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Abstract

We revisit the asymptotic formulas originally derived in [D.J. Cedio-Fengya, S. Moskow, M.S. Vogelius, Identification of con-
ductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction,
Inverse Problems 14 (1998) 553-595; A. Friedman, M. Vogelius, Identification of small inhomogeneities of extreme conductivity
by boundary measurements: A theorem on continuous dependence, Arch. Ration. Mech. Anal. 105 (1989) 299-326]. These formu-
las concern the perturbation in the voltage potential caused by the presence of diametrically small conductivity inhomogeneities.
We significantly extend the validity of the previously derived formulas, by showing that they are asymptotically correct, uniformly
with respect to the conductivity of the inhomogeneities. We also extend the earlier formulas by allowing the conductivities of
the inhomogeneities to be completely arbitrary L°°, positive definite, symmetric matrix-valued functions. We briefly discuss the
relevance of the uniform asymptotic validity, and the admission of arbitrary anisotropically conducting inhomogeneities, as far as
applications of the perturbation formulas to “approximate cloaking” are concerned.
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1. Introduction

Asymptotic formulas that quantify the effect of small conductivity inhomogeneities on the voltage potential of an
electrical conductor have recently received quite a bit of attention, see for instance [1,4,5] and references therein. One
important application of such formulas has been the approximate solution of the electrical impedance tomography
problem, namely: “to determine the location and (some) geometric properties of the inhomogeneities from boundary
measurements of voltages and current fluxes” [3]. Another more recent application is the precise estimation of the
degree of near-invisibility associated with approximate cloaks obtained by so-called “mapping techniques”, see [9].
Let £2 be a connected, bounded, smooth domain in R, d = 2, 3, let o be a smooth background conductivity, and
let f € H™'/2(3£2) be a prescribed normal boundary flux (with /: 90 J do = 0). ug denotes the background voltage
potential, i.e., the solution to

V.(wVug) =0 inf2,  (nVuo)-n=f onds2, (1.1)

say, with [, a0 #odo = 0. We could allow any finite number of (well separated) conductivity inhomogeneities in-
side £2 — but for simplicity let us assume there is only one (the principal effect of a finite number would simply be
the sum of the individual effects). This conductivity inhomogeneity has small diameter (say, of magnitude 0 < p < 1).
We shall denote the open set occupied by the inhomogeneity D,. The conductivity inside D,, is given by the symmet-
ric, positive definite matrix-valued function y; ,. We define y, to be the conductivity

Yo in§2\Dp,
Vo= { . P (1.2)
Vi,p inD,.
u, denotes the voltage potential corresponding to the conductivity distribution y,, i.e., the solution to
V- (yp,Vu,) =0 1in $2, (ypVup)-n=f onds2, (1.3)

with [, o u,do = 0. Initially we shall just assume that D, is contained in a small ball, i.e., in a set of the form
xo + pB1, where xq is a point in £2, Bj is the unit ball, centered at the origin, and p is taken sufficiently small that
X0 + p B € £2. For simplicity let us assume §2 contains the origin, and that xo = 0. By B;s we shall denote the ball of
radius §, centered at the origin. The first result in this paper (Theorem 1 in Section 2) asserts that, given any positive
s and §

i = woll s 35 < CPY N Nl -11202) (1.4)

with a constant C that is independent of y1 ,, p and f, but depends on £2, §, s, and the background conductivity yy.
The novelty here is that the constant C is independent of y; ,, the (o dependent) conductivity of the inhomogeneity.
If we only consider a conductivity yj, that is isotropic and independent of p, and we do not insist that the constant C
be independent of yy, then the estimate (1.4) follows immediately from the representation formula(s) proven in [4,5].
However, it is exactly the dependence of y , on p, and the independence of the constant C of y; , that is important for
applications to cloaking. More precisely: to obtain meaningful estimates of the degree of near-invisibility associated
with certain approximate cloaks constructed by “mapping techniques” it is most convenient to have an estimate for
u, — uo that is uniform in y; ,. For instance, in [9] one could have used the fact that C is independent of y; , to
give a much more direct proof of the near-invisibility estimate — as it were (without recognizing this uniformity) the
analysis in [9] relies on a somewhat indirect argument based on monotonicity and the validity of the estimate (1.4) in
the two degenerate isotropic cases, y; =0 and y; = oo.

Having proven the uniform estimate (1.4) we then return to consider the question of uniform validity of asymp-
totic formulas such as that derived in [5]. For that purpose we consider D, of the form D, = pD & 2, where D is
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a bounded, simply connected, smooth domain. For simplicity we take y; to be a constant positive definite symmet-
ric matrix, whereas we permit y; , to be an arbitrary positive definite symmetric matrix-valued L> function. The
representation formula from [5] asserts that for constant, isotropic yy and y; (p independent)

1p(x) = uo(x) + p*|DIVyG(x,0) - (vo — y1)MVuo(0) + o(p?). (1.5)

where o(pd) / pd — 0 as p — 0. The function G(x, y) is a particular Green’s function (the so-called Neumann func-
tion) for the Laplacian on the domain §2, namely the solution to

d
Glx.y) =~

AyG(x,y) = —8ix=y}, ith —_—, 1.6

xG(x,y) {x=y} w1 o, 1092| (1.6)
normalized by f 90 G(x,y)doyx = 0. In order to calculate the matrix M let ¢ denote the solution to

V-yVé =0 iR gr(x) —z—>0 aslz]— oo, (1.7)

with ¢ denoting the rescaled conductivity function

yo inRY\D,
V= .
y1 in D.

The matrix M is given by

1 [ oy
My=— [ g,

ik |D|/az,- ¢
D

In [5] it is shown that the matrix M (corresponding to constant isotropic yy and y1) is symmetric and positive definite.
Furthermore, in this case M is a function of the single scalar variable ¢ = y|/yp, and it is shown that (1 — %)M =
(1 — ¢)M (c) has finite limits as ¢ — 0 and ¢ — oo. These limits are exactly the symmetric, positive definite matrices
that appear in the asymptotic formulas for the two degenerate cases, y; = 0 and y; = oo (see [6]). The second term
in the right-hand side of (1.5) is therefore of order p¢ uniformly in y; — it will also, uniformly in y;, represent the
leading term of u, — uo provided the remainder term o0(p?) can be shown to have the property that o(p?)/p? — 0,
uniformly in y; as p — 0. This uniform smallness assertion (for variable, o dependent, anisotropic y,,) is exactly
the content of Theorem 2 in Section 3.

It is well known that a formula similar to (1.5) (and a bound similar to (1.4)) holds for (subsequences of) ar-
bitrarily shaped, volumetrically small inhomogeneities, with p¢|D| replaced by |D,|, provided y;,, stays bounded
and bounded away from zero (cf. [4]). However, for these results to be valid uniformly in y; , a condition of the
type D, = pD (or D, C pD) is absolutely essential. To see this consider D, in the form of a thin, “square” sheet
(=1, D41 x (—p, p) (or a smoothed-out version of this). For a fixed p the solutions corresponding to a sequence of
conductivity problems with (isotropic) conductivities y; approaching +oo will converge to a solution to the conduc-
tivity problem in £2 \ lTp that is constant on 9 D, It is therefore not very difficult to see that we may pick a sequence
pn — 0 and a sequence of isotropic (constant) conductivities y; , — oo such that the corresponding sequence of solu-
tions to the conductivity problems approaches a function that solves V - (ypVwg) =01in £2 \ ([—1, 1191 % {0}, and
is constant on [—1, 119! x {0}. Since this limit generically is not yp-harmonic in all of £2, and thus not equal to uq,
it follows that the estimate (1.4), or a formula like (1.5) (with pd|D| replaced by |D,|) cannot hold uniformly in y,
for D, of the form D, = (-1, D4 x (—p, p).

In Section 4 we show that the condition D, = p D may be slightly relaxed without affecting the uniform validity
of the principal two terms of the asymptotic expansion of u,. To be precise, Theorem 3 asserts that the result in
Theorem 2 still remains valid for domains D,, that satisfy (1 —r,)pD C D, C (1 +r,)pD withr, — 0as p — 0.

We conclude the main part of this paper with a brief discussion of potential applications of our results to ap-
proximate cloaking. Appendix A of this paper contains a number of results concerning solvability, uniqueness and
representation formulas for exterior problems, that were crucial for the analysis in Section 3.



2286 H.-M. Nguyen, M.S. Vogelius / Ann. I. H. Poincaré — AN 26 (2009) 2283-2315

2. A preliminary uniform estimate

In this section, yy denotes a smooth (say, C°°) symmetric, positive definite matrix-valued function, defined on 2,
and y1,, denotes a symmetric (uniformly) positive definite matrix-valued L* function defined on D,. The conduc-
tivity y, is given by (1.2). To simplify notation concerning we introduce

Cio(ﬁ) = (C°° (§))dXd N {y(x) symmetric, positive definite, miny > 0}
and
LY (Dy) = (L‘X’(Dp))dXd N {y (x) symmetric, positive definite, essinfy > 0}.

Here min y signifies the largest real number m, such that £’y (x)& > m|& |2 for all £ € R?, and all x € £2, and essinfy
denotes the supremum of the set of real numbers m for which £’y (x)€ > m|£|? for all € € R, and almost all x € D,.
Let F be an element of L2(£2), with support inside £2 \ Bj, for some 8 > 0, and let f be an element of H~ 172(3 .Q)
with [, Fdx — [, f do =0. Consider the standard weak solution, v, € H'(2), to the boundary value problem

V-(y,Vv,)=F inR2, (y,Vv,)-n=f ondsf, 2.1)

normalized by /. 9o Updo =0.Letvo € H 1(£2) denote the solution to the corresponding problem with ¥ replaced by
the background conductivity yyp,

V- (wVv) =F in 2, (YoVvo) -n=f onds2, (2.2)

normalized by . 90 Vodo = 0. These two solutions are also the minimizers of the corresponding energies

E,(v) = %f(yva,Vv)dx—i-/dex— / fvdo
2 2 892
and
Eo(v) = %f{ygVU,Vv)dx—i—/dex — / fvdo,
Q Q 082
in H{(2) N { fa o vdo = 0}. The smoothness of yy is needed to insure that vy be smooth, and that all the “error”

norms are equivalent by elliptic regularity estimates. As a first result in this section we shall prove

Lemma 1. Suppose D, C Bk, for some positive constant K, independent of p. Let y, be given by (1.2), with yy €
cy (2) and y, o € LOO(D,,) For a fixed 8 > 0, let F be an element of L*(§2), with support inside $2 \ Bs, and let
f be an element of H='/2(382), with fg Fdx — fa.(z fdo =0. Let v, and vy denote the solutions to (2.1) and (2.2)
respectively, normalized by fa oUpdo = I 90 Vodo = 0. There exist a constant po, independent of y1 p, F and f, and
a constant C, independent of y1,,, p, F and f, such that

|Ep(p) = Eow)| < Co*(IF 12 g gy + 1 1 miag))s for 2 < po. (23)

The constants py and C depend on yy, §2, § and K.

Proof. It obviously suffices to consider 8 sufficiently small (say, that Bs C £2 or even Bas C £2). Pick pg < /2K so
that By, is contained in Bs for p < pg. We divide the proof of the estimate (2.3) into two separate cases.

The case E,(v,) = E¢(vg). In this case
|E,(vp) — Eo(v0)| = E,(vp) — Eo(vo) < E,(v*) — Eo(vg) Vv* € H'(92), (2.4

and we proceed to construct an appropriate v*. Let 0 < x, < 1 denote a smooth cut-off function with

C
Xp =1 in Bg,, Xp =0 1in 2\ Bykp, and |Vy,| < — everywhere.
P
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Using this x, we define
v = x, ()v0(0) + (1 — x, (X)) vo(x).
Then
Vv* =0 in Bk, (which contains D,), Vu* =V Vxe R\ B,

and furthermore

[Vo* () > = [Vt (0) (10(0) — vo(x)) + (1 — x, (X)) Voo (x) |
<2(| V0P |v00) — vo(0)|” + |1 = o 0| [Vuo)|?)

< 2o B
<2(CIVUOlZ0 g, + IV V020 )

2287

2.5)

(2.6)

for all x € Byk,. The constant C is independent of p and y,,. We note that v*(x) = vo(x) for x € 382, and for

x € 2\ Bs, and as a consequence of this and (2.5), (2.6),

2(E,(v*) — Eo(vo)) = /(yva*, Vu*)dx — /(yono, Vo) dx

2 2
= / <y0Vv*, Vv*)dx — / {(yoVvg, Vug) dx
Bokp\Bkp Barkp
< / (yoVv*, Vo*)dx
BZKp\BKp
d 2 d 2 2

with C independent of p and y, ,. This verifies (2.3) in case E,(u,) > Eo(vo).

The case E,(v,) < Eg(vg). In this case

|Ep(vp) - EO(UO)‘ =—Ep(vp) + Eo(vo),

2

and to get an estimate of the type C’Od(”F”iZ(Q\FA) + ”f”H’l/z(?)Q)

the dual variational principle. Let V denote the set
V={oe(L*2)":V-o=Fin2, 0-n=fonde).

Then it is well known that

1
Epv) =3 f (Y V0, Vu,) dx
2

=max—l/<y_la o)dx
oevV 2 e ’
2

1
> —5/<yp_10*,0*)dx Yo*eV.
Q2

Since

1
Eo(vo) = ) /(Vono, V) dx
2
it follows from (2.7) and (2.8) that

2.7)

) that is independent of y; ,, we shall introduce

(2.8)
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1 _ 1
|E,(vp) — Eo(vo)| < 3 /(yp lo*, o*)dx — 3 /(yowo, Vo) dx, (2.9)
2 2

for any o* € V. We proceed to construct * € V for which fg(yp_lo*,a*)dx is near fg(yOVvo, Vo) dx. Let
W, denote the solution to

AW, =0 in Bk \ Bk,

oW
—2 =0 ondBg,
on
W,
= (Y Vvo(px)) -n  ond(Bag).

This problem has a solution, since f 3(Bak,) (yoVvo) - ndo = 0. The solution is unique up to a constant, and it satisfies
the estimate

2 2 2 2
”va ”Lz(BZK\B_I() < C”VUO”CO(a(szp)) < C(”F||L2(.Q\B_5) + ||f||H—1/2(3_Q))‘
It follows immediately by rescaling that w, = ,on(%) satisfies

Aw, =0 in Byg, \ Bg,,

Mo _0 ond(Bx,)
— =0 on ,
an e
ow,
—— = (Vo) -n ond(Bkp)
an
and
2 d 2 2
”va”LZ(BZKp\B—Kp) < Cp (HF”LZ(.Q\E) + ”f”Hfl/Z(a_Q))’ (210)
with a constant C that is independent of p and y;,,. We now define the field o* by the formula
0 in BKp,
o*={Vw, in Bk, )\ Bk,

yoVvy 1n 2\ Byg,.

This field is clearly in [Lz(.Q)]d, and it satisfies V- 0* = F in §2 as well as 0* - n = (ypVuvg) -n = f on 382, i.e.,
o™ is an element of V. By using o* as a test field in (2.9) we get

1 1
|[Ep(vp) = Eo(wo)| < 5 /(yp‘lo*,a*)dx -3 /(yowo, Vo) dx

2 2
1 _ 1
=3 / (J’o lva, pr)dx ~3 / (yoVvg, Vug) dx
Bakp\Bkp Bk,
< / (VO_Ipr, Vw,)dx
Bakp\Bkp

d 2 2

with C independent of p and the conductivity y , of the inhomogeneity D, . For the last inequality we have used the
estimate (2.10). This verifies (2.3) in case E,(u,) < Eo(vo), and thus completes the proof of Lemma 1. O

Let F, f and y, be as in the preceding lemma. We easily calculate that

- / vadx~|—/fvpdozf(yvap,va)dx

2\B; 082 2
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:—f(yvap,va)dx—2fvadx+2ffvpda
Q Q2 00

=—2E,(v)),

and similarly

— / Fvodx+ffvod0Z/()/Ovvo,vvo)dx

2\B; 982 2

=—/(yOVvo,Vvo)dx—Z/Fvodx+2/fvod0
Q Q AR
= —2Ey(vp).

As a consequence
/ F(v, —vg)dx — / fy,—vy)do = 2(Ep(vp) — Eo(vo)),
2\Bs 082
and so, due to Lemma 1

‘ / F(vp—vo)dx—/f(vp—vo)do
082

2\Bs

<Co(IF |

2
gy T 1 Tm1n00) 2.11)

with C independent of p, F, f and yj ,. If we define the bounded linear operator A, : (F, f) — ((v, — v0)|9\5,
—(v, — vo)|ag) from L2(£2 \ Bs) x H~'/2(32) into L?(£2 \ Bs) x H'/?(3£2), then (2.11) simply asserts that

(A, ) (F D) < o (IF I gy + I 11202

where (-,-) denotes the natural duality between L3R \ Bs) x H/2(3$2) and L?(2 \ Bs) x H™1/2(3£2). We note that
A, is self-adjoint, and by “polarization” it now follows that

sup sup  [(A,(F, ), (G, )| < Cp,
IICE,NHILSLING, 9IS

with l(F, D= UF W g ) 11125 /2- In other words

2 1/2 d
(””P_vouiz(g\z?a)+””0_v0”m/2<39)) =N(Gs;1);ﬁl<l|(Ap(F, . (G, 9)| < Cp?,

forall (F, f) with [ FIIZ, o 7= + IF 13120, < 1 OF

3

2 2 1/2 d 2 2 12
(”Up - UO”LZ(.Q\B_(S) + ”U,O - UO”HI/Z(a_Q)) < CIO (||F||L2(Q\B_5) + ”f”H—l/Z(aQ))

with C independent of p, F, f and yy ,. Since v, — vg solves the equation
V- (wV(,—v))=0 in2\Bs, with(yV(v,—vp))-n=00n3g,

elliptic regularity theory implies that the above estimate also holds for the Sobolev norm (||v, — vollilY (2\F) +
- S

“Up - UO”%.[S(BQ))I/Z, i.e.,
2 2 1/2 d 2 2 172
(”Up B UO”HY(Q\B_%) + ”Up - UO”HS(E)Q)) < C’O (||F||L2(.Q\B_5) + ”f”H*l/z((’).Q))

d 2 2 172
g C,O (”F”L2(Q\B_25) + ”f”H—l/Z(aQ))

bl

for any s € R and any F having support inside £2 \ Bas. Replacing 8 with §/2 we have therefore established
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Theorem 1. Suppose D, C Bk, for some positive constant K, independent of p. Let y, be given by (1.2), with
vecCy (2) and y, 0 L°°(Dp) For a fixed § > 0, let F be an element of L*(82), with support inside §2 \ Bs, and let

f be an element of H™ 1/2(52), with fg Fdx — fa.o fdo =0. Let v, and vy denote the solutions to (2.1) and (2.2)
respectively, normalized by fa oUpdo = fafz vodo = 0. Given any s € Ry there exist a constant pg, independent
of v1,p, F and f, and a constant C, independent of y1 ,, p, I and f, such that

12 _ 1/2
)" < )"

)

2 2
(”U,o - UO||H3(Q\§5) + ||Up - vOHHS(a_Q) (”F||L2(Q\B ) + ”f”H 12(302)

for all p < po. The constants py and C depend on yy, §2, 5 and K.

Theorem 1 is of independent importance. However for the purpose of this paper it is two corollaries, both pertaining
to the special case F = 0, that are particularly relevant. The first corollary is of direct relevance to the estimation of
the effectivity of approximate cloaks, as briefly discussed in Section 5.

Corollary 1. Suppose D, C Bk, for some positive constant K, independent of p. Let y, be given by (1.2), with
Y € C?ro(ﬁ) and yy,p € LY (Dy). Let f be an element of H=12382), with /BQ fdo =0. Let u, and uq denote
the solutions to (1.3) and (1.1) respectively, normalized by fa(z up,do = fafz updo = 0. Given any s € Ry, and any
8 € Ry, there exist a constant py, independent of y1 , and f, and a constant C, independent of y1,p, f, and p, such
that

llu, — uO”HT(Q\Bﬁ) + llup — uollus 92y < C,O Il fllg- 12(382) Vo < po.

The second corollary, which shall prove essential for our analysis in Section 3.2, estimates the combined perturba-
tion caused by the small inhomogeneity and a change in the normal flux. In order to formulate this corollary we need

some additional notation. Let w, be the solution to
V. Vw,)=0 in £,
¥p p) 2.12)
(¥pVw,) -n=g onads2,

normalized by [, , w,do = 0. Here we assume that g is an element of H~'/2(32), with [,, gdo = 0. It follows
immediately that

/ {0V (wp —up), V(wy —up))d f (8 = Pwp —up)do
2\D,
<llg— f||H—1/2(3_Q)||wp - Mp”Hl/Z(aQ)
<Cllg = flu-1raa)1wp = upll g1 o\ 5)- 2.13)
Due to the fact that [, , w,do = [, u,do =0 we have
lwy — “P”HI(Q\Bg) C“V(wﬂ Up) ”L?(.Q\E;)'
A combination of this with (2.13) immediately gives that there exist constants pg and C such that
lwp = toll g1 o\ < Cllg = flu-1202).  for p < po. (2.14)
The constants pg and C are independent of y; ,, f and g. If we decompose
wp —uo = (Wp —up) + (up — uo),

and combine Corollary 1 with (2.14) we obtain

Corollary 2. Suppose D, C Bk, for some positive constant K, independent of p. Let y, be given by (1.2), with
Y0 € C(2) and y1 , € L(D)). Let f, g € H*%(a.Q) with [, fdo = [,5¢ =0, and let ug and w, in H' ()
denote the solutions to (1.1) and (2.12), normalized by [,,uodo = [,ow,do = 0. Given any § > 0 there exist a
constant po, independent of y1 ,, f and g, and a constant C, independent of y1 p, f, g and p, such that

”wp - '40||H1(_Q\§5) < C(Ilg - f||H71/2(aQ) + Pd”f”Hfl/Z(a_Q)),
forall p < pp.
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3. The leading order asymptotics when D, = pD

We shall now consider the case when the inhomogeneity D,, is of the form D, = p D, for some bounded, simply
connected, smooth domain D C Bg. We shall examine issues related to the principal term of the expression

1
p_d(up —uo)
as p — 0. We briefly describe the structure of the expression
1
p_d(up_”())a p_)oa

a structure that (for yp and y; , isotropic) is already well known, ¢f. [5]. What is not at all known, and what we shall
prove here is that for inhomogeneities that are dilatations of a fixed set D, we can describe the expression (u, —ug)/ ,od
by an explicit (bounded) formula that is asymptotically correct uniformly in y1 ,. As pointed out in the introduction

such a formula is not available for general D,,. For simplicity we shall restrict attention to the case
Y0 ifxe 2\ pD,
Yp(x) = .
Y1,p(x) ifxe€pD,

where yp is a constant, symmetric, positive definite matrix, and y; , is an arbitrary symmetric (uniformly) positive
definite matrix-valued function defined on p D, in other words

V1.0 € LY (pD) = (L*(pD)

By a simple linear change of variables x’ = Lx, y, changes (up to a constant scalar multiple) into LprT o L7,
D changes into L(D), and §2 into L(£2). Since we can choose L such that LygL” = I we may thus, without loss of
generality, assume that y,, is of the form

I ifx e\ pD,

Yo(x) = {yl,p(x) ifx € pD. @.D

)dXd N {y(x) symmetric, positive definite, essinfy > O}.

where y , is an arbitrary matrix-valued function in L5 (0 D). The novelty of the present results is the fact that y; , is
an arbitrary matrix valued function in L°(p D), and the fact that all the estimates and convergence (approximation)
statements are uniform with respect to y1,, € L (p D).

Let y;‘ denote the rescaled coefficient

() = I ifzeRY\ D,
r Vi.p(pz) ifze€D,
and let ¢y be the solution to
V- (yiVer) =0 inR?  with ¢y (z) — zx — Oas |z] > oo. (3.2)
We note that ¢ (z) = ¥ (2) + zx, where Y satisfies
Ay =0 inRY\ D,
V- (Y1.p(p)VYr) = =V - (y1.5(p) Var) inD,
Ak (3.3)

3 = (v (P)VY) -1y = (v1.p(p ), —nk on 3D,
7 ext

[Yr]=0 ondD,

and Y (z) — 0 as |z] — o0o. Here [{] = ¥|ext — ¥ |int denotes the jump of the function i across 9 D. It is easy to see
that the solution ¥ (up to a constant, for d = 2) coincides with the unique solution to (3.3) in W' (R?), the existence
of which is guaranteed by Proposition 4 in Appendix A. We define the function L ,:

a
Ly(x)=V,®(x,0)- /(1 —V1,0(p2)) Vi (2) dz auo(o), (3.4)
D
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and the function W,:

AW,=0 in$2,
ow, oL 3.5
—L2=—""" onag, 3-2)
on on
normalized by | 9o Wodo = — /: 90 Lpdo. Here @(x, y) is the free space fundamental solution for the Laplacian
1 .
—s=In|x —y| ifd=2,
2
D(x,y) = { i .

We note that ¥, ¢r, L, and W, generically all depend on p; they would be independent of p if we only considered
Vip € L?ro(,oD) of the form y; ,(x) = y1(x/p) for a given fixed y; € Lff’(D) (for instance if we considered inho-
mogeneities p D of fixed constant conductivity y). It is easy to see that the matrix f pU —v1,0(p2))ij0;dr(z)dz is
symmetric.

In the case y , is constant (but possibly dependent on p) we define the matrix

, 0Pk
Mj = |D|/az, Z. (3.6)

We note that M may depend on p, and that it is not necessarily symmetric (though (I — y1,,)M is). Then
L,(x)=|D|( )ijM ! (0) i P(x,0)
X) = — iiMix—u —®(x,0),
14 Y1,p)ijMjk 9z 0 a}’i
and it is easy to see that

d 0
L,(x)+W,(x)=|D|( — yl,p)iijka—Mo(O)—G(x, 0), 3.7
Xk dyi

where G is the special Green’s function introduced in (1.6). Here and in the future we use the Einstein summation
convention, i.e., repeated indices (representing integers) in a single term implies summation from 1 to d.

Theorem 2. Suppose f is in H=/2(382) with farz fdo =0, and y, is given by (3.1) with y1 , € L (pD). Let ug
and u, denote the solutions to (1.1) and (1.3), normalized by fag uodo = faxz u,do =0. Let L,(x) and W,(x) be
given by (3.4) and (3.5). Then for any fixed § > 0,

2
Y dx =0.
p—

2\B;s

lim /‘ —V(up —uo) — VL, — VW,

The limiting process is uniform in y1 , € LY (pD) and in f € {||f||H 2(39) f(m fdo =0}. That is, for any

€ > 0and § > 0, there exists a positive constant py(€, 8), such that
1 2
/ ‘p—dV[up —ugl — VL, —VW,| dx <k,
2\Bs
forall p < po, all y1,, € L(pD) and all f € {||f|| (8:2) <1, fa.(z fdo =0}. The term VL, + VW, is bounded
in L*>($2 \ Bs), uniformly with respect to p, Vip € L°°(,0D), and f € {||f||H7%(39) <1, fa.(z fdo =0}

We may without loss of generality suppose that Bs C £2 and that Kpy < §/2. Then the function pl—d(u o — Up) —
(L, + W,) is harmonic in £ \ m, with %((up —up)— (L, + W,)) =00n 0. A combination of standard elliptic

theory and the energy estimate of Theorem 2 therefore yields similar estimates in any H*(£2 \ Bs) (or H*(3£2)) norm,
as stated in the following corollary.
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Corollary 3. Suppose f is in H~'/?(382) with fa.rz fdo =0, and y, is given by (3.1) with y,, € L (pD). Let ug
and u, denote the solutions to (1.1) and (1.3), normalized by fag updo = fm up,do =0. Let L,(x) and W,(x) be
given by (3.4) and (3.5), and normalized by faQ(LP + W,)do = 0. Then for any fixed 5 > 0, and any s € Ry

lup —uo— Ly + W) HS(2\By) — plo(l),

where the term o(1) tends to zero uniformly in y) , € L(pD) and in f € {”f”H_%(a.Q) <1, fa.rz fdo =0} as
p — 0. As a consequence we also have

lup —uo = p"(Lp + Wp) s 52y = P70 (D),

forany s e Ry. The term L, + W, is bounded in H*(§2 \ Bs) (and in H*(32)) uniformly with respect to p, Vi,p €
LE (D), and f € (11, <1 fog fdo =0}

As stated the terms L, and W, in general depend on p; Theorem 2 and Corollary 3 therefore do not assert the
existence of a limit of (u, —ug)/ ,od as p — 0. Due to the boundedness of the term L, + W, we may arrive at a limit
by extraction of a subsequence, much as was the case with the representation formulas in [4]. The boundedness of
the term L, + W, as stated in Theorem 2 and Corollary 3 is equivalent to the boundedness of the symmetric matrix
I —y1,0(p2))ij %qﬁk (z)dz as a function of p and y; ,. The assumption that yy be constant (the identity, after
a linear change of variables) may also be relaxed. For smooth yy we may carry out a “freezing of the coefficient”-
argument, much like in [5]. The formulation of Theorem 2 and Corollary 3 would not change, but the identity matrix
appearing in the definition of y;‘ and in the formula (3.4) would be replaced by y(0), the first equation of (3.3) would

become V - ((0) Vi) =0 in R? \ D, and the transmission condition of (3.3) would be replaced by

(0@ V) - n| . — (V1.p(0)VY%) |, = (v1.0(p)n), — (0 (O)n),.
Furthermore @ would be replaced by a Green’s function for the operator V - (ypV-), and W, would satisfy V -
(YoVW,) =01in £, VW, -n=—VL, -n on 9£2. As mentioned earlier, the terms L, and W, are independent
of p if y1 , is of the form y; ,(x) = y1(x/p), with y; independent of p. In that case it would indeed be possible
to extend the results proven here to any order in p, in other words to prove that (for a single inhomogeneity of the
form p D) one has an asymptotic expansion to any order (as already established in [1]) which is uniform in y; and

fellifl 2y <1 [y fdo =0}

H202)
Before proceeding with the proof of Theorem 2 we introduce some auxiliary functions. The function J is defined
as follows: if d = 3, then J is the W!(R? \ D) solution of

AJ=0 inR*\D,

0J
— =1 ondD,
on

if d =2, then J = 0. The existence and uniqueness of J is assured by Proposition 3 in Appendix A. The function
H, , is the W!(RY \ D) solution of

AH,,=0 inRY\ D,
N 1
Hyp(x) = ;(uo(pX) —up(0)) ondD,
for d =2 as well as d = 3. The existence and uniqueness of H 1,p is assured by Proposition 2 in Appendix A. The
function 1:11 is the W!(R? \ D) solution of
{Afh:o inR?\ D,
H(x) = Vuo(0)-x ondD,

for d =2 as well as d = 3. The existence and uniqueness of Hy is again assured by Proposition 2 in Appendix A.
Since (uo(px) — uo(0))/p — Vug(0) - x in H'/2(dD) as p — 0, the estimate (A.1) from Proposition 2 gives that

Hi,— H inW'(R‘\D)asp—0. (3.8)
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We also define

dH; , / 8H1
do and M= -— 0. (3.9
b= 1D / |D|

Due to the convergence (3.8) and the fact that both H 1,p and H, are harmonic in R? \ D it follows that

0H,, oH, . 1
— — inH 1(dD), (3.10)
on on

and therefore, in particular

Ap—> Ao asp—0. (3.1
The convergences in (3.8), (3.10) and (3.11) are uniform in f € {||f||H Yoo S <1, fa.(z fdo = 0}, since all the
involved quantities only depend on values of ug near x = 0. Finally we define uy , € H'(2 \ pD) to be the unique
solution to

Auy,=0 in 2\ pD,

d
“lp =f on 92, (3.12)
on

u1.p = uo(0) + pipJ (-/p) ondpD.
In order to study the behavior of pl—dV(u o — o) as required for the proof of Theorem 2 we divide the function

ﬁ(u[, — up) into two terms:

1 1 1
—(up —uo) = —wi,p+ —wz,p, (3.13)
pd " pd P pd TP
with
Wi,p =Ul,p — U0 3.14)
and
Wop=Up—Ulp. (3.15)

In the following two sections we shall study the behavior of pidw 1,p and pidwz, o0

3.1. A uniform estimate for the first remainder term

The function wy , =u1,, —ug € HY (2 \ pD) satisfies

Awl,pzo IHQ\E,
0
Wip = on 452,
on
wi,p =V1,p:=uo(0) —uo(-) + prp,J(-/p) ond(pD).
We define

Hip,=—Hi,+x,J € W (R?\ D)
and
Hy=—Hi +x0J € W (R?\ D).

The function H,, satisfies
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AH;,=0 inRY\ D,
1
Hl,p(x) = ;%,p(px) ondD,

and due to the convergence results (3.8), (3.10), and (3.11) it follows that

— 0 0
Hi,— H inW'(R‘\ D), and oo Hip = —H) in H-'2(3D), (3.16)
n n
as p — 0. This convergence is uniform in f € {”f”H’%(a.Q) <1, fB.Q f do =0}. Applying Proposition 2 we get
9 d
Hl,p(x)z W(p(x’ Y)Hl,p(y)day_ D (x, Y)%Hl,p()’)do'y‘i‘cp
y
oD oD

for some constant C,,. We note that, due to the particular choice of A, (and (A.2) for d =2)

d
/ aH]’de’ =0.
oD

Let Ap denote the Neumann to Dirichlet map associated with the Laplacian on D. In other words: for any ¢ €
H~'2@D) with [, ,¢do =0, set Ap(¢) =w|sp € H'/?(3D), where w is the solution to

0
Aw=0 inD, 8—w=¢ on oD, /wda:O.
n
oD

With the use of Green’s formula and this notation the above representation formula for H; , may be rewritten

0 0
Hy p(x) = / W‘P(x, y)[Hl,p(y) - AD<_H1,p>(y)] doy + Cp,
aD

y on

for x € R\ D. The rescaled function
v1,p(x) = pH1 p(x/p), 3.17)

may then be represented as

0 d
v p(x) = Pf —@(x/p, y)|:H1,,0(y) - AD<£H1,p>(y)} doy+pCp
b

ony

ony on

] 9
= pd/ —d(x, py)[Hl,p(y) - AD<_H1,p)()’)i| doy + pCy.
d

Due to the convergence result (3.16) and the continuity of the operator Ap from H~'/2 to H'/? it follows that

0 9 : 1/2
Hl,p_AD _Hl,p —)Hl—AD a—Hl in H (aD)
n

on
Thus
1 2
;ig}) f ‘ﬁVvl,p—VLl dx =0, (3.18)
2\Bs
for any fixed § > 0, and
1 v, _ & in H-12382). (3.19)

im —
p—0 p4 On on
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where

Li(x) = Vycb(x,0)~/(H1 —AD<%H1>>nyd0y, x e 2\ {0}
aD

The convergence is uniform in f € {”f”H’%(aQ) <, fa:z fdo = 0}. In order to complete the analysis of the

behavior of pid w1, it only remains to examine

1
Wi,p:= p_d(wl,p —V1,p)- (3.20)

For that purpose we shall make use of the following lemma.

Lemma 1. Suppose f, € H™2(dR) and fo € H~3(0R) with [, f, = [, fo =0, and suppose f, — fo in
H? (082) as p — 0. Let w, and wq denote solutions to
Aw,=0 in2\pD,
dwy,
e
w, =0 on dpD,

Awg=0 in$2,
f,O on ag’ and 3w0

—=fo onds2,
on

respectively. Then

lim |Vw, — Vwo|>dx =0.
p—0
2\pD
The convergence is uniform in the sense that given any € > 0 there exists T(€) > 0 such that for any fy €
< =

{”f”H_%(()Q)\L fagfda 0},

p<t(e), and f,e H'*@2),  |fp— fol g-1r2pg) <7
implies

/ [Vw, — Vw0|2dx <e.

2\pD
Proof. Standard coercivity arguments (in this case, direct integration by parts) gives that

”pr ”LZ(_Q\E) < C”fp ||H*l/2(ag)~
Let E ¢ (w) denote the energy

1
§/|Vw|2dx—/fwda.
Q Y]

We extend w, to all of §2 by setting it to zero on p D. For simplicity we also call this H 1(£2) extension wp. Itis well
known that w, is the minimizer of Ey,(-) in H'(£2) N {w: w=0o0n pD}, and that wy is the minimizer of Ef (o) in
H'(£2). A simple calculation gives

/|V(wp —wo)|*dx =2[E, (wp) — E sy (wo)] + 2f(fp — fow,do

2 082

Z[Efp (wp) - Efo(w())] + C||fp - f0||H—1/2(a:2) ||pr||L2(_Q)
2

<
< [Efp (w*) - Efo(wo)] + C”fp - fO”H—l/Z(aQ)”fp”H—'/z(E)Q)s (3.21)
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for any w* € H'(£2) N {w: w =0on pD}. We proceed to construct an appropriate test function w*. For simplicity
assume Bj is compactly contained in £2 and suppose pD C Bk, with Kp < 1. Define

0 if |x| < Kp,
1 .
Xp(x) = 1—10‘;5,‘3;) ifKp <|x| <1,
1 if 1 < |x],

and set W, = x,Wo € H'(2)N{w: w=0o0n pD}. Then

- 2 1 2
|V, —wo)| dx = Toa Koz / |V (log |x|wo)|” dx
Kp<|x|<1 Kp<|x|<1
C 2 1
s <1og<1<p>>2<fé'£’“’°(x)’ / e

Kp<|x|<1

+ sup |Vwo()c)|2 f (log|x|)2dx>

xX€eB
Kp<|x|<1

C 2 5
< W(xsggl|wo(x)| +xs;1£l’Vwo(x)| )‘log(p)|

—-0 asp—0. (3.22)

The convergence is uniform on {||f0||H7% ) <1, fm fodo =0}. We also have

(982
/|V(d)p—wo)|2dx= f \Vwol>dx + / |V (@, — wo)|” dx
2 |x|<Kp Kp<|x|<1

< / |V (ip — wo)|* dx + Cp? sup [Vwo(x)|,
xeBy
Kp<|x|<l1
and by combination with (3.22) we therefore get
||V(1Dp — wo) ||L2(_Q) —0 asp—0.

. p _ .
The convergence is uniform on {”fOHH_%(aQ) <1, fa.o fodo = 0}. Since

|”V1Dp”L2(_Q) - ||Vw0||L2(g)| < ”V(wp - wO)”Lz(Q),

it follows that ||V, || ;2(s) is bounded uniformly in p and in fo € {”f”H’%(aQ) <1, fé).Q fdo =0}, and so
V@172, = IVwoll72 gy | = [1VDsll2i2) = IVwoll 202y [ (IVisll2(2) + 1 Vwoll12(2))

< |V@p = wo)|| 20 IVl 22y + IV woll 12(e))

—0 asp—0,

uniformly on {”fO”H’%(a.Q) <1, faﬂ fodo =0}. Due to the fact that W, = wo on 952 we have the estimate

2[Ey, (@) = Efy(wo) ] = Vs 720, = IVwoll 72, + / (fo— fp)wo
082

<V 720y = IVWoll2 o) + Cllfp = foll 122yl foll -1 a2)- (3.23)

From 3.21 (with w* = @,) and (3.23) we now conclude that
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2 ~
f|V(wp —wo)|"dx < [Ey,(0y) — E sy, (wo) |+ Cll £ — foll g-1200) | Foll i-1202)
2

1 ~ 2 2
< E(HVU)'O”LZ(Q) - ”VWOHLZ(Q))
+ C”fp - fO||H—1/2(aQ)(||fp||H—1/2(a_Q) + ||f0||H—1/2(a_Q))
-0 asp—0.
Since the term ||V, 112 —[|[Vwo |2 converges uniformly with respect to fp € {||f||H7%

L2(2) LX)
this last convergence is clearly uniform in the sense asserted in this lemma. O

< =
ooy <1 Jag fdo=0)

We now return to the estimation of Wy , := pld(w 1,p — V1,p). This function is the unique solution to

AWy, =0 in2\ pD,
ow 10
Lo = %P () onae,
on pd on
Wi,,=0 on dpD.
Let W; denote a solution to
AW =0 in £2,
oW oL
—— =——— o0ndf.
on on
. 1 vy, dL; —1/2 . .
According to (3.19) o0 an converges to 5t in H (0£2), uniformly with respect to f € {”f”H’%(aQ) <1,
fa o fdo =0}, and so from Lemma 1 it follows that
lirr%) VWi, — VWi |?dx =0. (3.24)
p—
2\pD
The limit is uniform in f € {”f”H‘%(aQ) <1, fa:z fdo =0}. A combination of (3.18) with (3.24) now yields
1 2 1/2
( / ‘FVU)LKJ — VL —VW; dx)
2\B;s
1 2 1/2 1 2 1/2
g( / ‘—dV(wLp—v],p)—VW] dx) +< / ‘_dvvl,p_VLl dx)
o o
2\Bs 2\B;s
172 1 2 172
= < / VWi, — VW1|2dx> + ( / ‘—dVvl,p — VL, dx)
0
2\Bs £2\Bs
—0 asp—0, (3.25)
uniformly on {|| f ||H_ 1 02) <1, fa o fdo =0}. Since all the involved functions are independent of y; , it follows

immediately that the limit is also uniform with respect to y1,, € LS (p D). This completes the study of the behavior
of the first remainder term pidwl, pasp—0.

3.2. A uniform estimate for the second remainder term

It remains to examine the behavior of the term the ﬁwz, 0= pl—d(u o — U1,p) on §£2 \ Bs. For that purpose it will

be convenient to extend the function uy , to all of £2 by setting it equal to the constant uo(0) on pD. From (1.3)
and (3.12) it now follows that w» , is a solution to
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V(y1,pVwz,p) =0 inpD,
Awp , =0 in 2\ pD,
0
M0 g on 92,
an
dws,p ouyp
: = pVwap) -nj, =——— on dpD,
on ext P ? |1m on ext
[w2,p]=—pApJ(-/p) on dpD.
For brevity we shall use the notation v , = —ag%lext on dpD. Since Vr ,, € H? (0pD), fapD Y2, =0,and A,J €
H 3 (0D), Proposition 4 guarantees the existence of H; , € wl(Rr4 \ D) x HY(D), a solution to
V- (y1.0(p)VHa,,) =0 in D,
AH>,=0 inR?\ D,
0H»
L = (y1.p(0)VHyp) - n|, =v2,(p:) ondD,
on ext
[Hy pl=—ApJ ondD.

This solution is unique for d = 3, and it is unique modulo a constant for d = 2. Moreover, H , may be represented as

doy + Cp.

ext

d
Hz,p(X)=/aT¢(x,y)Hz,p day—/fp(x y) 2p(y)
y ext

aD aD

The rescaled function, v2 , = pH> ,(x/p), may then be represented as

doy + pCp

ext

)
V2, (X) =p / = (x/p.y)Hop| doy— / O/p,y)° 2”(y)
3D y ext oD

9 _
=pd/<8—¢>(x,py)Hz,p doy — p? 1/
ny ext

aD aD

doy + pC,. (3.26)

ext

For the last identity we have (at least in the case d = 2) used that

/ 0H; ,
on

oD

do =0, (3.27)

ext

which in turn (for d = 2 as well as d = 3) follows from the fact that

oug
/l/pr—_/ £l =0 and /.(J/l,p(ﬂ')VHlp)'”|im=O'
On oy

apD apD 9D

Using (3.27) once more we may rewrite (3.26) as

d a
v2,(x)=p / P, (x, py)Hz,p
aD y

0H
! / (®(x. py) — D(x.0)) ai”’ o

aD

doy
ext

doy + pC,. (3.28)

ext

We now study the asymptotic behavior of Hj ,|ext and |ext on dD. To this end the definitions of w; , and Wy ,,
(3.14) and (3.20) respectively, yield that

urp=uo+wi,=uo+p Wi, +uv, inf\pD. (3.29)
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Since vy,,(x) = pHy ,(x/p) (see (3.17))

0 oH
;“’ () = ( 1"’)(x/m,
n

on

and so

(8;‘*p)<px> LIV (330)
n on

for x € 3D. We may without loss of generality suppose p is sufficiently small that Box, C §2. From (3.24)

lim VW), — VW [>dx =0,
p—0
B2Kp\pD

which implies that

111%( f VWi p|? dx — / |VW1|2dx>=O.
p—

Bakp\pD Bokp\pD

In particular

VWi ,2dx =0 asp— 0.
Bakp\pD
The rescaled function
Wi () = Wi, (px)
satisfies AW , =0in Bag \ D, Wy , =0o0n 3D,
pd2 / VWi p*dx = / VWi ,)?dx —0 asp—0

Boxk\D Bakp\pD

and

on on

Therefore
oWy,
< 8—p ) (px)
n

as p — 0. The convergence is uniform with respect to f € {”f”H’%(aQ) <1, fa(z fdo =0}, and since Wy, is
independent of y1 ,, this convergence is also uniform in y , € LY (p D). It immediately follows (after multiplication
=0. (3.31)

by p?) that
oW,
p“(—"’)(p-) 1
on H™2@D)

By a combination of (3.29), (3.30), (3.31), and (3.16)

L )(px)
ext

. . 0H) o
= — lim Vug(px) -n — lim 2= (x)
p—0 p—0 0on

oW aw
L2 (y) = ,0< l’p)(px) on dD.

2 2

AWy,
on

d -2 < Cp?2IVWy i 0,

H™2(3D)

2
) — =
H_%(BD) L#(B2k\D)

lim
p—0

ouy,
on

lim ¥, (ox) =~ lim (

oH,
=—Vug0) -n— —(x), (3.32)
on
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for x € 3 D; the convergence takes place in H~!/2(9 D) and is uniform in Y1.p € LY(pD) and f € {”f”H’i(aQ) <1,
Jyo fdo =0}.Let Hy , € WI(RY \ D) x H'(D) denote the solution to

V- (y1,0(0)VH,) =0 in D,

AHy, =0 inR?\ D,

IH> , - 3H, (3.33)
o |, - (Vl,p(,O')VHz,p) 'fl|i —Vuop0) -n — . on dD,

[Ha ] =—20J on dD.

‘We note that
o0H
/(—VMO(O) n— —1> do = lim p~@+! / Y, do =0,
on p—0
aD 9pD

and so the existence of ﬁz, o 1s guaranteed by Proposition 4. I:IQ’ o 1s unique for d = 3, and it is unique modulo a

constant for d = 2. We note that 1:12, o 1s independent of p if y; ,(x) is of the form y; ,(x) = y1(x/p). Proposition 4
also yields that

/ |VI-12,p|2dx is bounded

RI\D
independently of p, y1,, € LY (pD) and f € {||f|| (m) fa_o f do =0}, and in combination with (3.32) and
(3.11) it guarantees that
~ 2 3H1
|V(Ha,, — Ha,p)|"dx < V2,0(p°) + Vuo(0) - n+ — 3 + [Ap — 2ol
n H—I/Z(;)_Q)

RA\D
-0 asp—0.
Here the constant C is independent of yi ,, and so the convergence is uniform in y; , € LY(pD) and f €
{”f”H’i(a.Q <1, [, fdo =0}. In particular we get that

Hy plext — HZ,p|ext —0 in Hl/z(aD), and

dH. dH
2pl _ZZ2PL 0 in H V20D,
O ex O oxe
uniformly in y; , € Loo(/)D) and f € {”f” fag fdo =0}, with Hp plext, HZ plext and n HZ olexts

(39)
a_nHl plext uniformly bounded in H 12(3D) and H~Y%2D) respectively. The H 1/2 convergence and the bounded-

ness of the functions H o |ext, I:Iz, o lext should be interpreted modulo constants. From (3.28) it now follows that

2

. 1
gl_)nb f ‘ﬁszyp —VL,| dx=0, (3.34)

2\Bs

where L, , denotes the function

MAM—V¢QO)/< “@)

y+ 1:12»P(y)|ext”Y) doy Vx e 2\ {0}.

ext

As a consequence of (3.34) and the fact that v, , and L; , are both harmonic in £2 \ Bs

1 avz,p 3L2,p

5
_ pd on on

p—0

=0. (3.35)

H_% (082)
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The convergence is uniform in f € {||f||H Yoo S <1, fa_(z fdo=0}and y,, € L(pD). We now consider W5, , =

p_d (w2,p — v2,p); this is a solution to

V- (ypW2,)=0 in £2,
oW, _ 1 dvyp
am pd on

nage. (3.36)

Problem (3.36) has a solution since, due to (3.27),
/ vz, do — / vz, dG:pd_I/ 0H> ,
on on okt on
aD

EY?) apD
W»,, is unique modulo a constant. A combination of (3.35) and Corollary 2, the latter with — d d V2, and — Lz, 0
in place of g and f, yields that

do =0.

ext

lim VWi, — VW ,|*dx =0, (3.37)
p—0
2\ B;s
uniformly with respect to y1,, € L (pD) and f € {||f|| . 02 S <1, farz fdo =0}. Here Wa ,p is a solution to
AWz,p =0 in £2,
W, dL
20 _ZZ2p onods2.
on on
H~12(3£2), uniformly in p, Y1.p € LY(pD) and f € {||f||H Yoo S <1, fag fdo =0}. The convergence state-

ments (3.34) and (3.37) now imply

2 12

dx)
2 12 |

dx) +< / ‘_dVUZ,p_VLZp

0
2\B;s
12 | 2 12
(/ |VW2p—VW2p| dx) +< / ‘—dVUz,p—VLz’p dx)
o

1 -
(/’FVU)Q’;)—VLQHO—VWQW
2\B;s

2 172
dx)

1 -
< ( / ‘FV(U)Z,p - U2,p) - vVV2,;0
£2\Bs

2\Bs 2\Bs
-0 asp—0, (3.38)
uniformly in y; , € L(pD) and f € {”f”H‘z 02 S <1, fa(z f do = 0}. This completes the study of the asymptotic

behavior of the second remainder term pld wy,, as p — 0.
3.3. Proof of the main theorem

It follows directly from the decomposition (3.13) and the estimates (3.25) and (3.38) in the two preceding sections

that
| N V)
( / ‘FV(up —uo) = V(L1 + Lz p+ Wi+ W) dx)

2\B;s
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2 12
dx)

—0 asp—0. (3.39)

1
<< / ‘—del,p—V(L1+W1)
P
\Bs

2 12 | )
dx> + ( / ‘p—dez,p — V(L + W)
Q2 \Bs

As a consequence of this and the fact that [, , u,do = [, , ugdo =0 we also get that

1 -
—(wp —ug) — (L1 + Lo p+ Wi+ W, +C) -0 asp—0,
ol

H1($2\By)

with the constant C given by

1 -
C=—— L L w 1% do.
|8S2|/( 1+ Loy +Wi+W,)do
a0

Note that C generically depends on p. Since the function pl—d(u o—ug)— (L1 + Ly, + Wi+ Wg, o + C) is harmonic

near 952, and since its normal derivative vanishes on 942, it follows by local elliptic regularity theory that all norms
tend to zero, i.e.,

—0 asp—0,

1 B
H —p —uo) = (Li+Lop+ Wi+ W +C)
p H3 (22\By)

)

for any real positive s. Just as in (3.39) the convergence is uniform in y; , € L°(pD) and f € {||f||H7%(m) <
J: s J do = 0}. From continuity of the trace operator (supposing 4 is sufficiently small) it follows that

—0 asp—0,

1 -
H_d(up —up) —(Li+ Loy +Wi+ Wy ,+0C)
1% H*(02)

for any real positive number s, in the same uniform sense as above. Let L, denote the term L, = L| + L3 , and let
W, =W+ Wy, + C. Then

LP(X)ZV)’(p(xfO)'(/(Hl —AD(%Hl))nda—i-/(—agljp (2)
aD oD

and W, is the harmonic function in §2, uniquely determined by the boundary conditions

z+ I:IZ»P(Z)|ethZ) daZ) ’

ext

B
E(Wp—i—Lp):O ondf2, and /(Wp—i-Lp)da:O.
Y,

There are several ways to deduce the L?(£2\ Bs) boundedness of V(L o+ W,). On the one hand it follows from (3.39)
and the boundedness of (1, — ug)/ ,od asserted in Theorem 1; on the other hand, it also follows immediately from the
formulas for L, and Wy, and the boundedness of H; and that of I:Iz, o» stated just before (3.34) in the previous section.
In order to prove our main theorem, Theorem 2, it thus only remains to verify that

/(H1 —AD<iH1)>nd0+/<—aH2’p (2)
on on
aD 3D

0
= [ (I = v1,0(p2)) Ve (z) dz —u0(0), (3.40)
0Xy
D

z+ I:IZ,P(Z)|ethZ> do;

ext

where ¢ is the function defined by (3.2). In the following lemma we collect a number of identities that will be useful
in order to establish this relationship.
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Lemma 2. With notation as above,

H ~ oH
[ 26 (z)| zdo,= / V1,00 )VH ,dz — /(Vuo(O) -ng + —1>sz2, (3.41)
on ext on
aD D aD
/ Hy,,(2)|, nzdo. = / VH, ,dz —xo / Jndo, (3.42)
aD D aD
and
0 0H,
H — Ap 8—H1 ndo =— | Vug(0)-n;zdo,+xo | Jndo — 8—(z)z do,. (3.43)
n n
aD D oD oD

Proof. From (3.33), one has

dH, ,
/ o (2)

oD aD aD

H

~ a
zdo; = /(VI(P')VHZ,p) : l’lZ|imZdGZ - /(VMO(O) “nz+ 3—n>ZdO‘Z.
ext

Integration by parts and use of (3.33) yields

/(yl,p(p-)Vﬁz,p) 'nz|intzdozzfv'(Vl,p(p')ng,p)ZdZ+/Vl,p(p')VI:IZ,de
oD D D

:fyl,p(p')VﬁZ,de-
D
Thus it follows that

H ~ oH

[ 26 (z)| zdo,= / V1,00 )VH ,dz — /(Vuo(O) -ng + —l>zdaz,
on ext on

aD D aD

as stated in (3.41). From (3.33) one has

- ~ 0z
/szp(z)|extnzdaz:/H2>p(z)|int87 daz—ko/andaz.
aD aD : aD

At the same time

~ 0z - ~ -
/Hz,p(z)|im8—nzdoz:/Hz,pAzdz+/VH2,pdz=fVH2’pdz,

aD D D D
and so

[ﬁz,p(z)kmnzdaz:/VI:Iz,pdz—)\O/andoz.

3D D aD

In order to complete the proof of this lemma it only remains to verify (3.43). To that end we let w denote the solution
to

d 0
Aw=0 1inD, —w=—H; onadD, /wda:O.
on on
aD

With this notation AD(% H|) = w]|3p, and thus
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0 A 0
/ H — Ap| —H; nda:—/Hlnda+A0/]ndo—/w(z)—zdaz
on on,
aD

oD aD aD

d
=—/Vu0(0)'znzdaz+k0/Jnda—/a—w(z)zdoz
n

aD aD aD
0H,
=— | Vup(0)-nyzdo, +rg | Jndo — a—(z)z do,
n
aD aD aD

which is exactly (3.43). O

Now the final step of the proof of Theorem 2. As a direct consequence of Lemma 2

/(H1 —AD(iH1>>nd0+/(—aH2’p (2)
on on
aD aD

=/(1 —V1.p(p2))VH:, p(2) dz. (3.44)
D

Z+ ﬁ2,p(1)|ext”z) do;

ext

Furthermore, the function (z)gﬂ(O) (with ¥ defined by (3.3)) may, up to a constant, be expressed compactly in

Xk
terms of the functions H; and H ,

Hi(z) + H,p(2), zeRI\ D,
—Vup(0) -z + Ha p(z), ze€D.

In terms of ¢y (z) = ¥ (z) + zx the second equation asserts that

8140
Vi (z2) — (0) + constant = :
3xk

3 3 3
V(@) 20 0) = V[ i (2) 22(0) + Vuo(0) -z | = VA (z), forze D,
Xy 0Xy
and therefore

d ~
/(1 — Y1,0(p2)) Vi (2) dz E”O(O) = /(1 —v1.0(p2))VH) p(2) dz.
D D
A combination of the last identity and (3.44) leads to (3.40), and this completes the proof of Theorem 2.

4. Other inhomogeneities D,

In this section we prove an analogue of Theorem 2 for inhomogeneities that are not exactly of the form p D, but
close. As already pointed out in the introduction a result like Theorem 2 cannot hold for volumetrically small D, of
arbitrary shape. We suppose the open set D, contains the origin, and that there exists a smooth, bounded domain D,
star-shaped with respect to the origin, and such that

(1=rp)pD C D, C (1 +r,)pD, 4.1)

with r, > 0, and r, — 0 as p — 0. Let y, be defined as in (3.1), but suppose furthermore y; , is constant and
isotropic, i.e.,

I inQ2\D,,

- 4.2

Ve { ¢l inD,, 42)

for some scalar constant ¢ > 0. You may think of ¢ as varying with p, but for simplicity of notation we call it c, as
opposed to ¢,. If Ep, (v) denotes the energy expression

1
EDp(v)zif(yva,Vv)dx—ffvdcr,
Q 92
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then
E(1=r)pp(v) < Ep,(v) < E(14r,)pp(v) Yve H'(2), 4.3)
forc > 1, and
E(141,)0p ) < Ep, (V) < E(1=r,)pp(v) Vv e H (), (4.4)
for 0 < ¢ < 1. Let u,, denote the solution to
. ou,
V- (ypVu,) =0 1in £, 8_:f onds2,
n

with [, ,u,do =0, and let u(pi) denote the solutions to the same problem, when D, in the definition of y, is

replaced by (1 £r,)pD. The function u, is the minimizer of Ep,(v) in H'(2)n {fafz vdo =0}, and uﬁ,i) are the
H'(2)n {fzm vdo = 0} minimizers of E(]irp)pD(v), respectively. From (4.3) and (4.4) we conclude that

E(—rpp(u$”) < Ep, () < E(14r,)on (b)),

forc > 1, and
E(l+rp)pD(u§)+)) S Ep,(up) < E(l—r,,)pD(Mﬁf)),
for 0 < ¢ < 1. As a consequence
(=)

|Ep, p) = E—rpp(57)] < |Eqr,on (b)) = Ea—ron (u5”)], 4.5)
for any ¢ > 0. It is well know that
2EDP(up)=—/fupdo, (4.6)
902
and similarly
2E (11,0 (u57) = — / ful? do. 4.7)
a0

From Theorem 2 (or rather, Corollary 3) and the formula (3.7) we have the following asymptotic information about
u(_) —u d + _ =
0 o and u, u,
1 _
— (7 = u0) () = (1 = rp)?|DIVyG(x,0) - (1 — )MV (0) + o(1)(x)

o
=|D|VyG(x,0) - (1 — c)MVuo(0) + o(1)(x), (4.8)
and
id (@S = u$?)(x) = (1 +7,)Y|1DIVyG(x, 0) - (1 — )M Vuo(0)

k)

—(1- rp)d|D|VyG(x, 0)-(1=c)MVup(0) +o(1)(x)
= 0(rp)(x) +o(D)(x) = o(1)(x), (4.9)

where o(1)(-) represents a term that tends to zero in any H*®(d£2) norm, uniformly with respect to ¢ > 0 and f €
{||f||H7% . <1, farz fdo =0} as p — 0. In the second identities of (4.8) and (4.9) we have used the uniform

boundedness of (1 — c)M = (1 — ¢)M(c) (see the discussion following Corollary 3). It follows immediately by a
combination of (4.5), (4.7), and (4.9) that

|Ep, () = Eq—rpp (b)) <|Ear,00 (uST) = Ea—r,on (u5”)]
1
= 5‘ / f(ugf) — uﬁf))da
9082

= p?o(1),
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where the term o(1) tends to zero, uniformly with respect to ¢ > 0 and f € {||f||H Yoo S <1, fag fdo =0} as
p — 0. A subsequent application of (4.6) and (4.7) yields

[t

Due to the linear dependence of u,, and uﬁ,_) on f we thus obtain

‘/f —u)do| <

where the term o(1) tends to zero, uniformly with respect to ¢ > 0 and f as p — 0. Since the operator f — (u, —

| =2|Ep,wp) = Ei—r,pn (us”)]| = plo(1).

<Oy, ¥ et [ raa=o)

382
uﬁf))|a o 1s self-adjoint, a standard polarization argument (as in the proof of Theorem 1) now gives

/ glu, — uﬁf))dcr

<ploIfllg-122 181l H-1202):

FX;

forall f,ge H™ ’n {fa_(2 f do =0}. Maximization over g € {||g||H Yoo S <1, fa.rz gdo =0} yields
u) — (1

iy =111,y = P70
where o(1) tends to zero, uniformly with respectto ¢ > 0 and f € {||f||H Yoo S <1, f(m fdo=0}asp—0.Bya
combination with (4.8) we finally arrive at the asymptotic representation

1

p—d(up —up)(x) =Ly + Wy +o(1)(x) =[D|VyG(x,0) - (1 = c)MVup(0) + o(1)(x), (4.10)
where the term o(1) tends to zero in H'/2(3£2), uniformly in ¢ > 0 and f € {||f||H Yoo S <1, fag fdo =0} as

p — 0. If we had included a term of the form | o Fvdx in the energy (as in Section 2) then we would immediately
have shown that the o(1) term also converges uniformly to zero in the norm H 1(§2 \ Bs). Standard elliptic estimates
now instantly (as in Section 2) shows that the o(1) term actually converges uniformly to zero in any norm H*(§2 \ Bs)
(or H*(952)). In summary we have therefore established the following theorem.

Theorem 3. Suppose f isin H~/?(382) with fa.@ fdo =0, and suppose y, is given by (4.2), with the bounded, open
set D, satisfying (4.1). Let ug and u,, be the solutions to (1.1) and (1.3), normalized by fa(z updo = fa.o up,do =0.
Let L, (x) and W, (x) be given by (3.4) and (3.5). Then for any fixed § > 0 and s € Ry

1
lim || — (1, — uo) — (L, + W,) =0,
p—0] p? HS (2\Bs)

and as a consequence

1
lim || —(u, —ug) — (L, + W) =0,
=0l pd " S 7S
foranys € Ry. Moreover, these limiting processes are uniforminc > Qandin f € {|| f|| _i <1, faﬂ fdo =0}.

H 2(092)
5. Some remarks on cloaking

The main idea behind “cloaking by mapping” is that the Neumann to Dirichlet data map (or the Dirichlet to
Neumann data map) of a domain is appropriately invariant under mappings that preserve points on the boundary. To
be quite precise: if ¥ is a continuous, piecewise smooth mapping that maps §2 injectively onto §2, and with ¥ (x) = x
for all x € 052, then the conductivities
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Dwy D! _1 {

y >0 and W*y_wolll >0 (5.1)
have the same Neumann to Dirichlet data map. What this means is that to any observer outside £2, y and ¥,y will
look like the same conductivity. This of course does not contradict well-known uniqueness results for the isotropic
conductivity in terms of a given Dirichlet to Neumann map [2,10,12,15], rather these uniqueness results may be
interpreted as saying that the only ¥, with ¥ |3 = id, for which y and W,y are simultaneously positive and isotropic
is ¥ = id on all of £2. In the context of the conductivity problem the “push forward” construction (5.1) was introduced
in [11], and originated from a discussion with L. Tartar.

In order to create a region inside £2 that is perfectly cloaked one selects a ¥ that opens up a single point to this finite
sized region, as first discussed in [7,8] and later in [14]. Roughly speaking any conductivity, put inside the perfectly
cloaked region, in the corresponding “pulled back” formulation “lives” at a point, and is thus invisible as far as the
solution to the boundary value problem is concerned. A rigorous treatment of this phenomenon involves a discussion
of what are appropriate (physical) solutions to elliptic problems with degenerate coefficients, since the conductivity
cloak ¥,y becomes very degenerate when a point is opened up to a finite sized region. Such a rigorous discussion is
found in [7] and [9]. To introduce regions that are approximately cloaked — by means of non-degenerate cloaks —
a natural procedure is now to “blow up” a very small region to a finite sized region. To answer the question, of exactly
how good the approximate cloaking is, one must estimate the effect of a small inhomogeneity of completely arbitrary
conductivity on the Neumann to Dirichlet data map. For more details about such estimates of the level of approximate
cloaking associated with piecewise smooth mappings we refer to [9]. In that paper the authors used a monotonicity
argument and information about the effect of small inhomogeneities of extreme (isotropic) conductivities, derived
in [6]. The analysis could have been simplified if the estimate of Corollary 1 had been available. This corollary is also
particularly well suited to the case, when the small domains are not exactly dilatations of a fixed domain, as happens
when we consider approximately cloaked regions that are not balls. The results contained in Theorems 2 and 3 about
the two principal terms of the asymptotic expansion of u, also have potential applications to approximate cloaks.
These applications concern estimates of the level of approximate cloaking as well as questions of design. The result of
Theorem 2 allows the identification of the exact level of cloaking associated with a particular object (the conductivity
of which is the appropriate “push-forward” of y ,). Since the asymptotic is uniform in y ,, the principal terms could
very efficiently be used to find the asymptotically most/least visible object for a given background field Vi (0) (and
the circular approximate cloak construction). Alternatively it could be used to determine the worst/best background
field to identify a particular object that someone is attempting to cloak. Theorem 3 is of interest when it comes to ap-
proximate cloaks that are not of circular shape. A particular construction of such cloaks (by composition of mappings)
is discussed in [9]. In that case the small inhomogeneity (that is mapped to the finite sized approximately cloaked re-
gion) is of the form F(pBj) for some smooth map F. For simplicity let us assume F(0) = 0. Then we have exactly
(by performing a Taylor expansion of F around 0) that (1 — Cp)pDF(0)By C F(pB1) C (1+Cp)pDF (0)B;, where
C depends on bounds of the second derivatives of F. We are thus exactly in the situation covered by Theorem 3,
the domain D being the ellipsoid D F(0)B;. For a given background field Vu((0) (or for a given family of back-
ground fields) the very precise information about the magnitude of the effect of the small inhomogeneity, described
in Theorem 3, may be used to determine the best/worst ellipsoid from the point of view of approximate cloaking of
a uniformly conducting object.
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Appendix A. Auxiliary results for exterior domains
In this appendix we present some results concerning the solution of exterior problems that were used extensively

in Sections 3.1 and 3.2. We first introduce some convenient notation. Let U be a connected, smooth open region of R?
(d =2, 3) with a bounded complement (this includes U = R9). The space WL(U) is defined as follows

u(x)
In2 + |x])y/1 + |x]?

wl) = {ueL}OC(U): € L*(U) and Vu eLz(U)},
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ford =2, and
u(x)
V14 |x)?

for d = 3. This definition is taken from [13, page 59]. We recall the following result (see e.g. [13, Section 2.5.4]).

wl) = {ueL}OC(U): € L*(U) and Vu eL2(U)},

Proposition 1. W' (U) is a Hilbert space with the scalar product

(, V)1 =/<vu.vu+ ux)v(r) )dx, ford =2
U

22 + |x])(1 + |x|?)

and

(u, v)y :[<VM-VU+%]|;(TZ)> dx, ford=3.

For d = 3 we may omit the zero’th order term, i.e., an equivalent scalar product on W' (U) is given by

(u, v)yn =/Vu~Vvdx, ford =3.
U

Remark 1. For d =2 we cannot omit the zero’th order term and still obtain an equivalent scalar product, for the
simple reason that constants lie in the set W(U). On the other hand if 91(-) is a continuous linear functional on
W!(U) with the property that:

cconstant and N(c) =0 = ¢=0,

then the scalar product (u,v)y1 = fU Vu - Vudx is equivalent to the scalar product (u, v)y1 = fU(Vu - Vo +
u(x)v(x)
In®2+1x ) (1+1x[?)

W (U) = WHU) N {u: N(u) =0},
see Theorem 2.5.13 of [13].

) dx on the closed, co-dimension 1 subspace

In the following we shall always assume that D is a smooth, bounded, simply connected domain in R? (d =2,3).
We note that as a consequence U =R¢ \ D has only one connected component.

Proposition 2. Suppose g € H 2 (D). There exists a unique solution V.€ W' (R? \ D) to
{—AV:O inRY\ D,
V=g ondD.

This solution satisfies

”V“Wl(Rd\B)gC”g”H%(aD)- (A.1)
Additionally, in the case d =2,
A%
[ CAA— (A2)
on
aD

For bothd =2 and d =3 V has the representation

oV
ony

3 _
V(x):/a—q)(x,y)Vde—f@(x,y) doy+Cy, xeRI\D,
ny

oD oD

where Cy is a constant,
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—%lmx—yl ifd=2,
o.y=1 7 o
dmlx—yl ifd=3,

and ny denotes the exterior unit normal vector to D at 'y € dD. The constant Cy is equal to 0 in the case d = 3.

Proof. We first consider the case d = 3. The arguments leading to existence and uniqueness of V' are standard, and
so is the estimate (A.1) for V. Since V € W!(R? \ D) one has

2
hm / (|VV| +|| ||2)d =0.

BZr\B

On the other hand, for each r (sufficiently large) there exists R € (r, 2r) such that

aB/ (IVVI +||R||§>do= / (|W| +|| llj)dx

R BZr\Br
Therefore, there exists a sequence Ry such that limy_, oo Ry = 00 and

. \45
lim R VV|? do =0. A3
Jim k/<| | +|Rk|2 o (A.3)

3B,

Given any x € R? \ D, Green’s identity gives

0 A%
Vi) = / (ch(x, WV(O) - B, y)ﬁ(y)> do,
y y
oD

av a
+ / (dj(x,y)ﬁ(y)——‘P(x,y)V(y)>de~ (A4)
y

ony
IBR,

Here ny denotes the normal vector directed into the exterior of Bg, or D at the point y € d Bg, or y € 9.D. The second
aVv 0
GD(x,y)W(y)——‘P(x,y)V(y) doy
y

term in this formula satisfies the estimate
con [ (V4 M)
ony s Ry R,% '

BRk BBRk
Vv 0
‘/(dj(x,y)a—(y)——q)(X,y)V(y))de
ny

1 1
2 2 2
ony Rk

BBRk aBRk 3BRk

An application of Holder’s inequality yields

Letting k tend to infinity, and using (A.3), we get

=0.

. A% 0
hm’ / (cb(x,y)87<y>—aTqD(x,y)V(y))doy
y y

k— o0
BBRk

By inserting this into (A.4) we finally obtain

0
V(x>=/(ﬁa>(x,y)wy) (s, y) (y))doy,
y
oD

as desired.
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We now turn to the case d = 2. The arguments leading to existence and uniqueness of V' are standard, and so is
the estimate (A.1) for V. Since V € W!(R? \ D) we may analogously to (A.3) in this case prove that there exists a
sequence R — oo as k — 00, such that

. 2 \45
lim Ry IVV]* + ———— ) do =0,
k—o0 In” R | Ry |?

aBRk

or equivalently

lim Ry / IVV[?do =0 and (A.5)
k—o00
9BR,
Vv 2
lim Ry / 2|4|d0=0. (A.6)
k— 00 In Rk|Rk|2
Ry

The identity (A.2) follows from (A.S) if we let k tend to oo in the estimate

Vv A% A%
f W go|= / W 4o / v

on on on
aD 3Bg, dBR,

For r| < ry sufficiently large (that D C B,,) Green’s identity applied to the annulus B,, \ B’_r1 gives

1
2

2
<QrRY? do

0 A% 0 A%
/(3—a><0,y)V<y)—cb(o,y>a—<y)>doy= / (a—cb(o,y)wy)—@(Qy)a—(y))doy.
4 ny ny oh ny }’ly

| .

Since faB, da—‘; do = faD %—‘rf do = 0 (as just proven above) and since %@(O, y) and @ (0, y) are both constant on 9 B;.,

with % ®(0,y) = —5-, it now follows that

1 1

e \% doy, = —— \% doy,

o / () dory = 5 f (v do,
9By By,

for r1 and r sufficiently large. Thus the expression

aVv a
Cv = / <4’(0, Ng =) =5 —2(0, y)V(y)> doy
i ny ny

! 1 f 8V( Ydoy + ! /V( )d
=——logr [ — oy + — o
8 ony DT oy 740y
3B, 3B,

1
=2—fV(y)dU),
Tr

B,

does indeed define a constant, independent of r, for » sufficiently large. It follows directly from Green’s identity
(see (A.4)) that

d A%
V(x)—Cy — — P, V) —Px,y)—(y) |doy
ony ony

—/ @ — 0.9 Y () -
= (( (x,y) (,y))any(y)

3B,

3
o (®(x,y) — @0, y))V(y)) doy. (A7)
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Since

1
|®(x, y) — @0, y)|=5'

i<

and

0 L|yl=x-y/Iy] |yl
—(®(x,y) — PO, = | - 27 2L
iy (20620 =& y))’ 2’ y—xP P

on d Bg, , we easily estimate

Hyl?

av 9
/ ((45()6, y) — @(0, y))ﬁ(y) ——(®(x,y) —2(0, y))V(y)> doy

ony
8BRk
Ivvi V]

<C —+—)d

* / ( Re R

3B,
<C( 1 (/ VV[2d )1/2+lan(/ [V|? d )1/2>
< — o ——do

“\ VR VR In? Ry R?

BRk 3BRk

— 0 ask— oo. (A.8)

Here we have used (A.5)—(A.6) to obtain the final convergence. Insertion of (A.8) into (A.7) shows that

9 Vv
Vx)= / (a—q)(x, NV — @(x, y)—(y)> doy+Cy,
ny any
oD

exactly as desired. This completes the proof of Proposition 2. O

Remark 2. Even though we shall not use it in this paper, we note that a simple argument shows that

1
Cy= lm — / V(y)doy= lim V(x), ford=2.
oo 2 R . |x|—o00
dBp

There is an analogue of Proposition 2 for the exterior Neumann problem. In this paper we shall only use this result
in the case d = 3. Its proof is entirely similar to the proof of Proposition 2, and is left to the reader.

Proposition 3. Suppose d =3 and g € H™ > (D). There exists a unique solution V.€ W' (R3\ D) o

—AV =0 inR*\D,
v

— =g on dD.
on

This solution satisfies

IVIlwi @3\ < C”g”H’%(aD)'

Moreover,

V(x):/%@(x,y)Vd@—/@(x y) oV dO'}, x€R3\5,
aD aD
where
1
4r|x —y|’

and ny denotes the exterior unit normal vector to D at'y € dD.

D(x,y)=
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For v e C'(R?\ D) x C1(D) we define
[v] = vlext — V]ine on 0D.

We note that this difference has a continuous extension to W (R \ D) x H'(D). We use the notation (H'(D))* for
the dual of H'(D), and given f € (H'(D))* the action of f on the function 1 is denoted by fD fdx.

Proposition 4. Let y be an element of
L?FO(D) = (L°°(D))d><d N {y(x) symmetric, positive definite, essinfy > O},

and suppose f € (H'(D))*, g € H*%(BD), h e H%(BD). In dimension d = 2 suppose additionally fD fdx +
fBD gdo = 0. There exists a solution V.€ W' (R? \ D) x H'(D) to

V.-(yVV)=f in D,
AV =0 inRI\ D,
Vv

o —(yVV)-n| =g ondD,
[Vi=h ondD.

In dimension d = 3 this solution is unique. In dimension d = 2 the solution is unique modulo an additive constant —
we may make it unique by imposing the condition faD Vdx =0. Moreover,

do, +Cy, (A.9)

ext

ad
Vix)= / ch(x,y)v
io

aV
doy—/d>(x,y)—
ext 8

ny
aD

x R4 \ D, where Cy is a constant,

1 .
—5=-In|x —y| ifd=2,

Q§(x,y)=i o _
A=)y ifd=3,

and ny denotes the exterior unit normal vector to D at 'y € dD. The constant Cy is equal to 0 in the case d = 3. The
solution V depends linearly and continuously on the data f, g and h. In the particular case when f = 0 it satisfies
the estimate

1YVl + 72V [ 2y <CI8N -y o+ 11y ), (A.10)

with a constant C that is independent of y (and of g and h).

Proof. A standard variational argument yields the uniqueness of V' (modulo a constant in the case d = 2). We pro-
ceed to verify the existence. Applying the Lax—Milgram Lemma and Proposition 2 we may select W= (Wi, W) €
w (Rd \ D) x HY(D) by first requiring that

V.(yVWy) = f in D,

~ 1
(yVWﬁw:m/fdx ondD,
D

and secondly requiring that
{AW1=O inRY\ D,
Wi=h+W, ondD.
We notice that if f = 0 then we may select W» = 0 and, according to Proposition 2, W, therefore satisfies the estimate

”WIHWI(]Rd\D) C”h”HZ(BD)
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In combination with the fact that W, is harmonic in RY \ D, this yields

H 3W1
H—I/Z(D) H2(

<Clhll,y . when f =0, (A.11)

with a constant C that is independent of y. For d = 2 we have, according to Proposition 2, that |, 9D Wi do = 0. We
now decompose the function V as V = V + W where Ve W (Rd \ D) x HY(D) is a solution to

V- (yVV)=0 in D,
AV =0 inRY\ D,
v (yVV)-nl, W, b /fd aD
— - n -t — X on ,
on e i = &7 5 T D)

D
[V]=0 on d0D.

The existence of such a V is again a classical consequence of the Lax—Milgram Lemma. It is also easy to see that
V satisfies the estimate

- ~ 8W1
IVV I 25y + [V 29V ] 1) < cHg = TTaDI ffd

b (aD)

with C independent of y. In the particular case when f = 0 (and thus Wr = 0) we get by a combination of this
with (A.11)

W
IVVI2@ap) + 172V ] 2y < C(Hg T

| + || Al 1 )
H™2(D) H2(3D)
<C(llgh 1 +lal ),

H™2 (D) H2(3D)
as stated in (A.10). Finally, the representation formula (A.9) is an immediate consequence of the analogous formula
from Proposition 2. 0O

Remark 3. Just as in Proposition 2 the constant Cy may easily be shown to have the form

1

Cy = lim — [ V(y)doy= lim V(v),

v Rimooan/ () doy= Hm, Ve
JdBR

ford =2.
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