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Abstract

We consider smooth three-dimensional spherically symmetric Eulerian flows of ideal polytropic gases outside an impermeable
sphere, with initial data equal to the sum of a constant flow with zero velocity and a smooth perturbation with compact support.
Under a natural assumption on the form of the perturbation, we obtain precise information on the asymptotic behavior of the
lifespan as the size of the perturbation tends to 0. When there is no sphere, so that the flow is defined in all space, corresponding
results have been obtained in [P. Godin, The lifespan of a class of smooth spherically symmetric solutions of the compressible
Euler equations with variable entropy in three space dimensions, Arch. Ration. Mech. Anal. 177 (2005) 479-511].
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous considérons des écoulements eulériens tridimensionnels lisses a symétrie sphérique de gaz parfaits polytropiques a I’exté-
rieur d’une sphere imperméable, avec des données initiales somme d’un écoulement constant de vitesse nulle et d’une perturbation
lisse a support compact. Sous une hypothese naturelle sur la forme de la perturbation, nous obtenons une information précise sur
le comportement asymptotique de la durée de vie quand la taille de la perturbation tend vers 0. S’il n’y a pas de sphere, de sorte
que I’écoulement est défini dans tout 1’espace, des résultats correspondants ont été obtenus dans [P. Godin, The lifespan of a class
of smooth spherically symmetric solutions of the compressible Euler equations with variable entropy in three space dimensions,
Arch. Ration. Mech. Anal. 177 (2005) 479-511].
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

For Eulerian compressible flows in all space with initial data suitably close to a constant flow with zero velocity,
precise estimates for the lifespan have been obtained in the 2D axisymmetric isentropic case [1,12], and in the 3D
spherically symmetric case for ideal polytropic gases with variable entropy [3]. The purpose of the present paper is to
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obtain results analogous with those of [3] outside an impermeable sphere. To achieve this, we shall adapt the methods
and proofs of [3,4] to the needs of the present paper.

As in the boundaryless case [3], we shall introduce a suitable approximate flow, satisfying here the impermeability
boundary condition, and obtained by combining a suitable isentropic flow with a suitable steady flow with constant
pressure. Because of the boundary condition, some extra care will be needed to ensure that the approximate flow
satisfies suitable compatibility conditions. Estimates for the approximate flow will follow from the results of [4]. To
study the error (that is, the difference between the actual flow and the approximate flow), we shall adapt arguments
of [3,4]. We shall rely heavily (as in [3,4]) on Sobolev type estimates with decay from [9].

Our paper is organized as follows. In Section 2, we state our results precisely and give some indication on notations
to be used in this paper. In Section 3, we treat short time existence and introduce our approximate solution, which is
studied in Section 4 with the help of results of [4]. An asymptotic lower bound for the lifespan is obtained in Sections 5
and 6. In Section 7 it is shown that this asymptotic lower bound actually is an asymptotic upper bound.

2. Statement of the results

Set Dg = {x € R3, |x| > R}, write dj =0/0xj, V = (01, 92, 93), and denote by - the Euclidean scalar product
in R3. We consider the compressible Euler equations

orp+u-Vo+pV-u=0 if0<r<T andx € Dg, (2.1)
1

oru~+u-Vu+—-VP =0 ifO<t<TandxeDg, (2.2)
0

0S+u-VS=0 if0<rt<T andx € Dg, (2.3)

where ¢ is the time variable, p the density, u the velocity, P the pressure, S the entropy. If uD u @ 43 are the
components of u, V - u of course means } | ;3 dju, u-Vis 213 ud; and u - Vu = (u - V)u. Throughout
this paper we shall deal with ideal polytropic gases, namely we shall assume that P = P(p, S) = K p” ¢X25, where
K1, y, K are strictly positive constants with y > 1. We shall also set » = |x|. Throughout this paper, a function of
(t, x) will be called radial if it depends only on (¢, ). We shall say that (p, u, S) is spherically symmetricif u = Ux/r
with U real-valued and p, U, S are radial functions. Fix M > 0, p > 0, S > 0, and let ¢ > 0 be a small parameter,
always assumed to belong to (0, gp] for some small g9 > 0 throughout this paper. We shall consider the impermeability
boundary condition

u-x=0 if0O<t<Tandr=R 2.4)

(which of course will take a much simpler form for the spherically symmetric solutions to be considered in the present
paper) and the family of spherically symmetric initial conditions

p0,x)=p+epp(x,e) ifx € Dg, (2.5)
u(0,x) =cug(x,e) ifx € Dpg, (2.6)
S0,x)=8+¢eSo(x,e) ifx € Dg, .7)

where p(0,x) > 0, po(x, &) = ,oo(r) + 8,0] (r, &), up(x, &) = W) + sul(r, eNx/r, So(x,e) = SOr) + eSt(r, ¢) for
some functions p/, u/, S/ (fixed throughout this paper) which are C*°([R, +0o0)) functions of » and vanish when
r > R+ M, with ,00, u®, §0 independent of ¢. We shall assume that the initial data (2.5)—(2.7) satisfy the usual
compatibility conditions of all orders when t = 0, » = R, for the boundary value problem (2.1)—(2.4). Recall that this
means that if (o, u, §) is a smooth solution of (2.1)—(2.3) for some T > 0 such that (2.5)—(2.7) hold, then 8tku -x=0
if k€N, r=0and r = R. We shall also assume that [%p'| 4 |8%u'| + [0 S'| < C, if @ € N°, with C,, independent
of ¢ (and of x € Dg) and fixed throughout the paper. Set I, = {T > 0, (2.1)—(2.7) has a unique C*°([0, T') x Dr)
solution (p, u, S) (hence p > 0)}. In Section 3, the following theorem will be proved easily with the help of the
results of [5].

Theorem 2.1. If ¢ is small, then I, # 3. Moreover, if T € I, then (p,u, S) is spherically symmetric if 0 <t <T.
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Set T, = sup /. The purpose of this paper is to obtain precise information on the behavior of T. as ¢ 3 0. To
describe our results, we need to introduce certain quantities. Set ¢ = (a—P(,E), S)H1/2, Cp = ( )1/ 2(p, S). No-

R+M 0 — o0
tice that pc, + ¢ > 0. Define for » > R: fo(r) f »ndy, fir) = —0(7 + K27)(r), and, for g € R:

Fo(q) = 3(R+1q — RDfo(R +1q — R + § [gaoe g v () dy + et/R=2 [FHET0 o0y (£ (y) — % foy)) dy;
throughout this paper, f , means — fh if b < a, and ay = max(a, 0) if a € R. It follows from results of [4], re-
called in Section 4 below, that Fy € C*°(R), Fy and all its derivatives are bounded, and maxqeR(—Fé/ (9)) 2 0. Set
T = (T + pcy)~ (maxger(—FJ ()" if maxyer(—F}(g)) > 0, T* = +00 otherwise. So t* € (0, +00] and it
follows from results of [4] recalled in Section 4 below that t* < 4-oc if and only if |u°] + I%O + K2S70| =# 0. The

purpose of the present paper is to prove the following long time existence result, whose boundaryless analogue has
been obtained in [3].

Theorem 2.2. limsz) O(s InT,) =1*

As announced in the introduction, Theorem 2.2 will be proved by adapting the method used in [3]. We shall
construct an approximate solution of (2.1)—(2.7), from which we shall obtain the following result, which is the first
half of Theorem 2.2.

Theorem 2.3. liminfgz)o(s InT,) >1*
Then we shall show how to modify the arguments of [3] to prove the next result:
Theorem 2.4. lim supsgo(s InT,) <t*

Theorem 2.2 follows at once from Theorem 2.3 and Theorem 2.4.

In the following sections we shall introduce a number of useful notations which will be used throughout this paper.
Functions 6, w, z are defined at the beginning of Section 3 and corresponding functions ®, W, Z just before (3.9).
Functions 6, wy, z1, vector fields I';, X, and some norms are introduced after the proof of Lemma 3 1, just before

the statement of Theorem 3.1. Functions 6, wy, zo are defined just before (3.20) and norms E (t) just before
Theorem 3.2. Norms Em’ ;(t) and (semi-)norms Q,, ;(¢) are introduced at the beginning of Section 5. W, appears

in the proof of Proposition 5.1(6), ®;, Wi, Z; are defined just before Lemma 5.3 and norms E~rln/ ?(t) just before
Proposition 5.3. In Section 6, useful notations are grouped just before (6.30).

3. Proof of Theorem 2.1. The approximate solution

In this section we shall show that Theorem 2.1 follows easily from the results of [5], and we shall describe our
approximate solution.

As in the boundaryless case [3], it is convenient to introduce new dependent variables 6, w, z defined by 6(z, x) =

1((P(t/c X)/PYYV/2 1) w(t, x) = u(t)é, x) /e, z(t, x) = eK2S=9W/E0/Y _ 1 where P = K" K25, Set
C1 = (y — 1)/2. Then, from (2.1)—(2.7), we obtain with a new T':

30+w-Vo+(1+C10)V-w=0 ifO<r<T andx € Dg, (3.1)
w4+ w-Vw+(1+Ci0)(14+2)VO=0 ifO0<t<T andx € Dp, (3.2)
00z+w-Vz=0 ifO<t<Tandx € Dg. (3.3)
w-x=0 ifO0O<rt<Tand|x|=R, (3.4
0(0,x) =¢e0p(x,e) ifx € Dg, (3.5)
w(0, x) =ewp(x,e) if x € Dg, 3.6)

z(0,x) =¢ez9(x,¢e) if x € Dg, 3.7
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where 6y (x, €) = ((P(0,x)/P)Y=D/2Y —1)/Cie, wo = uo/¢, zo(x, €) = (e#K250.8/7 _ 1) /¢ Notice for later use
that 6y (x, €) = 0°(r) + €0 (r, &), wo(x, &) = WO(r) + ew'(r, £))x/r, zo(x, &) = 2°(r) + ez!(r, €), where 67, w/,
7/ are C®([R, +00)) functions of 7 vanishing when r > R + M with [0%0'| + |8%w'| 4 8%z | < C, for all x €
Dpr and e small. Now the operator on the left-hand side of (3.1)—(3.3) is symmetrizable hyperbolic (cf. [3]). In
fact let w®, w® w® be the components of w in the canonical basis of R? and consider the 5 x 1 matrix ¢ =

tr(6 (w(i))1<i<3 z), where ¢r means transpose. Define the 5 x 5 matrices A;(¢), 0 < j < 3, with elements Alj‘.’l(¢>),
1 <k,1 <5, in the following way: Ay' (¢) = A7~ (¢) = 1, A (¢) = 1/(1 +2) if 2 <k < 4, Ay (¢) = 0 otherwise;
if1<)<3,47'@) = 477 @) =, A7 @) =w /(A 4o if2<k <4 A7 @) = 4] @) = 1+ Cif,

A%l (@) = 0 otherwise. (3.1)~(3.3) read

Ao(¢)oi9 + Z Aj(@)dj¢p=0 ifO<t<Tandx € Dg; (3.8)
1<j<3
each A;(¢), 0 < j < 3,1is (real) symmetric and Ag(¢p) > 0.
The formulation (3.8), (3.4)—(3.7) will be suitable to obtain L? estimates, but in our case (6, w, z) will be spher-
ically symmetric, which means that (¢, x) = O(t,r), w(t,x) = W(t,r)x/r, z(¢t,x) = Z(t,r), with O, W, Z real-
valued. So (3.1)—(3.7) will yield

Bt@+W8r@+(1+C1@)<8rW+§W>=O if0<t<Tandr > R, 3.9)
W+ WoW+(1+C1®)(1+2)s,®=0 if0<t<Tandr >R, (3.10)
0Z+WoZ=0 ifO0<t<Tandr >R, (3.11)
W, R)=0 if0<t<T, (3.12)
O0,r) =¢e0Oqy(r,e) ifr >R, (3.13)
W@QO,r)=eWy(r,e) ifr >R, (3.14)
Z(0,r)=¢Zy(r,e) ifr >R, (3.15)

where O(r, &) =0p(x, &), Wo(r, e)x/r =wo(x, €), Zo(r, &) =zo(x, €).
It is now easy to prove Theorem 2.1.

Proof of Theorem 2.1. Assume that ¢ is small enough. (3.9)—(3.15) is a mixed problem with characteristic boundary
of constant multiplicity for the symmetrizable hyperbolic system on the left-hand side of (3.9)—(3.11). It follows with
the help of Theorems 2 and 4 of [5] and a standard uniqueness argument that (3.9)—(3.15) has a unique C* solution
which gives rise to the only solution of (3.8), (3.4)—(3.7), so that I, # (4 if ¢ is small enough. (For short time existence
results, see also [10,11] and the references given in [10,5,11].) O

‘We now turn to the construction of the approximate solution of (3.1)—(3.7). As a first step, we want to approximate
0, w, replacing z by 0 (i.e. taking an isentropic flow). However the initial data (g6p, ewg, 0) need not satisfy the
compatibility conditions for (3.1)—(3.4) when t =0 and r = R when (g6, ewy, £z9) do. So we first have to modify
6o, wo and this is the purpose of the next lemma.

Lemma 3.1. If ¢ is small, one can find 6y(x, €) = Oy(r, &), Wo(x, €) = Wo (r, &)x/r (where O and Wy are real-valued
and C* with respect to r € [R, +00)) which satisfy the following conditions:

(D |8§‘9~0| + [0 wo| < Cy ifax € N3 (with Cy independent of ¢),
(2) 6o=0and wo=0ifr >R+ M,
(3) (€60 + €20y, cwo + €%y, 0) are infinitely compatible initial data for (3.1)—(3.4).

Proof. Writca; =1+C10,a=(1+C®)1+2Z),® =(®, W, Z). From (3.9)—(3.11) it follows by induction that
if j >1, (3.16)

i 1
o = Pj(;’ (3f‘p)o<k<j>
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where P; is an R3-valued polynomial function with P;(1/r,0) = 0. Write £ = 9, (9, + 2/r). By induction, we obtain
with the help of (3.10), (3.16) that

: i = 1
o/ W=—a8)"'9.0 —wa/ o, W + Py <;, (af¢)0<k<j_l> if j>1, (3.17)
and with the help of (3.9), (3.16) that

. . . 1
3719,0 = —a19/ 7 LW — wo *02e + sz( , (oF @) if j>2, (3.18)

7 0<k< j—l)
where Pj;, [ =1, 2, are polynomial functions and A — Pj;(1/r, A) vanish of order 2 at 0. Taking (3.18) into account
in (3.17) and using also (3.16), we easily find that

1 .
8t2PW=(alaz)PLPW—Fsz(;,(85¢>)0<k<2p> lfp> 1,

1
8;2p+1 W =—(a1a2)’ a2 L7 3,0 +M2p+1< ’ (85‘1)) if p >0,

’ o<k<2p+1>

where M (L, (9% ®)ock<j) = WPj1 (L, (35 ®)o<k<;) + Pja(L, (8FP)o<k<j—1) in which Pj, are polynomial func-
tions and A — P}, (1/r, A) vanish of order n at 0. We easily conclude that the compatibility conditions when t =0

and r = R (for the mixed problem (3.9)—(3.15)) read

W=0, 80=0  L'W=—(q1a) " Pp((3f®) if p>1,

ogkgzp—l)

LP3,0 = —(a1a2) Pay ' Popii((3F @) if p>0,

ogkgzp)
where ﬁj are polynomial functions which vanish of order 2 at 0. If we set ok = (Bk, wk, zk), k =0, 1, this can be
rewritten as

LPw(R)=L£P3,0°(R)=0 if p>0,
w'(R, &) =9,0" (R, ) =0,

LPw' (R, ) = —e 2 (a1a2) "7 (0, R) P, (695 ®°(R) + 28 @' (R, ¢)) ) ifp>1,

0<k<2p—1
L£P3,6" (R, &) = —e*(@1a2) P (0, R)a; ' (0, R) Papi1 (0 @°(R) + €297 (R, ©)) ) i P> 1.
(3.19)

Notice that if (3.19) holds and 70 7! are replaced by new ones, we may keep the same 60, wO and find new 0!, w!
vanishing for » > R + M and with each r-derivative uniformly bounded in r and ¢, such that (3.19) still holds; indeed,
the proof of the classical Borel theorem in Theorem 1.2.6 of [6] can readily be adapted to give such new 6!, w'.
Lemma 3.1 follows easily. O

By the arguments of the proof of Theorem 2.1, there exists 7' such that, for ¢ small, (3.1)—(3.4) has a unique
C>([0, T] x Dg) solution (8, w1, 0) with initial data (£6y + £260, swo + £2, 0) when r = 0. Actually the situation
now is even simpler than in Theorem 2.1: it suffices to consider (3.1), (3.2) with z =0, (3.4), with initial data (¢6y +
€20y, swg + €21, 0); in the formulation (3.9), (3.10) with Z = 0, (3.12), the sphere r = R is now noncharacteristic
as long as 1 4+ C1© does not vanish. In fact it is convenient to reduce to a potential equation, which we shall do a little
later for obtaining long time estimates.

Now set z1 (¢, x) = ezo(x, €). Notice that (0, 0, z1) is also a solution of (3.1)—(3.4) (which corresponds to a solution
of (2.1)—(2.4) with zero velocity and constant pressure). (61, w1, z1) will be our approximate solution.

In order to describe important estimates, let us introduce some notations. Define (I, I, I», I3, [4) = (0, 91,
02,03, X), where X =19, + Zlng xjdj. Ifa=(ap,a1,a2,a3,a4) € N, set ' = 8[“08;“ 3;23§3Xa4_ When conve-
nient, we shall write f' = 3f = (3, f, 91 f, 92.f, 93.f), dp instead of 9;, and 9% = 8?‘ 8;‘28?3 if o = (a1, 0, 3) € N°.
For an R -valued function f (¢, x), we shall denote by f (¢) the function x — f (¢, x) and set | f (t)| = Supyep,l f (7, X)1,
ILf®l = (fDR | £(t, x)|*dx)"/2, where | | is the usual Euclidean norm on R" . For functions of x only, || || will be the
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standard L2(Dg) norm. Identifying p x ¢ real matrices with elements of RP¢, we shall also use the notations | f (¢, x)|
(or | f(¢,r)|if f is a function of (¢, 7)), | f|, | f(t)| when f is valued in the set of p x g real matrices. Finally we shall
set (y)=1+|y|lif y eR.

With t* as in Section 2, we have the following result, which will be proved in the next section.

Theorem 3.1. Fix a € N° and © € (0, 7t*). One can find g >0, C > 0, and if R > R, also_C_‘ > 0 such that
the following holds: if 0 < & < g9 and eInT < 1, then 61, w; exist, belong to C*°([0,T] x Dg), vanish when
r >t + R+ M, and satisfy the following estimates for all t € [0, T]:

M Ireo @ + 1M w1 @) < Ce,
Q) IF“01O] + 1T wi(1)] < Ce(r) ™!, ) )
(3) (IVT01(1, %) + 18, 701 (1, )| + | 7wy (1, 0)] < Ceft) > if R<r < R.

Suppose now that € (0, t*) is fixed and let (0, w,z) be a C°([0,T] x Dgr) solution of (3.1)=(3.7), where
eInT < 7. Assume that ¢ is small, and let (61, wq, z1) be as above. Set b =6 — 61, wr = w — w1, 22 =2 — 1.
Then of course

00 +V-wy=—(w-VO —w;-VO) —C1(0V-w—01V-wy) ifO0<t<TandxeDg, (3.20)
dwy + VO =—(w-Vw—w;-Vwy) —C1 (VO — 01 Vo)) — (1 + C160)zVo

if 0 <t < T and x € Dg, (3.21)
022 =—(w1 +w2)-V(z1+22) if0<t<Tandx e Dg, (3.22)
wy-x=0 ifO0<t<Tandr =R, (3.23)
62(0,x) = —£%0p(x,€) if x € Dg, (3.24)
wy(0, x) = —eg(x, &) if x € Dp, (3.25)
22(0,x) =0 if x € Dg, (3.26)

with 6y, W as in Lemma 3.1. Now, if x € Dg, it is easily checked that |8{‘8§‘(9,w,z)(0,x)| < Ciee and
|a{<a§ 01, w1, 21)(0, x)| < Crqée, so by (3.24)—(3.26) and (3.20)—(3.22) we obtain that

|07 8 (62, w2, 22)(0, x)| < Cras™. (3.27)

We shall use a fixed function i : (0, 1) — (0, 400) such that ¢y (¢) is bounded and ¥ (¢) — 400 as ¢ 30. (Re-

placing v by another function | of the same type such that (1/v¥)(e) — 0 as ¢ = 0 will improve estimates.)
Set En (1) = Y 14j<m (IT402(0) 1> + [T w2 ()II* + [|[722(2)[|*). With the help of Theorem 3.1 we shall prove in
Sections 5 and 6 the following result, which measures the quality of the approximation of (6, w, z) by (61, w1, 21).

Theorem 3.2. Fix m € N. If T € (0, t*), one can find C > 0, g9 > 0 such that the following holds: if 0 < ¢ < &,
eInT < 1 and (02, wo, 22) is a C([0, T] x Dg) solution of (3.20)~(3.26), then Ex/*(t) < Ce>y(e) ift € [0, T].

As a system with unknown (6> w> z2), (3.20)—(3.22) is symmetrizab_le hyperbolic (cf. (3.8)). Using Theorem 4
of [5] and Theorem 3.2, we find that (3.20)—(3.26) has a C*°([0, e*/¢] x Dg) solution when 7 € (0, t*) is fixed and &
is small. Theorem 2.3 then follows easily.

4. Proof of Theorem 3.1

In this section we shall study the approximate solution introduced in Section 3 and we shall prove Theorem 3.1.

As already said after (3.19), there exists T > 0 such that (3.1)—(3.4) has a C*°([0, T'] x Dg) solution (01, wi, 0)
with initial data (¢6y + 8250, swo + 2o, 0). Assuming as we may that 1 4+ C10; > 0, we may consider the corre-
sponding solution (o1, uq, S) of (2.1)~(2.7). We now recall some facts on the potential associated with (o1, 11, S)
(cf. [3]). Consider the potential function vy (#, x) vanishing for large |x| and defined by the relations Vv; = uy,
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dv1 = —|u1|*>/2 — h(py), where h(s) = s 82(0,8)0 7 do if s > 0. Then v; € C*([0, T/¢] x Dg) and vy is ra-
dial. Set H(s) = h~(s), M(s) = H(s)/H (s); then M(0) = &2. If we set v(f, x) = v(t/¢, x), it is easily checked

that

2 1 1 i 1
afv+g > 0,090V + = > ajvakva}kv—E—ZM(—ca,u—sz;F)Av:o

1<j<3 1</, k<3

if0<t <7 and x € Dg, 4.1)
v=0 if0<t<Tandr=R, 4.2)
3/v(0,x) =¢ef;(r) + €20 (x,e) ifx €Dgand j=0,1, 4.3)

where f; are as in the definition of Fy in Section 2, the functions x — v;(x, &) are radial and in C>(Dg), [027;] < Cq
with C, independent of ¢ and of x € Dg, and v;(x,&) =0 if |x| > R + M. Moreover the initial data in (4.3) sat-
isfy compatibility conditions of all orders when t = 0 and r = R. So as proved in Section 3 of [4], (fo, f1) are
infinitely compatible initial data for the boundary value problem Ovgp =0 if # > 0 and x € Dg, d,v90 =0 if t > 0
and r = R, where [J = 8,2 — Zlgj<3 812., and therefore, by Lemma 3.3 of [4], Fy € C*°(R), and Fy and all its

derivatives are bounded. We may write (4.1) in the form Ov — Yo, ;<3 /¥ (3v)87v = 0 with ¥ € C* in an

open neighborhood of 0, f%(0) =0 and f%/ = fJi. Denote by fi/* the partial derivative %(0) of the function
(0,61,62,8) =& — f7(§) at 0. Set g = =Y ¢ j 1<z [ /¥ @i, where @ = —1 and (&1, @2, @3) € S*. We
have g = —2(pc, + ¢)/¢* < 0, and, again by Lemma 3.3 of [4], max,cr(—Fy () > 0 and max,er (—Fj(g)) =0 if
and only if | fo| 4+ | f1| = 0. This gives at once the properties of Fjy and t* stated in Section 2, just before Theorem 2.2.

Moreover, we have the following result, which follows from Theorem 3.1 of [4] and the continuation argument yield-
ing Theorem 2.2 of [4] from Theorem 3.1 of [4].

Theorem 4.1. Fix t € (0, t*) and a € N°. One can find g9 > 0, C > 0, and for each R > R, a_lso C > 0, such that
the following holds: if 0 < & < &y and eInT < t, then (4.1)—~(4.3) has a unique C*°([0, T] x Dg) solution v, which
satisfies the following estimates for all t € [0, T]:

(D) [[F*' ()| < Ce,

(2) |7/ (t, x)| < Cefr) !,

(3) [T (t,x)| < Ce(t)™ ™ L if R<r <R,

@) [T(t,x)| < Ce(t) ™2 ifa; +ar+a3 >0and R <r <R.

With the help of Theorem 4.1, we are able to prove Theorem 3.1.

Proof of Theorem 3.1. We have w(z, x) = Vu(t, x)/¢, 01(t, x) = (p1(t/¢,x)/p)Y~D/12 —1)/C, = F((¢d,v +
|Vv|2/2)(t, x)), where F € C* in an open neighborhood of 0 and F(0) = 0. Moreover, 3,0; = —w; - V6 — (1 +
C1601)V - wi. Therefore Theorem 3.1 follows easily from Theorem 4.1 with the help of standard estimates of nonlinear
functions. O

5. Proof of Theorem 3.2: Reduction to Proposition 5.4

In this section and the next one we shall prove Theorem 3.2 by an energy method. To treat the boundary terms, it is
convenient to introduce intermediate norms (which was done in [4] for second order quasilinear wave equations) and
therefore the energy method will be somewhat more complicated than the one used for the boundaryless case in [3].

Let ¢ be as in the statement of Theorem 3.2. We are going to prove the following result, which is the analogue of
Theorem 5 of [3] for our exterior mixed problem.

Theorem 5.1. Fix m e Nwithm > 2. If t € (0, t*), one can find g9 > 0 such that the following holds: if 0 < ¢ < &,
eInT < 1, and (62, w2, 22) is a C®([0, T x Dg) solution of (3.20)~(3.26) with EL/*(t) < ey (¢) if t € [0, T, then

Ey (1) <e¥y(e)/2 if t €10, T].
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Since El/ (0) < Coe? for some Co > 0, Theorem 3.2 follows at once from Theorem 5.1; hence the proof of
Theorem 5.1 will complete the proof of Theorem 2.3.

The rest of this section and the next section are devoted to the proof of Theorem 5.1.

Henceforth we shall set o1 (7, x) = (1 + (¢ £ r)?)!/2. We start with two useful lemmas.

Lemma 5.1. If F € C*®([R, +00)) is such that F(r) = 0 when r is large, and if f(x) = F(r)x/r, then
lo—@r=t £ <2Alo—@d, £l + 11 £1D-

Proof. Set G(t,r) = o_(t,x)F(r). If we integrate the identity G2(t,r) = 3, (rG?(t,r)) — 2rG(t,r)d,G(t,r) over
[R, +00) with respect to dr, Lemma 5.1 follows easily. O

Lemma 5.2. If j,l € N, one can find C > 0 such that the following holds: if F € C*°([0,T] x [R, 400)) and if,
for each t € [0, T], the function r — F(t,r) vanishes when r = R and also when r is large, we have if f(t,x) =
F(t,r)x/r:

(D) -V -3 X' ()] < CEju(),
@) -3 X ) < CEH ),

where 5jl(f) = Z\aHkngrl;kgl [(o_V - 3?ka)(t)|| + Z|ﬂ|+ng1 ||8£an(t)||
Proof. We first prove (1) and (2) when [ = 0. Let us check first that

(V-3 1)) =D (cjaV - 08 f)(t.x) +cjr 7 F (e, 1), (5.1)

o <Jj

where ¢jq € C*>°(Dg) and are positively homogeneous of degree || — j, and cj e Rwithcop=0.1If j =0, (5.1) is
obvious and it is easily proved by induction on j if we use the relations (V - Br“'lf) (t,x) = Zlgkgs rlx eV -
& f(t,x)+2r 23] F(t,r), 3/ F(t,r) = (V-3 f)(t,x) —2r=18/ F(t,r). On the other hand, since F (¢, R) =0, it
follows from the arguments of the proof of (6.7) of [12] that

le-vHm| <c( ), (5.2)

where V f = (9; fj)1<i,j<3- Since |9, f| < |V f], this gives (2) when j =1 = 0. Using (5.1), (5.2), and Lemma 5.1,
we obtain (1) when / =0 < j. Of course (1) is obvious when / = j = 0. To prove (2) when / =0 < j, we write
3T F =v .9 f —2r~18/ F and just apply (1) (with [ = 0) and the case j = = 0 of (2). Now assume that (1), (2)
have been proved for all j when / < L, and let us show that they still hold for all j if /| = L 4+ 1. Write Xf = g1 + g2,
where g1 = (X — R9,) f, g2 = R, f. With the help of the induction hypothesis on (1), (2), applied to g; and f with
[ =L, and of Lemma 5.1, we obtain (1), (2) for [ = L + 1. The proof of Lemma 5.2 is complete. O

Let us define £,/ (1), m,1 €N, 0 <I <m,and Qp(t), m,l €N, 0 <! <m — 1, in the following way:

Ena= Y (|[r6o| +|rwon|’+ |ranl?).
la|<m; ag <L
i)=Y, ([(e-VIa)O]+ (-8 w)®] + [ (o-V - Mw2)@)]).
lal<m—1; as<l
Notice that E,, ,, = E,,. To economize notations in the sequel, it is also convenient to write Hy, ; = Q.+ E rln/ 21 /
when 0 <7 <m — 1. Sometimes it will be convenient to set E;, —1 = Q. —1 = Hp,—1 = 0 if m € N. Useful estimates

(mostly of Sobolev type) are contained in the following proposition (where the estimates are slightly better, regarding

the number of consumed derivatives, than in Lemma 2 of [3], because now r > R). We set 0, (f,x) =ro_ 12 (t,x) +
r12¢_ (t, x).
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Proposition 5.1. The following estimates hold:

(1) [FT 60|+ Ir P wa (0] + IrT22(0)] < CE g 4, (),
) 1r(0-VI0)(1)] < CQlaf42.a, (1),

(3) (020 X'02) (1) + (00 X' w2) (1)| < CHyyy11,1(0),
@) [r@_ VI W) ()] < C(Qlat2,as(0) + Eal a1 a0 ),
(5) 1@-VI WO < C(Qlat 1,04 () + Eqlay.a (1),

©6) (t)lwa(t, x)| < CQro() if R<r <R.

Proof. (1) and (2) follow easily by the proof of Lemma 4.2 of [9]. (3) is a consequence of Lemma 4.1 of [4] and of
Lemma 5.2(2). To prove (4), write ' = 3¥3% X' and observe that

VI w,| < c< > |ofof X wy)| +r'“‘|afxlw2|). (5.3)
1<p<lal+1
Now by the proof of Lemma 4.2 of [9], |r(o-;8f X'w2)(1)] < CY ¢ I(o—8%87 ™ X"wy)(1)]], so by Lem-
ma 5.2(2), we find that |r(o_837 X w2) ()| < C(Quspsi41(1) + ELS () if p > 0. If we then estimate
[(o— Bthlwz)(t)| by (3) and use (5.3), (4) follows. To prove (5), observe first that

), (5.4)

by Lemma 5.1. Multiplying (5.3) by o_ and taking L>(Dg) norms, we obtain (5) if we make use of Lemma 5.2(2) and
of (5.4). Finally (6) follows if we define W»(t, r) by the relation wy (¢, x) = Wy(¢, r)x/r and write that |Wa (¢, r)| =
r72| R 3 (Wat, s)s?) ds| < Cr—2 fR<|y|<r [(V - w2)(¢, ¥)| dy. The proof of Proposition 5.1 is complete. O

I (-8 X w2) 0] < € (1 (-2, 08 X ) 0] + 25X w0

For the sequel, let us introduce some useful notation already used in [3] in the boundaryless case. If I'* = 3% X*
and we apply 3% (X + 1) to (3.20), (3.21), we obtain that

atF“62+V-F“w2=hg,
0;Mwy +VI%0, =h?,

a __ a a a 3
where h =31 ;<6 T b =3 7¢ <13 7> With

=G (a) IPo,vIre"e,, T, =—Ci <a) rte,vra"e,,

i = —3%(X + D¥((1 + C10)zV0).

We are going to prove the following result.
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Proposition 5.2. Fixm, l e Nwithm > 2 and 1 <1 < m. One can find n, C > 0, and, for each T € (0, %), alsog),
g0 > 0 such that the following holds if 0 < & < &9, and, for some T € (0, e™/?], (62, w2, z2) is a C*([0, T] x Dg)

solution of (3.20)~(3.26) with E,/> | ,_ (1) < n forall t € [0, T], then Qp.1—1(r) < CE,/7(t)+Coe*(t) 2 if t € [0, T1.

Proof. We adapt the proof of Proposition 3 of [3] (where / = m and there was no boundary). First we obtain, if
re=9X% la|<m—1,k<l—1:

OmiOCEJ0+C Y (t|rg@ ] + ] (orh?)@)]).- (5.5)

lal<m—1; ay<I-1

Indeed, (5.5) is proved exactly as (37) of [3]. Then we easily obtain with the help of Theorem 3.1(1), (2) and of
Proposition 5.1(1), (2), (4), by elementary modifications of corresponding arguments of the proof of Proposition 3
of [3]:

[(0479) )| < CreE,/T (1) if j €(1.2,4,5.7.8,10,11}, (5.6)

|(0+t9) ] < CEY2, (0 Hpa—1() if j €1{3,6,9,12}, (5.7)
2

(o)) <€ (5 + .2 0) + COnn(EL, 0 +). 58

Proposition 5.2 follows from (5.5)—-(5.8). O

Until the end of Section 6, we shall make the assumption that EY o max(l 1 (1) < €2y (e) (this assumption could be
relaxed at some places, but we keep it for simplicity and it is sufficient for our purposes). When convenient, we shall
write 0;(¢,x) = O;(t,r), w;(t,x) = W;(t,r)x/r (W has already been defined in the proof of Proposition 5.1(6)),
zj(t,x) =Z;(t, r). The next lemma will be useful.

Lemma 5.3. Fix m, l e N with m > 2 and 0 <1 <m, and t € (0, t*). One can ﬁnd go > 0, Ry = R such that
the following holds: if 0 < e < &9, eInT < 7 and (62, wy, z2) is a C*°([0, T] x Dr) solution of (3.20)—(3.26) with

E)/% any® <eXW(e) if t €10, T, then z1(1,x) = 22(1,x) =0 if t € [0, T] and r > Ro.

Proof. We have |W;(t,7)| < flg |0; W; (2, s)|ds, so with the help of Theorem 3.1(2), Proposition 5.1(4) and Propo-
sition 5.2, we obtain that |W (r,r)| < Cre(r — R){r)~! since ey (¢) is bounded. Now z(¢,x) =0 if r > R(t) where
R'(t) = W(t, R(t)) and R(0) = R + M. A standard comparison argument shows that, for some Ro >R, R(t) < Ry if
elnt < 7, so Lemma 5.3 follows since z;(t,x) =0whenr > R+ M. O

Since we suppose until the end of Section 6 that ¢ is small and that £,/ 12 m.max(, l)(z‘) & 1/[(8), we shall assume at
the same time that |z| < 1/2, as we may thanks to Proposition 5.1(1).
Henceforth we shall set a = (k, 0,0, 0, A) so that ['¢ = 8thx. If ¢ € N°, it follows from (3.20)—(3.22) that

(a,+w-V)F”92+(1+cle)v-1*“w2=/23, (5.9)
1 ra
O+ —— V| + 1+ CiO)VI, = , 5.10
(1+ A 1+ ) 2+ ( 160) =1 (5.10)
0 +w-V)Izp=g", (5.11)

where h , he, §¢ are defined as follows: hGg =2 ic.5 T T2 jet1,3.46) T h =2 jesan T +22)e7,9.10,12,13) T »

where rj are the same as in kg, h%, but now with I'* = BlkX)‘ and |a| <m.Ifa #0, f;.‘ (j # 13) are defined as t;.‘

(with I'* = 8,"X * and |a| < m) but with the supplementary condition that » # 0 in the sum; fj(.) =0if j #13;

ﬁnally i =ty + (1 +C10)zV 02, Also §° = 31 ¢; <2 &> With &) = = 2y, (§) T wi - VI 215 when ¢ #0,
85 ==Y 0za<c (5T wi - VI 9z5, and g2, =0.
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Ife=EM ?, 5(3)) e R3, let (V)1 <;<3 be the row matrix of the components of £. Define the 5 x 1 matrices

¢ = 1r(I6y (M) L, <y Te22), F4 = tr(hy (h /(1 + 2)\L, .5 §). With Aj($), 0< j <3, as in (3.8), (5.9)-
(5.11) can be written
Ao@)did™ + Y Aj(@)d;¢" = F. (5.12)
1<<3

Taking the pointwise Euclidean scalar product (in R%) of (5.12) with ¢“¢, integrating over D and using the symmetry
of A;(¢), we obtain, writing dS for the canonical surface measure on 0Dp:

d 1 X;
O OB f > (4@ ). x)dS

2d :
oDy 1<I<3

1
=(F*.0%)0+ 5 2 {(054;9)9". ¢} 61

0<j<3
here and in the sequel, we also denote by - the standard Euclidean scalar product of v x 1 real matrices (whatever v)
and, for two functions f(z,x), f(¢,x) valued in the set of v x 1 real matrices, we write (f, f)() = f’DR f(, x) -
f(t, x)dx (v=>51in(5.13)). It is easy to check that

Z %(Aj@)w %) (t,x)dS = 8T R*((1 + C10)[“ O W) (¢, R). (5.14)
oDy 1<I<3

Set Em,l(t) = Z(||F“92(l)||2 + IT%wa () )|1> + 1T 22(1)||?), where the sum is taken over all @ = (k, 0, 0,0, 1) € N,
¢ = (co,c1, 2, c3,c4) € N with A, ¢4 <1, |al, |c| < m. The next proposition justifies the choice of a in (5.9)—(5.11).

Proposition 5.3. Fix m, l e N withm > 2 and 0 <1 < m, and © € (0, t*). One can find gy, Co > 0 such that the
following holds: lf (62, wp,22) is a C*°([0, T] >< ’DR) solution of (3.20)—(3.26) with 0 < & < gy, eInT < 7, and

E,? i <2 (e) when t €[0,T], then E,1(t) < Co(E,/7 (1) +€>(1) ) if 1 €[0. T,

Proof. We may assume that / < m — 1 since the case /[ = m follows at once if we know that the proposition holds
when ! <m —1.Set @p k3. (1) = 3, , (17 TO(O | + 1107 T w2 (D)), Ep ke (1) = 32, <, (BT ARG O + 187 A (D) D,
where ¢ = 8th * with A <1 and k + A < m. Taking &y small and using Theorem 3.1(2) and Proposition 5.1(1), we
may and shall assume that C1|0| < 1/2. Recall that we also assume that |z| < 1/2. We obtain from (5.9), (5.10) that

a a a rya a atj Iw,
tr(B,F &, 0, I" Wz) =B(®,W, Dtr HO H" 0, """ ®, T s (5.15)
0<j<1

where B is a C* 2 x 5 matrix, Hd (1, r) = hi(t,x), H*(t,r) = h*(t, x) - x/r. Applying 9/ to (5.15), with p <m — 1,
we obtain with the help of Theorem 3.1(2) and Proposition 5.1(1):

Dy i1 41 (1) SC(Ppiy 1.0 (D) + Pp (1) +Ep k(D). (5.16)
It is not hard to check with the help of (5.16) that

EJ<CEjm+C 3 (larad) | + [ a2 i
pHld|<m—1; d=(k,0,0,0,1); A<]

), (5.17)

so it remains to bound the factor of the second C on the right-hand side of (5.17). Until the end of the proof of
Proposition 5.3, we assume that p, d are as in (5.17). With the help of Theorem 3.1(2), we obtain

lof ¢ <c () E)% (1) if je(2.5.8,11}, (5.18)

laf ¢4 < () E)? (1) if je(1,4,7,10}. (5.19)
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Since m > 2, we have

laf 24 < (t)( E,/(O)Hu11-1() + E,[TOE)? (1) if j €{3.6,9.12}. (5.20)

m,l

Let us check (5.20) when j =9 since the other cases are similar. Write Apppg :_8," TPwy - 977"V Id=byw,; here
and in the sequel P; f - P,Vg means of course the vector function Zlg i<3 P f D pPya g if Py, P, are scalar dif-

ferential operators, f, g are R3-valued functions, and /) are the components of f in the canonical basis. We
have 372§ = —C) > 0sb<d. 0<n<p ®) (Z)Anbpd. If dy — by <1 — 1, we can use Proposition 5.1(1), (5) to bound

[ra Twa (1) (0—8F ™"V I'¥=Pw,)(¢)|| and obtain
|1 Aunpa) (O] < CE,S () Hpp 1 11 (2). (5.21)

If now ds — by =1, then '’ = 3" and dy = 1. Set x = 8/"'~"8"w, (recall that b # 0). Writing 3,x =t~ Xx —
t~179, x and using Proposition 5.1(1), we obtain

2 2 .
| @4 Anbpa) )| < CE,TOE,?, (1) ift > 1. (5.22)
On the other hand it is easy to check with the help of Proposition 5.1(1) that
g2 172 .
|1 Auspa) (O] < CESOE,2 o) ifr< 1. (5.23)

(5.20) for j =9 follows from (5.21)—(5.23). Finally we also have
pad C 1/2 1/2 e’
lof2 ”(”’KE 1)+ = m 1O+ E0m11-1() + — e (5.24)
Let us check (5.24). If ' = 9F X%, % < 1, we have £ = 3", ;<3 B}, where By = —3K(X + 1)} (2V8) + 2V I8,
By = —3K(X + 1)(C162V6) 4 C16zVT960, By = —(1 + C10)zVI6,. If 0% b < d and n < p, set Dijp, =
anrbz;877"vrd=bg;. With the help of Lemma 5.3 and of Theorem 3.1(3), we easily obtain that

[CHRPRIGT IS CWE,L/ZHU). (5.25)

Now setk| =¢,kp =E ;1/ ? We readily obtain with the help of Proposition 5.1(1) that

&
| (04 D11on) (1) || < CW,

(04 Dizsn) @) || < Cki (1) Qu—1,1-1(t) ifds—bsy <I—1. (5.26)

Ifdy — bs >1, then I'’ = B,‘bl and so Dizp, = 0. Set now y = Bt‘bl_lafzg. Writing again 0; x = t_lXX — t_lrarx,

we easily obtain with the help of Proposition 5.1(1):

| (o a2 X1on) ()| < CEY2WEY?, ) if 1> 1 andds—bs=1. (5.27)

Ift < 1 and d4y — by =1, a still better bound clearly holds; combining this with (5.26), (5.27) and the fact that D155, =0
if dg — by =1 (recall that b # 0), we obtain in particular that

| @4+ Diapn) (O] < C(E,TOEN? /(0 + ki (1) Qu1.1-1(1). (5.28)

Using (5.25), (5.28), we find that

2
1 2 1/2 &
|(o+0/B1))| < € ( ROE)? () +eQm-11-1() + W)
Replacing z; by 6z; in By, we obtain By. Set Fijpy = 9" ' (02;)9F ™" VI¥=b0;. We can repeat the arguments leading
to (5.25), (5.26), with z; replaced by 0z; now, using furthermore Lemma 3.1(2), to obtain that ||(o4 Fi1pn) ()] <
CeX )72, (o4 Faon) (O < Ce2E)% | ((0)(1) ™2 and [[(04 Frapn) ()| < Ceki (1) Qm1,1-1(1) if dy — by <1 —1.0n
the other hand, to estimate ||(U+F,2;,n)(t)|| if d4 — by =1, we notice that [(049/01)(t)| < Ce by Theorem 3.1(2),
that |(c7+8r”81“91)(t)| < Ce(t)~Lif @ > 0 and r has a fixed bound, by Theorem 3.1(3), and that, for v+ pu <m — 1
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(and & small), |(o+8)8}'62)(1)| < C(E,)/3

Lemma 5.3 and of Proposition 5.1(1), we obtain that ||(04 Fiopn) (1) || < Ce(E,,
estimates, we find that

2
||(cr+8rpB2)(l)||<C8<< ”z(r)+<)) E2) () +eQn 1 1(r>+<8> )

Moreover, with the help of Proposition 5.1(1), Lemma 5.3 and Theorem 3.1(3), recalling that C1]0| < 1/2, we also
find that

)+ az(t)_z) by Proposition 5.1(2), (3) and Proposition 5.2. Making use of

20+ ey™EL?, (). Collecting

2
(o8 Bs) )| < €

(5.24) follows from the estimates of ||(o+ P B DO, 1< j < 3. Finally (5.17)—(5.20) and (5.24) yield Proposition 5.3
if we make use of Proposition 5.2. O

Theorem 5.1 will readily follow from the next proposition.

Pr0p0s1tlon 5.4. Fix m,l € N withm > max(l, 2), and T € (0, t*). One can find gy, C > 0, and for each R > R, also

C > 0, such that the following holds. If 0 < & < g9 and if (02, wy, z2) is a C*°([0, T] x D) solution of (3.20)—(3.26)

with eInT < T, such that Eiz/.fnax(l l)(t) < 821p(8) when t € [0, T], then we have:

c

L+ H{ in

(1,1) ifa=(k,0,0,0,1) € N°, c € N’ with |a|, |c| < m and X, c4 <1, one can write (F¢, ¢¢) =
[0, T], where H{, Hj¢ € C*°([0, T]), H{(0) =0, and

dt

|H{ (0] < Ce¥9 (e, |H§C<r)|<C< ;) TOE O+ ; )zw(s>>
) 120<j<30jAj (@)D < Cgy ift €0, T
3,10) ifa=(k,0,0,0,1) eN’ withl > 1and k +1 < m, then
T T
—/((1 +C1O) O, W) (t, R) dt > c—1/121—1(3{<+1(~)2)2(z,R)dt — Ce*y(e);
0 0

@.0) E,/7(t) <Ce*y'2(e) whent €0, T1, and [, 1~' (@8} @2)%(, R)dt Ce*yr(e), ifl > 1and k +1<m;

5.0 (110599021, )| + 185 9% wa(t, )) < Ce2y'2(e) if k+lal <m—1,1>1, k<I—1, 1 € [0, T}, and
R<r<R

6,1) <t>k+1|a,"+la%2(z)| <C?ifk+lal<m—21>1,k<I—1,andt€0,T].

The first half of (4, 0) also holds and is of course a consequence of (4, 1); we have chosen the above formulation
since, for each fixed [ > 1, we shall obtain all of (4,1) at the same time. (6, m) is identical with (6, m — 1) and is
introduced for notational convenience. The proof will show that (5, 1) still holds with [R, R] replaced by [R, +00).

Notice that Theorem 5.1 follows at once from the first inequality of Proposition 5.4(4, m). So the proof of Theo-
rem 3.2 (and therefore also that of Theorem 2.3) will be completed if Proposition 5.4 is proved. The next section is
devoted to the (fairly long) proof of Proposition 5.4.

6. Proof of Proposition 5.4

In this section we shall prove Proposition 5.4.

Proposition 5.4(1,1) will be proved by adapting the arguments of the boundaryless case (see [3], where [ = m);
in the present situation, we have to keep in mind that we cannot consume more than [ derivatives with respect to
X in L%, which will somewhat complicate the proof. Proposition 5.4(3,1)—(6,1) will be proved by induction on /.
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A corresponding induction procedure was used in [4] for solutions of quasilinear wave equations satisfying Neumann
boundary condition.

Throughout this section, we shall suppose that 6, wy, zo satisfy the assumptions of Proposition 5.4, and that
0 < & < g9, with gy small allowed to depend on 7; in particular, throughout this section, we shall suppose that &g
is so small that (i) Theorem 3.1, Propositions 5.2 and 5.3, and Lemma 5.3 can be applied, and (ii) C1|6| < 1/2 and
|z] < 1/2. We shall denote by C various strictly positive constants (which might depend on 7) but are independent of
e, T whenelnT <.

Proof of Proposition 5.4(1, 7). Set ij = (r;.l, r<e,) if j € {2, 5}, P]‘f = (1?]4‘, r<e,) if j e {1, 3,4, 6}, PJ‘? =1+
z)_lr]'?, Iun) if j e {8,11}, P{ =((1 +z)_1f]”.‘, I'wy) if j €{7,9,10,12, 13}, f’ij. =(8;;, Iz2) if i, j €{1,2}.
Then (F¢, ¢) = "1 <i<13 Pl + 2i<ij<2 1313 With the help of Theorem 3.1(2), we readily obtain that

ypf(z)\gc;—)Em,l(t) if je(1,2,4,5,7,8,10, 11}. 6.1)
We have

a C s

|P )| < m Epi(t)Hy g1, (1) if j €{3,6,9,12}. (6.2)

Let us prove (6.2) for j = 9; the other cases can be handled in the same way. Set 7 = ||(G+Fbw2 VI bws)y @),
where 0 £b <a. If |b| <m — 1 and ay — by <1 — 1, then T < C|rTwr(®)||(6_-VI* Pw,)(r)|; hence we obtain
with the help of Proposition 5.1(1), (5) that

’T<CE1/ (t) Hyp 11 (8). 6.3)

If || <m—1and as — by >1 (s0 ag =1, by = 0), we write T < C|(040 w2))[IVa)* 1™ XTwy (1), hence we
obtain with the help of Proposition 5.1(3) that

T < CE)/](1)Hu0(1). (6.4)

Finally, if || =m and by <[, thena =b and T < C|ITbwa(0)|||r (o—Vws)(¢)|, whence we obtain with the help of
Proposition 5.1(4) that

T < CE,/1(1)(020(0) + Egly 0)). (6.5)
(6.3)—(6.5) give (6.2) when j = 9. Let us show that

4
w(€)>’ 66)

(r)

where ¥, 1 (t) = 82¢(£)E1/2(I) +e0mi-1(t) +¢ ( )" 2. To prove (6.6), we are going to adapt arguments which led
to (5.24). Let By, B>, B3 be as in the proof of (5.24), but now with d replaced by a = (k,0,0, 0, A) with |a| < m
and A <I. Set D;jp = sz,-VF“_bGj if 0£b < a. With the help of Lemma 5.3 and Theorem 3.1(3), we obtain
104 Dp) ()| < Ce2(1) 72, [0+ Daip) ()| < Cet)2E,/7(t). I ag — bs > 1, then I = 3", s0 Dyap = 0 since
b#0.If ays — by <1 —1, then || (04 D12p) (@) || < CeQpm i 1(t) To estimate Djyp, assume first that ag — by <1 — 1.
If |a — b| < m — 2, we can write with the help of Lemma 5.3 that ||(o4+ D22p)(?)|| < CITlzo () ||[(0_V T b0y)(1)],

which can be bounded above by CE,/ !/ 2(t) Om.1—1(t) with the help of Proposition 5.1(2). If |a — b| = m — 1, then
la| =m and |b| = 1, so we obtain with the help of Lemma 5.3 that || (o D223) (1) || < C| TP 22(0) || (6_V T*?6,) (1)]],
which can be bounded above by CE,' (1) Q. i—1(1) with the help of Proposition 5.1(1). If now a4 — by > I, then

!Pf‘3(r)!< o ”%)( ot (1) +

rt= 8,“7' andaq =1. Set y = a)”"lzz. Assume first that || <m — 1. If t > 1, we argue as we did for (5.27); we write
dix =t'Xx — t7'rd,x, and using Proposition 5.1(1), we obtain that [|(o4 D22s)()|l < CE,/ T () E,/7(1), which
clearly still holds if ¢+ < 1. If |b] = m, then [ =0 and a = b; in that case ||(o4D22p)(#)]| < IIBmzz(t)|||(6+V92)(t)|
which can be bounded above by C E;z/ %(t) Q2.0(t) with the help of Proposition 5.1(2). Summing up, we obtain that
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(o Da2p) ()]l < C(El/z(t)El/2 (1) + El/2 0()Q2,0(2)) if ag — by > 1. From the estimates of the various oy D;jp, we
conclude that
[(o+BD@) | < CW i (). (6.7)

Let us handle B,. Set Fjj, = I’z yYWIre- bGJ, where 0 # b < a. We can check with the help of Theorem 3.1(1),
(2) and Proposition 5.1(1) that (Vi (Qzl)(t)|| Cek;(t), whence it follows with the help of Lemma 5.3 and
Theorem 3.1(3) that |[(o+Fi1p)(@)] < Ce? (t)~ 2 (t). Now Fjpp is a linear combination of terms of the form
Eikpa = Tz, P10,V I2=b0,, where d < b. With the help of Lemma 5.3, Theorem 3.1(2), (3) and Proposi-

tion 5.1(1), (2), (3), it is not hard to check that || (o4-E1150) ()]l < Ce2(t) " (EN/T(1) + Qi1 (D), 1(04+E2160) D) <

CeEL2OELA 1) + 0200 (1) 7Y, o1 Epa) DIl < € 1/2(t)(Hmz 1(1) + Qum,0(1))ki (). This yields an estimate
of ||(0+F,2b)(t)|| Collecting the estimates of || (o Fjjp)(?)], we find that

4
I B < C (8 ‘g)(”

Finally, with the help of Lemma 5.3 and Theorem 3.1(3), recalling that C|6| < 1/2, we find that

|o+B)0)| < C

+ sgl/m,,(t)). (6.8)

T (e +El ). (6.9)

(6.6) immediately follows from (6.7)—(6.9). Now we have
|Pt(n]<C () ki (DE (0. (6.10)

Indeed, with the help of Lemma 5.3 and Theorem 3.1(3), we see that [|(I"?w; - VI'*~9z;)(t)|| < Ce{t)~%k;(t) when
d < cifd # 0 when j =2; (6.10) follows at once.

We now start with the long estimate of ﬁ‘z‘j Set v;d =T, - VI, j where d < ¢, and where also d # 0 if
j = 2. We claim that

VO < Hua—n, ;@) ifda <=1y (6.11)

Indeed, let Ry > R be such that z1 (¢, x) = z2(¢, x) = 0 when r > Ry (cf. Lemma 5.3). Define the function xg, by
the relations xg,(x) =1if R <r < Ro, xr,(x) =01if r > Rp. Assume that dy < (I — 1)4. If x = xg, in the case
that dg + di + d» + d3 = 0 and x = 1 otherwise, we obtain with the help of Proposition 5.1(3) (or (6) if d = 0),
(5) that || x (o— Fdwz)(t)H < CHy,, -1y, (t), which gives (6.11) in view of Proposition 5.1(1) if we assume also that
|c —d| <m — 2 in the case that j =2. If now |c —d|=m — 1 and j =2, we have |c| =m, |d| =1 since d # 0, and
(6.11) is easily obtained with the help of Proposition 5.1(3), (4).

In order to be able to control ISZ‘ ;> We are going to study v;d I'“zp when dqy =1 > 1. So from now on and until this

task is completed, we assume that ds =1 > 1, so that rfT=0fx! rec=09ft1x! Then v;fd =3B X w, - Vokz;, where
|8l + || +1 < m. If we set f);d = X3P X'~ w, - Varz;, it follows with the help of Proposition 5.1(3), (4) that

C
[ (5 =559 )] < o =1 (00, (6.12)

Henceforth, let Ry > R be such that z5(¢, x) =0if r > R (one could take e.g. Ry = Ry with Ry as in Lemma 5.3). Set
<p;d(t) = fDRR ﬁ;ﬁd(t, x)I“zy(t, x) dx, where Dgp, = {x € R3, R <r < R;}. We have written go?d(t) as an integral
L ;

over Drg, (and not over D) because this will allow a somewhat more concise description of some long estimates.
We can write (p;d )= d(tI]?d (t))/dt — I]?d @)+ J]?d ®) + NJC-d (1), where

15(r) = / (0P X" wy - Varz;) (1, x) M 2o (1, x) dx,
Dre,

T = f (ra,0” X'~ 1w, - Vatz;) (1, x) 22 (t, x) dx,
Dre,
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de(t)z—t f P X N wy(t, x) - 8, (M 22Vl z,) (¢, x) dx.
Drr,

It is convenient to set K1 = ¢, ko = E,/ / . Let us handle I ¢d If j =1 or |u| < m — 2, we estimate the second factor
under the integral sign in L*° and each other factor in L2, using Proposition 5.1(1), (3), (5). We obtain that

|164(0)| < Hma—1 (DR (D E, 7 (1) (6.13)

if j=1lor|ul<m—2.Ifnow j=2and |u|=m — 1, we have [ = 1, 8 = 0, and we estimate the first factor under
the integral sign in L°° and each other factor in Lz, and we find with the help of Proposition 5.1(6) that (6.13) still
holds. Using similar arguments for J j‘f‘l, we easily obtain that also

70| < —~ Hna—1 (0F (D E, 7 (0). (6.14)

C
(1)
Write N cd N Cd + N;g, where

NGy =—t / (3P X" wy - 8,VFz;)(t, x) 2o (t, x) dx,
Drr,

N (1) =—t f (3P X" wy - V') (1, x)3: T 2a(t, x) dx.
Drr,
Notice that Nlcf = 0. As for Nﬁ‘f, if |u| < m — 2, we may estimate the first factor under the integral sign in L°° and

each other factor in L2, writing that 7]]9; Vo zo(2)|| < | XVt za(1)|| + ||rd-VO*z2(2)||. We readily obtain with the
help of Proposition 5.1(3), (4):

|V (z>|\— it OE SO E @) if [ul <m —2. (6.15)

If now |u| =m — 1,thenl=1and B =0, so I'“ = 93" X. Set gfd =10,0"z2, g;d =rd, 0"z, gg" =(m — 1)0*z,
G;-d(t) =—t fDRRl W (t, r)(8;8r8“22g§d)(t, x)dx, so that Nch = Zl<j<3 G;ﬁd. Now observe that if r — g(r) and
x — F(x) are smooth scalar functions such that the function x — g(r) F(x) vanishes when »r = R and when r is
large, integration by parts readily shows that

/g(r)arF(x)dxz—/ V. <g(r))r—C)F(x)dx. (6.16)

Dr Dr

Using (6.16), we obtain that Gfd(t) =2"1;2 fDRR (@, +2/r)Wal(t, r)(8;0"22)%(t, x) dx. Let us check that
1

lo:0"z2(0) || < %(;—) + Hm,o(z))(s +ET®) if lul <m - 1. (6.17)

Indeed, it follows from (5.11) that 0;,0*z) = —w - Votzp + §“* if IR = 9k, (6.17) easily follows with the
help of Lemma 5.3, Theorem 3.1(3) and Proposition 5.1(3), (4). Now using Proposition 5.1(6) and (6.17), we
find that |GS%(1)| < C(1)~"(Qa.0(1) + Egly ())(e(r)™! + Hpo(0)*(e + E,/$(1)2. From (5.11) it also follows
that 9,9,0"z = —Wd?0"z; + Zlgj@xjg“j/r if = 3;0". Hence G5 = i<k GS¢, where G54(1) =
27N [, T W2 W)t )3y (8,0 22)* (1, x) dx and GHM =13 1¢j<s D, Walt:1)x;j (8" 9,9"22)(t, x) dx. Ap-
plying (6.16) to Gg‘f(t) and estimating x — (V - (WaWx))(¢, x) in L, we obtain with the help of Theorem 3.1(3)
and Proposition 5.1(4), (6) that |G51(1)] < C(1)~'(e()™ + 01.0(0)(Q2.0(t) + Eqs (1)) Em,o(t). Using Theo-
rem 3.1(3) and Proposition 5.1(1), (3), (4), (5), (6), we estimate each of the last two factors under the inte-
gral sign of GS‘ZI(I) in L? and each other factor in L, and we find that |G§”21(t)| < C(t)_lQl,o(t)(z?(t)_1
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1/2 1/2

Omo() + Em/2l o + E, (()E, (). So we now have an upper bound for |G‘d(t)| by adding the up-
per bounds we have just obtamed for |G§‘1i(t)| and |G§2(t)|. Let us handle ng. Using (6.16), we obtain
that G§¥ = Y| <<, G52, with G54 (1) = 2(m — WfDRRI r Wat, r) (8% 229,8%22)(t, x)dx and G§4(1) = (m —
it fDRRl O (Wa(t, r)otzo(t, x))0,0"z2(¢, x)dx. In Ggf (t), we estimate each of the last two factors under the inte-
gral sign in L? and each other factor in L>. For Ggg(r), we write o, (W (t,r)o"zo(t, x)) = 0, Wa(t, r)otzo(t, x) +

Wa(t,r)0,0"z2(¢, x) and estimate each of the factors 9*z,, 9,0"z3, 9;0"z; under the integral sign in L? and
each other factor in L*°. Using Proposition 5.1(4), (6) and (6.17), we obtain that |ng(t)| < C(t)’](Qg,o(t) +

1/2(t))E1/2 (e + Em O(t))(s(t) + Hy, 0(2)). Collecting the estimates of the G?d, we find that
2
+ Hm,o(t)> (e +E)e) (2 +EYem) iflul=m—1. (6.18)

miol< (5
{r) \ (1)

Let us pass to N/‘g Using (5.11), we can write N;fg = Zl<k<5 N/Zk’ where N‘.gl(t) = thRR P X" 1w,
Vorz) (i, x)(w - VOPHX!25)(1, x) dx, NS5 (1) = —t JDir, P X! wy - VOl z)(t, x) g0 (t, x)dx if k > 2, where

g1 =811 85 =815 85 =285, 8 = &5 If |c| <m — 1, we estimate the first and third factors under the integral sign

in L™ and each other factor in L?, and we find with the help of Theorem 3.1(3) and Proposition 5.1(3), (4), (6) that

1/2

C
NS ()| < —Hml,H(r)kj(r)(i + Ql,o(f)> E, i) iflcl<m—1. (6.19)

(1) (1)

If now |c| = m, we obtain by integration by parts that N]Cgl =) 1<k<3 N]c.gl ©» Where

NG (1) =—t f (3P X 2o (w - V)P X " wy - V') (1, x) dx,
Dre,

N, () =—t / (95X 2o (w - V)VIFz; - 3P X wy) (1, x) dx,
Drr,

N;';’B(r):—r / (8P X! 2o(V - w) (3P X' Twn - VA#z;)) (2, x) dx.
Drr,

But we have

NG, ()] < = o E,/7(t)Hy - m(% + Q20 + Eé{é(r))k,-(r)

if |¢| = m, and if furthermore || <m — 2 when j =k =2. (6.20)

Actually (6.20) is easily obtained with the help of Lemma 5.3, Theorem 3.1(3) and Proposition 5.1(1), (3), (4),
(5), (6). Indeed, if furthermore |B| + 1 < m — 1 when k =1, we estimate the factors containing z» or z; (under
the integral sign in the definition of N ‘2 1) in L? and each other factor in L*. If now k = 1 and |B| + [ = m, then

u =0, and in this case we estimate the first and third factors (under the integral sign in the definition of Nj‘fgn)

in L? and each other factor in L. (6.20) follows easily. (6.20) yields an upper bound of |Njc.g1 @] if [c]=m
provided furthermore || < m — 2 when j = 2. If now |c| =m and ljw|=m — 1, we have B=0,l=1,and so
N (1) =t fDRRl (WaW)(t,r)(3,3"229,3" X 22)(t, x) dx. With G5 as above, we have N5, = G5 + G5 + G<?, with

G5 (1) = (ul + Dt [, (WaW)(t, 1) (3,9#22)% (1, x) dx, GL (1) =1 [y (WaW) (1, r)(8,8"228,8,0"22) (1, x) dx.
1 1

In Gid(t), we estimate the first two factors under the integral sign in L, and we obtain with the help of

Theorem 3.1(3) and Proposition 5.1(6) that IGZd(t)l <C) Q10 Emo(t)(e(t) ™" + Q1.0(t)). Now it follows

from (5.11) that G§*(1) = Y ¢ jQGg”;(t), where Ggqf (1) = —27142 fDRRl (Wng)(t,r)a,(a,a“zz(z,x)ﬂdx and

GUM =1"Y1ci3 I, W2, r)r~1x;(8,8% 28" ) (¢, x) dx, in which I'*' = 9;3*. In G£(t), we use (6.16),

and then estimate the function x — (9,9"z2)%(¢,x) in L' and each other factor under the integral sign in L™ with
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the help of Theorem 3.1(3) and Proposition 5.1(4), (6). In Gg‘zi(t) we estimate each of the last two factors under the
integral sign in L? and each other factor in L, using Theorem 3.1(3) and Proposition 5.1(1), (5), (6). This gives

that |GS7(1)] < C(1) ™' (e(t) ™" + Q1.0 E, 5 ((Q2.0(1) + Eglg ) E (1) (e(t) ™ + 01.00)) + Q10 (e(t) " +
Hp o(1)) (e + Erln/,%)(t))). From the estimates of Gg’f, Gid, ng, we obtain that

C
Vi 0] < o5 ((% + Ql,o(n)Hz,o(t)E,‘,,{%)(t)(E,L{é(t) + <(f—> + Hm,o(r>) (e+ E;{é(t)))

if |c| = m and || =m — 1. (6.21)

Let us pass to Nj?gk, where k € {2, 3}. We estimate the first factor under the integral sign in L> and each other factor
in L2, making use of Theorem 3.1(3) and Proposition 5.1(3), (4). We obtain
C - .

NS ()| < WsHmJ,l(t)Kj (D1 (1) ifk € {2,3). (6.22)
We now consider Njc.gk when k € {4, 5}. Recall that ' = aptux! |c] < m,and g;_l = Zhgc (;)F"wz VIhg 5
(sothat I'" = 3V X* with v < B+ i and A < 1), where furthermore 4 # 0 in the sum if k = 5. For k € {4, 5}, set g;_‘l =
— Y h<eaci—1 () TMwa - V=g, 3, where furthermore h # 0 in the sum if k = 5; set also gg™) = gf_, — &7,
and define Nj.g,;i as N4, (k € {4,5)), but with {_, replaced by g0%. If A <1 — 1, we obtain with the help of
Proposition 5.1(3), (4) that ||[(I"wy - VI 7 _3)(0)|| < C(t) ™" Hyp1—1(t)kx—3(), whence it follows, again with the

help of Proposition 5.1(3), (4), that
_ C -
NS O] < 7 H e (0RO 0. (6.23)

Now, if A (= h4) =1, we have I = 3" X with v < B+ p, and s0 NS (1) = —1 Yoot 1<ncs (5) SR (0,
where
S;g{'(z) =1 / (3P X" wy - Varz;) (1, x) (80" X ™ wy - VAPV 2 _3) (2, x) dix,
Drr,

S5 ) = / (3P X" wy - Vo) (t, x)r (8,0 X " wy - VAPV 74 3) (1, x) dx,
Dre,

S5l ) = v / (3P X" wy - VR z;) (1, x)(8V X' wa - VAPV 3) (1, x) dx.
Drr,

Let us start with the case n = 1, in which finding a suitable bound is less simple because of the additional fac-
tor ¢ in front of the integral in the definition of SJC.Z{’. It is convenient to write "¢ = 3% X! (recall that 'Y = 38 X?).
Then we have (for each j € {1, 2} and each k € {4,5)): 1 3y jccr aymnsms () (1) SSH () = Y v @ffj}_S(;), where
LHARGES (f;)(i)ﬂfpml @ X1y VOEP ) (2, x) (30" X! wy - VOE Vg _3)(r, x) dx. Now @55 s+ ;™ =
(E)G)(deflv/dt - 2t_1Ff£1v + Ff}fz” + Fflf;)’ with
Ff,fl”(r) =2 / (0P X" wy - V5P 2) (0, x) (0" X' wa - VOE V24 3) (1, x) dx,
Drr,

Fil () =—1 / (0P X' wy - 8, V0 P2 ;) (1, x) (9" X' wa - VO V4 3) (1, x) dx,
Drr,

Ff,f;(t):_tz / (32X - VO P ) (1, x) (9" X' T wa - 8, V5 TV 2_3) (7, x) dx.
Drr,
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To handle F %’3’, we estimate the first and third factors under the integral sign in L and each other factor in L. With
the help of Proposition 5.1(3), (4), we obtain

|Fiey (0] < —t 2HE (DR (D=3 (1). (6.24)
We have F lg’:fz = O On the other hand, if |§ — 8] < m — 2, we can estimate in L the first and third factors under the

integral sign of F. k2 ’ (), making use of Proposition 5.1(3), (4), and each other factor in L2, using (6.17) for the third
factor. This gives

v C _ .
B8 0] < HH,%,z_l(r)(;—) + Hm,oa)) (EY20) +e)is(t) it |5 — Bl <m—2. 6.25)

If now |§ — Bl =m — 1, recall that |§| <m — [ and [ > 1; so actually |§| =m — 1, § =0, [ = 1. In that case we
integrate by parts and write FZSI?; = Zl< i<3 Fzgk”%., where

Fzskvzl(t) =1 / ((V - w2)d,85 22) (£, x) (8" wa - VAT V24 _3) (¢, x) dx,

Drr,
F5, () =12 / (w2 - Vo w) - VO "z 3) (1, x)3,0° 221, x) dx,
Dre,

Fha(t) =12 / (8"w2 - (w2 - VIV ™V zx—3) ) (8, )8, 8% 22(2, x) dx.
Drr,

To handle Fzsk”ﬂ, we estimate the first and third factors under the integral sign in L and each other factor in L2
Thanks to Proposition 5.1(3), (4) and (6.17), we obtain that |F55, ()| < C(1)"'(Q2.0(0) + Egly (1)) (e(t) ™!
Hpy o0(1)Hpy)41, o(t)(E:n/%)(t) + &)kr—3(t). Let us consider now kau22 If |[v] < m — 2, we estimate the first two
factors under the mtegral sign in L*> and each other factor in L2, and therefore we find that |F. k22(t)|
C(t) 1 Q10()(e(t)~ +Hm,O(t))H\u|+2,0(t)(Em,0(t)+8)Kk—3(t) if [v] <m—2.1fnow |[v| =m —1 (hence v = §), we
estimate the first and third factors under the integral sign in L> and each other factor in L2, using Proposition 5.1(1),
(5), (6) and (6.17), and we find that |F2§k”22(t)| <C) 1010t Hy o(t)(e(t) ™" + Hyp, o(t))(E (t) + &)kx—3(t) if
|v] =m — 1. To handle Fzskv23 (with |& —v| < m —2 if furthermore k = 5), we estimate the first and second factors under
the integral sign in L® and each other factor in L? with the help of Proposition 5.1(3), (4), (6) and (6.17), and we ob-
tain that | Fyyp3 ()] < C(1) ™' Q1.0 (e{) ! + Hyno (D) (E, 0(0) + ) Hyj1.0(Re—3(1) if k = 4, or if | — v <m —2

and k = 5. Collecting estimates, we find that
FEo 1/2 -
| 2k2 (t)| X (Q2O(t)+E (t))<< ) + Hp, 0(”) mO(t)( mo(t)+5)"k—3(t)a
when|§|_m—1andl=11fk=4or1fk=5andv7é0. (6.26)

Finally, if |§|=m — 1l and [/ =1, F 52 is equal to ng above (in the study of N 2]) with W replaced by W5 and p
by &, so by arguments similar to those used above for G4, we find that

|F§£§<t)|\ Qlo(t)(on(t)JrEl/z(t)) ”2(r>((f—>+Hm,o(t>)( E,/5() +e¢)

if 5] =m — 1 and [ =1. 6.27)
Set kj =k — 3, jl — j + 3 (recall that k € {4, 5} now and j € {1,2}). Since Ff,f; = F,f"fz, (6.25)—(6.27) yield
estimates for F Y. Summing up, if we set Agﬂv = (ﬂ)( )Ffflv, Bs‘gv ( )(v)( 2t_1Ff,’flU + Ff,‘?zv + Fff;) then

A B can be estimated by (6.24)~(6.27). Notice that Aﬁk”(O) =0.But 85" s+ & =d A jdr + B
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dh By §vp
and 1 371 <3< anse: dimha=t (@) (D) S5i1 = L1<jn—s<a po<e (Pra—s T 5 ;)/2. 50 to complete the estimate

N ared,+

of X< jho3<a d<e (2)N]2k , it remains to handle =1 3" < 1 3<2 an<e dimhami )G )Sj%’ for n € {2, 3}. Let us
start with S;%’. If [v]| +1 <m — 1, we estimate the first and fourth factors under the integral sign in L* and the
second and fifth factors in L2, using Proposition 5.1(3), (4) (the third factor is ). If |v| + = m, then v = 8 + w and
we estimate the first and fifth factors under the integral sign in L> and the second and fourth factors in L2, using
Proposition 5.1(1), (3), (4), (5). Altogether we obtain that |S“”’ ()] < C(t)2Hy, | (DR (DR—3(1). As for s;gg,
we estimate the first and third factors under the integral sign in L™ and each other factor in L, using Proposi-
tion 5.1(3), (4). We obtain that ISJC.ZQ(t)l C(t)™>H? 11 (DR (1)&x—3(t). Using the estimates of Afg”, Bff”, Sfol‘,
we find that Zlgj,k73<2;d<c; dy=I>1 (d) ;gk+(t) =dM7(t)/dt + M5(t), where M{, M5 € C*°([0,T]), M{(0) =

and

¢ 6,2 ¢ £ a
|M{ ()| < Ce®%(e), |MS(n|<C mEm,l(z) + 3 ) (6.28)
By assumption, Em/ max(l.1) (1) < €2y (g) if 0 < ¢ < T. Hence it follows from Proposition 5.2 that
Oma-1() < C(ES (0 +X0)7?) if 1 <A< (6.29)

In order to complete the proof of Proposition 5.4(1, /), we are going to use (6.29) in the estimates we have proved in
this section. From (6.1), (6.2), (6.29) we obtain that 21<J<12 |P“ M) < CeEp (1)t )_1 whereas (6.6), (6.29) yield

that | Py (1)| < C(eEp 1 (1) ()" +*r(e) (1) 3+ (e) (1) 72). (6.10) gives that 37, ;<5 |Bf; ()] < Ce*y(e)(r) 2
If [ = 0, we obtain with the help of (6.11), (6.29) that | ", ;< P§; (1) < C(E,/0(DE,/] (z)( )yl &Sy (o)) ).
On the other hand, if £ > 1, (6.11)~(6.15), (6.18)~(6.23), (6.28) and (6.29) yield that ", ; <, P§; (1) = d A°(¢t) /dr +
B (1) with A€, B¢ € C*([0, T1), A°(0) =0, and |A°(1)| < C&392(e), |B(1)| < C(eEp (1) (1) ™" + &3 (e) (1) 3).
This proves Proposition 5.4(1,1),0<I<m. O

We can now prove Proposition 5.4(2).

Proof of Proposition 5.4(2). Since we assume that ¢ is so small that |z| < 1/2 (cf. Section 5), an explicit com-
putation shows that | Zog i<3 0jAj (@) < C(IV - w| + |VE]), so Proposition 5.4(2) easily follows with the help of
Theorem 3.1(2), Proposition 5.2, and Proposition 5.1(4), (2). O

In the proof of Proposition 5.4(3,1) and (4, [), it will be convenient to make use of the following lemma.

Lemma 6.1. Let m be as in Proposition 5.4. If e is small, (3.20)—(3.26) has a unique C°°([O 1] x Dg) solution such

that E)? (1) < Ce>y /2 (e) and [, 18] 95(©2, Wa, Z2)2(t, Ry dt < Ce*yr(e) if j +k <

Proof. Set J. = {s € (0, 1], (3.20)—(3.26) has a unique C°°([0, s] x Dgr) solution with E 1(t) 21//(8) if t e
[0, s]}. By (3.27), E:n/fl(O) < Ce?; hence, by the results of [5], J. # @ if € is small; and J; is closed in (0, 1] thanks to
Theorem 4 of [5]. Assume that 51 € J.. We apply (5.13), (5.14), Proposition 5.3, with [ = 0 and m replaced by m + 1,
and Proposition 5.4(1, 0), with m replaced by m + 1. With the help of the Gronwall inequality, we see that there exists
g0 > 0 (independent of s1) such that El/2 () < Ce2yl2(e) <29 (e)/2if 0 < e < gp and ¢ € [0, s1]. Hence using
Theorem 4 of [5], we conclude that J‘9 1s open in (0, 1]. So J; = (0, 1], and the estimate just used above to show that
Je is open in (0, 1] also gives that Em+] (t) < Ce*y'/2(e) if ¢ € [0, 1]. Using a standard trace inequality on r = R,
0 <t < 1, we complete the proof of Lemma 6.1. O

We now start with the proof of Proposition 5.4(3, /), (4,1), (5,1) and (6, ).
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Proof of Proposition 54(3,1), 4,1), (5,1) and (6,1). If r = R, then X® = 19;®> and XW, = —R(1 +
cl@)*l(a,@z + C1©,0,Wy). (Recall that we assume, as we may, that C;|®@| < 1/2.) Hence we can write, when
r=R:3f X0, = 19f ' Oy + k3f Oy and 8f X Wy = —R(1 + C10) ' 91 O + Vi, where, since E,/] (1) < ey (e),
we have |0¥@,| < Ce?yr(e)(t) " and |Vi| < Ce3yr(e)(t) "2 if k <m — 1 and r = R, as one can easily verify with the
help of Theorem 3.1(3), Proposition 5.1(3) and Proposition 5.2. If I'* = 8,]‘X, k <m —1, and r = R, we therefore
find that —(1 4+ C1@) Oy Wy = Rt (9F 71 ©2)% + Rkd, (0¥@2)2/2 — (1 4+ C10)t3F T 0,V + Vi, with |V, ()] <
Ce>y2(e) (1) 3. Tt follows from (3.27) that |3 ©(0, r)| < Cre?. So writing —[3; '@, Vi| > —8(3; 11 ©,)2 — C5V2,
we easily obtain that — fOT(u + C1OYO,*Wo)(t, R)dt > Cy jOT 1K1 @)% (1, Ry dt — Ce*r (e), since ey (¢)
is bounded. This proves Proposition 5.4(3, 1). Using (3.27), (5.13), (5.14), Proposition 5.4(1, 1), (2), (3, 1) and the
Gronwall inequality, we obtain Proposition 5.4(4, 1). Proposition 5.4(5, 1) (even with [R, R] replaced by [R, +00))
follows with the help of Proposition 5.4(4, 1), Proposition 5.1(2), (3), (4), and Proposition 5.2. Finally we obtain
Proposition 5.4(6, 1) by differentiating the relation 9,z = — (w1 +w?3) - V(z1 +z2), using Lemma 5.3, Theorem 3.1(3),
Proposition 5.1(1), and Proposition 5.4(4, 1), (5,1). O

Proceeding by induction, we shall assume until the end of this section that Proposition 5.4(3, 1)—(6, 1) has been
proved if 1 <A </ — 1 and we shall show that it still holds if A =1 (2 < < m). In order to be able to achieve this,
we now proceed to prove boundary estimates.

We shall have to handle I'*®@,I'*W, when r = R, if I'* = a,kxl . It is convenient to introduce the follow-
ing notations: Do = 3;, D1 = d,, D% = 3;°8," if @ = (ap,a1) € N2, &1 = @2, & = Wa, ¢ = tr(¢1 &), Py =
((DYO1)qi<ks (D WD ai<i)s ¥ = (D(0), 1, 82), H= (O, W, 2), G(H)=W? — (1 + Z)(1 + C10)%. Let A(H)
be the 2 x 2 matrix defined by A{{(H) = App(H) =—-W/G(H), Aj2(H)=(1+ C10)/G(H), A1 (H) = (1 +
Z)(1 4+ C1©)/G(H). It is not difficult to check the following useful identity by induction over n if n > 1:

e = A"(H)'¢ + T+ Buo (S + Y Tis (6.30)
1<i<3

here 7, =0, 7, = Zlgvgnfl By(r, (D*Z)|a)<n—v)0/¢ if n > 2, where B,, are C* 2 x 2 matrices with
(Bno(r)ij =0if (i, j) # (2,2), and the 7,; are defined as follows. 77y = 0, and, for n > 2, each entry of 7, is
a sum of terms of the form F(r, (D*(Y, Z))|a|<j)Mp8,q+l§d with j+p+g=n—1,1<g+1<n—-1,de{l,2},
where F € C* and M, is some derivative DP of order p of some component of Y. With H(()) as in (5.15) and ré),
9, as in Section 5, Tip = tr(WHY — (1 + C1O)(xd + ) - x/r — 2r "1 (1 + C1OYWW,) /G (H) (W(z{ + 1)) -
x/r—({0+2Z2)1+ Cl@)Hg +2r "W2W5)/G(H)). In general, each entry of 7,5 is a sum of terms of the form
F(r, (D*(Y, Z))‘a‘gj)PI,a,qu with j + p+¢g <n—1, where F € C* and P), is a derivative D# of order p of
some component of (®(1), {1, {2). Each entry of 7,3 is a sum of terms of the form F(r, (D%(Y, Z))|«|<;)NpSy With
j+p+qg<n—1,where F € C* and N, is some derivative DP of order p of Z and S, is some derivative D of

order g of 9,©;. The representation (6.30) could be refined, but it will be sufficient for our purposes. Now it is easily
checked that

FX'c= > cunt'r"rorC, (6.31)
Sro<i+n<l

where cyi, are strictly positive constants and §op = 1, g = 0 if k # 0. (We have / > 0 since we are assuming that
[ > 2.) It follows from (6.30) that

oftforc =" Sipknu ifn>=1, (6.32)
1<p<6

with Sien.1 = 8 TH(A(HD!E), Siskn2 =0, ™ T, Siiens = K (Buo(r)0), Sigin 3+j = 0f T if j € {1,2, 3}
Let Ag(Z) be the 2 x 2 matrix with entries (A¢(Z))11 = (A0(Z))22 =0, (Ao(Z) 12 =—(1+ 2)7", (A0(Z2))21 = —1,
so that A(H) = Ag(Z) + f(H), where f € C* near 0 and vanishes if ® = W = 0. Estimates when r = R will be
obtained with the help of the following lemma.
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Lemma 6.2. Ifi +n <L k+I1<m, 122, n>1,and T > 1, we have:

(1) Sitrn1=A"(H) "t 4 Ki .o when r = R, with
T

f N K22, RYdt < CePy(e),
1

@) [ 2 k2P R dE < Cetyr(e),
3) Sitkn3=0whenr =R,

@ [ 2 a2t R dE < CeSy(e),
S) [ 2+ Sk 521, RYdr < CeO9(e),
©) [ S l>(t, R dt < Ce*.

Proof. Throughout the proof of Lemma 6.2, we assume that » = R.
(1)If I >0, 3! A"(H) is a sum of terms of the form A(H) [l<i<, 1<]<3(8 H;)Pii, where A€ C*, B;; >0, and
Zl<l<1 1<j<3 lﬂu = I. Using Theorem 3.1(2), (3), Proposition . 1(1) Proposmon 5.4(5,l —1)and (6,1 — 1), and

the fact that 3, <; </ 1< <3 Bij min(, [ — 1) > min(/,/ — 1), we obtain that

1 € .
(3] A"(H))(t,R)|<Cm if0<I<m-—1. (6.33)

When proving (1), we may and shall suppose that i + k > 0; until the end of the proof of (1), we shall
assume that 0 < I < i + k. Set & yxng = 0/ A"(H)O "¢ so that (' tV/2(Sipn1 — A"(H)O ) =
Yocrcik (T 2E k1. Define P (t) =1 ="~#+ 31 1r (A" (H)11 (A"(H))21)(t, R), so that

ti+l/2‘€i+k,n,1(t R) = ti71+n+/j,f1/28i71+n+k@2(t’ R)lel(l)-

We have | Py, ()] < Cet!=n—#H1I=min(.i=1) if t > 1 thanks to (6.33).

Assume first that / <i +n — 1; hence I <! — 1. Then we choose i =0, s0 | Py, (#)] < < Cet'™™if t > 1. Now
i—I+n>1l;alsoi—I+n<l—1sincei+n<land/ > 0;andi —I +n+k < m—1.So using Proposition 5.4(4, i —
1 + n) we obtain

T

/ PNE o P2, R dE < Ce® (e). (6.34)

1
Ifnowi+n<1I,wechoose u=1—i—n-+1(sopu<k) Then |Py,;(t)| < < Cet!™if t > 1, and we have i — I +
n + k <m — 2. We obtain (6.34) by using Proposition 5.4(4, 1). This completes the proof of Lemma 6.2(1).

(2) Set Fittnw.1 = 0] Buy (r, (D* Z) ) <cn—v)0 * 1V ¢ with 1 <v<n—1and 0< I <i+k, and define P,/ (1) =

1= =1t (B (1, (Daz)|a|<n—v))ll(an(rv (D*Z)jaj<n—v))21)(t, R), so that

V2 Fikonn, 1, R) = ' ARG IR, (2, R) P (0).
Arguing as in the proof of (6.33) with the help of Proposition 5.1(1) and Proposition 5.4(6,/ — 1), we obtain that,
when/ >0and 1 <v<n—1:

c &2,

I

| (8] Buo (r, (Daz)lalgnfv))(t R)| < £ymin(l,1— né (6.35)
Using (6.35) in the case that I > 0, we find that | Py, (1)] < L Cpl—voptl=minLl=D) 4 ¢ > 1 I ] <i+v—1, we
choose =0, notice that 1 <7 — I +v </ —1andthati — I +v+k<m—1, and, since | Py, (#)] < Crl=vif
t > 1, we obtain that

T

/ N Fr k1 P, RYdt < Ce*yr(e) (6.36)
1
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with the help of Proposition 5.4(4,i — I +v). If nowi +v <1 (so I >0), wechoose u=1—i—v+1(sopu<k).
Sincei —I+v+k<m—2and | Py, (t)] < Ce2t7V if t > 1, we obtain (6.36) with the help of Proposition 5.4(4, 1).
This proves (2).

(3) is obvious. As for (4), notice that, when n > 2, each entry of 8f+k7;,1 is a linear combination of
terms of the form Gi s pg.1y 1y = 0 F(r, (D*(Y, Z)) 1< )32 M0 172444 e with F, M, as in the def-
inition of 71, j+p+qg=n—-1,qg+1<n—1,and I + L <i+k. Set I =11 + I, Pyjpqr,,(t) =
=41 @ F(r, (D*(Y, 2)ia1<j)02Mp)(t, R), so  that  #+V2G i p (6, R) = ¢i-ltatl/2hn
3 G (1, RYPyujpg1, 1, ()41, with 81y = 1, 81 = 0. With the help of Theorem 3.1(2), (3), Proposi-
tion 5.1(1) and Proposition 5.4(5,/ — 1) and (6, — 1), and arguing as in the proof of (6.33) if /; > 0, we obtain
that |Pyjpgr ()| < Cet!=4=#-mint+LI=D if ¢ > | If we take w = min(l —2 —i + [ — q,k), then p <k,
t—I+q+1+ue[1 l—1),and I — g — p <min(/,! —2). Also i — I + g + 1 4+ k < m. But then we ob-
tain f 2itlg? (t, R)dt < Ceby () with the help of Proposition 5.4(4,i — I + g 4+ 1 4 ). This proves
Lemma 6.2(4).

Let us prove (5). Each entry of 8,i+k’1;12 is a sum of terms of the form H; 1« j p.g.1,,1, = a[’l F(r,(D*(Y, Z))|a1<j) %
B,IZPp8;+k_1]_12+q§d with j + p+¢g <n—1and I} + I, <i+ k, where F, P, are as in the definition
of Tpp. Define I =11 + I, w=min( — 1 —i + 1 — g, k). Observe that if ¢ >0, orif g=0and I <i + k&,
theni —I+qg+pnell,l-1;ifg=0and I =i+ k, theni — [ +g+pu=0 Alsoi —1+qg+ k<
m — 1. Set Nyjpgr,1, 1) = t! =@ F(r, (DY(Y, Z))a1< )82 Pp) (2, R), s0 that £t V2H; o001 (2, R) =
fi=l+a=1/2upi=Irath g, o R)Nyijpgr, 1, ()841. With the help of Theorem 3.1(2), (3), Proposition 5.1(1) and Propo-
sition 5.4(5,1—1), (6,1 — 1), and arguing as in the proof of (6.33) if I; > 0, we obtain that [N jpqr, 1, ()] < Cetdralily
where s;,45,;, =i — i — 1 —min(J1,] — 1) if n =1 (so in this case, s;47,17, does not depend on 1), and s;41,1, =
I —q—p+1—min(/ + 1,/ —1)if n > 2. It is not hard to check that s;45,;, < —1ifn=1,0rifn >2and g > 0,
whereas 5,,47,, <01if n > 2 and g = 0. We use Proposition 5.4(4,i — I—}—q—}—u) ifg>0,orifg=0and I <i+k,
and Proposition 5.4(5,1) if ¢ =0 and I =i + k. We obtain that [, r2+17{2 5, R)dt < Ce®y(e).
Lemma 6.2(5) is proved.

Finally Lemma 6.2(6) follows easily with the help of Proposition 5.1(1), Proposition 5.4(5,1 — 1), (6,1 — 1) and
Theorem 3.1(2), (3) if we use the arguments leading to (6.33) to estimate the derivatives of strictly positive order of
F(r,(D*(Y, Z))|a)<,)- The proof of Lemma 6.2 is complete. O

i+k,j,p.q,11,1»

i+k,j,p.q,11,

Notice that we have
AMH)I e = (= 1) M, (H)3I 0,8, ifr =R, (6.37)

where H = (0,0, Z) and M,, is a C* scalar function in a neighborhood of (0, 0, 0) with M,,(0, 0,0) = 1, and where
0n =tr(10) if n is even and 8, = tr(0 1) if n is odd. Until the end of the proof of Proposition 5.4(3, 1), we shall still
assume that 7 > 1 and that i +n </, k + [ < m. With the help of (6.32), Lemma 6.2, and (6.37), it follows at once
that

3Tk = (= 1)" M, (H)0! 4" @28, + Liykn ifr =R, (6.38)
where Lk n = Kitkn + D o< <6 Sithon,p and f 2N Ly n (2, R)dt < Ce*r(e), and of course Liij.o = 0.

Combining (6.38) with Proposition 5.4(4,! — 1), we easily obtain the following estimate:
T

/ 2’+1|al+ka";y (t,R)dt < Ce*yr(e) ifi<l—2andk+n>1, (6.39)
1
whereas Proposition 5.4(5,/ — 1) implies that
T
f 2(3!02)° (1, Rydr < Ce*yr(e) ifi <I1—2. (6.40)

1
With the boundary estimates we have obtained, we are now ready to complete the proof of Proposition 5.4. As
already said above, we assume until the end of this section that / > 2 and that Proposition 5.4(3, 1)—(6, A) has already
been proved if 1 <A </ — 1 (where ! is fixed and 2 </ < m), and we show that it still holds if X =1.
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Proof of Proposition 5.4(3, /), (4,1). We can write —(1 + cl@)afxle)zalkxlwz => ¢;Bj, where I = (i, j,n, p,
k,1), all ¢ are strictly positive constants, By = —(1 + C10)rit] 8,i+k a @28,j+k 97 W, and the sum is taken over all /
with k, [ fixed such that k + 1 <m, g0 <i +n <1, g0 < j + p <[, where §go = 1 and 89 = 0 if k # 0 as before.
Since W, =0 if r = R, it follows that j <[ — 1 if B;(¢, R) # 0. Recall that C1|®| < 1/2. We have the following
estimatesif 7 > 1 and § > O:

T
/|B,(z, R)|dt < Ce*yr(e) ifi, j<I—2; (6.41)
1
T
/|81(I,R)|dt<C841ﬁ(8) ifi=l—1land j <I—2,0rif j=1—1,i<l—2andk+n>1; (6.42)
1
T T
/|B,(r, R)|dt<8/t2(1_1)(8,l@2)2(t, R)dt + Cse*yr(e) if j=1—1,i<l—2andk=n=0; (6.43)
1 1
T
fBI(t,R)dt> —Ce*y(e) ifi=j=I1—1, (6.44)
1
T T
/|B,(r, R)\drga/z”—l(a”"@z)z(z, RYdt + Cse*yr(e) ifi=land j<I—2; (6.45)
1
T
/B;(r,R)dt}C lfz” ! a’+’<02 ) (t, Rydt — Ce*yr(e) ifi=1Ij=I—1andp=1 (6.46)
1

Indeed, (6.41) follows at once from (6.39) and (6.40).

To check (6.42) when i =1 — 1 and j <[ — 2, we wrte |B;(r,R)| < C(t¥3@ 70,21, R) +
t21+1(8,]+k8fW2)2(t, R)) and apply Proposition 5.4(4,/ — 1) and (6.39). If now j =1 —1 and i <[ — 2, assume
first that k +n > 1. We then use (6.39) with |8f+k8:’§| replaced by |8,i+k3;’ ©®3|. But applying (6.38) and Propo-
sition 5.4(4,1 — 1), we find that [ 12=3(3/""**3, W»)2(¢, R)dt < Ce*¥(e). Altogether, we obtain the second
part of (6.42). If k +n =0 (and still j =1 — 1, i <[ —2), we write |B;(t, R)| < 8:20=D 3! 715,W2)2(1, R) +
Cst% (3] ©2)%(t, R), and using (6.38) and (6.40), we obtain (6.43).

Ifi =j=1-1, we may assume that n =0, p = 1, and we write by (6.38):

o, Wa = —Mi ()3 O+ Li—14x1 ifr =R, (6.47)

where I:l_1+k,1 is the second component of L;_j4,1, so that flT ;2Hi 1tk (&, Rydt < C841p(6) So if B(H)
Mi(H)(1 4+ C1®), we obtain with the help of (6.47) that B; = at(B(ﬁ)ﬂ’ 2011 ©,)2/2) — 3,(B(H)1¥2/2) x
@702 — (1 + €10)23' """k @, L;_1 441 when r = R. Observe that B(H)(t, R) > 0 for & small, and that
|0, B(H) (¢, R)| < Ce(r)™! by Theorem 3.1(3) (or (2)) and Proposition 5.4(5, 1) and (6, 1). (6.44) now follows easily
with the help of Proposition 5.4(4,/ — 1) and (3.27).

Let us prove (6.45). Since i = [, we have n = 0. But |B;(t, R)| < 8:271(3/T%©,)%(t, R) + Cst¥t! x
(397 W»)2 (¢, R) and (6.45) easily follows with the help of (6.39).

At last, let us handle (6.46). We have i =/, hence n =0, and j =/ — 1, so we may assume that p = 1. With the
help of (6.47) it follows that B; = B(H)t2 =1 (3% @)% — (1+ C10)¥~19!"*©,L;_ 1411 when r = R, where B(H)
is as in the proof of (6.44), and (6.46) follows.

Proposition 5.4(3, [) follows easily from (6.41)—(6.46) and Lemma 6.1.

We now prove Proposition 5.4(4, /). Using (5.13), (5.14), Proposition 5.3, Proposition 5.4(2), (1, A) for 0 < A </,
(3, A) for 1 < A </, and the Gronwall inequality, we obtain Proposition 5.4(4,/). O



P. Godin / Ann. I. H. Poincaré — AN 26 (2009) 2227-2252 2251

1/2

m,l

Proof of Proposition 5.4(5, 7). Set £ = tr(6> wy). Since E
from Proposition 5.1(2)—(4) and Proposition 5.2 that

(1) < Ce>y /2 (g) by Proposition 5.4(4, 1), it follows

|X*3%e(0)| < Ce*y'2(e)(t)™" ifA<I—land |o|+Ar<m—1. (6.48)
But

1ol e = x!1avE — 3 1t r 8]0 %, (6.49)
i<I-2; 1<i+j<I-1
where ¢;_1; j are strictly positive constants. Using (6.48) to bound the first term on the right-hand side of (6.49),

Proposition 5.4(5,1 — 1) to bound the other terms on the right-hand side of (6.49), and (6.48) with A = 0, we obtain
Proposition 5.4(5,1). O

Proof of Proposition 5.4(6,7). We may assume that / < m — 1. Proposition 5.4(6,/) follows easily by applying
8,1‘8"‘ to (3.22) if we make use of Theorem 3.1(3), Proposition 5.4(5,1), (4, 1), Proposition 5.1(1) and Proposi-
tion 5.4(6,/ —1). O

The proof of Proposition 5.4 is complete.
7. Proof of Theorem 2.4

In this section we shall prove Theorem 2.4.

We shall use a method from [8,7,1] (cf. also [3,4]) to show that some derivative of any solution must blow up on
a certain characteristic before some time close to t*. Actually we shall indicate how to adapt the proof of Theorem 3
of [3] to obtain Theorem 2.4 of the present paper. Many arguments are very similar; we concentrate on the modi-
fications due to the presence of the boundary » = R. We may assume that t* < +00; as recalled in Section 2, this
is equivalent to saying that [u°| + I%O + K2S7O| = 0. We shall prove the following result, which is the analogue of
Proposition 5 of [3] for the mixed problem considered in the present paper.

Proposition 7.1. Assume that T € (0, +-00). Then, for each § > 0, there exists o > 0 such that the following holds: if
0<e<eygand (p,u,S)isa C®([0, /%] x Dg) solution of (2.1)~(2.7), then T < T* + 6.

Let us write u(¢,x) =U(t,r)x/r, c(p, S) = (%—5(,0, SHL/2, p, S, ¢ can be considered as functions of (¢, r) which
we shall also denote by p, S, ¢ to simplify notations (we shall hardly use x-coordinates in this section); so we shall
write p(¢,r), S(t,r), c(t,r). .

If g > R—ce™/?, define t > ri@,te[(R—q)/0)+, €7/#], as the maximal solution of ddL;f(r) = U+, rr @)
which satisfies the following initial condition: if ¢ > R, we ask that r;‘ (0) =gq; if g < R, we ask that r;’ (R —
q)/¢) = R. In other words, the map ¢ — (z, r; (1)) parametrizes the 3-characteristic curve (associated with p, U, S)
emanating from the only point (¢, ro) with #o(ro — R) =0, ty > 0, ro > R, such that ro — cfyp = ¢g. Adapting arguments
from Section 7 of [3] with the help of Theorem 3.1(2), Theorem 3.2 and Proposition 5.1(1), (3) of the present paper,
we see that, if T € (0, 7*) and g9 > R — Ce™/% are fixed, one can find gy > 0 such that

|rq+(t)—Et—q|<C if0<e<e, elnt <tandg > qo.

Henceforth we shall assume that ¢ is so small that M/c < 1/¢ < et/e. Set D, ={(,r) € R?, /e <t < etle,
rg_y @ <r <ri ,(0). Thenitis easily seen that, if £ is small, C~! < (t)~'r < Cin D, and § = § there. As in Sec-
tion 7 of [3], we introduce the following functions: A=r(p—p), B=rU, Z| = %(9'7“4 + a,CB)’ Zy = %(—% + a’CB),
and set, if 1/e <t < etle:

J()= sup |Zl(s,r)|dr,

1
ggsgt(s,r)eDg
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N(t)= sup sup (’A(s,r)|+|l3(s,r)
%gsgt(s,r)eDE

G(t)= sup sup s}Zz(s,r)}.
%gsgt(x,r)eDg

As in [3] but using now the estimates provided by Proposition 5.1(1), Theorem 3.1(2) and Theorem 3.2 of the present
paper, we can easily check that, if T € (0, *) is fixed,

J@)<Ce and N()<Ce if0<s§£0and%§t<ef/8. (7.1)
Now fix ¥ : (0, 1) — [0, +00) such that ¥ (¢)(In(1/¢))~! - 400 as & > 0. We have
0% (v — ev0) (1) < Ca&®W(e)(t)™' ifa#£0,0<r< Sand 0 <& < e, (7.2)

where v is as in (4.1)—(4.3) and vg is the solution of the linear mixed problem Ovg =0 if r > 0, x € Dg, 9,v9 =0 if
t>0andr =R, 8,’ v9(0,x) = fj(r)if x € Dg and j =0, 1, with the same f; as in (4.3). Indeed (7.2) follows at once
from Theorem 3.5 of [4] and the proof of Theorem 3.1 of [4] if we perform the change of variables (¢, x) — (¢/c, x/c).
(Actually, (7.2) still holds with ¥ () = In(1/¢), as follows from the estimates of Sections 5 and 6 of [2], but since
the present paper is already very long, we shall ignore this fact.) With the help of (7.2) and of Theorem 3.1(2) and
Theorem 3.2, we can duplicate the arguments which led to (89) of [3] and obtain that, for some G > 0:

1
G<—> < G1eW(e) if e is small. (7.3)
&

Henceforth we fix ¥ such that furthermore ¥ (¢) — 0 as ¢ 0. Using (7.1), (7.3) and arguing as in the proof of
Lemma 5 of [3], we obtain the following result.

Lemma 7.1. One can find J1, N1, Gy, g > 0 such that the following holds: if 0 < ¢ < &g, then J(t) < Jig, N(t) <
Nig, G(t) < G1eW(e) andr > ct/2 in Dq.

By Lemma 3.3 of [4], one can find go € [R — M, R + M] such that —F(qo) = max,er(—Fy(g)) (see also
Section 4 of the present paper where other information about Fy has also been recalled). Set f(t) = —Z(z, r(;(“)(t)).

Repeating the arguments of Section 7 of [3], we easily obtain that f/(¢) = ag(¢) f 2()+a 1@) f () + ax(t), where it
can be easily checked With_the help of Lemma 7.1 above that |ag(t) — (pc, + ¢)/ct] < Ct~2 and lai ()| + lax ()] <
CeW(e)t™2if 1/e <t <e'/® and 0 < & < 9. On the other hand, by a straightforward adaptation of arguments used

in [3], we obtain with the help of (7.2): f(1/¢) =ce/((pc, +C)T*) + O@E*W (¢)) as ¢ 0. Proposition 7.1 follows
by the same arguments as in [3]. This completes the proof of Theorem 2.4.
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