuN

r ,MN
r ) is a solution to problem (4.11).

As Mα
0 ∈ K(Ω), the convergence (5.11) yields that MN

r ∈ K(Ω). Hence, from the Euler equation (5.3) and the
convergence (5.6) we conclude that MN

r ∈ Qf N
r

∩ K(Ω).
The duality relations imply that

Mα
0 : (D2uα

r + MN
r−1

) = g
(
D2uα

r + MN
r−1

) + g∗(Mα
0

)
a.e. in Ω .

Therefore, by using the Euler equation (5.3) we can rewrite the functional Iα as

Iα

(
uα

r

) =
∫
Ω

[
Mα

r − α
(
D2uα + MN

r−1

)] : (D2uα
r + MN

r−1

)
dx

−
∫
Ω

g∗(Mα
0

)
dx −

∫
Ω

f uα
r dx + α

2

∫
Ω

∣∣D2uα
r + MN

r−1

∣∣2
dx

= −α

2

∫
Ω

∣∣D2uα
r + MN

r−1

∣∣2
dx −

∫
Ω

g∗(Mα
0

) +
∫
Ω

Mα
r : MN

r−1 dx.

By Theorem 4.1 applied to problems (4.7) and (4.8), we get

sup
{
R(m): m ∈ Qf N

r
∩ K

} = inf
{
I (v): v ∈ V0

}
� I

(
uα

r

)
� Iα

(
uα

r

)
= −α

2

∫
Ω

∣∣D2uα
r + MN

r−1

∣∣2
dx −

∫
Ω

g∗(Mα
0

) +
∫
Ω

Mα
r : MN

r−1 dx. (5.12)

As

−
∫
Ω

g∗(MN
r

) +
∫
Ω

MN
r : MN

r−1 = R
(
MN

r

)
,

by making use of convergence (5.6) and (5.11) it follows, that

lim
α→0

Iα

(
uα

r

)
� R

(
MN

r

) − lim sup
α→0

α

2

∫
Ω

∣∣D2uα
r + MN

r−1

∣∣2
dx.

According to (5.12) we have

sup
{
R(m): m ∈ Qf N

r
∩ K

} = inf
{
I (v): v ∈ V0

}
� lim inf

α→0
I
(
uα

r

)
� lim

α→0
Iα

(
uα

r

)
� R

(
MN

r

) − lim sup
α→0

α

2

∫
Ω

∣∣D2uα
r + MN

r−1

∣∣2
dx � R

(
MN

r

)
,

which implies the relation (5.10) and ensures that MN
r is a solution to problem (4.8).

Moreover, the identity

lim
α→0

I
(
uα

r

) = inf
{
I (v): v ∈ V0

}
(5.13)

yields that uα
r is a minimizing sequence for problem (4.7), and therefore it converges to a solution of problem (4.12)

as in Theorem 4.2. �
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5.2. Convergence of variations

Now we show, that the approximating sequence enjoys better convergence properties, than those stated in
Lemma 5.2.

Lemma 5.3. We have∣∣D2uα
r + MN

r−1

∣∣ ∗
⇀

∣∣D2(δuN
r

) + MN
r−1

∣∣ in Mb(Ω). (5.14)

Proof. By Lemma 5.2, Theorem 4.2 and (5.13) we have

lim
α→0

Φ
(
uα

r

) = lim
α→0

I
(
uα

r

) = inf
v∈V0

I (v) = inf
V+

Φ(v) = Φ
(
δuN

r

)
,

so that∫
Ω

g0
(∣∣D2uα

r + MN
r−1

∣∣)dx →
∫
Ω

g0
(∣∣D2(δuN

r

) + MN
r−1

∣∣). (5.15)

The sequence |D2uα
r + MN

r−1| is bounded in Mb(Ω), therefore there exists a nonnegative measure λ ∈ Mb(Ω), such
that ∣∣D2uα

r + MN
r−1

∣∣ ∗
⇀ λ weakly∗ in Mb(Ω), as α → 0. (5.16)

Thus, λ � |D2(δuN
r )+MN

r−1| in Mb(Ω), and the inequality holds true also for L2-absolutely continuous and singular
parts:

λa �
∣∣D2(δuN

r

) + MN
r−1

∣∣a,
λs �

∣∣D2(δuN
r

) + MN
r−1

∣∣s . (5.17)

By the weak∗ lower-semicontinuity of convex functionals of measures, and using the explicit form of the recession
function of g0, which is g∞

0 (t) = t , we obtain

lim
α→0

∫
Ω

g0
(∣∣D2uα

r + MN
r−1

∣∣)dx �
∫
Ω

g0(λ) =
∫
Ω

g0
(
λa

)
dx + λs(Ω). (5.18)

On the other hand we have

lim
α→0

∫
Ω

g0
(∣∣D2uα

r + MN
r−1

∣∣)dx =
∫
Ω

g0
(∣∣D2(δuN

r

) + MN
r−1

∣∣a)dx + ∣∣D2(δuN
r

) + MN
r−1

∣∣s(Ω). (5.19)

As the function g0 is strictly monotone increasing, from (5.15)–(5.19) we conclude that

λ = ∣∣D2(δuN
r

) + MN
r−1

∣∣.
Now the result follows from (5.16). �
5.3. Technical estimates

By the definition (5.5) of Mα
r we have

Mα
r = α

(
D2uα

r + MN
r−1

) +
⎧⎨⎩

D2uα
r + MN

r−1, if |D2uα
r + MN

r−1| � 1;

D2uα
r +MN

r−1

|D2uα
r +MN

r−1|
, if |D2uα

r + MN
r−1| > 1.

(5.20)

According to the chain rule of [12] the following expression for the derivatives of Mα
r is valid

Mα
r,k = α

(
D2uα

r,k + MN
r−1,k

) + ∂2g

2

(
D2uα

r + MN
r−1

)(
D2uα

r,k + MN
r−1,k

)
. (5.21)
∂κ
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Here and henceforth the subscript ,k denotes the partial derivative with respect to xk .
In what follows we adopt the notation

τα
r := D2uα

r + MN
r−1. (5.22)

Let us introduce two bilinear forms, that depend on α and implicitly on the point x ∈ Ω :

Eα
1 (ε, �) =

(
∂2g

∂τ 2

(
τα
r

)
ε

)
: � == g′

0(|τα
r |)

|τα
r | ε : � +

(
g′′

0

(∣∣τα
r

∣∣) − g′
0(|τα

r |)
|τα

r |
)

τα
r : ε
|τα

r |
τα
r : �
|τα

r | (5.23)

and

Eα
2 (ε, �) = αε : � + Eα

1 (ε, �). (5.24)

Below we establish some technical inequalities to be used in the remaining sections.

Lemma 5.4. The following relations hold true:

Mα
r,k : � = Eα

2

(
τα
r,k, �

)
, (5.25)

Eα
2 (�,�) � α|�|2 +

{ |�|2, if |τα
r | � 1,

|�|2
|τα

r | , if |τα
r | > 1

(5.26)

for any � ∈ M
2×2
sym .

Proof. Identity (5.25) and inequality (5.26) follow from (5.20)–(5.24) and the expression of g0 as in (4.5). �
Corollary 5.5. The following estimates are valid

Eα
2

(
Mα

r,k,M
α
r,k

)
� αMα

r,k : Mα
r,k +

{
Mα

r,k : Mα
r,k, if |τα

r | � 1,
1

|τα
r |M

α
r,k : Mα

r,k, if |τα
r | > 1.

(5.27)

In particular, we have

Eα
2

(
Mα

r,k,M
α
r,k

)
� (1 + α)Mα

r,k : Mα
r,k. (5.28)

Lemma 5.6.

−Eα
2

(
τα
r,k, τ

α
r,k

) = −Mα
r,k : τα

r,k �
{−Mα

r,k : Mα
r,k + αEα

2 (τα
r,k, τ

α
r,k), if |τα

r | � 1;
−|τα

r |Mα
r,k : Mα

r,k + α|τα
r |Eα

2 (τα
r,k, τ

α
r,k), if |τα

r | > 1.
(5.29)

Proof. Suppose, |τα
r | � 1. Then Mα

r = α τα
r + τα

r , and thus

−Mα
r,k : τα

r,k = −Mα
r,k : (ατα

r,k + τα
r,k

) + αMα
r,k : τα

r,k = −Mα
r,k : Mα

r,k + αEα
2

(
τα
r,k, τ

α
r,k

)
. (5.30)

Now let |τα
r | > 1. Then Mα

r = α τα
r + τα

r|τα
r | , and hence

Mα
r,k = ατα

r,k +
[

τα
r

|τα
r |

]
,k

. (5.31)

Expressing τα
r,k from the latter relation we get

τα
r,k = ∣∣τα

r,k

∣∣(Mα
r,k − α τα

r,k

) + τα
r

τα
r : τα

r,k

|τα
r | ,

which yields

−Mα
r,k : τα

r,k = −∣∣τα
r

∣∣Mα
r,k : Mα

r,k + α
∣∣τα

r

∣∣Mα
r,k : τα

r,k − τα
r : τα

r,k

|τα
r |2 Mα

r,k : τα
r

� −∣∣τα
r

∣∣Mα
r,k : Mα

r,k + α
∣∣τα

r

∣∣Mα
r,k : τα

r,k, (5.32)
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where (5.31) and the orthogonality of [ τα
r|τα
r | ],k and τα

r was used:

−τα
r : τα

r,k

|τα
r |2 Mα

r,k : τα
r = −α

(
τα
r : τα

r,k

|τα
r |

)2

� 0.

The claim now follows from (5.30) and (5.32). �
6. W

1,2
loc estimates of bending moments in the incremental problems

In this section we deduce some iterative estimates for the L2 norms of the gradients of the functions Mα
r , defined

by means of (5.5), and we show that for every given r and N we have MN
r ∈ W

1,2
loc (Ω;M

2×2
sym ). We note that for the

moment we are concerned only with the problem of regularity of each MN
r , that is, we do not care about the uniformity

of estimates with respect to r and N . Having obtained the L2 bounds, we conclude that the approximate solutions Mα
r ,

which were known to converge to MN
r weakly in L2(Ω;M

2×2
sym ), actually converge strongly.

Remark that in what follows Cr will denote a constant independent of α, which may change from line to line. This
constant may depend on r , N , and, in case of local estimates, on a domain Ω ′ � Ω . We will use the notation C only
when this constant does not depend on r and N .

For the moment, our objective is the following estimate:∫
Ω ′

Mα
r,k : Mα

r,k dx � C(r,N,Ω ′), (6.1)

valid for any Ω ′ � Ω .
Suppose, by induction, that we have already proved that MN

r−1 ∈ W
1,2
loc (Ω;M

2×2
sym ). To simplify the notation, in this

section we sometimes omit writing the index N for the solutions of the incremental problem (4.1). Let us examine
the regularized problem (5.1). Since uα

r is a solution of the nonlinear elliptic system (5.4) with f N
r ∈ L2(Ω) and

eN
r−1 ∈ W

1,2
loc (Ω;M

2×2
sym ), one can show, by working with difference quotients, that

uα
m ∈ W

3,2
loc

(
Ω;M

2×2
sym

)
,

Mα
m,D2uα

m ∈ W
1,2
loc

(
Ω;M

2×2
sym

)
. (6.2)

By using formula (5.25) , estimate (5.28) and the definition (5.22) of τα
r we obtain

Mα
r,k : Mα

r,k = Eα
2

(
τα
r,k,M

α
r,k

)
�

[
Eα

2

(
τα
r,k, τ

α
r,k

)]1/2[
Eα

2

(
Mα

r,k,M
α
r,k

)]1/2

� 1

2
Eα

2

(
τα
r,k, τ

α
r,k

) + 1

2
Eα

2

(
Mα

r,k,M
α
r,k

)
� 1

2
Mα

r,k : τα
r,k +

(
1

2
+ α

2

)
Mα

r,k : Mα
r,k

� 1

2
Mα

r,k : D2uα
r,k + 1

2
Mα

r,k : MN
r−1,k +

(
1

2
+ α

2

)
Mα

r,k : Mα
r,k. (6.3)

By applying the Cauchy inequality to Mα
r,k : MN

r−1,k we get

(1 − α)Mα
r,k : Mα

r,k � MN
r−1,k : MN

r−1,k + 2Mα
r,k : D2uα

r,k. (6.4)

Thus, it remains to prove the boundedness in L1
loc(Ω) of the second summand of

Let us introduce the notation

Mα := Mα
r , f := f N

r , uα := uα
r ,

omitting index m for further convenience. Let ϕ ∈ C3
0(Ω) be an arbitrary cut-off function, such that ϕ ≡ 1 on Ω ′, and

suppϕ ⊂ Ω ′′ � Ω . By (6.2) we can put the function

v = ϕ4 uα
,k
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into the Euler equation (5.3).
We start by∫

Ω

Mα
,k : D2(ϕ4 uα

,k

)
dx =

∫
Ω

ϕ4∇f · ∇uα dx.

This equality can be expressed in the following way

Jα
r :=

∫
Ω

ϕ4Mα
,k : D2uα

,k dx =
∫
Ω

ϕ4f,k uα
,k dx − 2

∫
Ω

Mα
ij,kϕ

4
,j uα

,ki dx −
∫
Ω

Mα
ij,k ϕ4

,ij uα
,k dx. (6.5)

Thus, we have

Jα
r � Iα

1 + Iα
2 + Iα

3 , (6.6)

with

Iα
1 :=

∫
Ω

ϕ4f,ku
α
,k dx, Iα

2 := −2
∫
Ω

Mα
ij,k ϕ4

,j uα
,ki dx,

Iα
3 := −

∫
Ω

Mα
ij,kϕ

4
,ij uα

,k dx. (6.7)

Estimate of Iα
1 .∣∣Iα

1

∣∣ � ‖f ‖1,2;Ω ′′
∥∥uα

∥∥
1,2;Ω � Cr. (6.8)

Estimate of Iα
2 . Let us introduce the matrices S(k) = (S

(k)
ij ) defined by

S
(k)
ij := −ϕ,j uα

,ki . (6.9)

Then by using (5.25), (5.27), (5.22) and the fact that ‖MN
r−1‖∞;Ω � 1 we obtain

Iα
2 = −2

∫
Ω

Mα
ij,k ϕ4

,j uα
,ki dx = 8

∫
Ω

ϕ3Eα
2

(
τα
r,k, S

(i)
)
dx

� 1

100

∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + Cr

∫
Ω

ϕ2Eα
2

(
S(k), S(k)

)
dx

� 1

100

∫
Ω

ϕ4Mα
r,k : τα

r,k + αCr

∫
Ω

ϕ2
∣∣S(k)

∣∣2
dx + Cr

∫
|τα

r |�1

ϕ2
∣∣S(k)

∣∣2
dx + Cr

∫
|τα

r |>1

ϕ2|S(k)|2
|τα

r | dx

� 1

100

(
Jα

r +
∫
Ω

ϕ4 Mα
r,k : Mα

r,k dx +
∫
Ω

ϕ4 MN
r−1,k : MN

r−1,k dx

)

+ Cr

∫
|τα

r |�1

ϕ2
∣∣D2uα

r

∣∣2
dx + Cr

∫
|τα

r |>1

ϕ2|D2uα
r |2

|τα
r | dx + αCr

∥∥D2uα
r

∥∥2
2;Ω

� 1

100

(
Jα

r +
∫
Ω

ϕ4Mα
r,k : Mα

r,k dx +
∫
Ω

ϕ4 MN
r−1,k : MN

r−1,k dx

)
+ Cr

∫
Ω

∣∣D2uα
r

∣∣dx + Cr. (6.10)

Estimate of Iα . Using (5.25) and Lemma 5.1
3
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Iα
3 = −

∫
Ω

Mα
ij,kϕ

4
,ij u

α
,k dx = −4

∫
Ω

ϕ3 uα
,kE

α
2

(
τα
r,k,∇2ϕ

)
dx − 12

∫
Ω

ϕ2uα
,kE

α
2

(
τα
r,k,∇ϕ ⊗ ∇ϕ

)
dx

� 1

100

∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + Cr

∫
Ω

∣∣∇uα
∣∣2(

ϕ2Eα
2

(∇2ϕ,∇2ϕ
) + Eα

2 (∇ϕ ⊗ ∇ϕ,∇ϕ ⊗ ∇ϕ)
)
dx

� 1

100

(
Jα

r +
∫
Ω

ϕ4Mα
r,k : Mα

r,k dx +
∫
Ω

ϕ4MN
r−1,k : MN

r−1,k dx

)
+ Cr. (6.11)

So, (6.5), (6.6), (6.8)–(6.11), and the regularity of MN
r−1 proved at the previous step, imply that

Jα
r � Cr + 2

100
Jα

r + 2

100

∫
Ω

ϕ4 Mα
r,k : Mα

r,k dx.

Therefore, (6.4) allows us to conclude that (6.1) holds for every k = 1,2, and thus

lim sup
α→0

∥∥∇Mα
r

∥∥
2;Ω ′ � C(r,N,Ω ′). (6.12)

Remark 6.1. Inequality (6.12) and the convergence Mα
r ⇀ MN

r in L2(Ω;M
2×2
sym ), see (5.6), imply that

MN
r ∈ W

1,2
loc

(
Ω;M

2×2
sym

)
,

Mα
r ⇀ MN

r in W
1,2
loc

(
Ω;M

2×2
sym

)
, and

Mα
r → MN

r in L2
loc

(
Ω;M

2×2
sym

)
, (6.13)

where the strong convergence in L2(Ω;M
2×2
sym ) is guaranteed by Sobolev embedding.

7. Auxiliary estimates

In this section we prove a fine convergence estimate for the approximate solutions of regularized problems (Lem-
mas 7.1 and 7.3) and get analytic estimates, which are the core of the proof of the uniform boundedness of MN

r in
W

1,2
loc (Ω;M

2×2
sym ) (Lemmas 7.4, 7.5 and Corollary 7.6).

In these estimates it is crucial that the constants C does not depend on r and N , although they might depend on ϕ.
In the rest of the paper ωr(α) will denote a generic function, converging to 0 as α → 0, which may change from

line to line and may depend on r and N .

7.1. Fine properties of approximating sequence

Lemma 7.1. For any function ψ ∈ C0(Ω) with 0 � ψ � 1, we have∫
|τα

r |>1

ψ
(∣∣D2uα

r + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣)dx � C

N
+ ωr(α), (7.1)

where the constant C and the quantity ωr(α) may depend on the properties of ψ .

Proof. As |MN
r−1| � 1, we have∫

|τα
r |>1

ψ
(∣∣D2uα

r + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣)dx

=
∫
Ω

ψ
(∣∣D2uα

r + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣)dx −
∫

|τα |�1

ψ
(∣∣D2uα

r + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣)dx. (7.2)
r
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Equality (5.20) implies that on the set {|τα
r | � 1} one has Mα

r = α τα
r + τα

r . Thus, by (5.20), (5.22), Lemma 5.1, (6.13)
and (3.12) we obtain

−
∫

|τα
r |�1

ψ
(∣∣D2uα

r + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣)dx

�
∫

|τα
r |�1

ψ
(∣∣Mα

r − MN
r−1

∣∣ + α
∣∣τα

r

∣∣)dx �
∫
Ω

ψ
∣∣Mα

r − MN
r−1

∣∣dx + Cα

�
∫
Ω

ψ
∣∣MN

r − MN
r−1

∣∣dx +
∫
Ω

ψ
∣∣MN

r − Mα
r

∣∣dx + Cα � C

N
+ ωm(α).

On the other hand, by (5.14) and (3.12)

lim
α→0

∫
Ω

ψ
(∣∣D2uα

r + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣)dx = 〈
ψ,

∣∣D2(δuN
r

) + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣ · L2〉 � ∣∣D2(δuN
r

)∣∣(Ω) � C

N
.

The estimate (7.1) follows from last two estimates and (7.2). �
As a corollary, we prove a local estimate for |D2uα

r |.

Corollary 7.2. We have∫
Ω

ψ
∣∣D2uα

r

∣∣dx � C

N
+ ωr(α) (7.3)

for every function ψ ∈ C0(Ω) with 0 � ψ � 1, where the constant C and the quantity ωr(α) may depend on ψ .

Proof. Introduce the notation

Ω̃1 = {∣∣τα
r

∣∣ � 1
}
, Ω̃2 = {

1 <
∣∣τα

r

∣∣}.
Now we divide the integral over Ω into two integrals over Ω̃i , i = 1,2, and estimate each one of them, as in (7.3).

Estimate over ˜Ω1. According to (5.20) and (5.22) in the region Ω̃1 we have

D2uα
r = Mα

r − MN
r−1 + ατα

r ,

and hence, by (6.13) and (3.12) we obtain∫
Ω̃1

ψ
∣∣D2uα

r

∣∣dx �
∫
Ω̃1

ψ
∣∣Mα

r − MN
r−1

∣∣dx + α

∫
Ω̃1

ψ dx � C

N
+ ωr(α). (7.4)

Estimate over ˜Ω2. By (5.20) and (5.22) in Ω̃2 one has

D2uα
r = Mα

r

(∣∣τα
r

∣∣ − 1
) − (

MN
r−1 − Mα

r

) − ατα
r

∣∣τα
r

∣∣. (7.5)

Again, by (5.20) and (5.22) we get∣∣Mα
r

∣∣∣∣τα
r

∣∣ � α
∣∣τα

r

∣∣2 + ∣∣D2uα
r + MN

r−1

∣∣,
and the triangle inequality |Mα

r | � |MN
r−1| − |MN

r−1 − Mα
r | yields

−∣∣Mα
r

∣∣ � −∣∣MN
r−1

∣∣ + ∣∣MN
r−1 − Mα

r

∣∣.
By the last two estimates, the relation (7.5) becomes∫

˜
ψ

∣∣D2uα
r

∣∣dx �
∫
˜

ψ
(∣∣D2uα

r + MN
r−1

∣∣ − ∣∣MN
r−1

∣∣)dx + 2
∫
˜

ψ
∣∣MN

r−1 − Mα
r

∣∣dx + 2α

∫
˜

∣∣τα
r

∣∣2
dx.
Ω2 Ω2 Ω2 Ω2
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Using (7.1), (5.10), the convergence (6.13) and (3.12), by the last estimate we conclude, that∫
Ω̃2

ψ
∣∣D2uα

r

∣∣dx � C

N
+ ωr(α). (7.6)

Now the claim (7.3) follows from (7.4) and (7.6). �
Lemma 7.3. The following estimate holds:∫

Ω

ψ2
∣∣∇uα

r

∣∣2
dx � C

N2
+ ωr(α), (7.7)

for any function ψ ∈ C2
0(Ω) with 0 � ψ � 1. Remark, that the constant C and the quantity ωr(α) depend upon

‖ψ‖2,∞;Ω .

Proof. We begin by defining the functions vα
r := uα

r ψ ∈ W
2,2
0 (Ω), which satisfy the following equalities:

∇vα
r = ψ∇uα

r + uα
r ∇ψ,

D2vα
r = ψD2uα

r + 2∇ψ � ∇uα
r + uα

r ∇2ψ. (7.8)

Then, by using (7.8), the Sobolev embeddings W 2,1(Ω) ↪→ W 1,2(Ω) and W 1,1(Ω) ↪→ L2(Ω), and the Poincaré
inequality for W

2,1
0 (Ω) we can estimate the integral considered as follows∫

Ω

∣∣ψ∇uα
r

∣∣2
dx � 2

∫
Ω

∣∣ψ∇uα
r + uα

r ∇ψ
∣∣2

dx + 2
∫
Ω

|uα
r ∇ψ |2 dx

� C

∫
Ω

∣∣∇vα
r

∣∣2
dx + C

∫
Ω

∣∣uα
r

∣∣2
dx � C

∥∥vα
r

∥∥2
2,1;Ω + C

∥∥uα
r

∥∥2
1,1;Ω

� C

( ∫
Ω

∣∣D2vα
r

∣∣dx

)2

+ C
∥∥uα

r

∥∥2
1,1;Ω

� C

( ∫
Ω

ψ
∣∣D2uα

r

∣∣dx +
∫
Ω

∣∣∇uα
r

∣∣dx +
∫
Ω

∣∣uα
r

∣∣dx

)2

+ C
∥∥uα

r

∥∥2
1,1;Ω. (7.9)

Now we use (7.9), the estimate (7.3), the convergence uα
r → δuN

r in W 1,1(Ω), as in (5.7), the embedding
BH(Ω) ↪→ W 1,1(Ω), and (3.12) to obtain∫

Ω

ψ2
∣∣∇uα

r

∣∣2
dx � C

( ∫
Ω

ψ
∣∣D2uα

r

∣∣dx

)2

+ C
∥∥uα

r

∥∥2
1,1;Ω � C

N2
+ C

∥∥δuN
r

∥∥2
BH(Ω)

+ ωr(α) � C

N2
+ ωr(α).

The claim is proved. �
7.2. Analytic estimates

Lemma 7.4. The following inequality holds for Jα
r defined in (6.5):

Jα
r � −2

∫
Ω

Mα
ij,kϕ

4
,j u

α
,ki dx + 1

N

∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

) + C

N
+ ωr(α). (7.10)

Proof. Recalling (6.6), we have Jα
r � Iα

1 + Iα
2 + Iα

3 with Iα
i , i = 1, . . . ,3, defined in (6.7). We show, that Iα

1 and Iα
3

are of order 1 when α → 0.

N
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Estimate over Iα
1 . Since f N

r ∈ W
1,2
loc (Ω), one can employ the convergence (5.8) to pass to the limit in Iα

1 , and use the
estimates (3.12) of ‖δuN

r ‖BH(Ω) to obtain∣∣Iα
1

∣∣ � C
(‖f ‖L∞([0,T ];W 1,2(Ω ′′))

) 1

N
+ ωr(α). (7.11)

Estimate over Iα
3 . First of all, remark that the function

ϕ
(
Eα

2

(∇2ϕ,∇2ϕ
) + Eα

2 (∇ϕ ⊗ ∇ϕ,∇ϕ ⊗ ∇ϕ)
)

is bounded and has a compact support, which is a subset of suppϕ. Let us choose a function ψ ∈ C∞
0 (Ω), such that

ψ ≡ 1 on suppϕ and suppψ ⊂ Ω ′′,

Iα
3 = −

∫
Ω

Mα
ij,kϕ

4
,ij , u

α
,k dx = −4

∫
Ω

ϕ3uα
r,kE

α
2

(
τα
r,k,∇2ϕ

)
dx − 12

∫
Ω

ϕ2uα
r,kE

α
2

(
τα
r,k, ϕ ⊗ ϕ

)
dx

� 1

N

∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + CN

∫
Ω

ψ2
∣∣∇uα

r

∣∣2
dx, (7.12)

with ψ chosen above, using the fact that

ϕ
(
Eα

2

(∇2ϕ,∇2ϕ
) + Eα

2 (∇ϕ ⊗ ∇ϕ,∇ϕ ⊗ ∇ϕ)
)
� Cψ2.

Thus, by (6.6), (7.11), (7.12) and (7.7) we obtain (7.10). �
Lemma 7.5. The following “iterative” estimate holds true:(

1 − 2

N

)∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx

� 100

99

∫
Ω

Mα
r,k : MN

r−1,k dx +
9N−1∑
s=1

1

s + 10

∫
Fs

ϕ4Mα
r,k : Mα

r,k dx − 1

99

∫
|τα

r |�10

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx

+ C

N

∫
Ω

ϕ4Mα
r,k : Mα

r,k dx + C

N

∫
Ω

ϕ4MN
r−1,k : MN

r−1,k dx + C

N
+ ωr(α), (7.13)

where Fs , s = 1, . . . ,9N − 1 is defined by Fs = {1 + 9
s+1 < |τα

r | � 1 + 9
s
}.

Proof. By (5.25), (5.22), (6.5) and (7.10)(
1 − 1

N

)∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx � −2

∫
Ω

Mα
ij,kϕ

4
,j u

α
,ki dx +

∫
Ω

ϕ4Mα
r,k : MN

r−1,k dx + C

N
+ ωr(α)

= Bα
1 + Bα

2 + Bα
3 + Bα

4 +
∫
Ω

ϕ4Mα
r,k : MN

r−1,k dx + C

N
+ ωr(α), (7.14)

where

Bα
i := 8

∫
Ωi

ϕ3 Mα
r,k : S(k) dx, i = 1, . . . ,4,

with S(k) defined in (6.9) and

Ω1 = {∣∣τα
r

∣∣ � 1
}
, Ω2 =

{
1 <

∣∣τα
r

∣∣ � 1 + 1

N

}
,

Ω3 =
{

1 + 1

N
<

∣∣τα
r

∣∣ � 10

}
, Ω4 = {

10 <
∣∣τα

r

∣∣}. (7.15)
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Estimate of Bα
1 . According to (5.20) and (5.22), in the region Ω1 the following identity holds:

D2uα
r = Mα

r − MN
r−1 − α τα

r .

Hence, by (6.9)∣∣S(k)
∣∣2 � C

∣∣D2uα
r

∣∣2 � C
(∣∣Mα

r − MN
r−1

∣∣2 + α2
∣∣τα

r

∣∣2)
,

and we have∫
Ω1

ϕ2
∣∣S(k)

∣∣2
dx � Cα2 + C

∥∥Mα
r − MN

r−1

∥∥2
2;Ω ′′ .

Thus, from the convergence (6.13) and the increment estimate (3.12), it follows that

Bα
1 � 1

N

∫
Ω1

ϕ4 Mα
r,k : Mα

r,k dx + CN

∫
Ω1

ϕ2
∣∣S(k)

∣∣2
dx � 1

N

∫
Ω1

ϕ4 Mα
r,k : Mα

r,k dx + C

N
+ ωr(α). (7.16)

Estimate of Bα
2 . We remark, that (5.20) and (5.22) yield that for |τα

r | � 1 one has

D2uα
r = Mα

r

(∣∣τα
r

∣∣ − 1
) − (

MN
r−1 − Mα

r

) − ατα
r

∣∣τα
r

∣∣, (7.17)

so that in the region Ω2 we have∣∣D2uα
r

∣∣2 � C

N2

∣∣Mα
r

∣∣2 + C
∣∣Mα

r − MN
r−1

∣∣2 + Cα2
∣∣τα

r

∣∣4
.

By the inequality |S(k)| � C|D2uα
r |, see (6.9),

8ϕ3Mα
r,k : S(k) � 1

N
ϕ4Mα

r,k : Mα
r,k + CNϕ2

∣∣D2uα
r

∣∣2
,

so that by the former estimate, the boundedness of τα
r and Mα

r on Ω2 (see (5.20)), (6.13) and (3.12) we have

Bα
2 � 1

N

∫
Ω2

ϕ4Mα
r,k : Mα

r,k dx + C

N
+ ωr(α). (7.18)

Estimate of Bα
3 . Using the notation Fs = {1 + 9

s+1 < |τα
r | � 1 + 9

s
} for s = 1, . . . ,9N − 1, we write

Bα
3 = 8

9N−1∑
s=1

∫
Fs

ϕ3 Mα
r,k : S(k) dx

�
9N−1∑
s=1

[
1

2(s + 10)

∫
Fs

ϕ4Mα
r,k : Mα

r,k dx + C(s + 10)

∫
Fs

ϕ2
∣∣D2uα

r

∣∣2
dx

]
. (7.19)

Now we show, that the last summand can be bounded by C
N

+ ωr(α).
Thanks to (7.17) on Fs we have∣∣D2uα

r

∣∣2 � 9

s

∣∣Mα
r

∣∣2(∣∣τα
r

∣∣ − 1
) + C

∣∣Mα
r − MN

r−1

∣∣2 + α2
∣∣τα

r

∣∣4
,

so that by (6.13), (3.8), (3.12), and the boundedness of Mα
r and τα

r on Fs (see (5.20)) we have

9N−1∑
s=1

(s + 10)

∫
Fs

ϕ2
∣∣D2uα

r

∣∣2
dx

�
9N−1∑
s=1

∫
ϕ2

(
9(s + 10)

s

∣∣Mα
r

∣∣2(∣∣τα
r

∣∣ − 1
) + CN

∣∣Mα
r − MN

r−1

∣∣2 + CNα2
)

dx
Fs
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� C

∫
Ω3

ϕ2
∣∣Mα

r

∣∣(∣∣τα
r

∣∣ − 1
)
dx + CN

∥∥Mα
r − MN

r−1

∥∥2
2;Ω ′′ + CNα2. (7.20)

By (5.20) and (5.22) we have |Mα
r ||τα

r | � α|τα
r |2 + |D2uα

r + MN
r−1|, and by the triangle inequality |Mα

r | � |MN
r−1| −

|MN
r−1 − Mα

r | we have also −|Mα
r | � −|MN

r−1| + |MN
r−1 − Mα

r |. Therefore using (6.13) and (3.12) we can bound the
right-hand side of (7.20) by

C

∫
Ω3

ϕ2(∣∣D2uα
r + MN

r−1

∣∣ − ∣∣MN
r−1

∣∣) + C

N
+ ωr(α).

Thus, by (7.1) we conclude that

Bα
3 �

9N−1∑
s=1

1

2(s + 10)

∫
Fs

ϕ4Mα
r,k : Mα

r,k dx + C

N
+ ωr(α). � (7.21)

Estimate of Bα
4 . Applying the Cauchy inequality

ϕ3Eα
2

(
τα
r,k, S

(k)
)
� 1

100
ϕ4Eα

2

(
τα
r,k, τ

α
r,k

) + Cϕ2Eα
2

(
S(k), S(k)

)
,

and using (5.25), (5.26), (6.9) and (5.10) we obtain

Bα
4 =

∫
Ω4

ϕ4Eα
2

(
τα
r,k, S

(k)
)
dx � 1

100

∫
Ω4

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + C

∫
Ω4

ϕ2 |D2uα
r |2

|τα
r | dx + ωr(α). (7.22)

To show that the last summand is of order 1
N

, we first note that on the set Ω4 the inequality

|D2uα
r |2

|τα
r | < 10

(∣∣D2uα
r + MN

r−1

∣∣ − ∣∣MN
r−1

∣∣) (7.23)

holds. To prove it, we multiply both sides by |τα
r | = |D2uα

r + MN
r−1|. Using the inequality |MN

r−1| � 1, which follows
from MN

r−1 ∈ K, the right-hand side of (7.23) can be bounded from below by

10
(∣∣D2uα

r

∣∣2 + 2D2uα
r : MN

r−1 + ∣∣MN
r−1

∣∣2 − ∣∣MN
r−1

∣∣∣∣D2uα
r + MN

r−1

∣∣)
� 10

(∣∣D2uα
r

∣∣2 − 3
∣∣MN

r−1

∣∣∣∣D2uα
r

∣∣) � 10
∣∣D2uα

r

∣∣2 − 30
∣∣D2uα

r

∣∣.
Using again |MN

r−1| � 1, in the region Ω4 we have that |D2uα
r | > 9, which yields that

10
∣∣D2uα

r

∣∣2 − 30
∣∣D2uα

r

∣∣ �
∣∣D2uα

r

∣∣2 + 51
∣∣D2uα

r

∣∣ >
∣∣D2uα

r

∣∣2
,

and (7.23) is proved.
From (7.22), (7.23), and (7.1) we have

Bα
4 � 1

100

∫
Ω4

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + C

N
+ ωr(α). (7.24)

Collecting (7.14), (7.16), (7.18), (7.21), and (7.24) we obtain(
1 − 1

N

)∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx �

∫
Ω

ϕ4Mα
r,k : MN

r−1,k dx +
9N−1∑
s=1

1

2(s + 10)

∫
Fs

ϕ4 Mα
r,k : Mα

r,k dx

+ 1

100

∫
Ω4

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + 1

N

∫
Ω

ϕ4 Mα
r,k : Mα

r,k dx + C

N
+ ωr(α),

or, by easy transformations,
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(
99

100
− 1

N

)∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx

�
∫
Ω

ϕ4Mα
r,k : MN

r−1,k dx +
9N−1∑
s=1

1

2(s + 10)

∫
Fs

ϕ4 Mα
r,k : Mα

r,k dx − 1

100

∫
Ω1∪Ω2∪Ω3

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx

+ C

N

∫
Ω

ϕ4 Mα
r,k : Mα

r,k dx + C

N
+ ωr(α).

The claim (7.13) now follows by multiplying the last inequality by 100
99 .

By using Lemmas 5.4 and 5.6 we can express (7.13) in a different form, which is more suitable for our uniform
estimates of Mα

r,k .

Corollary 7.6. The following estimate holds

1

2

∫
Ω

ϕ4 Eα
2

(
τα
r,k, τ

α
r,k

)
dx + 1

2

∫
Ω

ϕ4Eα
2

(
Mα

r,k,M
α
r,k

)
dx

�
(

1

4
· 296

99
+ C

N
+ ωr(α)

)∫
Ω

ϕ4 Mα
r,k : Mα

r,k dx +
(

1

4
· 100

99
+ C

N

)∫
Ω

ϕ4MN
r−1,k : MN

r−1,k dx

+ C

N
+ ωr(α). (7.25)

Proof. We consider each of the domains Ωi, i = 1, . . . ,4, defined in (7.15). First, remark, that (5.29) yields

−Eα
2

(
τα
r,k, τ

α
r,k

)
� −(

1 + ωr(α)
)
Mα

r,k : Mα
r,k (7.26)

on Ω1 ∪ Ω2. We apply (7.13), dividing the integral over Ω into three integrals over the domains just defined.(
1

2
− 1

N

)∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + 1

2

∫
Ω

ϕ4Eα
2

(
Mα

r,k,M
α
r,k

)
dx

� 1

2

∫
Ω

ϕ4Eα
2

(
Mα

r,k,M
α
r,k

)
dx + 1

4
·
(

100

99
+ C

N

)∫
Ω

ϕ4Mα
r,k : Mα

r,k dx

− 1

2
· 1

99

∫
Ω1∪Ω2∪Ω3

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + 1

2

9N−1∑
s=1

1

s + 10

∫
Fs

ϕ4Mα
r,k : Mα

r,k dx

+ 1

4
·
(

100

99
+ C

N

)∫
Ω

ϕ4MN
r−1,k : MN

r−1,k dx + C

N
+ ωr(α). (7.27)

Estimates over Ω1 ∪ Ω2. By (5.28) and (7.26) the sum of the integrals over Ω1 ∪ Ω2 corresponding to the first three
terms in (7.27) is bounded by(

1

4
· 100

99
+ 1

2
− 1

2
· 1

99
+ C

N
+ ωr(α)

) ∫
Ω1∪Ω2

ϕ4Mα
r,k : Mα

r,k dx

�
(

1

4
· 296

99
+ ωr(α) + C

N

) ∫
Ω1∪Ω2

ϕ4Mα
r,k : Mα

r,k dx. (7.28)
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Estimates over Ω3. The integral over Ω3 is estimated by considering the integrals over the sets Fs , defined in (7.13).
Using (5.26), (5.29), the bounds

s + 10

s + 1
<

∣∣τα
r

∣∣ � s + 9

s
,

on each Fs , and the inequality

1

2
· s + 1

s + 10
− 1

2
· 1

99
· s + 10

s + 1
+ 1

2
· 1

s + 10
<

1

2
· 98

99

valid for s ∈ N, the sum of the integrals over Fs corresponding to the first four terms in (7.27) is bounded by

9N−1∑
s=1

[(
1

4
· 100

99
+ 1

2
· s + 1

s + 10
− 1

2
· 1

99
· s + 10

s + 1
+ 1

2
· 1

s + 10
+ ωr(α) + C

N

)]
·
∫
Fs

ϕ4Mα
r,k : Mα

r,k dx

�
(

1

4
· 296

99
+ C

N
+ ωr(α)

)∫
Ω3

ϕ4Mα
r,k : Mα

r,k dx. (7.29)

Estimates over Ω4. By (5.26) and the lower bound |τα
r | > 10, the sum of the integrals over Ω4 corresponding to the

first three terms in (7.27) is bounded by(
1

4
· 100

99
+ 1

20
+ ωr(α) + C

N

)∫
Ω4

ϕ4Mα
r,k : Mα

r,k dx �
(

1

4
· 296

99
+ ωr(α) + C

N

)∫
Ω4

ϕ4Mα
r,k : Mα

r,k dx. (7.30)

The claim now follows from (7.28)–(7.30). �
8. Uniform W

1,2
loc estimates of approximate solutions

To carry out the proof of the uniform boundedness of ‖MN‖
L∞((0,T );W 1,2

loc (Ω;M2×2
sym ))

we will make use of the refined

version of iterative estimate (6.4), deduced in the previous section, which results in a discrete analogue of Gronwall
inequality. To this aim, we need to estimate the last term of (6.4). To make the estimates uniform, we will use the
convergence of uα

r to δuN
r as in (5.7)–(5.9), and the convergence of Mα

r to MN
r as in (6.13).

So, the goal of this section is to prove the following inequality first(
1 − C

N

)∫
Ω

ϕ4MN
r,l : MN

r,l dx �
(

1 + C

N

)∫
Ω

ϕ4MN
r−1,l : MN

r−1,l dx + C

N
, (8.1)

with C independent of N , and then to deduce Theorem 2.2.
We begin as in (6.3), using (5.22) and (5.25):∫

Ω

ϕ4Mα
r,k : Mα

r,k dx � 1

2

∫
Ω

ϕ4Eα
2

(
τα
r,k, τ

α
r,k

)
dx + 1

2

∫
Ω

ϕ4Eα
2

(
Mα

r,k,M
α
r,k

)
dx.

Thus, (7.25) yields(
1

4
· 100

96
− C

N
+ ωr(α)

)∫
Ω

Mα
r,k : Mα

r,k dx

� 1

4
· 100

96

∫
Ω

ϕ4MN
r−1,k : MN

r−1,k dx + C

N

∫
Ω

ϕ4MN
r,k : MN

r,k dx + C

N
+ ωr(α). (8.2)

Now, to deduce (8.1) it remains to pass to the limit with respect to α in (8.2), to use (6.13) and the lower semicon-
tinuity of the norm, and to sum the resulting expressions with respect to k.

Proof of Theorem 2.2. Iterating (8.1) we get the following for every r = 1, . . . ,N
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∫
Ω

ϕ4MN
r,l : MN

r,l dx � (1 + C/N)N

(1 − C/N)N

∫
Ω

ϕ4M0,l : σ0,l dx + 2C

N

N∑
i=1

(1 + C/N)i−1

(1 − C/N)i

� e2C

∫
Ω

ϕ4M0,l : M0,l dx + 2Ce2C. (8.3)

Thus, we obtain

sup
N∈N

sup
t∈[0,T ]

∥∥MN(t)
∥∥

1,2;Ω ′ � C(Ω ′),

and the conclusion follows from convergence of MN(t) ⇀ M(t) in L2(Ω;M2×2
sym ) for every t ∈ [0, T ]. �
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