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Abstract

In this paper, we improve some known uniqueness results of weak solutions for the 3D Navier—Stokes equations. The proof uses
the Fourier localization technique and the losing derivative estimates.
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1. Introduction

We consider the three-dimensional Navier—Stokes equations in R3

Uy —Au+u-Vu+Vp=0,
divu =0, (1.1)
u(0) = up(x),

where u = (u! (¢, x), u?(t, x), u3 (¢, x)) and p = p(t, x) denote the unknown velocity vector and the unknown scalar
pressure of the fluid respectively, while uo(x) is a given initial velocity vector satisfying divug = 0.
In a seminal paper [21], J. Leray proved the global existence of weak solution with finite energy, that is,

u(t,x) € Lr défLOO(O, T; Lz) N LZ(O, T; Hl) forany T > 0.
It is well known that weak solution is unique and regular in two spatial dimensions. In three dimensions, however,
the question of regularity and uniqueness of weak solution is an outstanding open problem in mathematical fluid
mechanics. In this paper, we are interested in the classical problem of finding sufficient conditions for weak solutions
of (1.1) such that they become regular and unique. Let us firstly recall the definition of weak solution.
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Definition 1.1. Let ug € L2(R?) with divug = 0. A measurable function u is called a weak solution of (1.1) on
(0, T) x R3 if it satisfies the following conditions:

(1) ue LrNCy(0,T1; LZ), where Cy, ([0, T']; L2) consists of all weak continuous functions with respect to time in
L*(®%);

(2) divu = 0 in the sense of distribution;

(3) For any function ¥ € C3°([s, 1] x R3) with div ¢ = 0, there holds

t
//{u.w,—vu-vw+v¢: (u®u)}(r’,x)dxd/=/u(t,x).w(t,x)dx—/u(s,x)-w(s,x)dx.

s R3 R3 R3

In addition, if u satisfies the energy inequality

t
||u<r)||§+2/ | Vu@ |3 dr’ < luoll3,
0

it is also called a Leray—Hopf weak solution.
The Leray—Hopf weak solutions are unique and regular in the class
p .. 2 3
P=L0,T;L ) with —+-=1, 3<r<oo [11,14,15,25,27],
q r
2 3 3
or P=L40,T; W) with =+ = =2, S<r <oo 1],
q r

2 3 3
oo P=L10,T; W) with=+==1+4s5, —— <r<oo, s>0 [26].
qg r 145

Recently, there are many researches devoted to refine the above results. First of all, we have the following refined
regularity criterion in the framework of Besov spaces: the weak solutions are regular in the class

P=cC([0.T];By!,) or P=L%0.T:B) ).

with 2 +3 =1+ r, IL_H <p<oo,and —1 <r < 1, see [4,8,17,18]. Concerning the refined uniqueness criterion of
weak solutions, Kozono and Taniuchi [16] proved the uniqueness of the Leray—Hopf weak solutions in the class

P =L%*0,T; BMO).

Gallagher and Planchon [12] proved the uniqueness in the class
L—1+342 3 2
P = Lq(O, T;Bpq ”+q) with = + = > 1.
P q
Lemarié-Rieusset [19] proved the uniqueness in the class
P=C(10.T}; X¥) or P=LT7(0.T:X,) withre[0,1).

Finally, Germain [13] proved the uniqueness in the class

P=C((0,71:x”) or P=LT7(0,T:X,) withre[—1,1).
Here BIS,, 4 denotes the Besov space and
M(H*, L?), ifse(0,1],

X, :=1{ A*BMO, ifs e (—1,0],
Lip, ifs=-1,
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where M(H*, L?) is the space of distributions such that their pointwise product with a function in H* belongs to LZ,
AS=(1—-A) X A(,O) denotes the closure of the Schwartz class in X;. We want to point out that

X, <> ASBMO, ifs e (0, 1]. (1.2)

We refer to [13] for more properties about X. The key step of their proofs is to find a path space P so that the trilinear
form

T
F(u,v, w) :=//M~Vv-wdxdt

0 R3

is continuous from (£7)? x P to R. Germain also pointed out that the path space P he found is optimal in some sense
(see [13, p. 400] for precise meaning).
The purpose of this paper is to improve the above uniqueness results.

Theorem 1.2. Let ug, vo € L2(R>) with divug = divvg = 0. Let u and v be two Leray—Hopf weak solutions of (1.1)
on (0, T) with the initial data ug and vg respectively. Assume that

ueLi(0,T: B} ).
with 3 + % =147, 13 <p<oo,re(0,1],and (p,r)# (00, 1). Then there holds

t

t
||u(z)—u(r)||§+/ ||V(u—v)(r’)||§dt’< ||u0—v0||§exp{cf(e+ uceh|
0

0

Bl,m)" dt’}.

In particular, if ug = vo, then u = v a.e. on (0, T) x R3.

Remark 1.3. Due to the embedding relation

B  C B} g<+oo and A"BMO C B

p.q = 7 p,00° 00,007

Theorem 1.2 is an improvement of the corresponding results given by Gallagher and Planchon [12] and Germain [13].
The proof only uses an important observation that if u € L4(0, T’; B;’ o) With (p, g,r) as in Theorem 1.2, then u can
be decomposed as

u=u'+u" withu' € L'(0, T; Lip) and u" € L7(0, T; L?)

for some p, g satisfying % + % =1, p > 3, see Lemma 3.1.

In the case where either r < 0 or (p, r) = (00, 1), using Bony’s decomposition and the losing derivative estimates,
we prove

Theorem 1.4. Let ug € L>(R?) with divug = 0. Let u and v be two weak solutions of (1.1) on (0, T) with the same
initial data ug. Assume that u and v satisfy one of the following two conditions:

(@) u€ L1(0,T; By, o0) and v € L9(0, T; B, o), where

2 3 2 3
—+—=1+r, —+—=1+4n,
q1 P1 q P2
withri,rp € (=1,0], r1 +r2 > —1, ﬁrl<m<00, ﬁ<pz<oo.

(b) u,veL'(0,T; BL, ).

Then u =v a.e. on (0, T) x R3.
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Remark 1.5. Due to the embedding relation

X, C A°BMO C B s€(0,1],

00,00

the condition imposed on weak solution in Theorem 1.4 is weaker than that of Germain [13] and Lemarié-
Rieusset [19]. However, the price to pay is to impose the conditions on both weak solutions.

Remark 1.6. The main novelty of Theorem 1.4 is that weak solutions are unique in the class Ll(O, T; Béo’w). In
particular, from the inequality

||u||BC|>o . < C(||u||2 =+ || curlu||BgO OO) (see Section 2 for its proof), (1.3)

we can obtain the Beale—Kato—Majda type uniqueness criterion: if weak solutions # and v with the same initial data
satisfy

curlu, curlv e L' (0, T; BY, ).

then u = v on (0, T) x R3. Secondly, Theorem 1.4 allows us to impose different conditions on both weak solutions.
Thirdly, we do not impose the energy inequality on weak solutions.

Remark 1.7. Chemin and Lemarié-Rieusset [6,20] proved the uniqueness of weak solutions in the class
C(0,T1; Bo_o{oo). While, Theorem 1.4 gives the uniqueness in the class LI(O, T; Béo,oo). It is natural to expect

that the uniqueness also holds in the class L 5 o, T, Bgo’oo) for r € (—1, 1) from the viewpoint of interpolation. This
problem remains unknown for the case of r € (—1, —%].

Remark 1.8. The result (b) in Theorem 1.4 is also valid for the Euler equation. In detail, let u,v €
Co ([0, T); LER3) N LY([0, T); Béo’ C>o(IR3) be two weak solutions of the Euler equation with the same initial data,
then u =v a.e.on [0, T).

Notation. Throughout the paper, C stands for a generic constant. We will use the notation A < B to denote the relation
A< CB,and | - ||, denotes the norm of the Lebesgue space L”.

2. Preliminaries

Let us firstly recall some basic facts on the Littlewood—Paley decomposition, one may check [5] for more details.
Choose two nonnegative radial functions x, ¢ € S(R?) supported respectively in B = {& € R3, || < %} and C =

{& eR3, 2 <|&] < 8} such that for any £ € R3,
XE+ e2778) =1 @.1)
j=0

Let h = F~'g and h = F~ ', the frequency localization operator A j and S; are defined by

Ajf:(p(2_jD)f:23j/h(2jy)f(x—y)dy, for j >0,
R3
Sif=x@7D)f= > Akf:23f/ﬁ(2fy)f(x—y)dy,
—1<k<j-1 R3
and
A_i1f=5F, Ajf=0 forj<-2.

With our choice of ¢, one can easily verify that
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AjAf=0 if|j—kl>2 and

Aj(Sk—1fArf)=0 if[j—k[=5. (2.2)
For any f € S'(R3), we have by (2.1) that
F=S+Y Ajf. 2.3)
Jj=0

which is called the Littlewood—Paley decomposition. In the sequel, we will constantly use the Bony’s decomposition
from [2] that

uv="T,v+ Tyu+ R(u, ), 2.4)
with

Tul):ZSj_]MAjU, R(u,v) = Z Ajulj,
j li'=jl<1

and we also denote
T,v=T,v+ R(u,v).

With the introduction of A, let us recall the definition of the inhomogenous Besov space from [29]:

Definition 2.1. Let s € R, 1 < p, g < 00, the inhomogenous Besov space By, , is defined by

B, ={f €S ®): Iflsy, <oo},

where

j 1
Fllae o= ] 212708 )%, forg < oo,
p.q

sup;> 1 27511 A £l for ¢ =oc.

Let us point out that B, ., is the usual Holder space C* for s € R \ Z and the following inclusion relations hold
Lip C B! ATBMOC B, forseRR.

00,00

We refer to [13,29] for more properties.
The following Bernstein’s inequalities will be frequently used throughout the paper.

Lemma 2.2. (See [5].) Let 1 < p < g < 00. Assume that f € L?, then there hold
A . . 201 1
supp f C {lgl<C2/}) = o], <2/ MG gy,

~ 1 . . .
suppfc{52f<|s|<czf} = Iflp<c27/l sup 977 .
18]

=la|
Here the constant C is independent of f and j.
We conclude this section by a proof of the inequality (1.3). Using Lemma 2.2, we have
[A—1ulloo < Cllull2,
and for j >0,
2114 jullos < ClIA; Vo
Due to the Biot—Savart law [23], Vu can be written as

Vulx)=Cw(x)+ K *w(x), w=curlu,
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where C is a constant matrix, and K is a matrix valued function with homogeneous of degree —3. So, we get that for
j 2 O,
27 Ajulloo < CllAjwlloo,
where we used the fact that
|A;@H], <CUA;fllp, forj=0, 1< p<oo,

if T is a singular integral operator of convolution type with smooth kernel [28]. Then the inequality (1.3) is concluded
from the definition of Besov space.

3. Proofs of theorems
This section is devoted to the proof of Theorems 1.2 and 1.4.
3.1. The proof of Theorem 1.2
The proof is based on the following decomposition lemma which may be independent of interest.

Lemma 3.1. Assume that u € L4(0, T} B;,OO) with 3 + % =1+4r, % <p<oo, re(0,1], and (p,r) # (o0, 1).
Then u can be decomposed as

u=u'+u" withu' € L'(0,T;Lip) and u" € L7(0,T; LP)

for some p, q satisfying % + % =1 p>3.

Proof. Fix N € N to be determined later on. We set

ul=SNu, W =u—ul.

By the definition of Sy and Lemma 2.2, we have
(142 201-4Hn
v | <c Y 2 a 0, < 2O ulp 3.1)
JEN-1

Due to the conditions on (p, ¢, r), we can choose p such that

3
p>max(3,p) and ———=—r<0.
p D

Thus, by Lemma 2.2

3_3y; 3_3_
Ju]; < > 25T A ul, <257 ’)N||u||32m. (3.2)
J>N
Now we choose
N = [%logz (e+ ||u||31r)m):| +1.
Then by (3.1), we have
T T
/“Vul(t)Hoodt < C/(e+ [u)] 5, )" de < +oo. (3.3)
0 0

On the other hand, from (3.2) we get that
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T T
/”uh(t)Hf;dt <C/(e+ ||u(t)}31,m)‘1dt < +oo0. (3.4)
0 0

Hence, we complete the proof of Lemma 3.1 by (3.3) and (3.4). O

Lemma 3.2. Let u, v be as in Theorem 1.2. Set w = u — v. Then for any t € [0, T], there holds

t 1

(u(t),v(t))+2/<w,w>dt’= (o, vo) —l—/(w-Vu,w)dt’.
0 0

Proof. Lemma 3.1 ensures that the trilinear form

T
F(u,v,w) :=f/u-Vw~vdxdt

0 R3

is continuous from (L£7)% x L4(0, T B;,oo) to R. Then the lemma can be proved by following the argument of
Lemma 4.4 in [13]. Here we omit the details. O

Now we are in position to prove Theorem 1.2. Since u and v are Leray—Hopf weak solutions, there hold

t
||u<r)}|§+2/ |V |2 dr’ < luoll2,
0

t
Jo 3 +2 [ [vuey ar’ < fuol
0

On the other hand, Lemma 3.2 yields that
t t
(u(®),v())+ 2/(Vu, Vuydt = (ug, vo) + [ (w- Vu, w)dt'.
0 0

Combining the above inequalities, we obtain

t t
w3 -+2 [ [vw@)Far = [ut ]+ oo} - 20000 +2 [ [9u¢)|ar
0 0

t

t
+2/ ||Vv(r’)|y§dz’—4/(w,w>(r’)dﬂ
0

0
t

< ||u0—u0||§—2/<w.w,w>dz’. (3.5)
0
We decompose u = u! + u" as in Lemma 3.1 and rewrite
t t t
/(w Vu,w)dt' = /(w -Vul w)dt' + /(w Vul, w)dr'.
0 0 0
We get by Holder inequality that
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t

/(w v w)dt’

0

t
< / |w@ 3| va ], dr". (3.6)
0

Integration by parts, we get
t t
/(w v w)dt/ =— /(w -Vw, uh)dt/,
0 0
from which and the Gagliardo—Nirenberg inequality, it follows that
t
/(w -Vul, u))dt/

0

uhnﬁdt’

t
</||Vw||z||w||_zi
p—2
0

t
-3 3
h
<c/||Vw||z||w||2 vl [ dr
0

t ) é t 1_qL
<ef [lmoplonia) ([ 1voiar)
0 0

t t
<c [l e lGar + [ [vue|ar,
0 0
This together with (3.5) and (3.6) gives

t t
w3+ [ 19w ar <o —wi +¢ [ Ju@) B9 @) ] + a5 ar
0 0

This jointed with the Gronwall inequality produces that

t t
|w(®) ||§ + / [Vw(" ||§dt/ < lug — u0||2exp{c /(|| vl ()| + [u" @) ||j;) dﬂ}
0

0
t

< lug — v0||§exp{0/(e + [u)
0

B;m)th’}.

This finishes the proof of Theorem 1.2.
3.2. The proof of Theorem 1.4

Assume that u# and v are two weak solutions of (1.1) on (0, T') with the initial data ug. Let w = u — v, w satisfies
the equation in the sense of distribution

w;—Aw+4+w-Vu+v-Vw+ Vp=0, 3.7)
for some pressure p. We get by taking the operation A ; on both sides of (3.7) that

A jw—AAw+Aj(w-Vu)+Aj(v-Vw)+VA;p=0. (3.8)
Multiplying (3.8) by A jw, we get by Lemma 2.2 for j > —1 that

1d ,
EE”Ajw(t)H; + a2 | A jw® |3 < —(A)w - V), Ajw) = (A - Vw) —v- VAW, Ajw), (3.9)
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witha_; =0and a; =1 for j > 0. Here we used the fact that

(Aj(w-Vw), Ajw)=(Aj(v-Vw) —v-VAjw, Ajw).

Case 1. u and v satisfy the assumption (a).

Due to r; +r2 > —1, one of r1 and r» must be bigger than — % Without loss of generality, we assume that r; > —5.

Step 1. Estimate of (A (w - Vu), Ajw).

Using the Bony’s decomposition (2.4), we have
Aj(w-Vu)= Aj(Tyidiu) + Aj(Tyuw') + A R(w', diu).
Considering the support of the Fourier transform of the term T,,; 9;u, we have
Aj(Tw,-al-u) = Z Aj(Sj/_lwiaiAj/u).
lj'—jl<4

This gives by Lemma 2.2 that

. 3
|a;(Tpom)], < Y 20 Y lAcwl 2 18 7ulp S S 2 3 i awllAull,,

lJ'—jl<4  k<j'=2 lj'—Jjl<4
SVl Y 2 Al
JI<j+2
Similarly, we have
Aj(Taiuwi)z Z Aj(Sj/_l(a,-u)Aj/w").
lj'—jl<4
Applying Lemma 2.2 to (3.12) yields that
|2 (T [, < D0 Y0 2XNAkulecliajwln

ISk =2

" ull . 2 18wl

lj'—jl<4

<2J(1 rl+

Since divw = 0, we have
A]R(wl,alu): Z aiAj(Aj/wiAj”M),
JLJ"Zj=3: 1 =j"1<1
from which and Lemma 2.2, it follows that
[ R(w, 00) | 201 > 2 Ay wlall Al
e VA EXHVESUIN |
SVl Y0 277MA .
/>] 3

Summing up (3.11)—(3.15), we obtain

(&) V), Ajw)| £ 274 ul gy YAl
J’<J

Jja+3) -
A7 g Y27 A w2 Ajwl)a.
P1,00

e

2173

1

(3.10)

@3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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Step 2. Estimate of (A;(v-Vw) —v-VA;w, A;w).

Using the Bony’s decomposition (2.4), we write
Aj(v-Vw) = A;(Tidw) + Aj(Tywv') + A;R(V, dw),
v - VA/U) = TU[ 3,A,w + Ta/iAjwvl
Then we have

Ajw-Vw) —v-VAjw= [Aj, Tvi]aiw + A./'(Tgiwvi) + AjR(vi, 3,'11)) TE),

A,w
Similar arguments as in deriving (3.11) and (3.15), we have
./ l+i
[8;(Tauv) |, S 2770l o - 2718wl
J<i+2
| A RO Bw) | 2, S2Mvllgn > 2777 Awl
P+2 P00 =
J'zj-3
In view of the definition of Ta’i Ajwv’ ,
i'Zi-2
and note that S; s A jw = Ajw for j' > j, we get
, ) .
<TB,-Ajwvl’Ajw>= Z (Sj/+2Aj8,‘wAj,v’,Ajw),
J2<j'<J
from which and Lemma 2.2, it follows that
‘ JU+2—r) 2
|(TgiAjwvz, Ajw)| <270 ||v||B;22100||Ajw||2.
Now, we turn to estimate [}, A;]0; w. In view of the definition of A ;, we write
[Tvi, Aj]aiw = Z [Sj/_lvi, Aj]f),'Aj/LU
lj'—jl<4
= > 2V / (27 (e =) (Sy—10' () = Sj—1v (1)) 3 A jrw(y) dy
[J'=jl<4 R3

1
= Y 24f'//y-vsj/_1v"(x —7y)dt 8;h(2/y) A jw(x — y)dy,
J'=il<4 g3 0
from which and the Minkowski inequality, we deduce that

”[ U”Aj]aiw||2§ Z VS —1vlleoll A jrwll2
lj'—jl<4

. 3
< i (t5,-r2) . .,
PRl YT 1A wl

1 —jl<4
Summing up (3.17)—(3.21), we obtain

i (1)
(A Vw) —v-VAjw, Ajw)| 2 ]r2||v||B;22m D 27TR A wlallAjwll
J'<i

1+ —j'
+2/ 00y, n 2 2 RIA wihl A wl.

e

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)
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Under the assumption (a), we can choose s such that
—ry <s <min(l +ry, 1 +r). (3.23)
From (3.9), (3.16) and (3.22), it follows that

2720 A jw() | +a;22 0 / |ajw)|yar

/nun y 2007172 37905 WA Wl Al de’
/<I

fnuugn 2/ SN oI Al A wlla df
iz

1
/”0”3'2 27702420 5 o D A w11 A jwlla d
<

1 -2
/||U||B’z 2572 57 0-I A A jwl df
/>j

::I—|—II+HI+IV. (3.24)
We set

W(t) = sup 27| AjwD) ],
jz-

Using (3.23) and the Young’s inequality, we obtain

1<y 2 ‘f’("“)/nun 0 WY (A ) T Al dr

J'<i 0
1

1 1
q1 q"
/I|u| w2 dt sup 2%/~ Y>/”A,w(t)]|2dt 5
pl o] ]>_
/||u||‘“ W) di +6 sup 22/0- A)/”A w(t)||2dt
17] o
and for II, we have

2
< Zz(f —De—1= ’1>/||u||Br1 W(t)‘il 2= A jwlla (2797914, w||2) a dt’
i'Zi

/||u||‘fl W2 di' +6 sup 227 ”/”A w(t)szt
)lOO

and similarly for IV,

2
C/||v||‘j;;22 W2 di' +6 sup 2270 ”f |Ajwh|;dt,
00 i>-
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and for III,

I < 220 —f><1+’2+5>/||v|| n W(t)‘lz 2/ 0=9A; /w||2) a2 d(1- DA jwladt’
J'<

t
C/||v||‘; W) dt' +8 sup 2270~ ’)/HA w(t)||2dt
jz-1

Collecting these estimates with (3.24) implies that

t

W(t)? < C/(||u(t/)| !

0

. + ” 112r2 )W(t/)z dt/.
p1.oe Bps.00

This together with the Gronwall inequality shows that

Wit)=0, ie.u=v=0.

This completes the proof of case (a).
Case 2. u and v satisfy the assumption (b).

Since u and v are non-Lipschitz vectors, we will use the idea of the losing derivative estimate which was firstly
introduced by Chemin and Lerner [7]. We can refer to [9] for a systematic study. Recently, Danchin and Paicu [10]
applied this idea to prove the uniqueness of weak solution for the 2-D Boussinesq equations with partial viscosity.
The present proof is motivated by [10]. We also refer to [3,22,24] for the other applications about the losing derivative
estimate.

Lets € (0,1). For A > 0, we set

WH)=2"7"e*

where ¢ (t) is defined by

t

=[5 (18] + |80 )i

0 J<jt+4

We get by (3.9) that

d ‘
EW}(t) + A5 OW] () +a;2 W (1)

SZ”e“J’(’)(HA,-(w V)|, + HAJ'(U Vw)—v-VAw+ Y A wA v
i’

). (3.25)
2

Here we used the fact that
(E)iAijj/vi, Ajw) = —(Aj/aiviAjw, Ajw> =0.

Since W? (0) =0, we get by integrating (3.25) on [0, ¢] that
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t t
W) + A / i YWHEdt' +a;2% / wia'dr'
0

0
t
<ois / e | Ay (w - V)|, di’
0

‘Aj(v~Vw) —v-VAjw+ Y %A wA
J'>

t
+ 2—jS / e—)»Sj(t/)
0

Step 1. Estimate of [|Aj(w - Vu) .

(tHdr'. (3.26)
2

Using the Bony’s decomposition (2.4), we write
Aj(w-Vu)=Aj(Tidiu) + Aj(Tyuw') + A;R(w', du).
By (3.10) and Lemma 2.2, we get

A (Tpa)], < Y0 27 3 Iawihlajule S > 27 Y 2Bt OWEOA julo

j'—jI<4 k<=2 i—jI<4 k<=2
i's A& (t A li
< D 2 /()Wj/(t)sj(t). (3.27)
J<i+2

By (3.12), (3.14) and Lemma 2.2, we have
12, (Touw) S Y0 D0 2K Aol Ayl

=14 k<2
i’s A& (t) prrh k
,S Z /5 8"/()Wj/(t) Z 2K Axt ]l oo
lj'—jl<4 k<j'—2
e
< S B OWEMme o), (3.28)
=<4
and
[aiR(w" o), S > 27| A jwllall Aol
i =<
J's+i e Oy ,
R~ > 2754 2 OWE (1) A jrull oo
Y Ny R
< j’(S*l)«}*j re (1) )\ /.
~ Z 2 e Y Wj/(t)gj/(t). (3'29)
i'>i-3

Summing up (3.27)—(3.29), we obtain

t t
278 / eI Ajw - Vi) ()| ydr' $ D 20 s / HEr OO W e () dt!
0 J'<i 0
t
+ 27U f MO W (el ()i (3.30)
i'Zi 0

Step 2. Estimate of [|A;(v-Vw) —v-VA;w+ Z aiAijj/v[||2.
i'>
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Using the Bony’s decomposition (2.4), we write
Aj-Vw)—v-VAjw=[A}, Ti]djw + Aj(Towv') + AR, diw) = Ty p 0"
Similar to the proof of (3.27) and (3.29), we get

|8, (Towt) [, S Y- 275 OWhne) o), (3.31)
<t
ARG iw)], < D0 2/ IR OW (1)el, ). (3.32)
j'=j-3

Using the formula (3.20) again, we have

I[Aj Talaw], S > 275 rOwhme o). (3.33)
J—jl<4
Note that
TB/,-Ajwvi_ ZBiAijj/viz Z Sj/+2Aj8iwAj/vi,
i'> J2<5<

it gives by Lemma 2.2 that

Summing up (3.31)—(3.34), we obtain

< 2/‘Se“.f<f>wl.* OEAGY (3.34)

Tynwt — D A jwA
7>

t
2*féfe*“f(") |A;@-Vw) —v-VAjw) ()|, dt’
0

1
DIEL —j)s/ex(sf’“)*ef(’ DYWL (e () dt!

i< 0

+ Y 27U / Mfﬂ(f’>—8.f<f’))W},(t’)s;.,(t/)dt/. (3.35)
j'>=j 0
From (3.26), (3.30) and (3.35), it follows that

t
W) + / &YW d + a2 / Wi dr
0

S YU / Hep O N W (el () di!

/<] 0

+ 3 200 / OO (et () i
7'z 0
— 411 (3.36)
Write
ity =€l (1) + (") — €5 (1)),

and note that 8;- ) — 8},(I/) >0 for j > j’, we obtain
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t
g 1 g
1S 020 [WHO @+ 020D sp Wi,
i<i 0 i'<i reton

here we used the inequality

t
4 7 ]
Ae(t)—ej . .
/e (ejr(t)—ej(t ))(8;-(t/)—8;/(t/))dt’§ - for]/gj.
0

Since € (') — ¢; (') is an increasing function in 7’ for j’ > j, we have

t
Mg 3 27U ==9 e =ej0) / Wh()el, () dr
i'Zi 0
Let us for the moment assume that
/\(||u||L1(0J;Bolo.x) + ||v||u<o,z;34m>) < (1—s)log2.

Notice that

ey () —e; () < (' = Nl oy, o) T 1010 0.08L )

which together with (3.38) ensures that
t
< / Wh(t)e, () dr'.
0

Summing up (3.36), (3.37) and (3.40), we obtain
t

t
sup  W}(t)+ A sup / g (YW@ di' + sup 2% / Wiyl
JZ—1.rel0.] jz=td izt

t

C
< C sup / HEWHadl' + = sup - Wi,
j=>—1 0 ’ j=—1,1'€l0,1]

from which, we get by taking X big enough that

sup W}‘(t’) =0.
j=>—1,1"€[0,1]

2179

(3.37)

(3.38)

(3.39)

(3.40)

On the other hand, the assumption (b) ensures that we can choose ¢ > 0 small enough such that (3.39) holds. Thus,
u = v on [0, t], and then we can conclude that # = v on [0, T'] by a standard continuity argument. The proof of case (b)

is completed.
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