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Abstract

In this article we study the generalized dispersion version of the Kadomtsev–Petviashvili II equation, on T × R and T × R
2. We

start by proving bilinear Strichartz type estimates, dependent only on the dimension of the domain but not on the dispersion. Their
analogues in terms of Bourgain spaces are then used as the main tool for the proof of bilinear estimates of the nonlinear terms of
the equation and consequently of local well-posedness for the Cauchy problem.
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1. Introduction

In this paper, we consider the initial value problem (IVP) for generalized dispersion versions of the Kadomtsev–
Petviashvili-II (defocusing) equation on Tx × Ry{

∂tu − |Dx |α∂xu + ∂−1
x ∂2

yu + u∂xu = 0 u : Rt × Tx × Ry → R,

u(0, x, y) = u0(x, y),
(1)

and on Tx × R
2
y{

∂tu − |Dx |α∂xu + ∂−1
x �yu + u∂xu = 0 u : Rt × Tx × R

2
y → R,

u(0, x, y) = u0(x, y).
(2)

We consider the dispersion parameter α � 2. The operators |Dx |α∂x and ∂−1
x are defined by their Fourier multipliers

i|k|αk and (ik)−1, respectively.
The classical Kadomtsev–Petviashvili (KP-I and KP-II) equations, when α = 2,

∂tu + ∂3
xu ± ∂−1

x ∂2
yu + u∂xu = 0

are the natural two-dimensional generalizations of the Korteweg–de Vries (KdV) equation. They occur as models for
the propagation of essentially one-dimensional weakly nonlinear dispersive waves, with weak transverse effects. The
focusing KP-I equation corresponds to the minus (−) sign in the previous equation, whereas the defocusing KP-II is
the one with the plus (+) sign.

The well-posedness of the Cauchy problem for the KP-II equation has been extensively studied, in recent years.
J. Bourgain [1] made a major breakthrough in the field by introducing Fourier restriction norm spaces, enabling a
better control of the norms in the Picard iteration method applied to Duhamel’s formula, and achieving a proof of
local well-posedness in L2(T2) (and consequently also global well-posedness, due to the conservation of the L2 norm
in time). Since then, a combination of Strichartz estimates and specific techniques in the framework of Bourgain spaces
has been used by several authors to study KP-II type equations in several settings (see [9,10,13–17] and references
therein). Recently, an optimal result was obtained by M. Hadac [6] for the generalized dispersion KP-II equation
on R

2, in which local well-posedness for the range of dispersions 4
3 < α � 6 was established for the anisotropic

Sobolev spaces Hs1,s2(R2), provided s1 > max (1 − 3
4α, 1

4 − 3
8α), s2 � 0, thus reaching the scaling critical indices

for 4
3 < α � 2. This includes the particular case α = 2 corresponding to the classical KP-II equation. In this case the

analysis was pushed further to the critical regularity by M. Hadac, S. Herr, and H. Koch in [8], where a new type of
basic function spaces — the so-called Up-spaces introduced by H. Koch and D. Tataru — was used. Concerning the
generalized dispersion KP-II equation on R

3, a general result was also shown by M. Hadac in [7], which is optimal
in the range 2 � α � 30

7 by scaling considerations. For the particular case α = 2, he obtained local well-posedness in
Hs1,s2(R3) for s1 > 1

2 and s2 > 0.
In this article, we aim to study the local well-posedness of the initial value problem for the general dispersion KP-II

type equations (1) and (2), on the cylinders Tx × Ry and Tx × R
2
y respectively. We will show that the initial value

problem (1) is locally well-posed for data u0 ∈ Hs1,s2(T × R) satisfying the mean zero condition
∫ 2π

0 u(x, y) dx = 0,
provided α � 2, s1 > max ( 3

4 − α
2 , 1

8 − α
4 ), and s2 � 0. Combined with the conservation of the L2

xy -norm this local
result implies global (in time) well-posedness, whenever s1 � 0 and s2 = 0. Concerning (2) we will obtain local
well-posedness for u0 ∈ Hs1,s2(T × R

2), satisfying again the mean zero condition, in the following cases:

• α = 2, s1 � 1
2 , s2 > 0,

• 2 < α � 5, s1 > 3−α
2 , s2 � 0,

• 5 < α, s1 > 1−α , s2 � 0.
4
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For α > 3 our result here is in, and below, L2
xy . In this case we again obtain global well-posedness, whenever s1 � 0

and s2 = 0.
We proceed in three steps. First, in Section 2, we will establish bilinear Strichartz estimates for the linear versions

of (1) and (2), depending only on the domain dimension but not on the dispersion parameter. We believe, these
estimates are of interest on their own, independently of their application here.4 In the second step, in Section 3, we
will use these Strichartz estimates to prove bilinear estimates for the nonlinear term of the equations, in Bourgain’s
Fourier restriction norm spaces. Finally, in Section 4, a precise statement will be given of our local well-posedness
results for the associated initial value problems, with data in Sobolev spaces of low regularity. Their proofs follow
a standard fixed point Picard iteration method applied to Duhamel’s formula, using the bilinear estimates obtained
in the previous section. In Appendix A we provide a counterexample, due to H. Takaoka and N. Tzvetkov [18],
concerning the two-dimensional case. This example shows the necessity of the lower bound s1 � 3

4 − α
2 and hence

the optimality (except for the endpoint) of our two-dimensional result in the range 2 � α � 5
2 . For higher dispersion

(α > 5
2 ) we unfortunately lose optimality as a consequence of the case when an interaction of two high frequency

factors produces a very low resulting frequency. The same problem occurs in three space dimensions, but the effect is
much weaker. Here, by scaling considerations, our result is optimal for 2 � α � 5, and we leave the line of optimality
only for very high dispersion, when α > 5.

2. Strichartz estimates

Strichartz estimates have, in recent years, been playing a fundamental role in the proofs of local well-posedness
results for the KP-II equation. Their use has been a crucial ingredient for establishing the bilinear estimates associated
to the nonlinear terms of the equations, in the Fourier restriction spaces developed by J. Bourgain, the proof of which
is the central issue in the Picard iteration argument in these spaces. Bourgain [1] proved an L4 − L2 Strichartz-type
estimate, localized in frequency space, as the main tool for obtaining the local well-posedness of the Cauchy problem
in L2, in the fully periodic two-dimensional case, (x, y) ∈ T

2. J.-C. Saut and N. Tzvetkov [15] proceeded similarly, for
the fifth-order KP-II equation, also in T

2 as well as T
3. Strichartz estimates for the fully nonperiodic versions of the

(linearized) KP-II equations have also been extensively studied and used, both in the two and in the three-dimensional
cases. In these continuous domains, R

2 and R
3, the results follow typically by establishing time decay estimates for

the spatial L∞ norms of the solutions, which in turn are usually obtained from the analysis of their oscillatory integral
representations, as in [3], [11] or [13]. The Strichartz estimates obtained this way also exhibit a certain level of global
smoothing effect for the solutions, which naturally depends on the dispersion factor present in the equation.

As for our case, we prove bilinear versions of Strichartz type inequalities for the generalized KP-II equations on the
cylinders T×R and T×R

2. The main idea behind the proofs that we present below is to use the Fourier transform Fx

in the periodic x variable only. And then, for the remaining y variables, to apply the well-known Strichartz inequalities
for the Schrödinger equation in R or R

2. This way, we obtain estimates with a small loss of derivatives, but independent
of the dispersion parameter.

So, consider the linear equations corresponding to (1) and (2),

∂tu − |Dx |α∂xu + ∂−1
x ∂2

yu = 0, (3)

respectively

∂tu − |Dx |α∂xu + ∂−1
x �yu = 0. (4)

The phase function for both of these two equations is given by

φ(ξ) = φ0(k) − |η|2
k

,

where φ0(k) = |k|αk is the dispersion term and ξ = (k, η) ∈ Z
∗ × R, respectively ξ = (k, η) ∈ Z

∗ × R
2, is the dual

variable to (x, y) ∈ T × R, respectively (x, y) ∈ T × R
2, so that the unitary evolution group for these linear equations

4 For example our two-dimensional space–time estimate, which is equally valid for the linearized KP-I equation, together with the counterexam-
ples presented later on gives a definite answer to a question raised by J.-C. Saut and N. Tzvetkov in [16, remark on top of p. 460].
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is eitφ(D), where D = −i∇ . For the initial data functions u0, v0 that we will consider below it is assumed that
û0(0, η) = v̂0(0, η) = 0 (mean zero condition).

The two central results of this section are the following.

Theorem 1. Let ψ ∈ C∞
0 (R) be a time cutoff function with ψ |[−1,1] = 1 and supp (ψ) ⊂ (−2,2), and let u0, v0 : Tx ×

Ry → R satisfy the mean zero condition in the x variable. Then, for s1,2 � 0 such that s1 + s2 = 1
4 , the following

inequality holds:∥∥ψeitφ(D)u0e
itφ(D)v0

∥∥
L2

txy
� ‖u0‖H

s1
x L2

y
‖v0‖H

s2
x L2

y
. (5)

Theorem 2. Let u0, v0 : Tx × R
2
y → R satisfy the mean zero condition in the x variable. Then, for s1,2 � 0 such that

s1 + s2 > 1, the following inequality holds:∥∥eitφ(D)u0e
itφ(D)v0

∥∥
L2

txy
� ‖u0‖H

s1
x L2

y
‖v0‖H

s2
x L2

y
. (6)

Choosing u0 = v0 and s1 = s2 = 1
2+, we have in particular∥∥eitφ(D)u0

∥∥
L4

txy
� ‖u0‖

H
1
2 +

x L2
y

.

Note that in the case of Theorem 1, in the Tx × Ry domain, the Strichartz estimate is valid only locally in time.
A proof of this fact is presented in the last result of this section

Proposition 1. There is no s ∈ R such that the estimate∥∥(
eitφ(D)u0

)2∥∥
L2

txy
�

∥∥Ds
xu0

∥∥
L2

xy
‖u0‖L2

xy

holds in general.

The use of a cutoff function in time is therefore required in T × R, whose presence will be fully exploited in the
proof of Theorem 1. In the case of Theorem 2, where y ∈ R

2, the result is valid globally in time and no such cutoff is
needed to obtain the analogous Strichartz estimate.5

As a matter of fact, in the three-dimensional case T × R
2, the proof that we present is equally valid for the fully

nonperiodic three-dimensional domain, R
3. As pointed out above, Strichartz estimates have been proved and used

for the linear KP-II equation, in R
2 and R

3. But being usually derived through oscillatory integral estimates and
decay in time, they normally exhibit dependence on the particular dispersion under consideration, leading to different
smoothing properties of the solutions. For estimates independent of the dispersion term φ0 one can easily apply a
dimensional analysis argument to determine — at least for homogeneous Sobolev spaces Ḣ s — the indices that should
be expected. So, for λ ∈ R, if u(t, x, y) is a solution to the linear equation (4) on R

3, then uλ = Cu(λ3t, λx,λ2y),
C ∈ R, is also a solution of the same equation, with initial data uλ

0 = Cu0(λx,λ2y). An L4
txy − Ḣ s

xL2
y estimate for this

family of scaled solutions then becomes

λ
1
2 −s‖u‖L4

txy
� ‖u0‖Ḣ s

x L2
y
,

leading to the necessary condition s = 1
2 . Theorem 2, for nonhomogeneous Sobolev spaces, touches this endpoint (not

including it, though).

5 In any case, for our purposes of proving local well-posedness in time for the Cauchy problems (1) and (2), further on in this paper, this issue of
whether the Strichartz estimates are valid only locally or globally will not be relevant there.
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2.1. Proof of the Strichartz estimate in the T × R case

Proof of Theorem 1. It is enough to prove the estimate (5) when s1 = 1/4 and s2 = 0.
We have, for the space–time Fourier transform of the product of the two solutions to the linear equation6

F
(
eitφ(D)u0e

itφ(D)v0
)
(τ, ξ) =

∫
∗

δ
(
τ − φ(ξ1) − φ(ξ2)

)
û0(ξ1)v̂0(ξ2)μ(dξ1), (7)

where
∫
∗ μ(dξ1) = ∑

k1,k2 	=0
k=k1+k2

∫
η1+η2=η

dη1, and

φ(ξ1) + φ(ξ2) = φ0(k1) + φ0(k2) − 1

k1k2

(
kη2

1 − 2ηk1η1 + k1η
2).

Thus the argument of δ, as a function of η1, becomes

g(η1) := τ − φ(ξ1) − φ(ξ2) = 1

k1k2

(
kη2

1 − 2ηk1η1 + k1η
2) + τ − φ0(k1) − φ0(k2).

The zeros of g are

η±
1 = ηk1

k
± ω,

with

ω2 = k1k2

k

(
φ0(k1) + φ0(k2) − η2

k
− τ

)
,

whenever the right-hand side is positive, and we have

∣∣g′(η±
1

)∣∣ = 2|k|ω
|k1k2| .

There are therefore two contributions I± to (7), which are given by

I±(τ, ξ) = |k|−1
∑
k1

k1,k2 	=0

|k1k2|
ω

û0

(
k1,

ηk1

k
± ω

)
v̂0

(
k2,

ηk2

k
∓ ω

)
,

and the space–time Fourier transform of ψeitφ(D)u0e
itφ(D)v0 then becomes

F
(
ψeitφ(D)u0e

itφ(D)v0
)
(τ, ξ) = ψ̂ ∗τ

(
I+(τ, ξ) + I−(τ, ξ)

)
=

∫
ψ̂(τ − τ1)

∑
k1

k1,k2 	=0

|k1k2|
ω(τ1)|k|

[
û0

(
k1,

ηk1

k
+ ω(τ1)

)
v̂0

(
k2,

ηk2

k
− ω(τ1)

)

+ û0

(
k1,

ηk1

k
− ω(τ1)

)
v̂0

(
k2,

ηk2

k
+ ω(τ1)

)]
dτ1.

For the L2 estimate of this quantity we may assume, without loss of generality, that k1 and k2 are both positive (cf.
p. 460 in [16]), so that 0 < k1, k2 < k.

We will now prove the result, by breaking up the sum into two cases which are estimated separately.

6 Throughout the text we will disregard multiplicative constants, typically powers of 2π , which are irrelevant for the final estimates.
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Case I (ω(τ1)
2 > k1k2).

In this case we start by using the elementary convolution estimate,∥∥ψ̂ ∗τ

(
I+(·, ξ) + I−(·, ξ)

)∣∣
ω(τ1)

2>k1k2

∥∥
L2

τ
� ‖ψ̂‖L1

τ

∥∥(
I+(·, ξ) + I−(·, ξ)

)∣∣
ω2>k1k2

∥∥
L2

τ
.

Now, to estimate the L2 norm of the sum, we fix any small 0 < ε < 1/4 and Cauchy–Schwarz gives

∣∣I±(τ, ξ)
∣∣|ω(τ)2>k1k2

�
( ∑

k1,k2>0

k−2ε
1

k1k2

kω(τ)

) 1
2

×
( ∑

k1,k2>0

k2ε
1

k1k2

kω(τ)

∣∣∣∣û0

(
k1,

ηk1

k
± ω(τ)

)
v̂0

(
k2,

ηk2

k
∓ ω(τ)

)∣∣∣∣2) 1
2

. (8)

The condition ω(τ)2 > k1k2 implies ω(τ)2

k1k2
= | 1

k
(φ0(k1) + φ0(k2)) − η2

k2 − τ
k
| > 1, so that

√
k1k2

ω(τ)
∼ 1

〈 1
k
(φ0(k1) + φ0(k2)) − η2

k2 − τ
k
〉 1

2

.

We also have
√

k1k2
k

� 1, from which we conclude then that the first factor in (8) is bounded by a constant Cε inde-
pendent of k, τ, η, for∑

k1,k2>0

k−2ε
1

k1k2

kω(τ)
�

∑
k1,k2>0

k−2ε
1

1

〈 1
k
(φ0(k1) + φ0(k2)) − η2

k2 − τ
k
〉 1

2

�
(∑

k1

k
−2εp

1

) 1
p
( ∑

k1,k2>0

1

〈 1
k
(φ0(k1) + φ0(k2)) − η2

k2 − τ
k
〉 q

2

) 1
q

,

which, using Hölder conjugate exponents p > 1/2ε > 2 and q = p/(p − 1) < 2, as well as the easy calculus fact that

sup
a∈R
k∈N

∑
k1>0

〈
1

k

(
φ0(k1) + φ0(k2)

) − a

〉−δ

� Cδ,

valid for any fixed α � 2 and δ > 1/2, implies∑
k1,k2>0

k−2ε
1

k1k2

kω(τ)
� Cε.

We thus have∥∥I±(·, ξ)|ω2>k1k2

∥∥2
L2

τ
�

∑
k1,k2>0

k2ε
1

∫
k1k2

kω

∣∣∣∣û0

(
k1,

ηk1

k
± ω

)
v̂0

(
k2,

ηk2

k
∓ ω

)∣∣∣∣2

dτ

�
∑

k1,k2>0

k2ε
1

∫ ∣∣∣∣û0

(
k1,

ηk1

k
± ω

)
v̂0

(
k2,

ηk2

k
∓ ω

)∣∣∣∣2

dω.

Here we have used dτ = 2ωk
k1k2

dω. Integrating with respect to dη and using the change of variables η+ = ηk1
k

± ω,

η− = η(k−k1)
k

∓ ω with Jacobian ∓1 we arrive at∥∥I±(·, ξ)|ω2>k1k2

∥∥2
L2

τ
�

∑
k1,k2>0

k2ε
1

∥∥û0(k1, ·)
∥∥2

L2
η

∥∥v̂0(k2, ·)
∥∥2

L2
η
.

Finally summing up over k 	= 0 we obtain∥∥(
I+ + I−)∣∣

ω2>k1k2

∥∥2
L2

τkη
�

∥∥Dε
xu0

∥∥2
L2

xy
‖v0‖2

L2
xy

.
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Case II (ω(τ1)
2 � k1k2).

In this case | 1
k
(φ0(k1) + φ0(k2)) − η2

k2 − τ1
k
| � 1. Here we make the further subdivision

1 = χ{| τ−τ1
k

|�1} + χ{| τ−τ1
k

|>1}.

When | τ−τ1
k

| � 1 we have∣∣∣∣1

k

(
φ0(k1) + φ0(k2)

) − η2

k2
− τ

k

∣∣∣∣ � 1 +
∣∣∣∣τ − τ1

k

∣∣∣∣ � 2,

and for every fixed τ, k, η we have only a finite number of k1’s satisfying this condition. Therefore,∑
k1>0

∫ ∣∣ψ̂(τ − τ1)
∣∣ k1k2

kω(τ1)

∣∣∣∣û0

(
k1,

ηk1

k
± ω(τ1)

)
v̂0

(
k2,

ηk2

k
∓ ω(τ1)

)∣∣∣∣χ{ω(τ1)
2�k1k2}χ{| τ−τ1

k
|�1} dτ1

�
( ∑

k1>0

(∫ ∣∣ψ̂(τ − τ1)
∣∣ k1k2

kω(τ1)

∣∣∣∣û0

(
k1,

ηk1

k
± ω(τ1)

)
v̂0

(
k2,

ηk2

k
∓ ω(τ1)

)∣∣∣∣dτ1

)2) 1
2

.

Now, the L2
τη norm of this quantity is bounded by( ∑

k1>0

∥∥∥∥ψ̂ ∗τ1

(
k1k2

kω
û0

(
k1,

ηk1

k
± ω

)
v̂0

(
k2,

ηk2

k
∓ ω

))∥∥∥∥2

L2
τη

) 1
2

=
( ∑

k1>0

∥∥ψeit (φ0(k1)+φ0(k2))e
i t
k1

∂2
y Fxu0(k1, ·)ei t

k2
∂2
y Fxv0(k2, ·)

∥∥2
L2

ty

) 1
2

,

where the equality is due to Plancherel’s theorem, applied to the t, y variables only. By Hölder∥∥ψeit (φ0(k1)+φ0(k2))e
i t
k1

∂2
y Fxu0(k1, ·)ei t

k2
∂2
y Fxv0(k2, ·)

∥∥
L2

ty

� ‖ψ‖L4
t

∥∥e
i t
k1

∂2
y Fxu0(k1, ·)

∥∥
L4

t L
∞
y

∥∥e
i t
k2

∂2
y Fxv0(k2, ·)

∥∥
L∞

t L2
y
. (9)

The partial Fourier transform Fx of a free solution with respect to the periodic x variable only

Fx

(
eitφ(D)u0

)
(k, y) = eitφ0(k)ei t

k
∂2
y Fxu0(k, y)

is, for every fixed k, a solution of the homogeneous linear Schrödinger equation with respect to the nonperiodic
y variable and the rescaled time variable s := t

k
, multiplied by a phase factor of absolute value one. So, for the second

factor on the right-hand side of (9) we use the endpoint Strichartz inequality for the one-dimensional Schrödinger

equation, thus producing |k1| 1
4 ‖Fxu0(k1, ·)‖L2

y
, where the k1 factor comes from dt = k1 ds in L4

t . By conservation of

the L2
y norm, the last factor is nothing but ‖Fxv0(k2, ·)‖L2

y
. We thus get( ∑

k1>0

∥∥ψeit (φ0(k1)+φ0(k2))e
i t
k1

∂2
y Fxu0(k1, ·)ei t

k2
∂2
y Fxv0(k2, ·)

∥∥2
L2

ty

) 1
2

�
( ∑

k1>0

|k1| 1
2
∥∥Fxu0(k1, ·)

∥∥2
L2

y

∥∥Fxv0(k2, ·)
∥∥2

L2
y

) 1
2

�
∥∥D

1
4
x u0

∥∥
L2

xy
‖v0‖L2

xy
.

Finally, when | τ−τ1
k

| > 1 ⇒ |τ − τ1| > k, we exploit the use of the cutoff function; the estimate∣∣ψ̂(τ − τ1)
∣∣ � 1

〈τ − τ1〉kβ

is valid, for arbitrarily large β , because ψ ∈ S(R) (with the inequality constant depending only on ψ and β). Fixing
any such β > 1, we can write
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∫ ∑
k1>0

∣∣ψ̂(τ − τ1)
∣∣ k1k2

kω(τ1)

∣∣∣∣û0

(
k1,

ηk1

k
± ω(τ1)

)
v̂0

(
k2,

ηk2

k
∓ ω(τ1)

)∣∣∣∣χ{ω(τ1)
2�k1k2}χ{| τ−τ1

k
|>1} dτ1

�
∫

1

〈τ − τ1〉
∑
k1>0

1

(k1k2)β/2

k1k2

kω(τ1)

∣∣∣∣û0

(
k1,

ηk1

k
± ω(τ1)

)
v̂0

(
k2,

ηk2

k
∓ ω(τ1)

)∣∣∣∣χ{ω(τ1)
2�k1k2} dτ1.

The L2
τ norm of this quantity is bounded, using the same convolution estimate as before, by∥∥〈·〉−1

∥∥
L2

τ

∫ ∑
k1>0

1

(k1k2)β/2

k1k2

kω(τ)

∣∣∣∣û0

(
k1,

ηk1

k
± ω(τ)

)
v̂0

(
k2,

ηk2

k
∓ ω(τ)

)∣∣∣∣χ{ω(τ)2�k1k2} dτ

�
∑
k1>0

1

(k1k2)β/2

∫
ω�√

k1k2

∣∣∣∣û0

(
k1,

ηk1

k
± ω

)
v̂0

(
k2,

ηk2

k
∓ ω

)∣∣∣∣dω,

where we have done again the change of variables of integration dτ = 2ωk
k1k2

dω. Applying Hölder’s inequality to the
integral, we then get

∑
k1>0

1

(k1k2)β/2
|k1k2| 1

4

(∫ ∣∣∣∣û0

(
k1,

ηk1

k
± ω

)
v̂0

(
k2,

ηk2

k
∓ ω

)∣∣∣∣2

dω

) 1
2

�
( ∑

k1>0

∫ ∣∣∣∣û0

(
k1,

ηk1

k
± ω

)
v̂0

(
k2,

ηk2

k
∓ ω

)∣∣∣∣2

dω

) 1
2

,

valid for our initial choice of β . The proof is complete, once we take the L2
kη norm of this last formula, which is

obviously bounded by ‖u0‖L2
xy

‖v0‖L2
xy

. �
2.2. Proof of the Strichartz estimate in the T × R

2 case

Proof of Theorem 2. We start by proving the easier case, when s1,2 > 0. Using again the Schrödinger point of view,
as in the proof of Theorem 1, the partial Fourier transform in the x variable yields

Fx

(
eitφ(D)u0

)
(k, y) = eitφ0(k)ei t

k
�y Fxu0(k, y),

and hence

Fxe
itφ(D)u0e

itφ(D)v0(k, y) =
∑
k1 	=0

k2=k−k1 	=0

eitφ0(k1)eitφ0(k2)e
i t
k1

�y Fxu0(k1, y)e
i t

k2
�y Fxv0(k2, y).

By Plancherel in the x variable and Minkowski’s inequality we see that∥∥eitφ(D)u0e
itφ(D)v0

∥∥
L2

txy
�

∥∥∥∥ ∑
k1

k1,k2 	=0

∥∥e
i t
k1

�y Fxu0(k1, ·)ei t
k2

�y Fxv0(k2, ·)
∥∥

L2
ty

∥∥∥∥
L2

k

.

Hölder’s inequality and Strichartz’s estimate for Schrödinger in two dimensions, with suitably chosen admissible
pairs, give∥∥e

i t
k1

�y Fxu0(k1, ·)ei t
k2

�y Fxv0(k2, ·)
∥∥

L2
ty

� |k1|
1

p1 |k2|
1

p2
∥∥Fxu0(k1, ·)

∥∥
L2

y

∥∥Fxv0(k2, ·)
∥∥

L2
y
, (10)

where 1
p1

+ 1
p2

= 1
2 and p1,p2 < ∞.7 Then, an easy convolution estimate in the k1 variable yields

7 Because of the failure of the endpoint Strichartz estimate in two dimensions, here we may not admit p1 = ∞ or p2 = ∞.
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∥∥∥∥ ∑
k1

k1,k2 	=0

|k1|
1

p1
∥∥Fxu0(k1, ·)

∥∥
L2

y
|k2|

1
p2

∥∥Fxv0(k2, ·)
∥∥

L2
y

∥∥∥∥
L2

k

�
∥∥|k| 1

p1 Fxu0(k, ·)∥∥
L2

kL
2
y

∑
k 	=0

|k| 1
p2

∥∥Fxv0(k, ·)∥∥
L2

y
,

so that, Cauchy–Schwarz in
∑

k 	=0 finally gives∥∥eitφ(D)u0e
itφ(D)v0

∥∥
L2

txy
� ‖u0‖H

s1
x L2

y
‖v0‖H

s2
x L2

y
,

with s1 = 1/p1 and s2 > 1/p2 + 1/2.
For the case in which s1 = 0 or s2 = 0, we need to be able to replace (10) by the endpoint inequality, where all the

derivatives fall on just one function∥∥e
i t
k1

�y Fxu0(k1, ·)ei t
k2

�y Fxv0(k2, ·)
∥∥

L2
yt

� |k1| 1
2
∥∥Fxu0(k1, ·)

∥∥
L2

y

∥∥Fxv0(k2, ·)
∥∥

L2
y
, (11)

from which the proof of (6) for this case follows exactly as previously.
To establish (11) we start by noting again, as in the previous section, that it is enough to consider k1, k2 > 0. We

write f (y) = Fxu0(k1, y) and g(y) = Fxv0(k2, y). Then

Fty

(
e
i t
k1

�y
f e

i t
k2

�y
g
)
(τ, η) =

∫
η2=η−η1

δ

(
τ − |η1|2

k1
− |η2|2

k2

)
Fyf (η1)Fyg(η2) dη1.

Introducing ω := η1 − k1
k
η, so that η1 = k1

k
η + ω, η2 = η − η1 = k2

k
η − ω and k2|η1|2 + k1|η2|2 = k|ω|2 + k1k2

k
|η|2,

the latter becomes∫
δ
(
P(ω)

)
Fyf

(
k1

k
η + ω

)
Fyg

(
k2

k
η − ω

)
dω,

where P(ω) = τ − k
k1k2

|ω|2 − |η|2
k

with |∇P(ω)| = 2k|ω|
k1k2

. Using
∫

δ(P (ω)) dω = ∫
P(ω)=0

dSω|∇P(ω)| and defining r2 :=
k1k2

k
(τ − |η|2

k
), the previous integral can then be written as

k1k2

2kr

∫
|ω|=r

Fyf

(
k1

k
η + ω

)
Fyg

(
k2

k
η − ω

)
dSω � k1k2

k
√

r

( ∫
|ω|=r

∣∣∣∣Fyf

(
k1

k
η + ω

)
Fyg

(
k2

k
η − ω

)∣∣∣∣2

dSω

) 1
2

,

by Cauchy–Schwarz with respect to the surface measure of the circle. By taking now the L2
τ norm, using dτ =

2 k
k1k2

r dr , the result is(
k1k2

k

∫ ∫
|ω|=r

∣∣∣∣Fyf

(
k1

k
η + ω

)
Fyg

(
k2

k
η − ω

)∣∣∣∣2

dSω dr

) 1
2

=
(

k1k2

k

∫ ∣∣∣∣Fyf

(
k1

k
η + ω

)
Fyg

(
k2

k
η − ω

)∣∣∣∣2

dω

) 1
2

.

It remains to take the L2
η norm. As above, we introduce new variables η+ = ηk1

k
+ω and η− = ηk2

k
−ω, with Jacobian

equal to one, yielding√
k1k2

k
‖f ‖L2

y
‖g‖L2

y
.

Since k2 � k, by our sign assumption, the proof is complete. �
Remark. We define the auxiliary norm

‖f ‖
L̂r

xL
p
t L

q
y
:= ‖Fxf ‖

Lr′
k L

p
t L

q
y
,

where the ′ denotes the conjugate Hölder exponent. Then a slight modification of the above argument shows that
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∥∥eitφ(D)u0e
itφ(D)v0

∥∥
L̂r

xL2
ty

� ‖u0‖H
s1
x L2

y
‖v0‖H

s2
x L2

y
, (12)

provided 1 � r � 2, s1,2 > 0 and s1 + s2 > 1
2 + 1

r ′ .

2.3. Counterexample for global Strichartz estimate in T × R

Proof of Proposition 1. Let û0(ξ) = v̂0(ξ) = δ(k − N)χ(η), where N � 1 and χ is the characteristic function of an
interval I , of length 2|I |, symmetric around zero. In this case

I±(τ, ξ) = δ(k − 2N)
N

2

1

ωN

χ(η/2 + ωN)χ(η/2 − ωN),

with

ω2
N = Nφ0(N) − Nτ

2
− η2

4
.

By the support condition of χ , we have

2|ωN | �
∣∣∣∣η2 + ωN

∣∣∣∣ +
∣∣∣∣η2 − ωN

∣∣∣∣ � 2|I |,

so that 1
ωN

� 1
|I | . Now,

∥∥I±(·, ξ)
∥∥

L2
τ
= δ(k − 2N)

N

2

(∫
1

ω2
N

χ(η/2 + ωN)χ(η/2 − ωN)dτ

) 1
2

∼= δ(k − 2N)N
1
2

(∫
1

ωN

χ(η/2 + ωN)χ(η/2 − ωN)dωN

) 1
2

� δ(k − 2N)N
1
2 |I |− 1

2 |I | 1
2 χ(η)

= δ(k − 2N)N
1
2 χ(η),

from which∥∥I±(·, ξ)
∥∥

L2
τkη

∼ N
1
2 |I | 1

2 .

On the other hand∥∥Dsu0
∥∥

L2
xy

‖u0‖L2
xy

∼ Ns |I |,
so that the estimate∥∥(

eitφ(D)u0
)2∥∥

L2
txy

�
∥∥Ds

xu0
∥∥

L2
xy

‖u0‖L2
xy

implies

N
1
2 −s � |I | 1

2 .

Since we may have |I | of any size we want, in particular |I | ∼ Nα , for any α ∈ R, we conclude that no s ∈ R would
satisfy the condition. �
3. Bilinear estimates

We start by recalling several function spaces to be used in the sequel. All these spaces are defined as the completion,
with respect to the norms below, of an appropriate space of smooth test functions f , periodic in the x- and rapidly
decreasing in the y- and t -variables, having the property f̂ (τ,0, η) = 0. These norms depend on the phase function

φ(ξ) = φ(k, η) = φ0(k) − |η|2
k

, φ0(k) = |k|αk, with k ∈ Z
∗ and η ∈ R or η ∈ R

2 according to whether we work in
T × R or T × R

2. We begin with the standard anisotropic Bourgain norm

‖f ‖Xs1,s2,b
:= ∥∥〈k〉s1〈η〉s2

〈
τ − φ(ξ)

〉b
f̂

∥∥
L2 . (13)
τξ
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Also, for certain ranges of the dispersion exponent α, we will have to use the spaces Xs1,s2,b;β with additional weights,
introduced in [1] and defined by

‖f ‖Xs1,s2,b;β :=
∥∥∥∥〈k〉s1〈η〉s2

〈
τ − φ(ξ)

〉b(
1 + 〈τ − φ(ξ)〉

〈k〉α+1

)β

f̂

∥∥∥∥
L2

τξ

. (14)

Recall that, for b > 1/2, these spaces inject into the space of continuous flows on anisotropic Sobolev spaces
C(Rt ;Hs1,s2), where naturally the Sobolev norms are given by

‖f ‖Hs1,s2 := ∥∥〈k〉s1〈η〉s2 f̂
∥∥

L2
ξ
.

The classical KP-II equation, that is the case α = 2, becomes a limiting case in our considerations. In this case,
due to the periodicity in the x-variable, the parameter b must necessarily have the value b = 1

2 . Consequently, in order
to close the contraction mapping argument and to obtain the persistence property of the solutions, we shall use the
auxiliary norms

‖f ‖Ys1,s2;β :=
∥∥∥∥〈k〉s1〈η〉s2

〈
τ − φ(ξ)

〉−1
(

1 + 〈τ − φ(ξ)〉
〈k〉α+1

)β

f̂

∥∥∥∥
L2

ξ (L1
τ )

, (15)

cf. [4]. Finally, we define

‖f ‖Zs1,s2;β := ‖f ‖Ys1,s2;β + ‖f ‖X
s1,s2,− 1

2 ;β . (16)

Now, we state the bilinear estimates for the KP-II type equations on T × R.

Lemma 1. Let α = 2. Then, for s1 > − 1
4 and s2 � 0, there exist β ∈ (0, 1

2 ) and γ > 0, such that, for all u,v supported
in [−T ,T ] × T × R,∥∥∂x(uv)

∥∥
Zs1,s2;β � T γ ‖u‖X

s1,s2, 1
2 ;β ‖v‖X

s1,s2, 1
2 ;β . (17)

Lemma 2. Let 2 < α � 5
2 . Then, for s1 > 3

4 − α
2 and s2 � 0, there exist b′ > − 1

2 and β ∈ [0,−b′], such that, for all
b > 1

2 ,∥∥∂x(uv)
∥∥

Xs1,s2,b′;β
� ‖u‖Xs1,s2,b;β ‖v‖Xs1,s2,b;β . (18)

Remark. While in the preceding two lemmas our estimates are at the line of optimality prescribed by the counterex-
ample in Appendix A, we lose optimality for higher dispersion. The reason for this is that the low value of s1, on the
left-hand side of the estimate, cannot be fully exploited if the frequency k of the product is very low compared with
the frequencies k1 and k2 of each single factor. Especially, for the fifth-order KP-II equation considered by Saut and
Tzvetkov in [14] and in [15], we cannot reach anything better than s1 > − 7

8 .

Lemma 3. Let α > 5
2 . Then, for s1 > 1

8 − α
4 and s2 � 0, there exists b′ > − 1

2 , such that, for all b > 1
2 , the estimate (18)

holds true.

The bilinear estimates that we prove on T × R
2 are

Lemma 4. Let α = 2. Then, for s1 � 1
2 and s2 > 0, there exists γ > 0, such that, for all u,v supported in [−T ,T ] ×

T × R
2, the estimate∥∥∂x(uv)

∥∥
Z

s1,s2; 1
2

� T γ ‖u‖X
s1,s2, 1

2 ; 1
2
‖v‖X

s1,s2, 1
2 ; 1

2
(19)

holds true.
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Lemma 5. Let 2 < α � 3. Then, for s1 > 3−α
2 and s2 � 0, there exist b′ > − 1

2 and β ∈ [0,−b′], such that, for all
b > 1

2 ,∥∥∂x(uv)
∥∥

Xs1,s2,b′;β
� ‖u‖Xs1,s2,b;β ‖v‖Xs1,s2,b;β . (20)

Lemma 6. Let α > 3. Then, for s1 > max ( 3−α
2 , 1−α

4 ) and s2 � 0, there exists b′ > − 1
2 , such that, for all b > 1

2 ,∥∥∂x(uv)
∥∥

Xs1,s2,b′ � ‖u‖Xs1,s2,b
‖v‖Xs1,s2,b

. (21)

Before providing proofs of these lemmas, let us record some observations regarding the norms to be used and the
resonance relation associated to the KP-II type equations.

First of all, note that, for s2 � 0, the following inequality holds:

〈η〉s2

〈η1〉s2〈η2〉s2
� 1,

which, applied to the inequalities (17), (18), (20) and (21), allows us to reduce their proofs to the case s2 = 0. There-
fore, for simplicity, throughout the remaining part of this paper, we abbreviate Xs,b := Xs,0,b and Xs,b;β := Xs,0,b;β .
We do the same for the anisotropic Sobolev spaces Hs := Hs,0 as well as for the spaces Ys;β := Ys,0;β and
Zs;β := Zs,0;β .8 Only in the case α = 2 of three space dimensions, where we have to admit an ε derivative loss
on the y-variable, shall we really need all the four parameters.

We write the Xs,b norm in the following way

‖f ‖Xs,b
= ∥∥Ds

xΛ
bf

∥∥
L2

txy
,

where Ds
x and Λb are defined via the Fourier transform by Ds

x = F −1〈k〉s F and Λb = F −1〈τ − φ(k, η)〉b F , respec-
tively. In the proof of Lemma 4 we will use Ds

y = F −1〈η〉s F , too. Let us also introduce the notations σ := τ −φ(k, η),
σ1 := τ1 − φ(k1, η1) and σ2 := τ − τ1 − φ(k − k1, η − η1). For φ0(k) = |k|αk, α > 0, from [6], we have that

r(k, k1) = φ0(k) − φ0(k1) − φ0(k − k1)

satisfies

α

2α
|kmin||kmax|α �

∣∣r(k, k1)
∣∣ �

(
α + 1 + 1

2α

)
|kmin||kmax|α. (22)

We have the resonance relation

σ1 + σ2 − σ = r(k, k1) + |kη1 − k1η|2
kk1(k − k1)

. (23)

Note that both terms on the right-hand side of (23) have the same sign, so we have |σ1 + σ2 − σ | � |r(k, k1)|.
Therefore, from (22) and (23) we get the following lower bound for the resonance

max
{|σ |, |σ1|, |σ2|

}
� α

32α
|kmin||kmax|α. (24)

In what follows, the lower bound (24) plays an important role in the proof of the bilinear estimates.
While we have stated our central estimates in the canonical order, we will start with the proof of the simplest case

and then proceed to the more complicated ones, partly referring to arguments used before. That’s why we begin with
three space dimensions.

8 To avoid confusion, we always put a semicolon in front of the exponent of the additional weights. If there is no semicolon, this exponent is zero.
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3.1. Proof of the bilinear estimates in the T × R
2 case

Besides the resonance relation (24) the following Xs,b-version of the bilinear Strichartz estimate will be the key
ingredient in our proofs in this section: combining (12) with (a straightforward bilinear generalization of) Lemma 2.3
from [4], we obtain

‖uv‖
L̂r

xL2
ty

� ‖u‖Xs1,b
‖v‖Xs2,b

, (25)

and, by duality,

‖uv‖X−s1,−b
� ‖u‖

L̂r′
x L2

ty
‖v‖Xs2,b

, (26)

provided 1 � r � 2, b > 1
2 , s1,2 > 0 and s1 + s2 > 1

2 + 1
r ′ . (For r = 2 we can even admit s1 = 0 or s2 = 0 here.) Taking

r = 2 in both estimates above we may interpolate between them, which gives

‖uv‖X−s0,−b0
� ‖u‖Xs1,b1

‖v‖Xs2,b
, (27)

whenever the parameters appearing are nonnegative and fulfill the conditions s0 + s1 + s2 > 1, b0 + b1 > 1
2 as well as

b1s0 = s1b0.

Proof of Lemma 6. We divide the proof in different cases. In all these cases we choose b′ close to − 1
2 so that

b′ � − 1
α

, s > 2 + (α + 1)b′ and s > 1
4 + αb′

2 . Then we can find an auxiliary parameter δ � 0 (which may differ from
case to case) such that the conditions

1 + αb′ + δ � 0 and b′ + 1 − δ < s, (28)

or

αb′ + δ � s and b′ + 2 − δ < 0 (29)

are fulfilled.

Case a. Here we consider 〈σ 〉 � 〈σ1,2〉. By symmetry we may assume |k1| � |k2|.

Subcase a.a. |k2| � |k|. Here we use the resonance relation (24), the bilinear estimate (25) and the condition (28) to
obtain∥∥Ds+1

x (uv)
∥∥

X0,b′ �
∥∥(

Ds+1+αb′+δ
x u

)(
Db′−δ

x v
)∥∥

L2
txy

�
∥∥Ds+1+αb′+δ

x u
∥∥

X0,b

∥∥D(b′−δ+1)+
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

.

Subcase a.b. If |k| � |k2|, the resonance relation (24) gives∥∥Ds+1
x (uv)

∥∥
X0,b′ �

∥∥Ds+1+b′
x

((
Dαb′+δ

x u
)(

D−δ
x v

))∥∥
L2

txy
,

which can be estimated as before as long as s + 1 + b′ � 0. If s + 1 + b′ ∈ [− 1
2 ,0), we choose 1

r ′ = s + 3
2 + b′+ and

use a Sobolev type embedding, as well as (25), to estimate the latter by∥∥Dαb′+δ
x u

∥∥
X0,b

∥∥D(s+2+b′−δ)+
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

where the last inequality follows from (29). If s + 1 + b′ < − 1
2 , we use a Sobolev type embedding and (25) to obtain

the bound∥∥(
Dαb′+δ

x u
)(

D−δ
x v

)∥∥
L̂1

xL2
ty

�
∥∥Dαb′+δ

x u
∥∥

X0,b

∥∥D
( 1

2 −δ)+
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

,

since s > 1
4 + αb′

2 .
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Case b. Next we consider σ1 maximal. We further divide this case into three subcases.

Subcase b.a. |k|, |k1| � |k2|. Using (24), the contribution from this subcase is bounded by∥∥(
Dαb′+1+δ+s

x Λbu
)(

Db′−δ
x v

)∥∥
X0,−b

�
∥∥Dαb′+1+δ+s

x Λbu
∥∥

L2
txy

∥∥D(1+b′−δ)+
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

, (30)

where (26) and (28) are used here.

Subcase b.b. |k1,2| � |k|. Here we get the bound∥∥Ds+1+b′
x

(
Dαb′+δ

x Λbu · D−δ
x v

)∥∥
X0,−b

, (31)

which is controlled by (30) as long as s + 1 + b′ � 0. If s + 1 + b′ ∈ [−1,0), we use (26) with −s1 = s + 1 + b′ and
the condition (29) to obtain the upper bound∥∥Dαb′+δ

x u
∥∥

X0,b

∥∥D(s+2+b′−δ)+
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

.

If s + 1 + b′ < −1, the same argument gives (with a certain waste of derivatives) the upper bound∥∥Dαb′+δ
x u

∥∥
X0,b

∥∥D−δ
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

,

as long as s > αb′
2 , which is a weaker demand as in Subcase a.b.

Subcase b.c. |k|, |k2| � |k1|. Here we use (24) and (26) with r = 1 and a Sobolev type embedding to obtain∥∥Ds+1
x (uv)

∥∥
X0,b′ �

∥∥(
Db′−δ

x Λbu
)(

Ds+1+αb′+δ
x v

)∥∥
X0,−b

�
∥∥Db′−δ

x Λbu
∥∥

L̂∞
x L2

ty

∥∥D
(s+ 3

2 +αb′+δ)+
x v

∥∥
X0,b

�
∥∥D

b′−δ+ 1
2 +

x u
∥∥

X0,b

∥∥D
(s+ 3

2 +αb′+δ)+
x v

∥∥
X0,b

. (32)

Since s > 2 + (α + 1)b′ and α > 3 we can choose δ � 0 with b′ − δ + 1
2 < s and 3

2 + αb′ + δ < 0, so that the latter is
bounded by c‖u‖Xs,b

‖v‖Xs,b
. �

Remark. Observe that the assumption α > 3 is only needed in Subcase b.c. In all the other subcases the arguments
presented work also for 2 < α � 3, and the only relevant lower bound on s in this range of α is s > 3−α

2 .

Proof of Lemma 5. Here we assume without loss of generality that s � 1
2 and choose b′ close to − 1

2 , so that s >

2 + (α + 1)b′ and that β := s+1+b′
α

∈ [0,−b′]. Concerning the spaces Xs,b;β we recall that for β � 0 we have

‖f ‖Xs,b
� ‖f ‖Xs,b;β (33)

and that

‖f ‖Xs,b
∼ ‖f ‖Xs,b;β , (34)

if 〈σ 〉 � 〈k〉α+1. First we consider

Case a. 〈σ 〉 � 〈k〉α+1. In this case we have∥∥Ds+1
x (uv)

∥∥
X0,b′;β

∼ ∥∥Ds+1−β(α+1)
x (uv)

∥∥
X0,b′+β

. (35)

We divide this case into two further subcases.

Subcase a.a. |k1,2| � |k|. By symmetry we may assume that |k1| � |k2|, then (35) is bounded by∥∥(
Ds+1+b′(α+1)

x u
)
v
∥∥

L2
txy

�
∥∥D(2+b′(α+1))+

x u
∥∥

X0,b
‖v‖Xs,b

� ‖u‖Xs,b
‖v‖Xs,b

� ‖u‖Xs,b;β ‖v‖Xs,b;β ,

where we have used (25) with s2 = s, the assumption s > 2 + (α + 1)b′ and (33).
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Subcase a.b. |k| � |k1| ∼ |k2|. First assume that σ is maximal. With this assumption we get from (24) that (35) is
dominated by∥∥Ds+1+b′−αβ

x

(
D

b′+β
2 α

x u · D
b′+β

2 α
x v

)∥∥
L2

txy
= ∥∥D

b′+β
2 α

x u · D
b′+β

2 α
x v

∥∥
L2

txy

�
∥∥D

b′+β
2 α+ 1

2 +
x u

∥∥
X0,b

∥∥D
b′+β

2 α+ 1
2 +

x v
∥∥

X0,b
� ‖u‖Xs,b

‖v‖Xs,b
,

by our choice of β , (25) with s1 = s2 = 1
2+, and the fact that s >

b′+β
2 α + 1

2 , which is a consequence of our choice
of β and s > 2 + (α + 1)b′.

If σ1 is maximal, we obtain similarly as upper bound for (35)∥∥D
b′+β

2 α
x Λbu · D

b′+β
2 α

x v
∥∥

X0,−b
∼ ∥∥D

b′+β
2 α+ 1

2
x Λbu · D

b′+β
2 α− 1

2
x v

∥∥
X0,−b

�
∥∥D

b′+β
2 α+ 1

2
x u

∥∥
X0,b

∥∥D
b′+β

2 α+ 1
2 +

x v
∥∥

X0,b
� ‖u‖Xs,b

‖v‖Xs,b
,

where we have used |k1| ∼ |k2|, (26), and s >
b′+β

2 α + 1
2 .

Case b. 〈σ 〉 � 〈k〉α+1. In view of (34) we have to show that∥∥Ds+1
x (uv)

∥∥
X0,b′ � ‖u‖Xs,b;β ‖v‖Xs,b;β . (36)

By earlier estimates — see the discussion of the Subcases a.a, a.b, b.a, and b.b in the proof of Lemma 6 — this has
only to be done in the case where σ1 is maximal and |k1| � |k| ∼ |k2|. Under these assumptions the additional weight
in ‖u‖Xs,b;β behaves like (

|k|
|k1| )

αβ , so that (36) reduces to∥∥Ds+1−αβ
x (uv)

∥∥
X0,b′ � ‖u‖Xs−αβ,b

‖v‖Xs,b
. (37)

Using again the resonance relation (24) we estimate the left-hand side of (37) by∥∥Ds+1−αβ
x

(
Db′

x Λbu · Dαb′
x v

)∥∥
X0,−b

∼ ∥∥Db′−δ
x Λbu · Ds+1+α(b′−β)+δ

x v
∥∥

X0,−b

�
∥∥Db′−δ

x u
∥∥

X0,b

∥∥Ds+2+α(b′−β)+δ+
x v

∥∥
X0,b

, (38)

having used (26) in the last step. Choosing δ = 1 + 2b′ > 0 the first factor becomes ‖u‖Xs−αβ,b
, and the number of

derivatives in the second factor is (2 + (α + 1)b′)+ � s. Thus (37) is shown and the proof is complete. �
To prove Lemma 4 we need a variant of (25) with b < 1

2 . To obtain this, we first observe that, if s1,2 � 0 with
s1 + s2 > 1

2 , ε0,1,2 � 0 with ε0 + ε1 + ε2 > 1, 1 � p � ∞, and b > 1
2p

, then∥∥F D−ε0
y (uv)

∥∥
L2

ξ L
p
τ

� ‖u‖Xs1,ε1,b
‖v‖Xs2,ε2,b

. (39)

This follows from Sobolev type embeddings and applications of Young’s inequality. Now bilinear interpolation with
the r = 2 case of (25) gives the following.

Corollary 1. Let s1,2 � 0 with s1 + s2 = 1 and ε0,1,2 � 0 with ε0 + ε1 + ε2 > 0, then there exist b < 1
2 and p < 2 such

that ∥∥D−ε0
y (uv)

∥∥
L2

txy
� ‖u‖Xs1,ε1,b

‖v‖Xs2,ε2,b
(40)

and (39) hold true.

The purpose of the p < 2 part in the above Corollary is to deal with the Y contribution to the Z norm in Lemma 4.
Its application will usually follow on an embedding∥∥〈σ 〉− 1

2 f̂
∥∥

L2L1 � ‖f̂ ‖L2L
p
τ
,

ξ τ ξ
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where p < 2 but arbitrarily close to 2. We shall also rely on the dual version of (40), that is

‖uv‖X−s1,−ε1,−b
�

∥∥F Dε0
y u

∥∥
L2

τξ
‖v‖Xs2,ε2,b

. (41)

Proof of Lemma 4. In this proof we will take s2 = ε, s1 = s and restrict ourselves to the lowest value s = 1
2 . Again

the proof consists of a case by case discussion.

Case a. 〈k〉3 � 〈σ 〉. First we observe that∥∥∂x(uv)
∥∥

Z
s,ε; 1

2

�
∥∥Ds+1

x

(
Dε

yu · v)∥∥
Z

0,0; 1
2

+ ∥∥Ds+1
x

(
u · Dε

yv
)∥∥

Z
0,0; 1

2

. (42)

The first contribution to (42) can be estimated by∥∥F
(
Dε

yu · v)∥∥
L2

τξ
+ ∥∥〈σ 〉− 1

2 F
(
Dε

yu · v)∥∥
L2

ξ L1
τ
�

∥∥F
(
Dε

yu · v)∥∥
L2

τξ ∩L2
ξ L

p
τ

� ‖u‖Xs,ε,b
‖v‖Xs,ε,b

,

where we have used Corollary 1, for some b < 1
2 . Using the fact9 that under the support assumption on u the inequality

‖u‖Xs,ε,b
� T b̃−b‖u‖X

s,ε,b̃
(43)

holds, whenever − 1
2 < b < b̃ < 1

2 , this can be further estimated by T γ ‖u‖X
s,ε, 1

2 ; 1
2
‖v‖X

s,ε, 1
2 ; 1

2
for some γ > 0, as

desired. The second contribution to (42) can be estimated in precisely the same manner.

Case b. 〈k〉3 � 〈σ 〉. Here the additional weight on the left is of size one, so that we have to show∥∥∂x(uv)
∥∥

Zs,ε
� T γ ‖u‖X

s,ε, 1
2 ; 1

2
‖v‖X

s,ε, 1
2 ; 1

2
.

Subcase b.a. σ maximal. Exploiting the resonance relation (24), we see that the contribution from this subcase is
bounded by∥∥F DxD

ε
y

(
D

− 1
2

x u · D− 1
2

x v
)∥∥

L2
τξ ∩L2

ξ L
p
τ

�
∥∥F

(
D

1
2
x Dε

yu · D− 1
2

x v
)∥∥

L2
τξ ∩L2

ξ L
p
τ

+ · · · ,
where p < 2. The dots stand for the other possible distributions of derivatives on the two factors, in the same norms,
which — by Corollary 1 — can all be estimated by c‖u‖Xs,ε,b

‖v‖Xs,ε,b
for some b < 1

2 . The latter is then further
treated as in Case a.

Subcase b.b. σ1 maximal. Here we start with the observation that by Cauchy–Schwarz and (43), for every b′ > − 1
2

there is a γ > 0 such that∥∥∂x(uv)
∥∥

Zs,ε
� T γ

∥∥Ds+1
x (uv)

∥∥
X0,ε,b′ .

Now the resonance relation gives∥∥Ds+1
x (uv)

∥∥
X0,ε,b′ �

∥∥Dx

(
D

− 1
2

x Λ
1
2 u · D− 1

2
x v

)∥∥
X0,ε,b′

�
∥∥(

D
1
2
x Dε

yΛ
1
2 u

)(
D

− 1
2

x v
)∥∥

X0,b′ + ∥∥(
D

1
2
x Λ

1
2 u

)(
D

− 1
2

x Dε
yv

)∥∥
X0,b′

+ ∥∥(
D

− 1
2

x Dε
yΛ

1
2 u

)(
D

1
2
x v

)∥∥
X0,b′ + ∥∥(

D
− 1

2
x Λ

1
2 u

)(
D

1
2
x Dε

yv
)∥∥

X0,b′ .

Using (41) the first two contributions can be estimated by c‖u‖X
s,ε, 1

2
‖v‖Xs,ε,b

as desired. The third and fourth terms

only appear in the frequency range |k| � |k1| ∼ |k2|, where the additional weight in the ‖u‖X
s,ε, 1

2 ; 1
2

-norm on the right

9 For a proof see e.g. Lemma 1.10 in [5].
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becomes |k2||k1| , thus shifting a whole derivative from the high frequency factor v to the low frequency factor u. So,
using (41) again, these contributions can be estimated by

c‖u‖X
s,ε, 1

2 ; 1
2
‖v‖Xs,ε,b

� ‖u‖X
s,ε, 1

2 ; 1
2
‖v‖X

s,ε,b; 1
2
. �

3.2. Proof of the bilinear estimates in the T × R case

In two space dimensions we have the following Xs,b-version of Theorem 1. Assume s1,2 � 0, s1 + s2 = 1
4 and

b > 1
2 . Then, with a smooth time cut off function ψ ,

‖ψuv‖L2
txy

� ‖u‖Xs1,b
‖v‖Xs2,b

. (44)

The dual version of (44) reads

‖ψuv‖X−s1,−b
� ‖u‖L2

txy
‖v‖Xs2,b

. (45)

Until the end of this section we assume u,v to be supported in [−1,1] × T × R, so that we can forget about ψ in the
estimates.

Let’s revisit the proof of Lemma 6 in the previous section, replacing estimate (25) and its dual version by the
corresponding estimates (44) and (45) valid in two dimensions, in order to prove the pure (i.e. without additional
weights) Xs,b-estimate∥∥∂x(uv)

∥∥
Xs,b′ � ‖u‖Xs,b

‖v‖Xs,b
,

where b > 1
2 and s > max ( 3

4 − α
2 , 1

8 − α
4 ). As above, we assume s � 0 and choose b′ > − 1

2 , but close to it, so that
b′ < − 1

α
(possible for α > 2) and

s >
5

4
+ (α + 1)b′, s >

1

8
+ αb′

2
. (46)

Now we follow the case by case discussion from the proof of Lemma 6.
The argument in Subcase a.a works for all α > 2. Because there is only a loss of 1

4 derivative in the application
of (44) (instead of 1+, as in (25)), we are led to the condition

1 + αb′ + δ � 0 and b′ + 1

4
− δ < s, (47)

which replaces (28) and can be fulfilled for some δ � 0 because of our general assumption (46).
The argument in Subcase a.b leads to the same condition, as long as s + 1 + b′ � 0, i.e. for α � 5

2 . A possible
Sobolev embedding does not give any improvement in the two-dimensional setting. So, for α > 5

2 this contribution is
estimated roughly by∥∥(

Dαb′+δ
x u

)(
D−δ

x v
)∥∥

L2
txy

�
∥∥D

αb′+δ+ 1
8

x u
∥∥

X0,b

∥∥D
1
8 −δ
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

,

where we have used the second part of (46) in the last step.
In the discussion of Subcase b.a we apply the dual version (45), with s1 = 0 instead of (26), and end up with

condition (47) again. The only restriction on α arising in this subcase is α > 2.
The estimate in Subcase b.b is again reduced to that in Subcase b.a, as long as s + 1 + b′ � 0. For s + 1 + b′ ∈

[− 1
4 ,0], we use (45) with −s1 = s + 1 + b′. This leads to the condition

αb′ + δ � s and b′ + 5

4
− δ � s, (48)

replacing (29), which again can be fulfilled choosing δ � 0 appropriately by our general assumption (46). This works
for s + 1 +b′ � − 1

4 , i.e. for α � 3. If s + 1 +b′ < − 1
4 (corresponding to α > 3) we use (45) with s1 = 1

4 (thus wasting

again several derivatives) and end up with the condition s > αb′
, which is weaker than (46).
2
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Finally, we turn to Subcase b.c (σ1 maximal, |k|, |k2| � |k1|), where we used the resonance relation (24), to obtain∥∥Ds+1
x (uv)

∥∥
X0,b′ �

∥∥(
Db′−δ

x Λbu
)(

Ds+1+αb′+δ
x v

)∥∥
X0,−b

,

for some δ � 0. Now we apply (45) to estimate the latter by

∥∥Db′−δ
x Λbu

∥∥
L2

txy

∥∥D
s+ 5

4 +αb′+δ
x v

∥∥
X0,b

� ‖u‖Xs,b
‖v‖Xs,b

,

provided b′ − δ � s and 5
4 + αb′ + δ � 0. Summing up the last two conditions we end up with our general assump-

tion (46), but for the second of them we need at least 5
4 + αb′ � 0, which requires α > 5

2 . Observe that in this case
both conditions can in fact be fulfilled for b′ close enough to − 1

2 .
Since for α > 5

2 the condition s > 1
8 − α

4 is stronger than s > 3
4 − α

2 , we have proven Lemma 3. Next we turn to
the proof of Lemma 2, which follows closely along the lines of that of Lemma 5.

Proof of Lemma 2. With the assumptions on s and b′, as in the preliminary consideration above, we choose β :=
s+1+b′

α
∈ [0,−b′]. We follow the case by case discussion in the proof of Lemma 5, beginning with Case a, where

〈σ 〉 � 〈k〉α+1, so that (35) holds. In Subcase a.a, where |k1,2| � |k|, we merely replace the application of (25) by
that of (44), which is justified by assumption (46). Similarly, in Subcase a.b (|k| � |k1| ∼ |k2|), under the additional
assumption that σ is maximal, we use (44) with s1 = s2 = 1

8 and are led to the condition 2s � (b′ +β)α+ 1
4 , which is a

consequence of (46). The same condition arises, if, in this subcase, σ1 is assumed to be maximal and the estimate (26)
is replaced by (45).

In Case b, where 〈σ 〉 � 〈k〉α+1, we have to show (36). By the discussion preceding this proof, this needs to be done
only for σ1 being maximal and |k1| � |k| ∼ |k2|, which amounts to the proof of (36). This works as in (38), except
for the last step, where we use (45) instead of (26). With the same choice of δ the number of derivatives on the second
factor becomes now 5

4 + (α + 1)b′ � s, by assumption (46). �
Our next task is the proof of Lemma 1, where a variant of (44) with b < 1

2 is required. The latter will be obtained
as before by interpolation with an auxiliary estimate, but with the decisive difference that we have to avoid any
derivative loss in the y variable, in order to obtain a local result in (and below) L2 and hence something global by the
conservation of the L2-norm. So the simple Sobolev embedding argument applied to obtain (39) is not sufficient in
two space dimensions. Instead of that we will prove the following lemma, which is partly contained already in [16,
Lemma 4] as well as in the unpublished manuscript [18] of Takaoka and Tzvetkov.

Lemma 7. For s0 > 3
4 , 1

2 � 1
p

< 3
4 , and b0 > 5

8 − 1
2p

the following estimate holds true:∥∥F
((

D−s0
x u

)
v
)∥∥

L2
ξ L

p
τ

�
∥∥〈σ 〉b0 û

∥∥
L2

ξ L
p
τ

∥∥〈σ 〉b0 v̂
∥∥

L2
ξ L

p
τ
.

Proof. Since p is close enough to 2, we may assume without loss of generality that b0 < 1
p′ . With f (ξ, τ ) =

〈σ 〉−b0 û(ξ, τ ) and g(ξ, τ ) = 〈σ 〉−b0 v̂(ξ, τ ) we have

F
((

D−s0
x u

)
v
)
(ξ, τ ) =

∫
|k1|−s0

f (ξ1, τ1)

〈σ1〉b0

g(ξ2, τ2)

〈σ2〉b0
dξ1 dτ1,

where (ξ, τ ) = (k, η, τ ) = (k1 + k2, η1 + η2, τ1 + τ2) = (ξ1 + ξ2, τ1 + τ2),
∫

dξ1 dτ1 = ∑
k1 	=0	=k2

∫
dη1 dτ1, and

σ1,2 = τ1,2 − φ(ξ1,2). Concerning the frequencies k, k1 and k2 corresponding to the x-variable we will assume that
0 < |k1| � |k2| � |k|, see again p. 460 in [16]. Applying Hölder’s inequality with respect to

∫
dτ1 and [4, Lemma 4.2]

we obtain

∣∣F
((

D−s0
x u

)
v
)
(ξ, τ )

∣∣ �
∫

|k1|−s0

(∫ ∣∣f (ξ1, τ1)g(ξ2, τ2)
∣∣p dτ1

) 1
p 〈

τ − φ(ξ1) − φ(ξ2)
〉 1
p′ −2b0

dξ1.
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We introduce new variables ω = η1 − k1
k
η and ω′ = k

k1k2
ω2, write |k1|−s0 = (|k1|−s1 |ω′|−ε)(|k1|−s2 |ω′|ε), where

s0 = s1 + s2, ε = s1
3 and apply Hölder’s inequality with respect to

∫
dξ1 to obtain the upper bound

· · · � I (ξ, τ )

(∫
|k1|−s1p|ω′|−εp

∣∣f (ξ1, τ1)g(ξ2, τ2)
∣∣p dξ1 dτ1

) 1
p

,

where, with a = τ − φ0(k1) − φ0(k2) + |η|2
k

,

I (ξ, τ )p
′ =

∑
k1 	=0	=k2

|k1|−s2p
′
∫

|ω′|εp′ 〈a + ω′〉1−2b0p
′
dω

= c
∑

k1 	=0	=k2

|k1|−s2p
′+ 1

2

∫
|ω′|εp′− 1

2 〈a + ω′〉1−2b0p
′
dω′.

The latter is bounded by a constant independent of (ξ, τ ), provided

s1

3
� 1

2p′ ; 2b0 − s1

3
>

3

2p′ ; s2 >
3

2p′ . (49)

The remaining factor can be rewritten and estimated by(∫ ∣∣∣∣k1

(
η1 − k1

k
η

)∣∣∣∣−2εp∣∣f (ξ1, τ1)g(ξ2, τ2)
∣∣p dξ1 dτ1

) 1
p

.

Taking the L2
ξL

p
τ -norm of the latter, we arrive at∥∥∥∥(∫ ∣∣∣∣k1

(
η1 − k1

k
η

)∣∣∣∣−2εp∥∥f (ξ1, ·)
∥∥p

L
p
τ

∥∥g(ξ2, ·)
∥∥p

L
p
τ
dξ1

) 1
p
∥∥∥∥

L2
ξ

� ‖f ‖L2
ξ L

p
τ
‖g‖L2

ξ L
p
τ
,

where in the last step we have used Hölder’s inequality (first in η1, then in k1), which requires

s1 >
3

2p
− 3

4
. (50)

Finally our assumptions on s0, b0 and p allow us to choose s1 properly, so that the conditions (49) and (50) are
fulfilled. �

An application of Hölder’s inequality in the τ variable gives:

Corollary 2. Let s0 > 3
4 , 1

2 � 1
p

< 3
4 , and b > 1

8 + 1
2p

. Then the estimate∥∥F
((

D−s0
x u

)
v
)∥∥

L2
ξ L

p
τ

� ‖u‖X0,b
‖v‖X0,b

is valid.

Observe that the estimates in Lemma 7 and Corollary 2 are valid without the general support assumption on u

and v. This is no longer true for the next corollary, which is obtained via bilinear interpolation between (44) and
Corollary 2.

Corollary 3. For s1,2 � 0, with s1 + s2 > 1
4 , there exist b < 1

2 and p < 2, such that

‖uv‖L2
txy

� ‖u‖Xs1,b
‖v‖Xs2,b

, (51)

and ∥∥F (uv)
∥∥

L2
ξ L

p
τ

� ‖u‖Xs1,b
‖v‖Xs2,b

. (52)
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Sketch of proof of Lemma 1. To prove Lemma 1 we now insert Corollary 3 into the framework of the proof of
Lemma 2. Assuming further on s � 0, we especially take β = s

2 + 1
4 , which corresponds exactly to our choice in that

proof. These arguments are combined with elements of the proof of Lemma 4. To extract a factor T γ we rely again
on the estimate (43). The p < 2 part of Corollary 3 serves to deal with the Y contribution of the Z norm, whenever
σ is maximal. A corresponding argument can be avoided by a simple Cauchy–Schwarz application in the case, where
σ1 is maximal. In this case we rely on the dual version of (51), that is

‖uv‖X−s1,−b
� ‖u‖L2

txy
‖v‖Xs2,b

,

with s1,2 � 0, s1 + s2 > 1
4 and b < 1

2 . Further details are left to the reader. �
4. Local well-posedness

To state and prove our local well-posedness results we use a cut-off function ψ ∈ C∞
0 with 0 � ψ(t) � 1 and

ψ(t) =
{

1, |t | � 1,

0, |t | � 2.
(53)

For T > 0, we define ψT (t) = ψ( t
T

). Then our result concerning T × R reads as follows.

Theorem 3. Let α � 2, s1 > max ( 3
4 − α

2 , 1
8 − α

4 ) and s2 � 0. Then, for any u0 ∈ Hs1,s2(T × R) with zero x-mean,

there exist b � 1
2 , β � 0, T = T (‖u0‖Hs1,s2 ) > 0 and a unique solution u of the initial value problem (1), defined on

[0, T ] × T × R and satisfying ψT u ∈ Xs1,s2,b;β . This solution is persistent and depends continuously on the initial
data.

In three space dimensions, i.e. for data defined on T × R
2, we have the following.

Theorem 4. Let u0 ∈ Hs1,s2(T × R
2) satisfy the mean zero condition. Then,

(i) if α = 2, s1 � 1
2 and s2 > 0, there exist T = T (‖u0‖Hs1,s2 ) > 0 and a unique solution u of (2) on [0, T ] × T × R

2

satisfying ψT u ∈ X
s1,s2,

1
2 ; 1

2
,

(ii) if α > 2, s1 > max ( 3−α
2 , 1−α

4 ) and s2 � 0, there exist b > 1
2 , β � 0, T = T (‖u0‖Hs1,s2 ) > 0 and a unique solu-

tion u of (2) on [0, T ] × T × R
2 satisfying ψT u ∈ Xs1,s2,b;β .

In both cases the solutions are persistent and depend continuously on the initial data.

The proof of the above theorems follows standard arguments as can be found e.g. in [1], [4], or [12], so we can
restrict ourselves to several remarks. The key step is to apply the contraction mapping principle to the integral equation
corresponding to the initial value problems (1) and (2), i.e.

u(t) = eitφ(D)u0 −
t∫

0

ei(t−t ′)φ(D)uux(t
′) dt ′, (54)

more precisely, to its time localized version

u(t) = ψ1(t)e
itφ(D)u0 − ψT (t)

t∫
0

ei(t−t ′)φ(D)ψT (t ′)u(t ′)ψT (t ′)ux(t
′) dt ′ =: Φ(

u(t)
)
. (55)

Combining the linear estimates for Xs,b-spaces (see e.g. [4, Lemma 2.1]), which are equally valid for the
spaces Xs1,s2,b;β , with the bilinear estimates from the previous section, one can check that the mapping Φ defined
in (55) is a contraction from a closed ball Ba ⊂ Xs1,s2,b;β , of properly chosen radius a, into itself. Here, a contraction
factor T γ , γ > 0, is obtained
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• either from the linear estimate for the inhomogeneous equation, which works for b > 1
2 , corresponding to α > 2,

• or from the bilinear estimates as in Lemma 1 and in Lemma 4, which is necessary in the limiting case, where
α = 2 and b = −b′ = 1

2 .

The persistence of the solutions obtained in this way follows from the embedding Xs1,s2,b;β ⊂ C(R,H s1,s2), as
long as b > 1

2 , while for b = 1
2 this is a consequence of [4, Lemma 2.2]. Concerning uniqueness (in the whole space)

and continuous dependence we refer the reader to the arguments in [12, Proof of Theorem 1.5].
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Appendix A. Failure of regularity of the flow map in TTT ×RRR

We present in this appendix a type of ill-posedness result which shows that, in T × R, our local well-posedness
theorem of the previous section is optimal (except for the endpoint), as far as the use of the Picard iterative method
based on the Duhamel formula goes. The result states that the data to solution map fails to be smooth at the origin,
more specifically fails to be C3, for the Sobolev regularities precisely below the range of the local existence theorem
proved in the previous section, i.e. for s < 3

4 − α
2 . Because the Picard iteration method applied to the Duhamel formula

yields, for small enough times, an analytic data to solution map, this lack of smoothness of the flow map excludes the
possibility of proving local existence by this scheme, at the corresponding lower regularity Sobolev spaces.

This proof is due to Takaoka and Tzvetkov, in an unpublished manuscript [18] which, for completeness and due to
its unavailability elsewhere in published form, is being reproduced here. It is done there for α = 2, which is the only
case studied by the authors in that manuscript, but our adaptation for any α � 2 is obvious. Their proof is inspired
by the considerations of Bourgain in [2, Section 6], where an analogous ill-posedness result is proved for the KdV
equation, for s < −3/4, and it is equally similar to N. Tzvetkov’s own result, also for the KdV equation, in [19].

Theorem 5. Let s < 3
4 − α

2 . There exists no T > 0 such that (1) admits a unique local solution defined on [−T ,T ],
for which the data to solution map, from Hs

xL2
y(T × R) to Hs

xL2
y(T × R) given by u0 �→ u(t), t ∈ [−T ,T ], is C3 dif-

ferentiable at zero.

Proof. Just as is done in [2] and [19], consider, for w ∈ Hs
xL2

y(T × R) and δ ∈ R, the solution u = u(δ, t, x, y) to the
Cauchy problem{

∂tu − |Dx |α∂xu + ∂−1
x ∂2

yu + u∂xu = 0,

u(δ,0, x, y) = δw(x, y).
(56)

Then, u satisfies the integral equation

u(δ, t, x, y) = δeitφ(D)w −
t∫

0

ei(t−t ′)φ(D)u∂xudt ′.

If, for a sufficiently small interval of time [−T ,T ], the data to solution map of (56) is of class C3 at the origin, it yields

a third-order derivative ∂3u

∂δ3 , at δ = 0, with the property of being a bounded multilinear operator from (Hs
xL2

y(T×R))3

to Hs
xL2

y(T × R), for any t ∈ [−T ,T ]. Explicit formulas can be easily computed
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∂u

∂δ |δ=0
= eitφ(D)w =

∑
k 	=0

+∞∫
−∞

ei(kx+ηy)eit (φ0(k)−η2/k)ŵ(k, η) dη,

∂2u

∂δ2 |δ=0
=

t∫
0

ei(t−t ′)φ(D)∂x

(
∂u

∂δ |δ=0

)2

dt ′

=
∫
R2

{∑
Γ1

ei(x(k1+k2)+y(η1+η2))e
it (φ0(k1+k2)− (η1+η2)2

k1+k2
)
(k1 + k2)

eitA − 1

A
ŵ(k1, η2)ŵ(k2, η2)

}
dη1 dη2,

where Γ1 = {(k1, k2) ∈ Z
2: k1 	= 0, k2 	= 0, k1 + k2 	= 0} and

A := A(k1, k2, η1, η2) = φ(ξ1) + φ(ξ2) − φ(ξ1 + ξ2)

= φ0(k1) + φ0(k2) − η2
1

k1
− η2

2

k2
− φ0(k1 + k2) + (η1 + η2)

2

k1 + k2
.

Finally, the third derivative, at δ = 0, is given by

∂3u

∂δ3 |δ=0
=

t∫
0

ei(t−t ′)φ(D)∂x

(
∂u

∂δ |δ=0

∂2u

∂δ2 |δ=0

)
dt ′

=
∫
R3

{∑
Γ2

ei(x(k1+k2+k3)+y(η1+η2+η3))e
it (φ0(k1+k2+k3)− (η1+η2+η3)2

k1+k2+k3
)

× (k1 + k2)(k1 + k2 + k3)
1

A

[
eit (A+B) − 1

A + B
− eitB − 1

B

]
× ŵ(k1, η1)ŵ(k2, η2)ŵ(k3, η3)

}
dη1 dη2 dη3,

where A is still defined as above, and now

Γ2 = {
(k1, k2, k3) ∈ Z

3: kj 	= 0, j = 1,2,3, k1 + k2 	= 0, k1 + k2 + k3 	= 0
}
,

and

B := B(k1, k2, k3, η1, η2, η3) = φ(ξ3) + φ(ξ1 + ξ2) − φ(ξ1 + ξ2 + ξ3)

= φ0(k3) − η2
3

k3
+ φ0(k1 + k2) − (η1 + η2)

2

k1 + k2
− φ0(k1 + k2 + k3) + (η1 + η2 + η3)

2

k1 + k2 + k3
.

It will be shown now that, for s < 3
4 − α

2 , the necessary boundedness condition∥∥∥∥∂3u

∂δ3 |δ=0

∥∥∥∥
Hs

x L2
y(T×R)

� ‖w‖3
Hs

x L2
y(T×R)

(57)

fails for any t 	= 0, by using a carefully chosen function w.
For that purpose, set

w = wN(x, y) :=
∑
±

βN
1
2∫

−βN
1
2

e±iNxeiηy dη,

where β is to be chosen later, sufficiently small, and N � 1. Its Fourier transform is simply given by ŵN(k, η) =
χ 1 1 (η) if k = ±N , and zero otherwise.
[−βN 2 ,βN 2 ]
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To estimate ‖ ∂3u

∂δ3 |δ=0
‖Hs

x L2
y(T×R) from below note that the main contribution to it comes from a combination of

frequencies (kj , ηj ) ∈ supp ŵN , j = 1,2,3, such that the term A + B is small (see [2] and [19] for very similar
reasoning). The k frequencies necessarily always have to satisfy the relation k1 = k2 = ±N , so that the least absolute
value for A + B is achieved when k3 has the opposite sign as k1 and k2, i.e. k3 = ∓N . In this situation, a cancellation
of the expression

φ0(k1) + φ0(k2) + φ0(k3) − φ0(k1 + k2 + k3)

is obtained, so that we get∣∣A(k1, k2, η1, η2) + B(k1, k2, k3, η1, η2, η3)
∣∣ � β,

and if β is chosen very small,∣∣∣∣eit (A+B) − 1

A + B

∣∣∣∣ � |t |.

Also ∣∣A(k1, k2, η1, η2)
∣∣ ∼ Nα+1.

Therefore, one can derive the estimate∥∥∥∥∂3u

∂δ3 |δ=0

∥∥∥∥
Hs

x L2
y(T×R)

� |t |NsN−(α+1)N2N
5
4 = |t |Ns−α+ 9

4 ,

whereas, clearly ‖wN‖Hs
x L2

y(T×R) � Ns+ 1
4 .

We thus conclude that, for t 	= 0, (57) fails for s < 3
4 − α

2 . �
A direct proof of the impossibility of determining a space XT , continuously embedded in C([−T ,T ],

H s
xL2

y(T × R)), where the required estimates to perform a Picard iteration on the Duhamel formula hold, is given
below.

Theorem 6. Let s < 3
4 − α

2 . There exist no T > 0 and a space XT , continuously embedded in C([−T ,T ],
H s

xL2
y(T × R)), such that the following inequalities hold∥∥eitφ(D)u0

∥∥
XT

� ‖u0‖Hs
x L2

y(T×R), u0 ∈ Hs
xL2

y(T × R), (58)

and ∥∥∥∥∥
t∫

0

ei(t−t ′)φ(D)∂x(uv)dt ′
∥∥∥∥∥

XT

� ‖u‖XT
‖v‖XT

, u, v ∈ XT . (59)

Thus, it is not possible to apply the Picard iteration method, implemented on the Duhamel integral formula, for any
such space XT .

Proof. If there existed a space XT such that (58) and (59) were true, then∥∥∥∥∥
t∫

0

ei(t−t ′)φ(D)∂x

[
eit ′φ(D)u0

t ′∫
0

ei(t ′−s)φ(D)∂x

(
eisφ(D)u0

)2
ds

]
dt ′

∥∥∥∥∥
XT

�
∥∥eitφ(D)u0

∥∥3
XT

� ‖u0‖3
Hs

x L2
y(T×R)

.

On the other hand, because XT is continuously embedded in C([−T ,T ],H s
xL2

y(T × R)) we would also have

sup ‖ · ‖Hs
x L2

y(T×R) � ‖ · ‖XT
,

t∈[−T ,T ]
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from which we would conclude that, for any t ∈ [−T ,T ], and any u0 ∈ Hs
xL2

y(T × R) the following inequality would
hold: ∥∥∥∥∥

t∫
0

ei(t−t ′)φ(D)∂x

[
eit ′φ(D)u0

t ′∫
0

ei(t ′−s)φ(D)∂x

(
eisφ(D)u0

)2
ds

]
dt ′

∥∥∥∥∥
Hs

x L2
y(T×R)

� ‖u0‖3
Hs

x L2
y(T×R)

.

But choosing u0 as the function w of the previous proof, we know that this estimate cannot hold true if s < 3
4 − α

2 . �
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