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Abstract

In this paper, we improve some known uniqueness results of weak solutions for the 3D Navier–Stokes equations. The proof uses
the Fourier localization technique and the losing derivative estimates.
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1. Introduction

We consider the three-dimensional Navier–Stokes equations in R3

⎧⎨
⎩

ut − �u + u · ∇u + ∇p = 0,

divu = 0,

u(0) = u0(x),

(1.1)

where u = (u1(t, x), u2(t, x), u3(t, x)) and p = p(t, x) denote the unknown velocity vector and the unknown scalar
pressure of the fluid respectively, while u0(x) is a given initial velocity vector satisfying divu0 = 0.

In a seminal paper [21], J. Leray proved the global existence of weak solution with finite energy, that is,

u(t, x) ∈ LT
def= L∞(

0, T ;L2) ∩ L2(0, T ;H 1) for any T > 0.

It is well known that weak solution is unique and regular in two spatial dimensions. In three dimensions, however,
the question of regularity and uniqueness of weak solution is an outstanding open problem in mathematical fluid
mechanics. In this paper, we are interested in the classical problem of finding sufficient conditions for weak solutions
of (1.1) such that they become regular and unique. Let us firstly recall the definition of weak solution.
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Definition 1.1. Let u0 ∈ L2(R3) with divu0 = 0. A measurable function u is called a weak solution of (1.1) on
(0, T ) × R3 if it satisfies the following conditions:

(1) u ∈ LT ∩ Cw([0, T ];L2), where Cw([0, T ];L2) consists of all weak continuous functions with respect to time in
L2(R3);

(2) divu = 0 in the sense of distribution;
(3) For any function ψ ∈ C∞

0 ([s, t] × R3) with divψ = 0, there holds

t∫
s

∫
R3

{
u · ψt − ∇u · ∇ψ + ∇ψ : (u ⊗ u)

}
(t ′, x) dx dt ′ =

∫
R3

u(t, x) · ψ(t, x) dx −
∫
R3

u(s, x) · ψ(s, x) dx.

In addition, if u satisfies the energy inequality

∥∥u(t)
∥∥2

2 + 2

t∫
0

∥∥∇u(t ′)
∥∥2

2 dt ′ � ‖u0‖2
2,

it is also called a Leray–Hopf weak solution.

The Leray–Hopf weak solutions are unique and regular in the class

P = Lq
(
0, T ;Lr

)
with

2

q
+ 3

r
= 1, 3 � r � ∞ [11,14,15,25,27],

or P = Lq
(
0, T ;W 1,r

)
with

2

q
+ 3

r
= 2,

3

2
< r � ∞ [1],

or P = Lq
(
0, T ;Ws,r

)
with

2

q
+ 3

r
= 1 + s,

3

1 + s
< r � ∞, s � 0 [26].

Recently, there are many researches devoted to refine the above results. First of all, we have the following refined
regularity criterion in the framework of Besov spaces: the weak solutions are regular in the class

P = C
([0, T ];B−1∞,∞

)
or P = Lq

(
0, T ;Br

p,∞
)
,

with 2
q

+ 3
p

= 1 + r , 3
1+r

< p � ∞, and −1 < r � 1, see [4,8,17,18]. Concerning the refined uniqueness criterion of
weak solutions, Kozono and Taniuchi [16] proved the uniqueness of the Leray–Hopf weak solutions in the class

P = L2(0, T ;BMO).

Gallagher and Planchon [12] proved the uniqueness in the class

P = Lq
(
0, T ; Ḃ−1+ 3

p
+ 2

q
p,q

)
with

3

p
+ 2

q
> 1.

Lemarié-Rieusset [19] proved the uniqueness in the class

P = C
([0, T ];X(0)

1

)
or P = L

2
1−r (0, T ;Xr) with r ∈ [0,1).

Finally, Germain [13] proved the uniqueness in the class

P = C
([0, T ];X(0)

1

)
or P = L

2
1−r (0, T ;Xr) with r ∈ [−1,1).

Here Bs
p,q denotes the Besov space and

Xs :=

⎧⎪⎨
⎪⎩

M
(
Ḣ s,L2

)
, if s ∈ (0,1],

ΛsBMO, if s ∈ (−1,0],

Lip, if s = −1,



Q. Chen et al. / Ann. I. H. Poincaré – AN 26 (2009) 2165–2180 2167
where M(Ḣ s,L2) is the space of distributions such that their pointwise product with a function in Ḣ s belongs to L2,
Λs = (1 − �)

s
2 . X

(0)
s denotes the closure of the Schwartz class in Xs . We want to point out that

Xs ↪→ ΛsBMO, if s ∈ (0,1]. (1.2)

We refer to [13] for more properties about Xs . The key step of their proofs is to find a path space P so that the trilinear
form

F(u, v,w) :=
T∫

0

∫
R3

u · ∇v · w dx dt

is continuous from (LT )2 × P to R. Germain also pointed out that the path space P he found is optimal in some sense
(see [13, p. 400] for precise meaning).

The purpose of this paper is to improve the above uniqueness results.

Theorem 1.2. Let u0, v0 ∈ L2(R3) with divu0 = divv0 = 0. Let u and v be two Leray–Hopf weak solutions of (1.1)
on (0, T ) with the initial data u0 and v0 respectively. Assume that

u ∈ Lq
(
0, T ;Br

p,∞
)
,

with 2
q

+ 3
p

= 1 + r , 3
1+r

< p � ∞, r ∈ (0,1], and (p, r) �= (∞,1). Then there holds

∥∥u(t) − v(t)
∥∥2

2 +
t∫

0

∥∥∇(u − v)(t ′)
∥∥2

2 dt ′ � ‖u0 − v0‖2
2 exp

{
C

t∫
0

(
e + ∥∥u(t ′)

∥∥
Br

p,∞

)q
dt ′

}
.

In particular, if u0 = v0, then u = v a.e. on (0, T ) × R3.

Remark 1.3. Due to the embedding relation

Bs
p,q � Bs

p,∞, q < +∞ and Λ−rBMO � Br∞,∞,

Theorem 1.2 is an improvement of the corresponding results given by Gallagher and Planchon [12] and Germain [13].
The proof only uses an important observation that if u ∈ Lq(0, T ;Br

p,∞) with (p, q, r) as in Theorem 1.2, then u can
be decomposed as

u = ul + uh with ul ∈ L1(0, T ;Lip) and uh ∈ Lq̃
(
0, T ;Lp̃

)
for some p̃, q̃ satisfying 2

q̃
+ 3

p̃
= 1, p̃ > 3, see Lemma 3.1.

In the case where either r � 0 or (p, r) = (∞,1), using Bony’s decomposition and the losing derivative estimates,
we prove

Theorem 1.4. Let u0 ∈ L2(R3) with divu0 = 0. Let u and v be two weak solutions of (1.1) on (0, T ) with the same
initial data u0. Assume that u and v satisfy one of the following two conditions:

(a) u ∈ Lq1(0, T ;Br1
p1,∞) and v ∈ Lq2(0, T ;Br2

p2,∞), where

2

q1
+ 3

p1
= 1 + r1,

2

q2
+ 3

p2
= 1 + r2,

with r1, r2 ∈ (−1,0], r1 + r2 > −1, 3
1+r1

< p1 � ∞, 3
1+r2

< p2 � ∞.

(b) u,v ∈ L1(0, T ;B1∞,∞).

Then u = v a.e. on (0, T ) × R3.
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Remark 1.5. Due to the embedding relation

Xs � ΛsBMO � B−s∞,∞, s ∈ (0,1],
the condition imposed on weak solution in Theorem 1.4 is weaker than that of Germain [13] and Lemarié-
Rieusset [19]. However, the price to pay is to impose the conditions on both weak solutions.

Remark 1.6. The main novelty of Theorem 1.4 is that weak solutions are unique in the class L1(0, T ;B1∞,∞). In
particular, from the inequality

‖u‖B1∞,∞ � C
(‖u‖2 + ‖ curlu‖B0∞,∞

)
(see Section 2 for its proof), (1.3)

we can obtain the Beale–Kato–Majda type uniqueness criterion: if weak solutions u and v with the same initial data
satisfy

curlu, curlv ∈ L1(0, T ;B0∞,∞
)
,

then u = v on (0, T ) × R3. Secondly, Theorem 1.4 allows us to impose different conditions on both weak solutions.
Thirdly, we do not impose the energy inequality on weak solutions.

Remark 1.7. Chemin and Lemarié-Rieusset [6,20] proved the uniqueness of weak solutions in the class
C([0, T ];B−1∞,∞). While, Theorem 1.4 gives the uniqueness in the class L1(0, T ;B1∞,∞). It is natural to expect

that the uniqueness also holds in the class L
2

1+r (0, T ;Br∞,∞) for r ∈ (−1,1) from the viewpoint of interpolation. This

problem remains unknown for the case of r ∈ (−1,− 1
2 ].

Remark 1.8. The result (b) in Theorem 1.4 is also valid for the Euler equation. In detail, let u,v ∈
Cω([0, T );L2(R3)) ∩ L1([0, T );B1∞,∞(R3) be two weak solutions of the Euler equation with the same initial data,
then u = v a.e. on [0, T ).

Notation. Throughout the paper, C stands for a generic constant. We will use the notation A � B to denote the relation
A � CB , and ‖ · ‖p denotes the norm of the Lebesgue space Lp .

2. Preliminaries

Let us firstly recall some basic facts on the Littlewood–Paley decomposition, one may check [5] for more details.
Choose two nonnegative radial functions χ , ϕ ∈ S(R3) supported respectively in B = {ξ ∈ R3, |ξ | � 4

3 } and C =
{ξ ∈ R3, 3

4 � |ξ | � 8
3 } such that for any ξ ∈ R3,

χ(ξ) +
∑
j�0

ϕ
(
2−j ξ

) = 1. (2.1)

Let h = F −1ϕ and h̃ = F −1χ , the frequency localization operator �j and Sj are defined by

�jf = ϕ
(
2−jD

)
f = 23j

∫
R3

h
(
2j y

)
f (x − y)dy, for j � 0,

Sjf = χ
(
2−jD

)
f =

∑
−1�k�j−1

�kf = 23j

∫
R3

h̃
(
2j y

)
f (x − y)dy,

and

�−1f = S0f, �jf = 0 for j � −2.

With our choice of ϕ, one can easily verify that
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�j�kf = 0 if |j − k| � 2 and

�j(Sk−1f �kf ) = 0 if |j − k| � 5. (2.2)

For any f ∈ S ′(R3), we have by (2.1) that

f = S0(f ) +
∑
j�0

�jf, (2.3)

which is called the Littlewood–Paley decomposition. In the sequel, we will constantly use the Bony’s decomposition
from [2] that

uv = Tuv + Tvu + R(u, v), (2.4)

with

Tuv =
∑
j

Sj−1u�jv, R(u, v) =
∑

|j ′−j |�1

�ju�j ′v,

and we also denote

T ′
uv = Tuv + R(u, v).

With the introduction of �j , let us recall the definition of the inhomogenous Besov space from [29]:

Definition 2.1. Let s ∈ R, 1 � p,q � ∞, the inhomogenous Besov space Bs
p,q is defined by

Bs
p,q = {

f ∈ S ′(R3); ‖f ‖Bs
p,q

< ∞}
,

where

‖f ‖Bs
p,q

:=
⎧⎨
⎩ (

∑∞
j=−1 2jsq‖�jf ‖q

p)
1
q , for q < ∞,

supj�−1 2js‖�jf ‖p, for q = ∞.

Let us point out that Bs∞,∞ is the usual Hölder space Cs for s ∈ R \ Z and the following inclusion relations hold

Lip � B1∞,∞, Λ−sBMO � Bs∞,∞ for s ∈ R.

We refer to [13,29] for more properties.
The following Bernstein’s inequalities will be frequently used throughout the paper.

Lemma 2.2. (See [5].) Let 1 � p � q � ∞. Assume that f ∈ Lp , then there hold

supp f̂ ⊂ {|ξ | � C2j
} ⇒ ∥∥∂αf

∥∥
q

� C2j |α|+3j ( 1
p

− 1
q
)‖f ‖p,

supp f̂ ⊂
{

1

C
2j � |ξ | � C2j

}
⇒ ‖f ‖p � C2−j |α| sup

|β|=|α|
∥∥∂βf

∥∥
p
.

Here the constant C is independent of f and j .

We conclude this section by a proof of the inequality (1.3). Using Lemma 2.2, we have

‖�−1u‖∞ � C‖u‖2,

and for j � 0,

2j‖�ju‖∞ � C‖�j∇u‖∞.

Due to the Biot–Savart law [23], ∇u can be written as

∇u(x) = Cw(x) + K ∗ w(x), w = curlu,
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where C is a constant matrix, and K is a matrix valued function with homogeneous of degree −3. So, we get that for
j � 0,

2j‖�ju‖∞ � C‖�jw‖∞,

where we used the fact that∥∥�j(Tf )
∥∥

p
� C‖�jf ‖p, for j � 0, 1 � p � ∞,

if T is a singular integral operator of convolution type with smooth kernel [28]. Then the inequality (1.3) is concluded
from the definition of Besov space.

3. Proofs of theorems

This section is devoted to the proof of Theorems 1.2 and 1.4.

3.1. The proof of Theorem 1.2

The proof is based on the following decomposition lemma which may be independent of interest.

Lemma 3.1. Assume that u ∈ Lq(0, T ;Br
p,∞) with 2

q
+ 3

p
= 1 + r , 3

1+r
< p � ∞, r ∈ (0,1], and (p, r) �= (∞,1).

Then u can be decomposed as

u = ul + uh with ul ∈ L1(0, T ;Lip) and uh ∈ Lq̃
(
0, T ;Lp̃

)
for some p̃, q̃ satisfying 2

q̃
+ 3

p̃
= 1, p̃ > 3.

Proof. Fix N ∈ N to be determined later on. We set

ul = SNu, uh = u − ul.

By the definition of SN and Lemma 2.2, we have∥∥∇ul
∥∥∞ � C

∑
j�N−1

2j (1+ 3
p

)‖�ju‖p � C22(1− 1
q
)N‖u‖Br

p,∞ . (3.1)

Due to the conditions on (p, q, r), we can choose p̃ such that

p̃ > max(3,p) and
3

p
− 3

p̃
− r < 0.

Thus, by Lemma 2.2

∥∥uh
∥∥

p̃
�

∑
j�N

2( 3
p

− 3
p̃
)j‖�ju‖p � C2( 3

p
− 3

p̃
−r)N‖u‖Br

p,∞ . (3.2)

Now we choose

N =
[
q

2
log2

(
e + ‖u‖Br

p,∞
)] + 1.

Then by (3.1), we have

T∫
0

∥∥∇ul(t)
∥∥∞ dt � C

T∫
0

(
e + ∥∥u(t)

∥∥
Br

p,∞

)q
dt < +∞. (3.3)

On the other hand, from (3.2) we get that
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T∫
0

∥∥uh(t)
∥∥q̃

p̃
dt � C

T∫
0

(
e + ∥∥u(t)

∥∥
Br

p,∞

)q
dt < +∞. (3.4)

Hence, we complete the proof of Lemma 3.1 by (3.3) and (3.4). �
Lemma 3.2. Let u,v be as in Theorem 1.2. Set w = u − v. Then for any t ∈ [0, T ], there holds

〈
u(t), v(t)

〉 + 2

t∫
0

〈∇u,∇v〉dt ′ = 〈u0, v0〉 +
t∫

0

〈w · ∇u,w〉dt ′.

Proof. Lemma 3.1 ensures that the trilinear form

F(u, v,w) :=
T∫

0

∫
R3

u · ∇w · v dx dt

is continuous from (LT )2 × Lq(0, T ;Br
p,∞) to R. Then the lemma can be proved by following the argument of

Lemma 4.4 in [13]. Here we omit the details. �
Now we are in position to prove Theorem 1.2. Since u and v are Leray–Hopf weak solutions, there hold

∥∥u(t)
∥∥2

2 + 2

t∫
0

∥∥∇u(t ′)
∥∥2

2 dt ′ � ‖u0‖2
2,

∥∥v(t)
∥∥2

2 + 2

t∫
0

∥∥∇v(t ′)
∥∥2

2 dt ′ � ‖v0‖2
2.

On the other hand, Lemma 3.2 yields that

〈
u(t), v(t)

〉 + 2

t∫
0

〈∇u,∇v〉dt ′ = 〈u0, v0〉 +
t∫

0

〈w · ∇u,w〉dt ′.

Combining the above inequalities, we obtain

∥∥w(t)
∥∥2

2 + 2

t∫
0

∥∥∇w(t ′)
∥∥2

2 dt ′ = ∥∥u(t)
∥∥2

2 + ∥∥v(t)
∥∥2

2 − 2〈u,v〉(t) + 2

t∫
0

∥∥∇u(t ′)
∥∥2

2 dt ′

+ 2

t∫
0

∥∥∇v(t ′)
∥∥2

2 dt ′ − 4

t∫
0

〈∇u,∇v〉(t ′) dt ′

� ‖u0 − v0‖2
2 − 2

t∫
0

〈w · ∇u,w〉dt ′. (3.5)

We decompose u = ul + uh as in Lemma 3.1 and rewrite

t∫
0

〈w · ∇u,w〉dt ′ =
t∫

0

〈
w · ∇ul,w

〉
dt ′ +

t∫
0

〈
w · ∇uh,w

〉
dt ′.

We get by Hölder inequality that
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∣∣∣∣∣
t∫

0

〈
w · ∇ul,w

〉
dt ′

∣∣∣∣∣ �
t∫

0

∥∥w(t ′)
∥∥2

2

∥∥∇ul(t ′)
∥∥∞ dt ′. (3.6)

Integration by parts, we get

t∫
0

〈
w · ∇uh,w

〉
dt ′ = −

t∫
0

〈
w · ∇w,uh

〉
dt ′,

from which and the Gagliardo–Nirenberg inequality, it follows that∣∣∣∣∣
t∫

0

〈
w · ∇uh,w

〉
dt ′

∣∣∣∣∣ �
t∫

0

‖∇w‖2‖w‖ 2p̃
p̃−2

∥∥uh
∥∥

p̃
dt ′

� C

t∫
0

‖∇w‖2‖w‖1− 3
p̃

2 ‖∇w‖
3
p̃

2

∥∥uh
∥∥

p̃
dt ′

� C

( t∫
0

∥∥w(t ′)
∥∥2

2

∥∥uh(t ′)
∥∥q̃

p̃
dt ′

) 1
q̃
( t∫

0

∥∥∇w(t ′)
∥∥2

2 dt ′
)1− 1

q̃

� C

t∫
0

∥∥w(t ′)
∥∥2

2

∥∥uh(t ′)
∥∥q̃

p̃
dt ′ +

t∫
0

∥∥∇w(t ′)
∥∥2

2 dt ′.

This together with (3.5) and (3.6) gives

∥∥w(t)
∥∥2

2 +
t∫

0

∥∥∇w(t ′)
∥∥2

2 dt ′ � ‖u0 − v0‖2 + C

t∫
0

∥∥w(t ′)
∥∥2

2

(∥∥∇ul(t ′)
∥∥∞ + ∥∥uh(t ′)

∥∥q̃

p̃

)
dt ′.

This jointed with the Gronwall inequality produces that

∥∥w(t)
∥∥2

2 +
t∫

0

∥∥∇w(t ′)
∥∥2

2 dt ′ � ‖u0 − v0‖2 exp

{
C

t∫
0

(∥∥∇ul(t ′)
∥∥∞ + ∥∥uh(t ′)

∥∥q̃

p̃

)
dt ′

}

� ‖u0 − v0‖2
2 exp

{
C

t∫
0

(
e + ∥∥u(t ′)

∥∥
Br

p,∞

)q
dt ′

}
.

This finishes the proof of Theorem 1.2.

3.2. The proof of Theorem 1.4

Assume that u and v are two weak solutions of (1.1) on (0, T ) with the initial data u0. Let w = u − v, w satisfies
the equation in the sense of distribution

wt − �w + w · ∇u + v · ∇w + ∇p̃ = 0, (3.7)

for some pressure p̃. We get by taking the operation �j on both sides of (3.7) that

∂t�jw − ��jw + �j(w · ∇u) + �j(v · ∇w) + ∇�j p̃ = 0. (3.8)

Multiplying (3.8) by �jw, we get by Lemma 2.2 for j � −1 that

1 d ∥∥�jw(t)
∥∥2

2 + caj 22j
∥∥�jw(t)

∥∥2
2 � −〈

�j(w · ∇u),�jw
〉 − 〈

�j(v · ∇w) − v · ∇�jw,�jw
〉
, (3.9)
2 dt
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with a−1 = 0 and aj = 1 for j � 0. Here we used the fact that〈
�j(v · ∇w),�jw

〉 = 〈
�j(v · ∇w) − v · ∇�jw,�jw

〉
.

Case 1. u and v satisfy the assumption (a).

Due to r1 + r2 > −1, one of r1 and r2 must be bigger than − 1
2 . Without loss of generality, we assume that r1 > − 1

2 .

Step 1. Estimate of 〈�j(w · ∇u),�jw〉.

Using the Bony’s decomposition (2.4), we have

�j(w · ∇u) = �j

(
Twi ∂iu

) + �j

(
T∂iuw

i
) + �jR

(
wi, ∂iu

)
.

Considering the support of the Fourier transform of the term Twi ∂iu, we have

�j

(
Twi ∂iu

) =
∑

|j ′−j |�4

�j

(
Sj ′−1w

i∂i�j ′u
)
. (3.10)

This gives by Lemma 2.2 that∥∥�j

(
Twi ∂iu

)∥∥
2 �

∑
|j ′−j |�4

2j ′ ∑
k�j ′−2

‖�kw‖ 2p1
p1−2

‖�j ′u‖p1 �
∑

|j ′−j |�4

2j ′ ∑
k�j ′−2

2
k 3

p1 ‖�kw‖2‖�j ′u‖p1

� 2j (1−r1)‖u‖
B

r1
p1,∞

∑
j ′�j+2

2
j ′ 3

p1 ‖�j ′w‖2. (3.11)

Similarly, we have

�j

(
T∂iuw

i
) =

∑
|j ′−j |�4

�j

(
Sj ′−1(∂iu)�j ′wi

)
. (3.12)

Applying Lemma 2.2 to (3.12) yields that∥∥�j

(
T∂iuw

i
)∥∥

2 �
∑

|j ′−j |�4

∑
k�j ′−2

2k‖�ku‖∞‖�j ′w‖2

� 2
j (1−r1+ 3

p1
)‖u‖

B
r1
p1,∞

∑
|j ′−j |�4

‖�j ′w‖2. (3.13)

Since divw = 0, we have

�jR
(
wi, ∂iu

) =
∑

j ′,j ′′�j−3; |j ′−j ′′|�1

∂i�j

(
�j ′wi�j ′′u

)
, (3.14)

from which and Lemma 2.2, it follows that∥∥�jR
(
wi, ∂iu

)∥∥ 2p1
p1+2

�
∑

j ′,j ′′�j−3; |j ′−j ′′|�1

2j‖�j ′w‖2‖�j ′′u‖p1

� 2j‖u‖
B

r1
p1,∞

∑
j ′�j−3

2−j ′r1‖�j ′w‖2. (3.15)

Summing up (3.11)–(3.15), we obtain∣∣〈�j(w · ∇u),�jw
〉∣∣ � 2j (1−r1)‖u‖

B
r1
p1,∞

∑
j ′�j

2
j ′ 3

p1 ‖�j ′w‖2‖�jw‖2

+2
j (1+ 3

p1
)‖u‖

B
r1
p1,∞

∑
j ′�j

2−j ′r1‖�j ′w‖2‖�jw‖2. (3.16)
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Step 2. Estimate of 〈�j(v · ∇w) − v · ∇�jw,�jw〉.

Using the Bony’s decomposition (2.4), we write

�j(v · ∇w) = �j

(
Tvi ∂iw

) + �j

(
T∂iwvi

) + �jR
(
vi, ∂iw

)
,

v · ∇�jw = Tvi ∂i�jw + T ′
∂i�j wvi .

Then we have

�j(v · ∇w) − v · ∇�jw = [
�j,Tvi

]
∂iw + �j

(
T∂iwvi

) + �jR
(
vi, ∂iw

) − T ′
∂i�j wvi .

Similar arguments as in deriving (3.11) and (3.15), we have∥∥�j

(
T∂iwvi

)∥∥
2 � 2−jr2‖v‖

B
r2
p2,∞

∑
j ′�j+2

2
j ′(1+ 3

p2
)‖�j ′w‖2, (3.17)

∥∥�jR
(
vi, ∂iw

)∥∥ 2p2
p2+2

� 2j‖v‖
B

r2
p2,∞

∑
j ′�j−3

2−j ′r2‖�j ′w‖2. (3.18)

In view of the definition of T ′
∂i�j wvi ,

T ′
∂i�j wvi =

∑
j ′�j−2

Sj ′+2�j∂iw�j ′vi,

and note that Sj ′+2�jw = �jw for j ′ > j , we get〈
T ′

∂i�j wvi,�jw
〉 = ∑

j−2�j ′�j

〈
Sj ′+2�j∂iw�j ′vi,�jw

〉
,

from which and Lemma 2.2, it follows that∣∣〈T ′
∂i�j wvi,�jw

〉∣∣ � 2
j (1+ 3

p2
−r2)‖v‖

B
r2
p2,∞‖�jw‖2

2. (3.19)

Now, we turn to estimate [Tvi ,�j ]∂iw. In view of the definition of �j , we write[
Tvi ,�j

]
∂iw =

∑
|j ′−j |�4

[
Sj ′−1v

i,�j

]
∂i�j ′w

=
∑

|j ′−j |�4

23j

∫
R3

h
(
2j (x − y)

)(
Sj ′−1v

i(x) − Sj ′−1v
i(y)

)
∂i�j ′w(y)dy

=
∑

|j ′−j |�4

24j

∫
R3

1∫
0

y · ∇Sj ′−1v
i(x − τy) dτ ∂ih

(
2j y

)
�j ′w(x − y)dy, (3.20)

from which and the Minkowski inequality, we deduce that∥∥[
Tvi ,�j

]
∂iw

∥∥
2 �

∑
|j ′−j |�4

‖∇Sj ′−1v‖∞‖�j ′w‖2

� 2
j (1+ 3

p2
−r2)‖v‖

B
r2
p2,∞

∑
|j ′−j |�4

‖�j ′w‖2. (3.21)

Summing up (3.17)–(3.21), we obtain∣∣〈�j(v · ∇w) − v · ∇�jw,�jw
〉∣∣ � 2−jr2‖v‖

B
r2
p2,∞

∑
j ′�j

2
j ′(1+ 3

p2
)‖�j ′w‖2‖�jw‖2

+ 2
j (1+ 3

p2
)‖v‖

B
r2
p2,∞

∑
′

2−j ′r2‖�j ′w‖2‖�jw‖2. (3.22)

j �j
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Under the assumption (a), we can choose s such that

−r1 < s < min(1 + r1,1 + r2). (3.23)

From (3.9), (3.16) and (3.22), it follows that

2−2js
∥∥�jw(t)

∥∥2
2 + aj 22j (1−s)

t∫
0

∥∥�jw(t ′)
∥∥2

2 dt ′

�
t∫

0

‖u‖
B

r1
p1,∞2j (1−r1−2s)

∑
j ′�j

2
j ′ 3

p1 ‖�j ′w‖2‖�jw‖2 dt ′

+
t∫

0

‖u‖
B

r1
p1,∞2

j (1+ 3
p1

−2s)
∑
j ′�j

2−j ′r1‖�j ′w‖2‖�jw‖2 dt ′

+
t∫

0

‖v‖
B

r2
p2,∞2−j (r2+2s)

∑
j ′�j

2
j ′(1+ 3

p2
)‖�j ′w‖2‖�jw‖2 dt ′

+
t∫

0

‖v‖
B

r2
p2,∞2

j (1+ 3
p2

−2s)
∑
j ′�j

2−j ′r2‖�j ′w‖2‖�jw‖2 dt ′

:= I + II + III + IV. (3.24)

We set

W(t) = sup
j�−1

2−js
∥∥�jw(t)

∥∥
2.

Using (3.23) and the Young’s inequality, we obtain

I �
∑
j ′�j

2(j ′−j)(r1+s)

t∫
0

‖u‖
B

r1
p1,∞W(t ′)

2
q1

(
2j ′(1−s)‖�j ′w‖2

)1− 2
q1 2j (1−s)‖�jw‖2 dt ′

� C

( t∫
0

‖u‖q1

B
r1
p1,∞

W(t ′)2 dt ′
) 1

q1
(

sup
j�−1

22j (1−s)

t∫
0

∥∥�jw(t ′)
∥∥2

2 dt ′
) 1

q′
1

� C

t∫
0

‖u‖q1

B
r1
p1,∞

W(t ′)2 dt ′ + δ sup
j�−1

22j (1−s)

t∫
0

∥∥�jw(t ′)
∥∥2

2 dt ′,

and for II, we have

II �
∑
j ′�j

2(j ′−j)(s−1−r1)

t∫
0

‖u‖
B

r1
p1,∞W(t ′)

2
q1 2j ′(1−s)‖�j ′w‖2

(
2j (1−s)‖�jw‖2

)1− 2
q1 dt ′

� C

t∫
0

‖u‖q1

B
r1
p1,∞

W(t ′)2 dt ′ + δ sup
j�−1

22j (1−s)

t∫
0

∥∥�jw(t ′)
∥∥2

2 dt ′,

and similarly for IV,

IV � C

t∫
‖v‖q2

B
r2
p2,∞

W(t ′)2 dt ′ + δ sup
j�−1

22j (1−s)

t∫ ∥∥�jw(t ′)
∥∥2

2 dt ′,

0 0
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and for III,

III �
∑
j ′�j

2(j ′−j)(1+r2+s)

t∫
0

‖v‖
B

r2
p2,∞W(t ′)

2
q2

(
2j ′(1−s)‖�j ′w‖2

)1− 2
q2 2j (1−s)‖�jw‖2 dt ′

� C

t∫
0

‖v‖q2

B
r2
p2,∞

W(t ′)2 dt ′ + δ sup
j�−1

22j (1−s)

t∫
0

∥∥�jw(t ′)
∥∥2

2 dt ′.

Collecting these estimates with (3.24) implies that

W(t)2 � C

t∫
0

(∥∥u(t ′)
∥∥q1

B
r1
p1,∞

+ ∥∥v(t ′)
∥∥q2

B
r2
p2,∞

)
W(t ′)2 dt ′.

This together with the Gronwall inequality shows that

W(t) = 0, i.e. u = v = 0.

This completes the proof of case (a).

Case 2. u and v satisfy the assumption (b).

Since u and v are non-Lipschitz vectors, we will use the idea of the losing derivative estimate which was firstly
introduced by Chemin and Lerner [7]. We can refer to [9] for a systematic study. Recently, Danchin and Paicu [10]
applied this idea to prove the uniqueness of weak solution for the 2-D Boussinesq equations with partial viscosity.
The present proof is motivated by [10]. We also refer to [3,22,24] for the other applications about the losing derivative
estimate.

Let s ∈ (0,1). For λ > 0, we set

Wλ
j (t) = 2−jse−λεj (t)

∥∥�jw(t)
∥∥

2,

where εj (t) is defined by

εj (t) =
t∫

0

2j ′ ∑
j ′�j+4

(∥∥�j ′u(t ′)
∥∥∞ + ∥∥�j ′v(t ′)

∥∥∞
)
dt ′.

We get by (3.9) that

d

dt
Wλ

j (t) + λε′
j (t)W

λ
j (t) + aj 22jWλ

j (t)

� 2−jse−λεj (t)

(∥∥�j(w · ∇u)
∥∥

2 +
∥∥∥∥�j(v · ∇w) − v · ∇�jw +

∑
j ′>j

∂i�jw�j ′vi

∥∥∥∥
2

)
. (3.25)

Here we used the fact that

〈
∂i�jw�j ′vi,�jw

〉 = −〈
�j ′∂iv

i�jw,�jw
〉 = 0.

Since Wλ(0) = 0, we get by integrating (3.25) on [0, t] that
j
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Wλ
j (t) + λ

t∫
0

ε′
j (t

′)Wλ
j (t ′) dt ′ + aj 22j

t∫
0

Wλ
j (t ′) dt ′

� 2−js

t∫
0

e−λεj (t ′)∥∥�j(w · ∇u)(t ′)
∥∥

2 dt ′

+ 2−js

t∫
0

e−λεj (t ′)
∥∥∥∥�j(v · ∇w) − v · ∇�jw +

∑
j ′>j

∂i�jw�j ′vi

∥∥∥∥
2
(t ′) dt ′. (3.26)

Step 1. Estimate of ‖�j(w · ∇u)‖2.

Using the Bony’s decomposition (2.4), we write

�j(w · ∇u) = �j

(
Twi ∂iu

) + �j

(
T∂iuw

i
) + �jR

(
wi, ∂iu

)
.

By (3.10) and Lemma 2.2, we get∥∥�j

(
Twi ∂iu

)∥∥
2 �

∑
|j ′−j |�4

2j ′ ∑
k�j ′−2

‖�kw‖2‖�j ′u‖∞ �
∑

|j ′−j |�4

2j ′ ∑
k�j ′−2

2kseλεk(t)Wλ
k (t)‖�j ′u‖∞

�
∑

j ′�j+2

2j ′seλεj ′ (t)Wλ
j ′(t)ε′

j (t). (3.27)

By (3.12), (3.14) and Lemma 2.2, we have∥∥�j

(
T∂iuw

i
)∥∥

2 �
∑

|j ′−j |�4

∑
k�j ′−2

2k‖�ku‖∞‖�j ′w‖2

�
∑

|j ′−j |�4

2j ′seλεj ′ (t)Wλ
j ′(t)

∑
k�j ′−2

2k‖�ku‖∞

�
∑

|j ′−j |�4

2j ′seλεj ′ (t)Wλ
j ′(t)ε′

j (t), (3.28)

and ∥∥�jR
(
wi, ∂iu

)∥∥
2 �

∑
j ′,j ′′�j−3; |j ′−j ′′|�1

2j‖�j ′w‖2‖�j ′′u‖∞

�
∑

j ′,j ′′�j−3; |j ′−j ′′|�1

2j ′s+j e
λεj ′ (t)Wλ

j ′(t)‖�j ′′u‖∞

�
∑

j ′�j−3

2j ′(s−1)+j e
λεj ′ (t)Wλ

j ′(t)ε′
j ′(t). (3.29)

Summing up (3.27)–(3.29), we obtain

2−js

t∫
0

e−λεj (t ′)∥∥�j(w · ∇u)(t ′)
∥∥

2 dt ′ �
∑
j ′�j

2(j ′−j)s

t∫
0

e
λ(εj ′ (t ′)−εj (t ′))

Wλ
j ′(t ′)ε′

j (t
′) dt ′

+
∑
j ′�j

2−(j ′−j)(1−s)

t∫
0

e
λ(εj ′ (t ′)−εj (t ′))

Wλ
j ′(t ′)ε′

j (t
′) dt ′. (3.30)

Step 2. Estimate of ‖�j(v · ∇w) − v · ∇�jw +
∑
′

∂i�jw�j ′vi‖2.

j >j
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Using the Bony’s decomposition (2.4), we write

�j(v · ∇w) − v · ∇�jw = [
�j,Tvi

]
∂iw + �j

(
T∂iwvi

) + �jR
(
vi, ∂iw

) − T ′
∂i�j wvi .

Similar to the proof of (3.27) and (3.29), we get∥∥�j

(
T∂iwvi

)∥∥
2 �

∑
j ′�j+2

2j ′seλεj ′ (t)Wλ
j ′(t)ε′

j (t), (3.31)

∥∥�jR
(
vi, ∂iw

)∥∥
2 �

∑
j ′�j−3

2j ′(s−1)+j e
λεj ′ (t)Wλ

j ′(t)ε′
j ′(t). (3.32)

Using the formula (3.20) again, we have∥∥[
�j,Tvi

]
∂iw

∥∥
2 �

∑
|j ′−j |�4

2j ′seλεj ′ (t)Wλ
j ′(t)ε′

j (t). (3.33)

Note that

T ′
∂i�j wvi −

∑
j ′>j

∂i�jw�j ′vi =
∑

j−2�j ′�j

Sj ′+2�j∂iw�j ′vi,

it gives by Lemma 2.2 that∥∥∥∥T ′
∂i�j wvi −

∑
j ′>j

∂i�jw�j ′vi

∥∥∥∥
2
� 2jseλεj (t)Wλ

j (t)ε′
j (t). (3.34)

Summing up (3.31)–(3.34), we obtain

2−js

t∫
0

e−λεj (t ′)∥∥�j(v · ∇w) − v · ∇�jw)(t ′)
∥∥

2 dt ′

�
∑
j ′�j

2(j ′−j)s

t∫
0

e
λ(εj ′ (t ′)−εj (t ′))

Wλ
j ′(t ′)ε′

j (t
′) dt ′

+
∑
j ′�j

2−(j ′−j)(1−s)

t∫
0

e
λ(εj ′ (t ′)−εj (t ′))

Wλ
j ′(t ′)ε′

j ′(t ′) dt ′. (3.35)

From (3.26), (3.30) and (3.35), it follows that

Wλ
j (t) + λ

t∫
0

ε′
j (t

′)Wλ
j (t ′) dt ′ + aj 22j

t∫
0

Wλ
j (t ′) dt ′

�
∑
j ′�j

2(j ′−j)s

t∫
0

e
λ(εj ′ (t ′)−εj (t ′))

Wλ
j ′(t ′)ε′

j (t
′) dt ′

+
∑
j ′�j

2−(j ′−j)(1−s)

t∫
0

e
λ(εj ′ (t ′)−εj (t ′))

Wλ
j ′(t ′)ε′

j ′(t ′) dt ′

:= I + II. (3.36)

Write

ε′
j (t

′) = ε′
j ′(t ′) + (

ε′
j (t

′) − ε′
j ′(t ′)

)
,

and note that ε′ (t ′) − ε′ ′(t ′) � 0 for j � j ′, we obtain
j j
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I �
∑
j ′�j

2(j ′−j)s

t∫
0

Wλ
j ′(t ′)ε′

j ′(t ′) dt ′ + 1

λ

∑
j ′�j

2(j ′−j)s sup
t ′∈[0,t]

Wλ
j ′(t ′), (3.37)

here we used the inequality

t∫
0

e
λ(εj ′ (t ′)−εj (t ′))(

ε′
j (t

′) − ε′
j ′(t ′)

)
dt ′ � 1

λ
, for j ′ � j.

Since εj ′(t ′) − εj (t
′) is an increasing function in t ′ for j ′ � j , we have

II �
∑
j ′�j

2−(j ′−j)(1−s)e
λ(εj ′ (t)−εj (t))

t∫
0

Wλ
j ′(t ′)ε′

j ′(t ′) dt ′. (3.38)

Let us for the moment assume that

λ
(‖u‖L1(0,t;B1∞,∞) + ‖v‖L1(0,t;B1∞,∞)

)
< (1 − s) log 2. (3.39)

Notice that

εj ′(t) − εj (t) � (j ′ − j)
(‖u‖L1(0,t;B1∞,∞) + ‖v‖L1(0,t;B1∞,∞)

)
,

which together with (3.38) ensures that

II �
t∫

0

Wλ
j ′(t ′)ε′

j ′(t ′) dt ′. (3.40)

Summing up (3.36), (3.37) and (3.40), we obtain

sup
j�−1,t ′∈[0,t]

Wλ
j (t ′) + λ sup

j�−1

t∫
0

ε′
j (t

′)Wλ
j (t ′) dt ′ + sup

j�−1
22j

t∫
0

Wλ
j (t ′) dt ′

� C sup
j�−1

t∫
0

ε′
j (t

′)Wλ
j (t ′) dt ′ + C

λ
sup

j�−1,t ′∈[0,t]
Wλ

j (t ′),

from which, we get by taking λ big enough that

sup
j�−1,t ′∈[0,t]

Wλ
j (t ′) = 0.

On the other hand, the assumption (b) ensures that we can choose t > 0 small enough such that (3.39) holds. Thus,
u = v on [0, t], and then we can conclude that u = v on [0, T ] by a standard continuity argument. The proof of case (b)
is completed.
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