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Abstract

In this paper, we consider the fifth-order Korteweg—de Vries equation in a bounded interval. We prove that this equation is locally
well-posed when endowed with suitable boundary conditions, and establish a result of local controllability to the trajectories.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Dans ce papier, nous considérons 1’équation de Korteweg—de Vries du cinquieme ordre en domaine borné. Nous montrons que
I’équation est localement bien posée lorsque 1I’on impose certaines données au bord, et établissons un résultat de controlabilité
locale aux trajectoires.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we study the controllability of the fifth-order Korteweg—de Vries equation:

Up + oltsy + lyxx + Bultyxx + Ouxityx + P/(u)ux =0, (D

where o, 1, f and § are real constants and P is a cubic polynomial:

P(u):pu+qu2+ru3. (2

This class of equations was introduced by Kichenassamy and Olver [17]. It contains in particular the Kawahara equa-
tion [15] introduced to model magneto-acoustic waves, the various models derived by Olver [19] for the unidirectional
propagation of waves in shallow water when the third-order term appearing in the Korteweg—de Vries equation is
small, and many other models. See [17] for a discussion of them.

In this paper, we are interested in studying this equation in a bounded domain. We will both consider the Cauchy
problem with boundary conditions and the boundary controllability problem. Note that there is an important literature
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concerning the Cauchy problem in the real line, see for instance [8,9,17,16,18,21] and references therein. For what
concerns the boundary value problem, the Kawahara equation with homogeneous boundary conditions was investi-
gated by Doronin and Larkin [10]. Note that the initial boundary value problem for the (third-order) Korteweg—de
Vries equation has drained much attention (see in particular [1,4,5,11,14]). The controllability problem was also,
up to our knowledge, completely open. The equivalent for the Korteweg—de Vries equation has also known many
developments lately [2,3,6,13,22-26].

To be more precise, we will consider in the sequel that o > 0O: this is not a restriction since it suffices to make
the change of variable x’ = 1 — x and to invert the role of the left and right boundaries. The spatial domain will
be [0, 1], which is not a restriction either in the present paper, since it will suffice to rescale in space to obtain a result
on an interval of arbitrary length. (Note that this is not necessarily the case for the Korteweg—de Vries equation with
Neumann boundary control, see [22].)

The boundary conditions that we will consider are the following:

Ujx=0 = V1, Ujx=1 = V2, Ux|x=0 = U3, Uylx=1 = V4, Uxx|x=0 = V5. 3)

The first and main result of this paper concerns a boundary controllability result for Eq. (1). To be more precise, we
will control the system from the right endpoint (by using only v2) and v4 while maintaining vy, v3, vs to zero), and
the type of controllability that we consider is the local controllability to trajectories. That is to say, we consider T > 0
and a fixed trajectory i of (1), and prove that for any initial state u( sufficiently close to it|,—o, there exist controls
(v2, v4) which steer the system from ug to it);=7.

The precise result is the following.

Theorem 1. Let T > 0. Let it € L®(0, T; W3(0, 1)) be a trajectory of (1) with boundary conditions Ujx=0 =
Uylx=0 = Uxx|x=0 = 0. There exists € > 0 such that for any ug € L?(0, 1) such that

|luo — (0, ) ||L2(0,1) e, “)
there exist two controls vy, v4 in L2(0, T) such that the solution u of (1) with initial condition

Uje—p = 0 5)
and boundary condition (3) with controls (0, v3, 0, v4, 0) belongs to CY([0, T1; L%(0, 1)) N L%(0, T; H2(0, 1)) and
satisfies

uj=r =u(T,"). (6)

As we will see, the solution to the controllability problem that we construct is in fact more regular than
C%([0, T1; L%(0, 1)) N L2(0, T; H%(0, 1)). Indeed, in order to prove Theorem 1, we will first take the controls (vz, v4)
as zero and we will prove, thanks to Theorem 3 below, that the state becomes Hg. Then we will work with more
regular solutions (belonging to L%(e, T; H4(0, D)NCOe, T1; H*(0, 1))).

Remark 1. Using the reversible character of this system stated on the whole real line, it is not difficult to deduce that
Eq. (1) is locally exactly controllable near 0 when using the five controls (for sufficiently regular states).

Remark 2. As we will see in Section 4.3, a solution of (1) with boundary condition (3) with v{ = v3 =v5 =0 is
regularized away from the right endpoint and the initial condition. This involves that Eq. (1) cannot be locally exactly
controllable by means of v, and v4 only.

The next result of this paper concerns the Cauchy problem. We prove that the problem is well posed locally in time,
and regularizes the state of the system when the boundary conditions are homogeneous.

Theorem 2. Given ug € L2(0, 1), T > 0, vy, va € H3(0, T), v3, va € H5(0, T), vs € L2(0, T), there exists T € (0, T
such that the nonlinear problem (1) with boundary conditions (3) admits a unique solution u € L%0,T; H*0, 1)) N
([0, T1; L%(0, 1)) satisfying

5
”"‘||L2(0,T;H2(0,1))OC0([0,T];L2(0,1)) < C (||MO||L2(0,1) + Z ||Uk ||H27L(k;1)/2j © T)>.
k=1 ’
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Theorem 3. If vi = vy = v3 = v4 = vs = 0, the solution of (1) is regularized in the sense that for any t € (0, T],
u e C®([r, T] x [0, 1]) with, for all k > 0,

flu ||Hk(f,T;Hk(o,1)) < C(t,k) ||140||L2(0,1)~ (7N

We conclude this introduction by a remark concerning the choice of the controls among vy, ..., vs. The controlla-
bility to the trajectories described in Theorem 1 may not take place if one chooses another set of controls, for instance
when acting through vs only and keeping v = vy = v3 = v4 = 0. This is given in the next example.

Proposition 1. Let L > 0 be a solution of tan(L) = L. The system

—@r — @55 — Pxxx =0 in(0,T) x (=L, L),
Plx=—L = Plx=L = Px|x=—L = Px|x=L = Pxx|x=L = 0 in(0,7), (8)
Q=T = QT on(—L,L)

has solutions satisfying

90,)#0 and @@, —L)=0 in(0,T) ©)]

forall T > 0. As a consequence the system

ur +usy +tyxx =0 in(0,T)x (=L, L),
Ux=— =Ux=L = Uxjy=—L =Uxx=L =0 in(0,T), (10)
Uxx|x=—L = V5 ) in (0,T)

is not null approximately controllable by the control vs.

Proof. We introduce the following (time-independent) function:

g(x) =cos(x) + pcxz — (cos(L) + ;LLZ),
where

. sin(L) _ cos(L)

K== =72

It is elementary to check that

{g5x + guxx =0 in(0,T) x (=L, L),
8lx=—L = gx=L = gx|x=—L = &x|x=L = &xx|x=—L = &gxx|x=L =0 in (0,7),

hence g satisfies (8) and (9). Now the equivalence between the unique continuation of (8) and the approximate con-
trollability of (10) is an application of the standard duality in PDE control theory, see for instance [7]. O

Let us note that this phenomenon of critical values of the length of the domain was raised by Rosier [22] for the
linearized KdV equation (see [2,3,6] for further developments on this subject). Hence, according to the values of the
length of the domain and of the coefficients, a similar behavior can take place here. We believe that this leads to many
open and challenging problems.

The structure of the paper is the following. In Section 2, we study the initial boundary value problem for a lin-
earized equation. This requires proving a regularizing effect on the equation ¢; + {5, = g. In Section 3, we study the
controllability of a linearized equation. In Section 4, we use a fixed point argument to establish Theorems 2 and 3 and
an inverse mapping theorem to establish Theorem 1. Finally Sections 5 and 6 are devoted to the most technical parts
of the paper, namely, the proof of a Carleman estimate and a proof of the regularizing effect to the left.
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2. Cauchy problem for the linearized equation

In this section, we study the well-posedness of the following linearized equation:

3

Yotayse =Y ax(t, x)dky +h, (1)
k=0

where the functions ay satisfy
a € L™(0,T; W>(0, 1)), fork=0,...,3. (12)

Recall that we consider « > (0. We will state the corresponding result in Section 2.3.
For this, we will first study the adjoint system of (11):

3
Vi +ayse=y (=D (@, 0)y) + £ in (0, T) x (0, 1),

k=0
VYix=0 = VYxjx=0 =0 in (0, T), (13)
W\le = Ipxlx:l = ‘ﬁxx\x:l =0 in (0,7T),
Yy=r =0 in (0, 1).

2.1. The equation §; + alsy =g
We begin with the following proposition.

Proposition 2. Consider o > 0. Given ¢7 € (H> N Hoz)(O, 1) satisfying ¢rxx(1) =0 and g € cl([0, T1; L?(0, 1)),
there exists a unique solution ¢ € C°([0, T1; H>(0, 1)) N C'([0, T1; L?(0, 1)) of

G talsy=g in (0,7) x (0, 1),
x=0 = Gx|x= =0 ] O,T P
lx=0 = Cx|x=0 l.n( ) (14
§|x=1 = Q\x:l = {xxlx:l =0 in(0,7),
Sit= =41 in (0, 1).

Proof. This follows from the standard Lumer—Phillips theory. We can introduce the operator A : D(A) — L0, 1):
D(A)={0 e (H N H)(0,1) / 9:x(1) =0} and A =ads,.

Then one can see that its adjoint is defined via
D(A*)={he (H N H;)0,1) [ hyy(0) =0} and A*h=—ahsy.

Then it is elementary to check that (A, ¥);2 < 0 and (A*h, h);2 < 0 so that Proposition 2 follows from standard

operator theory [20]. O

Now we prove some estimates for the solutions of (14).
We define the spaces, for k > 0,
Xi:={y e L*(0. T; H*"2(0,1)) N C°([0, T1; H*(0, 1)), yrxpe—o € H*3(0, T)},

endowed with their natural norm.

Proposition 3. One has the following estimates on the solutions of (14):

1¢1Lx, < Cllgll 20,7, 520,17 Jors €10.10], (15)
||§||Xs < C”g”L'(O,T;Hg(O,l))» fors €10, 10], (16)
||§xxx|x:0||Hl/5(0,T) + ||§xxx|x:l||Hl/5((),T) < C||g||L2(((),T)X(0,1)), (17)
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and

I Saxix=0llz2¢0,7) + ICaxix=1ll220,7) < ClIgl 220, 7)x(0.1))- (18)

Moreover in (17) and (18) one can replace ||gll .20, 7% (0.1)) bY ||g||L|(0’T;Hg(0’1)).

Remark 3. If we interpolate (15) and (16), we also deduce

”{”XJ < C||g||L4/3(O,T;Hg_](O,l))’ fors e [O, 10] (19)

Proof of Proposition 3. We consider a smooth solution of (14) and establish several estimates on it.

1. Proof of (15)—(16).
e Estimate in Xo. We multiply (14) by (1 +x)¢:

1 1 1
1d 5
EE/(I+x)§2dx+a§3x|x:o+Eafffxdxz—/(l—kx)qux. (20)
0 0 0

It follows that

1< 1xy < C||g||L2(o,T;H72(0,1))- (21)
It is also clear that from (20) it follows
11xo < CliglL10,7:22(0,1))- (22)

e Estimate in Xs. Now we consider g € L%, T; HO3 (0, 1)). Observe that due to (14), for such a g, the traces of sy
and ¢, on both sides, and the trace of ¢7, on the right, vanish.
We apply the operator 0s, to the equation and we apply (21):

I1¢5xlxo < Cligsxllz20,7: H-2(0,1)-

Using the equation, this gives

”Cxx\x:O”Hl((),T) < C”g”L2(0,T;HO3((),1))'
This yields also

1 11xs <C||g||L2(0,T;H3(0,1))' (23)
In the same way, we have

||§||X5 <C||g||L1(O,T;Hg(0,l))' (24)

e Estimate in X19. Here we consider g € L%, T; Hg (0, 1)). We apply the operator ds, to the equation and we
apply (23) (since gsy € L2(0, T; H; (0, 1))):

||§5x ||X5 <C ”ng ”Lz((),T;Hg(O,l))'

This yields as previously

”; ”Xl() < C”g”LZ(O,T;Hg(O,l))' (25)
Also we have

¢ ||X10 < C”g”Ll(O,T;HOlO(O,l))' (26)

e Interpolation argument. By an interpolation argument, we deduce (15) and (16) for every s € [0, 10].
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2. Proof of (17). Let p € Cc*(0,1]; R) satisfying p(x) =0 for x € [0, 1/2] and p(x) =1 for x € [3/4, 1].
e We use estimate (15) for s = 1:
1 1x, <C||g||L2(o,T;1-1—l(o,1))- (27)
Multiplying (14) with p¢,y, integrating in space and integrating by parts, we get, for almost any ¢ € [0, T'],
1 1 1

o 3a o 1d
5|§xxx\x:l|2 = 7 / pxlgxxx|2dx - E / pxxx|§xx| dx — Ed_ p|§x|2dx
0 0 0

—{px&x, ft)Hg(()‘])xH—Z(())]) — (g, Pfxx)H—l(()J)XH(}(o,])‘ (28)
Integrating in time and thanks to (14) and (27), we get

||§||X1 + ||§xxx|x 1||L2(0 T) + ||§xxx|x O||L2(0 X C||g||Lz(0 T;H-1(0,1))" (29)
An estimate for {y,x|x=0 can be done in the same way, by employing the weight 1 — p
e Now, we use estimate (15) for s = 6:

IS1xe < C”g”LZ(O,T;Hé(O,l))' (30)

In order to prove that {iyyxx=1 € L*(0, T), we multiply (14) by pd, /¢, we integrate in space and we integrate by
parts (using again what we know on the traces of {5y, {sx and {7x):

1
1 7
E|§txxx\x=1 |2 = E / lox|§lxxx|2dx + / Crxxx (00xx Crxx + 40xxxCex + pax$r) dx

0
1
o d
55[ p1¢6x|* — prx|Csxl )dx+a(px§6x,{,5x)Hsz 2 4 Crxxlx=1 Grxxlx=1
0
! 4
4 . .
—/szxe((j>3;{gaj j,O)dx. (31)
0 j=0

As previously, the same can be done for &y x|x=0-
Integrating in time, using Cauchy—Schwarz inequality to estimate the last term in the second line and using
(14) and (30), we get
”;‘ ||X6 + ||§txxx|x=l ”LZ(O,T) + ”{txxxlx:O”LZ((),T) < C”g”LZ(O,T;Hé(O,I))‘ (32)
e An interpolation argument applied to (29) and (32) provides (17).

3. Proof of inequality (18). We multiply the equation of ¢ by p¢s, and we integrate in space. After some integration
by parts, we obtain

1

1
o 2 (04 2 1 d
5|§4x|x:1| ZE Px | Sax| dx_id_ |§xx| dx — {PxxCxxs Cf)Hle 1
0 0
1
_2<px§xx:§tx>H§><H—2+/)0§4xgdx. (33)

0
Integrating in time this identity, we have

||§4x\x:l ||L2(0,T) < C(”C ||L°°(0,T;H2(O,1)) + ||§t ”LZ(O,T;H*‘(O,I)) + ||§||L2(0,T;H4(O,l)) + ||g||L2((0,T)><(()71)))~
Using (15), we have estimated {4y|x=1 as in (18). The estimate 4y|x—0 is similar by multiplying by (1 — p){4.
Finally, the proof of (17) and (18) with g € L', T; HOZ(O, 1)) is completely analogous. 0O
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2.2. Well-posedness for the adjoint equation
Now we can state the following existence and regularity result for (13).

Proposition 4. Given ay satisfying (12) and f € L*(0,T;L*(0,1)), there exists a unique solution ¥ €
L*(0,T; H*(0,1)) N C°([0, T]; H*(0, 1)) of (13).

Proof. We use a fixed point scheme. Given 1@ € L2(0, T; H4(0, H)N CO([O, T, H2(O, 1)), we consider the solution
v =Ty of

3
Vi +ase =Y (=D (@t 0)¥) + £ in (T, T) x (0, 1),
k=0
Yix=0 = Yxpx=0 =10 in (f, T), (34)
w\x:l = wxlx:l = 1aﬁxx\x:l =0 in (f, T),
Yii=r =0 in (0, 1),

where T € (0, T) is to be fixed later.
Using Proposition 3 (precisely (15) for s = 2), we infer that

1791 — Tallx, < C(llall oo, whooy) 11 — V2l 20,72 15
< C(Hak||LOC((),T;Wk-00))T1/4||W1 - I/f2||L4(0,T;1-13)~ (35)

Note that the constant in (15) is independent of Te 0, 7).
Then by interpolation we deduce that

- - - Ao A1) A a2
1791 = T2lx, < Cllagl o raweo) T 4101 = V21,2 0 o 191 = V20500 7o)
< C(llall e o, weeey) TP — Y2l x, - (36)

It follows that 7 is contracting for sufficiently small time T. Then extending the solution obtained in (T,T) toa
solution in (0, T') is standard using the linear character of the equation. O

Furthermore, the solutions described in Proposition 4 possess the following regularity property.
Proposition 5. Under the assumptions of Proposition 4, the solution \ has the following hidden regularity:
1V 1x, + 1¥xxix=0,1 1l g2/50,7) + 1¥xxxix=0,11 51750, 7y + 1Waxix=0,1 20,7y < CUF Il L2¢00, )% (0,1)- (37)

Proof. This is a consequence of Propositions 3 and 4. Note that due to the contracting character of 7 and using
Proposition 3, we have

Wi, S [TO)y, S1FI20.7)%0.1)-

Now we can use

3

g=Y (=D (@t x)p) + f.

k=0

as the right-hand side in (14) to deduce (37) from Proposition 3. O
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2.3. Well-posedness for the initial boundary value problem

In this subsection we give the notion of solution of

3
Yo+ ayse =Y ar(t, )05y +h in (0,7) x (0, 1),
k=0
Yx=0 =V1, Yx=1=102, Yxp=0=0v3 in(0,7), 38)
Yx|x=1="V4, Yxx|x=0=1V5 in (0,7),
Yjr=0 = Yo in (0, 1),
where yg, h, vi,...,vs are given functions. The solution of (38) for homogeneous boundary conditions and / €

L%(0,T; L*(0, 1)) is granted by Proposition 4 (replace # by T — ¢ and x by 1 — x). Hence we can suppose without
loss of generality that 4 = 0.

Definition 1. Let yg € H‘2(0, D,v, e L2(0, T),v3,v4 € H_I/S(O, T) and v5 € H‘Z/S(O, T). We call y a solution
by transposition of (38) with 2 =0, a function y € L2((0, T) x (0, 1)) such that

T 1 T T
//ydedt:<u0’1//|t=0>H*2(0,1)><H§(0,1) +0‘/U1¢4x|x=odf—a/v21ﬂ4x|x=1df
00 0 0
— a(v3, Yxxx|x=0) H-1/5(0,T)x H/50,7) T {04, Yxxx|x=1) H-1/50,7)x H'/5(0,T)
T
+ o (vs, Yx|x=0) H-2/5(0,7)x H2/5(0,T) +/a3|x:ov1¢fxx\x:0dt, VfeL*((0,T) x (0, 1)),
0

(39)

where 1 is the solution of (13) associated to f.

Proposition 6. Let ay, satisfy (12). There exists a unique solution by transposition of system (38) with h = 0. Moreover,
there exists C > 0 such that

Iyl2¢0,7)x 0, 1)) C(||)’O||H72(0,1) +llvill g2,y + lv2ll L2007y + V31l =150, 1)
+ llvallg-11500.1) + ||U5||H72/5(0,T))-

Proof. All comes to prove

v eC10. T HF 0. ), Vaxp=01 € L2O, 7). Yaaix=o1 € H'P(0,7),

Varlx—0 € H*(0,T)
and the following inequality:

IVl oo, 7:H2(0,1y) T 1Waxix=0,1122(0,7) T I ¥xxxix=0,1l 1500, 7) + I ¥xxix=0ll 2150, 1)

S Clf 20,1y 0.1))- (40)

This was established in Proposition 5. 0O
Corollary 1. Suppose that ar =0 for k =0, ...,3. For any T > 0O, there exists C > 0 (nondecreasing in T) such

that, if vi,va € H*3(0, T), v3,v4 € H'/3(0, T) and vs € L*(0, T), the above solution of system (38) with h = 0 and
yo = 0 belongs to L*(0, T; H*(0, 1)) and satisfies that

Iyl 2200, 7; H2(0,1)NCO (0, 71; 2 (0, 1)
< C(lvilgaso.ry + 12l meso.ry + 103l sy + 1vall giso.ry + 1vsl20.1))-
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Proof. Suppose that vi, v € HOl 0,T), v3,v4 € Hg/s 0,T) and vs5 € HS/S (0, T). We apply Proposition 6 to initial
state 0 and controls vy, vy, V3, va and vs,, and deduce a solution z in L2((0, T) x (0, 1)). Using Proposition 3
(for ¥) in the L1(0, T; Hg(O, 1)) framework, we deduce as previously that z is moreover in c9%0, T1; H2(0, 1)).
Next we apply Proposition 6 to initial state 0 and controls vy, vz, v3, v4 and vs, and deduce a solution y. Using
Definition 1 with smooth test functions f, it is not difficult to see that z = y;. Using the equation, we infer that
y e L?(0,T; H(0,1)) N C°([0, T]; H*(0, 1)). Now the conclusion follows by interpolation.

The fact that the constant C can be chosen nondecreasing in time is simple: given 0 < 7/ < T and v, vy €
H?/3(0,T"), v3,v4 € H'/3(0, T') and vs € L?(0, T"), one extends these boundary values to [0, 7] by 0. One applies
the inequality for time [0, T'], and one sees that one can choose a constant for 7" which is not larger. O

3. Controllability of the linearized equation
3.1. Carleman estimate

We consider the following dual system:
3

o +agse =y (=D (art, @)+ f in(0,T) x (0, 1),

k=0 (1)
Px=0 = Pix=1 = Px|x=0 = Px|x=1 = Pxx|x=1 = 0 in(0,7),
@Qlt=T = @1 on (0, 1),

where the functions ay, satisfy (12).
A central argument in this paper consists in establishing a Carleman inequality for (41). For this let us set

p(x)
(AT — /A
for (¢, x) € Q. Weight functions of this kind were first introduced by A.V. Fursikov and O.Yu. Imanuvilov; see [12].

In the above equation B is a positive, strictly decreasing and concave polynomial of degree 2 in [0, 1]. Observe that
the function « satisfies

a(t,x) = 42)

C<TYa, Coa<—ay<Cia, Coa<—0y <Cra in(0,T) x[0,1], (43)
lote| + letxe| + x| < CTa®, oy | < C(T%0” + &) < CT?e” in (0, T) x [0, 1], (44)

where C, Cp and C are positive constants independent of T'.
We have

Proposition 7. Suppose that (12) applies. There exists a positive constant C independent of T such that, for any
o1 € L*(0,1) and f € L>(0, T; L?(0, 1)), we have

f / e 2% (|pax | + 5% graa P + 5 o o ? + 5%00ls P + 5% gI) dr dx
0

T

< C( / ape=1e” 2= (|pax et P+ 52 0f 2y [@xxxiemt [P) di 457! / / e‘zs"‘lflzdtdx), 45)
o

0
forany s > C(TY* + T1/?), where ¢ is the solution of (41).

The proof of this inequality is postponed to Section 5.

Remark 4. We will also require 8 to satisfy
max B(x) <+/2 min B(x). (46)
x€[0,1] x€[0,1]

This is not needed for Proposition 7 (nor for Proposition 8 below), but will be useful later.
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3.2. Weighted observability estimate

Now let us deduce from Proposition 7 a slightly modified inequality, with a weight function not vanishing at # = 0.
We begin by introducing a new weight. Set £ on [0, T'] by

T2 . T
=17 i< 47)
t(T —t) otherwise.
Now introduce
_ B
V(f,x)—W‘ (48)

Proposition 8. Suppose that (12) applies. There exist two positive constants sy and C > 0 depending on T such that,
for any ¢t € L%0,1) and any f € L%0,T; L%(0, 1)), we have

1
//efzso”y9|<p|2dxdt+/|<p(0,x)|2dx
Q 0

T
< C( [ / e 20| f12dr dx + f Vir1€ 2= (|oge e 2 + Ve [@xrxpe=1 ) dt>, (49)
o 0

where @ is the solution of (41).
Proof. We use the following energy estimate:

Il Lo 0,7/2: 120,17 < C exP{Cllakll oo o, 7, wroo 0,1 J 1 220037721200, T 10N L2237 /8:120,17)) - (50)

To get (50), introduce n € C*([0, T]; R") such that n = 1 in [0, T/2] and n = 0 in [3T /4, T, multiply Eq. (41) by
n(t)(1 + x)¢, and perform several integration by parts as in (21).

Let us notice that the weight functions y and e~ are positive for ¢ € [0, T/2]. Hence there is a constant C such
that

” ey H L®(0,T/2;L2(0,1)) <C eXP{C”ak ”LOO(O,T:W]"OC(OJ))}

x (He_syf”L2(0,3T/4;L2(0,1)) + ”e_syyg/z(pHLz(T/2,3T/4;L2(O,1)))‘ (51

Next, we use (45) and the choice of y to deduce

T
/ / ezs}’y9|(p|2dxdt<C(/fe2”’|f|2dtdx
0

2on

T
+ / Vixmie V=l (104x | x=1 ? + 7/|i=1 [@xxx|x=1 |2) dl>, (52)
0

for s large enough. Combining (51) and (52) we obtain (49). O

Let us consider s¢ as in Proposition 8. We introduce

sov/2

— =S
K0 = g xrerl[gﬁ]ﬂ(x) and «j:= 713 xrerg(l)fll]ﬂ(x). (53)
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Corollary 2. Under the assumptions of Proposition 8, one has

1
_ 2k
/fe =7 (T—t)_9/4|(p|2dxdt+/|¢(O,x)|2dx
0

0
T
2y S
< c( / f e @07 f12drdx + / (T =) T (|gue oy 12 + (T = 7 @rnjemt |2)dt). (54)
0 0

3.3. Controllability
We introduce the following space:

Eo={yeL*(0,T;L*0, 1) /e<T—fl)]/4 y e L*(0,T; L*(0, 1))} (55)

We have the following controllability result.

k0
Proposition 9. Given h such that (T — t)°/3¢ 7-0"* b € L2((0, T) x (0, 1)) and yo € L?(0, 1), there exist controls
V2, V4 € LZ(O, T) satisfying

_ _
(T —)'Be@0" v, € L>(0,T) and (T —1)>3e 0" vy e L0, T), (56)

such that if we call y the solution of (38) starting from yo with vi = vz = v5 =0, then y belongs to Ey. In particular,
v, which belongs to CO([O, TI; H™S (0, 1)), satisfies

Yi=r =0 on (0, 1). (57)

Besides, there exists a constant C > 0 such that
K] K]
Ny 1/8 Ny 1/4
e y||L2(0,T;L2(o,1)) + (T -0 fea—n (v2, (T = 1) / v4) ”LZ(O,T)
xQ
9/8 /4
< C(lyoll 20,1 + ||(T — )P0 h”LZ((o,T)x(o,l)))' (38)

Proof. The proof is inspired by Fursikov and Imanuvilov’s approach [12]. Define L

3
Ly:=y +ayse — y_ a(t, x)dfy, (59)
k=0
and L* its dual operator:
3
L*¢:=—¢ —apse — »_(=DFof (ax(t, 1)9). (60)
k=0

Let us set

Fo= {¢ € Coo([o’ T] x [0, 17; R) /¢|x:0 = @lx=1 = Px|x=0 = Px|x=1 = Pxx|x=1 = 0}

Consider the bilinear form

R _ 2k R
a(¢,¢)=f/e T-0lB L*QL*p dx dt
0

- N o "
+ / e @-n'/t (T - t)_1/4[¢4x\x=1¢4x|x=1 + (T - t)_1/2¢xxx|x=l¢xxx|x=l] dt, V(ba ¢ € FO~
0
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We also introduce the linear form
1

<z,¢>=// h¢dtdx+/u0¢|[:0dx. 61)
0 0

Introduce F the completion of Fy for the norm ¢ — a(¢, ¢) 1/2 (it is a norm from Corollary 2).
The next step in this proof is to demonstrate that there exists exactly one ¢ in the class F satisfying
a($,$)=1(@), Vo e Fo. (62)

Now F is a Hilbert space for the scalar product a(-,-), hence in order to get (62) it is sufficient to prove that £ is a
continuous linear form on F(. From Cauchy—Schwarz inequality, we see that

‘//hqbdtdx
0

Using the assumption on £ and Corollary 2, one sees that £ is indeed a continuous linear form on Fo. Hence there
exists a unique ¢ € Fp satisfying (62).
Let us set

_k0 __k__
< ”(T — 1) allt h“L2(o,T;L2(0,1)) ” (T =) e @™ ¢||L2(0,T;L2(0,1))' (63)

2 R 2 R 2 R
y=e TP LY vy =(T —1) Ve @0 gy ,oy and wva=(T —1)/*e TP a1 (64)

Finally it is not difficult to see that y € Ey, that (vz, v4) satisfies (56) and that y is a solution of (38) with v; = v3 =
vs = 0. This concludes the proof of Proposition 9. O

Now we define the space
L3}
Ei={yeEo /(T —t)’*ea0y e L?(0,T; H*(0, 1)) N C°([0, TT; H3(0, 1)),
0]
Yir=0 = Yxlx=0 = Yaxle=0 =0, (T —1)*Pe =0 Ly € L*(0,T; L*(0, 1)) }. (65)

X0
Proposition 10. Given h such that (T — 1)*/8e @04 e L2((0, T) x (0, 1)) and yg € HOZ(O, 1), there exist controls

(v2, va) € L%(0, T)? such that the associated solution y of (38) with vi = v3 = v5 =0 belongs to E| and moreover
satisfies

L3
_n\5/4 —\1/4
(T —1)>He—n y”LZ(O,T;H“(O,I))OCO([O,T];H2(0,l))

K0
< C(HYO”Hg(o,l) + (7 =) eaoT h”Lz((O,T)x(O,l)))’ (66)

for some C > 0.

Proof. We eernd the problem to the interval [0, 2]. We extend yg (resp. k) by 0 in [1, 2] (resp. [0, T'] x [1, 2]), we
call yq (resp. h) the resulting function. We also extend ay in [0, T] x [1, 2] in a way that keeps the L*°(0, T'; Wk-o0)
regularity (in a continuous way), and in such a way that

ag(t,x)=0 1in[0,T] x [;,2}.

We now consider the following control problem:

3
Jo+afse=Y at, )35 +h in(0,T)x(0,2),
k=0
ylx:O = 5’x|x:0 = yxx|x:0 =0 in (0,7), ©7)
Vx=2 =12, Yx|x=2 = U4 in (0,7),

Yir=0 = Yo in (0,2).
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According to Proposition 9, there exist v;, v4 fulfilling (56) such that the corresponding solution y belongs to Ej
(adapted to the interval [0, 2] of course). Now we claim that the restriction of y to [0, T'] x [0, 1] satisfies the required
properties. We have to establish that

K1
(T —0)*tedoy e L2(0, T; H*(0, D) N C°([0, TT; H(0, 1)).

For that, we introduce

X1
yE(t, x) = (T — 1) e =07 51, x). (68)
This function satisfies
3
Yyt =Y a(t, )k y* +h* in(0,T) x (0,2),
k=0
Yie=0 = Yxjr=0 = Yexx=0 =0 in (0,7), (69)
V=2 =V3s  Vyx=2 = Ui in (0, T),
Yir=0 = Y0 in (0,2),
where
& o
yo =T e 50, (v3.0f) = (T —1)>eT0 (53,54 and

Bt = (T — 03T j + %[(T — T,

These data are in HOZ(O, 2),in L%(0, T)% and in L2(0, T; L2(0,2)) respectively, thanks to Proposition 9. We will use
the following lemma, whose proof is postponed to Section 6.

Lemma 1. For k large enough, one has (2 — x)k+%y* € L%(0,T; H*(0,2)) N C%([0, T1; H*(0, 2)) with the estimate

4

) L

1@ =025 o 02y + 21C =0 4003 2o 711200
j=0

< C(Hh*H L200.7:22(0,2)) T ||yf'j ” moy 1 H v ” 2ot “ v ” L2(0,T))’ (70)
for some positive constant C.
Now we use (70) and the continuity of the previous extensions from (0, 1) to (0, 2) to deduce
I =0/t T

(0,T;H*(0,1))NCO([0,T]; H2(0,1))

_a d _k
5/4 — /4 5/4 —\1/4
s C<”y0”H§<0,1> @ =0T h] o 10y F HE[(T — e ]y

L2((0,T)x(0,1))
+ (T - t)l/ge“*'l“/4 (v2, (T — f)l/4v4) ”LZ(O,T)>’

for some C > 0. Finally, we use k1 < ko to estimate the second term in the right-hand side, and (58) to estimate the
last two terms. We deduce (66). O

4. Nonlinear problem
4.1. Proof of Theorem 2

We use a fixed point scheme to prove local existence and uniqueness in X := L%(0,T: H*(0,1)) N
CO([O, TI; L2(0, 1)). Given z € X, we introduce the solution of
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Up + sy + filxxx + BZUyrx + 8Zxthyy + P'(2)ux =0 in (0, T) x (0, 1),
Ujx=0 = V1, Ujx=1=12, Uxjx=0="1V3, Uxjx=1=7V4, Uxxjx=0=0V5 1in(0,7), (71)
U|=0 = UQ in (0, 1).

Call 7 the operator which maps z to u.
The existence and uniqueness of u is obtained as in Proposition 4: one associates to ¥ € X the solution of

Ur + sy = _Md}xxx - ﬁzlifxxx - ale/,}xx - P/(Z)lzx in (0,7) x (0, 1),
Ux=0 =V1, Up=1 =102, Uxlx=0=1V3, HUxlx=1 =V4, Uxxx=0=05 in(0,7), (72)
Ujp=0 =Uuo in (0 1).

Let us notice that 1/fxxx e L0, T; H~1(0, 1)) while (by 1nterpolat10n) z€ L*0,T; H (0, 1)), and hence Zl/lxxx €
L*3(0, T; H='(0, 1)); on the other hand, one also sees that leﬁxx e L*3(0, T; H~1(0, 1)). It follows then from
Remark 3 and Corollary 1 that (72) defines a solution in L>(0, T; H(0, 1)) N C°([0, T1; L*(0, 1)).

Now consider 1/A/1 and 1/}2 in X, and their images u; and u; by the above mapping. Making the difference of the
two equations, multiplying by (2 — x)(u1 — u2) and performing the same operations as in Proposition 3, we infer

=l <c[//|(u1 )G —zﬁz>xx|drdx+/ |1 — )z (F1 — Fa)as| di dx
0 0o
+//|z<u1 —u2) (Y1 — Yr2)xx | dt dx +f |1 — u2)(1+ 22 (1 — 1&2>x|drdx}. (73)
0 0

We deduce for small ¢ > 0,

||M1—M2||X C||1/f1 ¢2||L2(0,T;H2(0,1))[||U1—M2||L2(0,T;1-11(0,1))

+llzell s lug — uz|l
L3+2 (0,T;L%®(0,1)) LT (0,T;L2(0,1))
+ izl lug —uzll _s ]
LT (0,T;L2(0,1)) L3+2€ (0,T; W1o0(0,1))

+CllYn — 1/f2||L4(o,T;H1(0,1))[||M1 —u2llz430,7:2200,1))
+llur = wall o, 7260, 120320, 72 260,17, ) (74)
Note that by interpolation and Sobolev imbeddings we have
L*(0,T; H*(0,1)) N L*(0, T; L*(0, 1)) = L'2(0, T; L°(0, D) N L7E (0, 7; wh>=(0, 1)). (75)
We infer that (at least if T < 1)
lur —ually < CT'F (14 123) 191 — Pallx et — uallx.

Hence the operator is contractive for sufficiently small time 7, which proves the local well-posedness of (71).
Now let us prove that 7 has a fixed point. We decompose u = u + i with

121 ‘I—QIZSX =0 in (09 T) X (07 1)5
Ulg=0 =01, Ux=1 =V, Uxxy=0=103, Uxx=1=70V4, Urxx=0=0s in(0,7),
”;U:O:O in (O’ l)’
and
ﬁt +0”25x + Mﬁxxx + ﬂzﬁxxx + (Szxﬁxx + P/(Z)ﬁx :}; in (0,T) x (0, 1),
Uix=0 = l|x=1 = lx|x=0 = lx|x=1 = lxx|x=0 = 0 in (0,7), (76)
ﬁ|t=0=u0 in (0, 1),
with

h= _(Mﬁxxx + Bzityxx + 8zxtixx + P/(Z)ﬁx)~
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Let us prove that for some constant C > 0 independent of T < 1 and T''/16||z||x small enough, the solution u of (71)
satisfies

lullx < Cexp(CTY'(1+ 11z11%)) (ol 20,1y + V1l 250,17
+ 21l g2sso,y + 03l gso,y + lvall giso.ry + 1051l L20.7)- (77)

That 1 satisfies (77) for some constant C > 0 is a consequence of Corollary 1. For what concerns i, we multiply (76)
by (2 — x)u; after some integration by parts, we can deduce

1 1 1

2 2 N ~ Y

|u||L2 += / x> dx < C(1+ |za (8] o + 2 ) |2 ) Nal2 + vf liixx ) dox +2f<2 — x)ithdx,
0 0 0

for arbitrarily small v. We use (75) for z and deduce when putting ¢ = 1/4 that

T
[0+l t e o) e S T90 411,
0

We choose v small enough, use a Gronwall argument and deduce for all 7 € [0, T] that

T 1
||u<t>HLz+2a//|uxx| dxdr <exp{CT'/'(1 +||z||X)}<||uo||Lz+2//|(2—x>uh|dxdt>
0 0
Now we take the supremum in ¢. The last term is treated as follows:
T 1 1
//|(2—x)ﬁzxﬁxx|dxdt§T% /Iﬁzxﬁxx|dx
0 0 L7+2 (0,T)
ST ” ||M||L2(0 1 lzxllze< 0, 1)||uxx||L2(() I “L7+Zs .1
<

using again (75). The other trilinear terms can be estimated analogously (up to an integration by parts). Then taking
again & = 1/4 and imposing T!/19||z||x <« 1 we obtain (77).
Now let us show that 7 is contractive on
B .= {’/l € X/ llullx < (C + 1)(”“0”L2(0 D + ||Ul||H2/5(() T) + ||UZ||H2/5(0 T)
+ ||U3||Hl/5(0,T) + ||U4||HI/5(0,T) + ||US||L2(0‘T))},

for sufficiently small T', where C is the constant in (77).

From (77), we see that, provided that 7 is suitably small, B is stable by 7. We now consider that this is the case.
Now consider z1,z2 € B and denote u| ;=T zy,uz:=7zp,2:=21 — 22, U :=u| — up. We have

Ur +ausy + pixyx + Bzilyxy + ,BZMZ,XXX + 8zl,x”xx + 81x“2,xx
+ P'(zD)ux + [P'(z1) — P'(z2) Juzx =0 in (0,T) x (0, 1). (78)

We multiply (78) by (2 — x)u, integrate in both time and space and perform the same reasoning as in (73)—(74). After
lengthy but straightforward computations, we deduce (if 7 < 1)

lulld < CTY [ uallx lullxlizllx (1 + lzillx + lz2llx) + (14 Nz %) lal%]- (79)

Using that both u; and z; belong to B, this establishes that 7 is contractive on B for sufficiently small time 7.
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4.2. Proof of Theorem 3

We consider a solution u € L2(0, T’; H02(O, 1)) N CO([0, T1; L2(0, 1)) of (1) with homogeneous boundary condi-
tions. We introduce &g € (0, 1) arbitrarily small and n € C*°([0, T]; R) such that n = 0 in [0, 97 /4] and n = 1 in
[eoT /2, T]. We consider the equation satisfied by nu

(mu)r +a(Mu)sy = —UNuxxx — BNutliyxxy — INUyxlxy — nPl(u)ux + ’7/” in (0,T) x (0, 1).

Now let us look at the regularity of the right-hand side. It is not difficult to see that the less regular terms are the
second and third one. Concerning the term u, uy,, we have by interpolation u € L*0,T; HY(0, 1)), so that (uy)? €
L2(0, T; L'(0, 1)), and hence uxutxy € L2(0, T; W—11(0, 1)) < L2(0, T; H~374(0, 1)).

For what concerns uuyyy, we use that uuyy, = (UUyy)x — UxUyxy. NOW we use that by interpolation u €
8

LT (0, T; H3+(0, 1)) and uyy € LT (0, T; H-37(0, 1)), so that the product is in L2(0, T; H~3~5(0, 1)). As a
conclusion, the term uu, ., has the same regularity as uyu .

Now we use Proposition 3, and infer that for arbitrary ¢ > 0, one has nu € L0, T; H%_E 0, 1) nC2o0, T1;
H>~¢ (0, 1)). Then repeating the above steps we can show by a bootstrap argument that the solution # becomes C*>
in time and space in arbitrary small time.

4.3. Proof of Remark 2

We start from a solution u € L2(0, T; H%(0, 1)) N CY([0, T1; L%(0, 1)). Then proceeding as in the proof of Theo-
rem 3 we can prove that the right-hand side is in LZ(O, T; H_%_S O, 1)).

Now using Lemmata 2 and 3 posed in [0, 1] rather than in [0, 2] (see in Section 6 below) and interpolation argu-
ments, we deduce that (1 — x)’u e L2(0, T; H%_S (0, 1)). Then restricting to the space interval [0, 1 — v] for v > 0
suitably small and applying a bootstrap procedure, we see that u is regular at positive distance of the right endpoint.

4.4. Proof of Theorem 1

We consider a trajectory # as indicated in the statement; then u = & 4 y satisfies (1) if and only if y satisfies

Ye + ysx + uy3x + ﬁ((ﬁ +Y)yax + ﬁ3xy) + 8((’1 + ¥)xYax + I/_txxyx)
+ Py + 29 (G + Y)ye + i y) + 3r(y Qi + )i + )i + ii2yy) =0. (80)

Conspicuously, the controllability of (1) to the trajectory i is equivalent to the null controllability of (80).
Now we have the following result for (80).

Proposition 11. Given yo € L*(0,1) and u € L>®(0, T; W>(0, 1)), there exists T > 0 such that the nonlin-
ear problem (80) with homogeneous boundary conditions (3) (vi = vo = v3 = v4 = vs = 0) admits a unique
solution y € LZ(O, T; H2(0, )N CO([O, TI; LZ(O, 1)), which regularizes in the sense that for any t € (0, T],
ueL?(r,T]; H*(0,1) N C%(z, T1; H*(0, 1)), with moreover

Iyl coge, 71: H2(0,1)) < C (T, Wluoll 20,1y (81)

The proof of Proposition 11 follows the steps of the proof of Theorems 2 and 3; all the computations are justified
thanks to iz € L>(0, T; W3°°(0, 1)). We omit the details.

We now turn to the proof of Theorem 1. The solution of the controllability problem is obtained in two successive
steps. In a first step, we set the controls (v2, v4) to (0, 0). According to Proposition 11, this regularizes the state of the
system, so that we may consider that the initial state yo belongs to Hg(O, 1) and is small (see (81)). From now, we
consider that this is the case, and proceed to the proof of the null-controllability of system (80) with such an initial
state, by using the inverse mapping theorem.
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We introduce the coefficients a; as follows
ap = Busy +2quy + 6ruiy,
a) = 8ityy + p + 2qi + 3rii®,
ar = duy,
a3 =+ Bu.
Recall that L is expressed by (59). Define

Yi:={feL*0,T;L*0,1)) /(T - t)9/8e$f e L*(0, T; L*(0, D)}, (82)
equipped with the clear corresponding norm. We consider the following map:
Ey— H30,1) x Y,
> (3(0), Ly + Byyaer + 8yxyux + (2q + 6rit)yys + 3rity” +3ryy,) ®

Recall that the definition of E| was given in (65). Note that the mapping A is well defined and C!. Indeed, from
y € E1, we find out that
21
BT —1)Pe@0T yy i € L2(0,T; L7(0, ).
Then, thanks to (46) and (53), we have that

ko
BT —1)?Be @0 yy, . € L*(0,T; L*(0, 1)).

The same can be done for all the other terms (since they are bilinear or trilinear). Now using Proposition 10, we see
that A’(0) is a surjective map. Hence there exists a neighborhood of (0, 0) in Hg (0, 1) x Y1 on which A is onto. This
gives the desired result.

5. Proof of Proposition 7

Let ¢ := e™*%¢p, where « is given by (42) and ¢ fulfills system (41). We deduce that
Lyy + Loy = L3y,
with
L1y =y + Yse + 10570 Yo + 5s* v, (84)
Loy = 550,y + 10570 Yo + 5700 + 50,9 + 1050, Y + 305 o, Y, (85)

and

Lag = e[ (st + 3ty + [0 Boanetos + 65%annt)], )

— {—6S01xx¢xxx + 12S20lx01xx1ﬁxx — 15s3afaxxwx + 7s4a;axx1p + 6s3axozfx }

3
+ e‘”{f +) D (e, x)e“’w)}. (86)

k=0
(We recall that oy, = 0.) Then, we have

L1 117200y + L2V 172 +2f/Lu/szw dxdt = L3175 - (87)
Q

The main part of what follows consists in evaluating the double product term. We will denote by (L;v); (1 <i <4,
1 < j € 6) the jth term in the expression of L;vyr. We recall that o > 0, oy < 0, axx < 0 and oy = 0. In the sequel
we will repeatedly use that ¥y—o,1 = Yx|x=0,1 = 0.
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o First, integrating by parts with respect to x and ¢, we have

(L)1 (La)n) 1o gy = =55 / [t drax —ss / [ s arax

_S//ax |1//xx| dtdx"l‘los//axxwtxwxxdtdx+5S//axxxwt1/fxxdtdx

CsT//a [ Vx| dtdx+10sf/axxw,xwxxdtdx
For the second term, we get

(L1)1, (Lay)2) o g, = =557 / / o (I¥e1?), dt dx — 30s° / / opater Yy Y dt dx
o 9]

> —Cs3T//a7|1px|2dtdx —30s3//a§axxw,¢xdrdx.
0 0
For the third term, we obtain

(L)1 (L2v)3) 2 ) = / [ v, asax

> —CsST//ozngdtdx.
o

We consider now the fourth term of L,y and using (44) we readily get

(L)1 (Lav)a) 2 g = /f o (v2), di dx

—CsTZ//oz91//2dtdx.
Qo
The next term gives

(L)1 (L2v)s) ) = / [ asstnctdrax.

The last term gives

(L (L) gy =305° [ [ et dray.
9]

All these computations ((88)—(93)) show that

(L)1, (L) o) 2 —csTf/ o x| P dt dx — Cs3Tff o [yl dt dx
o

0
C(s5T+sT2)//ot91//2dtdx
o)

2—esS//a5|1pxx|2dtdx—es7//a7|1ﬁx|2dtdx—es9//a91ﬂ2dtdx,
o) 0 0

for any € > 0, provided that s > C T4, where C depends on €.

(88)

(89)

(90)

oD

92)

93)

(94)
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e Now we consider the second term of L. The product with the first term of L, gives

T
5 5
(L2, (L2¥)1) 12, =—§s//axx|w4x|2dtdx+ ES/ax|x:1|W4x|x:l|2dt
Q 0
T
5 2
— 58 Qx| x=0|VYax|x=0l" dt. 95)
0
Similar computations give the following for the second term:
T
(L1)2, (La¥)2) o, = =55 / / o3 (Ixxx ), dt dx — 105 / 030V v=0Vixxlx=0 d1
Q 0
— 3053 // Ol)%axxlﬁ4x1/fxx dtdx
Q
T
24553 // a)%axx|¢xxx|2dt dx — 553/ai|x:1|wxxx|x=1|2dt
Q 0
T T
+5S3/a;|x:0|wxxx|x:0|2dt_ 1053/ai\xzowélxlx:Ol”xﬂx:Odt
0 0

2

3
+ 30s le|x:()0lxx|x:0wxxxlx:OWxxpc:O dt

~Cs? / @ Yrx | [ Vx| dt dx. (96)

Sy Ot ~——

For the third one we have

(L) (L2d)s) 2 ) = / [ atvinpsarax—se / [ ey dras

= _// wax| dldX—i-]Os /:/Ol Qxx Yxxx W dt dx
// o axx wxxxl//dtdx

5
s
>_E/ax|x=0|¢xx|x=0| dt — 75 //aia)fx'w”'zdtdx
0 Q

_css//asawmuw+|wxx||wx|)dzdx. o

Then, we see that

(L) (L2¥)) ) = f [ e drax - / [ s dras
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s
:E//Olt(lwxﬂz)xdtdx+25/fatxw3xwxdtdx+5//0ltxxwxxxwdtdx
0 0 0

_cST/fa5(|wxx|2+|wxxx|(|w|+|wxl))dfdx
Q0

T

—CsT / o Vxlx=ol* dt. (98)
0
Next,
T
(L2 (L2)) 2 gy = =105 [ [[asalyaPdrdx +105 [ e Vanpemt Voo i
0 0
T
- los/axx\x:0¢4x\x=01”xxx|x:0 dr. 99)
0

We used that oy, = 0.
Finally,

((L1v)2. (L2¥)6) 2y = 308 f f ootys Yax Ve di dx — 305° f f (020tss) Vigs i dx

T
:30S3 f/“iaxx|¢xxx|2dtdx+3053/ o Ofxx [x= Ollfxxxlx waxlx odt
0

—Cs3//a3(|w4x||¢x| + [Yraxx | [Wxx|) dt dx. (100)

Putting together all the computations concerning the second term of L1y ((95)-(100)), we obtain

25 2 3 2 2
((L1v)2, o) gy > =58 | | wel¥axl®didx 7557 | | e lYruel* dit dx
Q 0

T
2 5
- s5 //aiaxﬂwxﬂzdtdx_ Es/axlx:0|¢4x|x:0|2dt
0

0
T

ss/‘
2

T
o _olv dr—10s | o3 _ v v dt
x|x=01Yxx|x=0 s O |x=0Vax|x=0Yxx|x=0
0 0

T

+5s3/a§|x_0|¢m|x=0|2dt—es" //oc91p2dtdx
—€s //a [V | dtdx — es® //a |¢xx| dtdx
—€s //a K/ dtdx—es//ah/uxl dtdx
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T T
5 5 2 3 3 2
— €S /O[|x:0|dfxx|x=0| dt —es /Q|X:0|K[fxxx|x=0| dt
0 0
T T
2 2
—ES/Ot|x=0|1/f4x|x=o| dt—CS/Ot|x=1|1/f4x|x=1| dt
0 0
T
3 3 2
—Cs /a|x:1w/xxx|x=l| dt,
0

T
(L1903, (Lay)1) 12y = —T55° /f afaxx|¢xxx|2dtdx+2553/ai|x=1|wxxx\x:1|2dt
0 0

T

3 3 2
— 25s /“x|x:OWXXXIx:0| dt.
0

Secondly

T
((L19)3. (L2y)a) 2 ) = —2505° / / oyt [Yax | di dx — 5057 / ool Wxiv=ol* dt.
Q

0

Third,

(L1¥)3, (L2¥)3) 2 (g, = =557 / / ol (1y«l?), dtdx =705 f / Qe Yaar di dx

0 0
> 105s7f/a§a”|wx|2dtdx—Cs7//a7|¢x||¢|dtdx.
0 0

For the fourth term, we have

(L1 (L) gy = 105" [ [ @aneyedrar =108 [ [ (oden) v drds
0 0

>—Cs3T//a7(|1/fx|2+|w||wxx|)dtdx.
o

We obtain the following for the fifth term:

(L1 (La)s) gy = 1005 [ [ s P .
0

Finally,

(L3 L2 2 g, = =3005° [ [ adastvlarar—cs® [ [@iuniipstaras
0 0

2201

(101)

for any € > 0, provided that s > C(T''/* + T1/?), where C depends on €. (We used that s > C(¢)T'/? for appropri-
ate C(e) and o < CTa?.)
e We consider now the products concerning the third term of L. First, we have

(102)

(103)

(104)

(105)

(106)

(107)
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Consequently, we get the following for the third term of Ly ((102)—(107)):

(L. Law) 12 ) > 2557 f [ aeatnnsP ar x — s505° / [ atatps i

+ 105s //axaxxwxl dt dx — 25s° /(Xxlx=0|l//xxx|x=()| dt
[0} 0

T

—50s5/ 3 ol Vxxlx=0l>dt — s // oy drdx
—€s //a |1ﬁx| dtdx — es’ //a |¢xx| dtdx

_CS‘/\a|x:1|¢xxx|x:l| dts (108)
0

for any € > 0, where again s > C(T'/* 4 T'/2) and C depends on €.
e Now, we compute the fourth term. First, we have

25
(L1w)s L) oy = 55" [ [ @), dwdr = 1255° [ [ atacvroncydxar
9 0]

T
375 25
= TSS // a;‘axxh/fxxlzdtdx"i_ 735/a£|x=0|wxx\x=0|2dt
0

0
-Cs’ // o || [Yrxx | dx dt. (109)
Next, we obtain
(L) (L2da) 2y = 17567 / / oS, Y P dt dx. (110)
For the third term, we get
((L1¥)a, (L2)3) 129y = _%9 / / afa |yl drdx. (111)
(0]
Then,
((L1¥)a, (La¥)a) gy > —CS°T / / oLy Pddx. (112)
The fifth term gives
(L1)s (La)s) gy = =505° [ [ atavnsPardr = ¢5° [ [ @il aras. (113)
(0] 0

Direct computations for the last term provide

(L1 L2 2 gy = 15057 [ [ abarslylPara (114)
0
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All these computations ((109)—(114)) give

275
(L) Lo¥) o) > / [ ataatpns P drax — 255 / [ atartusParas

//a anlyldidy + 25 f & _olWespeoldr

— sgffangdtdx—es7/fa7|wx|2dtdx
0 0

—esd //asll/fxx|2dtdx, (115)
0

for any € > 0, where again s > C(T'/* + T1/?) and C depends on .
Let us now gather all the product (L1v, L2y) 2y coming from (94), (101), (108) and (115):

(L1y, LZw)LZ(Q) __Sf/axx|lp4x| dt dx + 100s f/‘x Ofxx|¢xxx| dtdx

— 425¢° f/ a;jaxx|xpxx|2drdx+80s7/f oSy Yy [Fdr dx
0 0

T

__S //O[ Qx| Y] dtdx—_s/axpc O|w4x\x 0| dt
0
T T
—20S3/a)3€|x:0|1/fxxx\x=0|2dt_3855/a;55|x:0|1[fxx|x=0|2d1
0 0

T

— 10s3/ai|x:01ﬂ4x|x=olﬂxx|x=odt
0

—es9//a9w2dtdx—es7//a7|wx|2dtdx
0 0
—esS//ashpxxlzdtdx—es3//a3|1ﬁ”x|2dtdx
0 0

T
—es [[atusPrar - es® [ @ ool
(0] 0

T T
3 3 2 2
— €S /a\x=0|1ﬂxxx|x:0| dt—es/a\x:0|1/f4x|x:()| dt
0 0
T T
Y 2dt—Cs® | & 2d 116
s a\x:l|w4x|x:1| t s a|x:1|wxxx|x:l| t, ( )
0 0

fors > C(T'V* 4+ 1Y),
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Let us explain how we handle the wrongly signed terms in |/, |> and |, |>. After integration by parts, we get

100s3 f/afoexxh/fxxﬂzdtdx > —100s> // Ol)%olxxl/fxxlﬂ4x dtdx — es® // a5|wxx|2dtdx
0 o 0

T T

—es’ / op—oVrre=ol* dt — €5’ / oo Vaxlr=ol* 1, (117)

0 0

by taking s > CT'/2. The last two terms in the right-hand side are already in (116), while the first one is estimated as
follows, by using Cauchy—Schwarz’s inequality:

// a,%l“xxhﬁxxwwc dtdx
o

On the other hand, by integration by parts and Cauchy—Schwarz’s inequality, we have for s > CT /%

100s>

2 625 5 4 2
S12s [ [ caxltpaxl"didx + —==s |ty || Y| dr dx. (118)
0 0

o axx|wx| drdx

<@2+0)s f/a el 9 P dx + 0 f/a el Pt dx.  (119)

Observe that
625 800
— + — < 425. 120
3 + Ti (120)

Finally, we have

T

3
/ ax|x:()w4x|x:0wxx\x:0 dt

0

10s>

T T
25
<25 / aviemollYiriemol” df + 25" / ol Wrapmol2de.  (121)
0 0

Now we observe that thanks to (43) we can absorb all the “e terms” in (116) provided that s > C T2, Finally, using
again (43) we deduce from (87) the following inequality for :

s//a|1ﬁ4x|2dtdx+s3//a3|wxxx|2dtdx+s5//oz5|wxx|2dtdx
0 0 0
+s7/[a7|1px|2dtdx+59//a9|1ﬁ|2dtdx
0 0

T T

C(HLawuiz(Q) +s f et Yaxemt | d + 57 / aﬁczlwmx:nzdt). (122)

0 0

Now it is not difficult to see that all the terms in L3 yield an L?-norm estimated by

IL¥sgy < (5 [[ @nnlaran st [ [ty arax +5° [ [ oo Paras
0 0 0
+s8//a8|w|2dtdx+/fe2s°‘|f|2dzdx), (123)
0 0

for s > CT'/2. Here we have used that a; € L>°(0, T; W5°°(0, 1)). Hence they can be absorbed by the left-hand side
of (122) provided that s > CT'/?>. We deduce the Carleman inequality for v/
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s//a|1//4x|2dtdx+s3//a3|1//xxx|2dtdx+55/fa5|1//xx|2dtdx
0 0 0
+s7//oz7|1px|2dtdx+59/fa9|1ﬁ|2dtdx
0 0

T T

< C(S/a|x=1|1//4xx=1|2dl+s3/
0

0

S e—”“|f|2dzdx>. (124)
0

It remains to replace ¥ by ¢, to use (43) and s > C T1/2 in order to deduce (45).
6. Proof of Lemma 1
We first establish two lemmas before turning to the core of the proof.

Lemma 2. Let p satisfy

Dt +apsy =8 in (0,T) x (0,2),

Plx=0 = [3x|x=0 = Pxx\x:AO =0 m 0, 7), (125)
Dlx=2 =102, Pxlx=2=V4 in (0,T),

Plt=0 = Po in (0, 2).

Then for k > 2, one has
k+4 k k-1
|| 2—x) 2p||L°Q(0,T;L2(O,2)) + H (2 =x%)"Pxx ||L2(0,T;L2(0,2)) + ” 2=x)"""px ||L2(0,T;L2(0,2))
k+1 k=2 k+4
S ” 2-x""¢g ”LZ(O,T;H*Z(O,Z)) + ” 2-=x)"p ||L2(0,T;L2(0,2)) + ” 2=x)""2po ||L2(0,2)' (126)

Proof. As previously, we multiply by (2 — x)>*1 p; we get

2k+1
2

2 2
1d
ﬁf<2—x)2"“|p|2dx+s af(z—x>2"|pxx|2dx
0 0
2

2
= /(z — ) pgdx + 6k(2k + D /(2 — ) perdx
0 0

2
—2k(2k + 1)(2k — D /(2 —0)* 2 ppcdx.
0

We utilize Young’s inequality:
2

/(2 — )2 ppyydx
0

2 2
1
< e/(z — 0 prxPdx £ © /(2 — 0% dx,
€
0 0

2
/ @ — 0 py pry dx
0

2 2
1
<e /(2 — K pulPdr + /(2 — %2 P d.
0 0

Integrate by parts in the last term, we deduce (126). 0O
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Lemma 3. Let p satisfy (125). Then for k > 7, one has

4
k+1 ktj—dqJ
” 2-x)""2 p“LOO(O,T;HZ(O,Z)) + Z” Q2—x)" 0k p ||L2(0,T;L2(o,2)>
=0
Sllglzzo.7:2200.2)) + 1Poll 20,2y + 1021l 120, 7) + 104l 20, 7)- (127)

Proof. First step. Higher-order estimates. Let g € L*>(0, T’ Hg (0,2)). We apply Lemma 2 to ps, (which satisfies
the boundary conditions), and get

1
|- )3 ps, ||L°°(0,T;L2(O,2)) +]e- x)* psx ||L2(0,T;H2(0,2))
< H 2—x)*es, ||L2(O,T;H*2(O,2)) + ” 2—x) " ps, ||L2(0,T;L2((),2)) + ” 2- X)H%PO,SX ||L2(0,2)' (128)

By an integration by parts, this inequality yields

1 _
” 2—x)*2ps, ” L0,7:120,2) T H @2 =) pr ”LZ(O,T;LZ(O,Z)) + ” 2 =" pex H L2(0,T;L2(0,2))
S H Q2—x)*gs, ”L2(0,T;H—2(o,2)) + ” 2 =) ?ps. ”LZ(O,T;L2(0,2)) + ” 2- x)k+%170’5x ”L2(o,2)' (129)

Now in order to estimate the term concerning ps, in the right-hand side, we observe that

T 2
| [e=2pspscaxar
00

T 2 T 2
= / f(z — )% pex pax dx dt + (k — 2)(2k — 5) / /(2 — x)*70 py P dx dt, (130)
00 00

T 2
f f 2 =)™ pey pex dx di
00

T 2 T 2
=—f/(Z—x)Zk_2p5Xp7xdxdt+(k—1)(2k—3)//(2—x)2k_4p§xdxdt. (131)
00 0 0

The identity (131) may be used to estimate the first integral in the right-hand side of (130) (with ab < ea’ + b?/e).
Now injecting in (129), we obtain

2
1 T
|| 2—x)*2ps, ||L°°(0,T;L2(O,2)) + Z” 2-xt ]3; JP”LZ(O,T;LZ(O,Z))
j=0

S H 2—x)*gs, ”L2((),T;H*2(O,2)) + || 2= pa ||L2(0,T;L2(0,2)) + || 2- X)H%PO,SX HL2(0,2)' (132)

Now to absorb the term concerning p4, in the right-hand side, we operate in the same way, but here a boundary term
appears:
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T 2
/ / Q2 — )7 pay pay dx dt
0 0

T 2 2
- / / (2 — )% ps e dcdt + (k — 3)(2k —7) / / 2 — 0% p, P dx dt
00

T

+ 22k_6/p3x\x=0p4x|x=0 dt.
0
This latter term is treated as follows:

T
/|p4x|x ol*dt + — /|p3x|x ol dt.

/pb’x\x =0P4x|x=0d!t| <
fp 2k —5)

/ ParieolPdt =~ 53 [ [@=xPpupsdran - S / / @ = )% py, P dr dx,
00

0
which can be treated as above, while

Now

T 2

2k —7)
/ IPemolPdt =~ 53 / f @ = 0¥ pyepuedrdr Sy / / @ = )% s, Pdr dx,

0
which leads us to
3

1 S
” 2—x)*2ps, ” L0,7:120,2) T ZH 2-xt Ja; JPHL2(0,T;L2(0,2))
j=0

_ 1
S H 2—x)*gs, “ L20,7:H20,2) T ” 2= ps ” L20,7:120,2)) T ” 2 -2 Po,5x ” L2(0,2)"

Then one follows the same steps as previously (note that p|y—o = px|x=0 = Pxx|x=0 = 0) and finally gets

6

1 L
@ =% ps, “Loo(o,T;L2(o,2)) + ZH Q2—x)7H a){pHLZ(O,T;LZ(O,Z))
=0

S ” 2 - x)ngSx ”LZ(O,T;H—Z(O,Z)) + ” 2-x

and consequently, using Proposition 6,

_ 1
p ”LZ(O,T;LZ(O,Z)) + ” 2—x)*2 Po,5x ” L2(0,2)°

6

1 L
|| 2—x)*2ps, ||L°°(0,T;L2((),2)) + ZH @—x)7TH aJ{p“LZ((),T;LZ(O,Z))
j=0

1 ~ ~
g ||g||L2(0)T;H3(0’2)) + || (2 — x)k+2 Po,5x ||L2(0,2) + ||U2||L2(O,T) + ||U4||L2(O,T)'

2207

(133)

(134)

(135)

(136)

Second step. Interpolation. Now we consider the operator which maps (po, g, 02, 04) to (2 — x)**1 p: it is continuous

from
L*(0,2) x L*(0,T; H%(0,2)) x L*(0,T)* to L*(0,T; H*(0,2)) N C°([0, T1; L*(0,2)),
respectively

HJ(0,2) x L*(0, T; Hy(0,2)) x L*(0, T)® to L*(0,T; H'(0,2)) N C°([0, T1; H>(0,2)).
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By interpolation, it is hence continuous from
H§(0,2) x L*(0, T; L*(0,2)) x L*(0,T)* to L*(0,T; H*(0,2)) N C°([0, T1; H*(0,2)).

This concludes the proof of Lemma 3. O

Proof of Lemma 1. We apply Lemma 3 with p = y* and g = Zizo aj(t, x)aj{y* + h*. We infer

4
1 j—4qJ
1@ =025 o 20,2 + 22M@ =070 120 121202
j=0
3 .
< | ||L2<0,T;L2(o,2)> + Z”&ja){y* ||L2(0,T;L2(o,2>) +5 ||H2(0.,2> + 3 “LZ(O’T) + i ”Lz(O’T)' (137
Jj=0

. ~ . 3 ~ ]
chl)lw, using that the supports of a; are away from 2, we can estimate the terms ijo lla;ox y*ll 20, 7:12(0,2)) @S
ollows

3 4

Z”éj 8){y* ||L2(0,T;L2(0,2)) Se Z” 2 - x)k+j_43){y* ||L2(0,T;L2(0,2)) +C ||y* ||L2(0,T;L2(0,2))’
Jj=0 j=0

exactly as in Lemma 3. We get

4
| L
” 2—x)ftay* HLOO(()‘T;HZ(O,Z)) + Z” 2 —x0) o1y “ L2(0,T;L2(0,2))
Jj=0

S Hh*||L2(O,T;L2(0,2)) + ”y)k ||L2(0,T;L2(0,2)) + ”yf)k ||H2(0,2) + ” v; ||L2(0,T) + ” vy ||L2(0,T)'

Using again Proposition 6, and thanks to (58), this gives (70), hence completing the argument. O
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