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Abstract

This article is concerned with the mathematical analysis of the Kohn–Sham and extended Kohn–Sham models, in the local den-
sity approximation (LDA) and generalized gradient approximation (GGA) frameworks. After recalling the mathematical derivation
of the Kohn–Sham and extended Kohn–Sham LDA and GGA models from the Schrödinger equation, we prove that the extended
Kohn–Sham LDA model has a solution for neutral and positively charged systems. We then prove a similar result for the spin-
unpolarized Kohn–Sham GGA model for two-electron systems, by means of a concentration-compactness argument.
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1. Introduction

Density Functional Theory (DFT) is a powerful, widely used method for computing approximations of ground
state electronic energies and densities in chemistry, materials science, biology and nanosciences.

According to DFT [12,17], the electronic ground state energy and density of a given molecular system can be
obtained by solving a minimization problem of the form

inf

{
F(ρ)+

∫
R3

ρV, ρ � 0,
√
ρ ∈H 1(

R
3), ∫

R3

ρ =N
}

where N is the number of electrons in the system, V the electrostatic potential generated by the nuclei, and F some
functional of the electronic density ρ, the functional F being universal, in the sense that it does not depend on the
molecular system under consideration. Unfortunately, no tractable expression for F is known, which could be used in
numerical simulations.

The groundbreaking contribution which turned DFT into a useful tool to perform calculations, is due to Kohn and
Sham [13], who introduced the local density approximation (LDA) to DFT. The resulting Kohn–Sham LDA model
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is still commonly used, in particular in solid state physics. Improvements of this model have then been proposed
by many authors, giving rise to Kohn–Sham GGA models [14,23,2,22], GGA being the abbreviation of generalized
gradient approximation. While there is basically a unique Kohn–Sham LDA model, there are several Kohn–Sham
GGA models, corresponding to different approximations of the so-called exchange-correlation functional. A given
GGA model will be known to perform well for some classes of molecular system, and poorly for some other classes.
In some cases, the best result will be obtained with LDA. It is to be noticed that each Kohn–Sham model exists
in two versions: the standard version, with integer occupation numbers, and the extended version with “fractional”
occupation numbers. As explained below, the former one originates from Levy–Lieb’s (pure state) construction of the
density functional, while the latter is derived from Lieb’s (mixed state) construction.

There are three main mathematical difficulties encountered when studying these models from a theoretical point
of view: the nonlinearity, the nonconvexity, and the possible loss of compactness at infinity of the models. To our
knowledge, very few results on Kohn–Sham LDA and GGA models exist in the mathematical literature. In fact, we
are only aware of a proof of existence of a minimizer for the standard Kohn–Sham LDA model by Le Bris [15]. In this
contribution, we prove the existence of a minimizer for the extended Kohn–Sham LDA model, as well as for the two-
electron standard and extended Kohn–Sham GGA models, under some conditions on the GGA exchange-correlation
functional.

Our article is organized as follows. First, we provide a detailed presentation of the various Kohn–Sham models,
which, despite their importance in physics and chemistry [26], are not very well known in the mathematical com-
munity. The mathematical foundations of DFT are recalled in Section 2.1, and the derivation of the (standard and
extended) Kohn–Sham LDA and GGA models is discussed in Section 2.2. We state our main results in Section 3, and
postpone the proofs until Section 4.

We restrict our mathematical analysis to closed-shell, spin-unpolarized models. All our results related to the LDA
setting can be easily extended to open-shell, spin-polarized models (i.e. to the local spin-density approximation
LSDA). Likewise, we only deal with all electron descriptions, but valence electron models with usual pseudo-potential
approximations (norm conserving [31], ultrasoft [32], PAW [3]) can be dealt with in a similar way.

2. Mathematical foundations of DFT and Kohn–Sham models

2.1. Density functional theory

As mentioned previously, DFT aims at calculating electronic ground state energies and densities. Recall that the
ground state electronic energy of a molecular system composed of M nuclei of charges z1, . . . , zM (zk ∈ N \ {0} in
atomic units) and N electrons is the bottom of the spectrum of the electronic hamiltonian

HVN = −1

2

N∑
i=1

�ri −
N∑
i=1

V (ri )+
∑

1�i<j�N

1

|ri − rj | (1)

where ri and Rk are the positions in R
3 of the ith electron and the kth nucleus respectively, and V is the electrostatic

potential generated by the nuclei defined by

V (r)= −
M∑
k=1

zk

|r − Rk| .

The hamiltonian HVN acts on electronic wavefunctions Ψ (r1, σ1; . . . ; rN,σN), σi ∈ Σ := {|↑〉, |↓〉} denoting the
spin variable of the ith electron, the nuclear coordinates {Rk}1�k�M playing the role of parameters. It is convenient
to denote by R

3
Σ := R

3 × {|↑〉, |↓〉} and xi := (ri , σi). As electrons are fermions, electronic wavefunctions are anti-
symmetric with respect to the renumbering of electrons, i.e.

Ψ (xp(1), . . . ,xp(N))= ε(p)Ψ (x1, . . . ,xN)

where ε(p) is the signature of the permutation p. Note that (in the absence of magnetic fields) HVN Ψ is real-valued
if Ψ is real-valued. Our purpose being the calculation of the bottom of the spectrum of HV , there is therefore no
N
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restriction in considering real-valued wavefunctions only. In other words, HVN can be considered here as an operator
on the real Hilbert space

HN =
N∧
i=1

L2(
R

3
Σ

)
,

endowed with the inner product

〈Ψ |Ψ ′〉HN
=

∫
(R3
Σ)
N

Ψ (x1, . . . ,xN)Ψ ′(x1, . . . ,xN)dx1 . . . dxN,

where∫
R

3
Σ

f (x) dx :=
∑
σ∈Σ

∫
R3

f (r, σ ) dr,

and the corresponding norm ‖ · ‖HN
= 〈·|·〉

1
2

HN
. It is well known that HVN is a self-adjoint operator on HN with form

domain

QN =
N∧
i=1

H 1(
R

3
Σ

)
.

Denoting by Z = ∑M
k=1 zk the total nuclear charge of the system, it results from the Zhislin–Sigalov theorem [34,35]

that for neutral or positively charged systems (Z �N ), HVN has an infinite number of negative eigenvalues below the
bottom of its essential spectrum. In particular, the electronic ground state energy IN(V ) is an eigenvalue of HVN , and
more precisely the lowest one.

In any case, i.e. whatever Z and N , we always have

IN(V )= inf
{〈Ψ |HVN |Ψ 〉, Ψ ∈ QN, ‖Ψ ‖HN

= 1
}
. (2)

Note that it also holds

IN(V )= inf
{
Tr

(
HVN Γ

)
, Γ ∈ DN

}
(3)

where DN is the set of N -body density matrices defined by

DN = {
Γ ∈ S(HN)

∣∣ 0 � Γ � 1, Tr(Γ )= 1, Tr(−�Γ ) <∞}
.

In the above expression, S(HN) is the vector space of bounded self-adjoint operators on HN , and the condition
0 � Γ � 1 stands for 0 � 〈Ψ |Γ |Ψ 〉 � ‖Ψ ‖2

HN
for all Ψ ∈ HN . Note that if H is a bounded-from-below self-adjoint

operator on some Hilbert space H, with form domain Q, and if D is a positive trace-class self-adjoint operator on H,

Tr(HD) can always be defined in R+ ∪ {+∞} as Tr(HD)= Tr((H − a) 1
2D(H − a) 1

2 )+ a Tr(D) where a is any real
number such that H � a.

From a physical viewpoint, (2) and (3) mean that the ground state energy can be computed either by minimizing
over pure states (characterized by wavefunctions Ψ ) or by minimizing over mixed states (characterized by density
operators Γ ).

With any N -electron density operator Γ ∈ DN can be associated the electronic density

ρΓ (r)=N
∑
σ∈Σ

∫
(R3
Σ)
N−1

Γ (r, σ ;x2, . . . ,xN ; r, σ ;x2, . . . ;xN)dx2 . . . dxN

(here and below, we use the same notation for an operator and its Green kernel). For an N -electron wavefunction
Ψ ∈ HN such that ‖Ψ ‖HN

= 1, we will denote by ρΨ := ρ|Ψ 〉〈Ψ |.
Let us now define the interacting free hamiltonian by

H 0
N = −1

2

N∑
�ri +

∑ 1

|ri − rj | . (4)

i=1 1�i<j�N
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It is easy to see that

〈Ψ |HVN |Ψ 〉 = 〈Ψ |H 0
N |Ψ 〉 +

∫
R3

ρΨ V and Tr
(
HVN Γ

) = Tr
(
H 0
NΓ

) +
∫
R3

ρΓ V.

Besides, it can be checked that

RN = {
ρ

∣∣ ∃Ψ ∈ QN, ‖Ψ ‖HN
= 1, ρΨ = ρ} = {ρ | ∃Γ ∈ DN, ρΓ = ρ}

=
{
ρ � 0

∣∣ √
ρ ∈H 1(

R
3), ∫

R3

ρ =N
}
.

It therefore follows that

IN(V )= inf

{
FLL(ρ)+

∫
R3

ρV, ρ ∈ RN

}
(5)

= inf

{
FL(ρ)+

∫
R3

ρV, ρ ∈ RN

}
(6)

where Levy–Lieb’s and Lieb’s density functionals [16,17] are respectively defined by

FLL(ρ)= inf
{〈Ψ |H 0

N |Ψ 〉, Ψ ∈ QN, ‖Ψ ‖HN
= 1, ρΨ = ρ}, (7)

FL(ρ)= inf
{
Tr

(
H 0
NΓ

)
, Γ ∈ DN, ρΓ = ρ}. (8)

Note that the functionals FLL and FL are independent of the nuclear potential V , i.e. they do not depend on the
molecular system. They are therefore universal functionals of the density. It is also shown in [17] that FL is the
Legendre transform of the function V �→ IN(V ). More precisely, it holds

FL(ρ)= sup

{
IN(V )−

∫
R3

ρV, V ∈L 3
2
(
R

3) +L∞(
R

3)},
from which it follows in particular that FL is convex on the convex set RN (and can be extended to a convex functional
on L1(R3)∩L3(R3)).

Formulae (5) and (6) show that, in principle, it is possible to compute the electronic ground state energy (and the
corresponding ground state density if it exists) by solving a minimization problem on RN . At this stage no approxi-
mation has been made. But, as neither FLL nor FL can be easily evaluated for the real system of interest (N interacting
electrons), approximations are needed to make of the density functional theory a practical tool for computing elec-
tronic ground states. Approximations rely on exact, or very accurate, evaluations of the density functional for reference
systems “close” to the real system:

• in Thomas–Fermi and related models, the reference system is a homogeneous electron gas;
• in Kohn–Sham models (by far the most commonly used), it is a system of N non-interacting electrons.

2.2. Kohn–Sham models

For a system of N non-interacting electrons, universal density functionals are obtained as explained in the previous
section; it suffices to replace the interacting hamiltonianH 0

N of the physical system (formula (4)) with the hamiltonian
of the reference system

TN = −
N∑
i=1

1

2
�ri . (9)

The analogue of the Levy–Lieb density functional (7) then is the Kohn–Sham type kinetic energy functional

T̃KS(ρ)= inf
{〈Ψ |TN |Ψ 〉, Ψ ∈ QN, ‖Ψ ‖HN

= 1, ρΨ = ρ}, (10)
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while the analogue of the Lieb functional (8) is the Janak kinetic energy functional

TJ(ρ)= inf
{
Tr(TNΓ ), Γ ∈ DN, ρΓ = ρ}.

Let Γ be in the above minimization set. The energy Tr(TNΓ ) can be rewritten as a function of the one-electron
reduced density operator ΥΓ associated with Γ . Recall that ΥΓ is the self-adjoint operator on L2(R3

Σ) with kernel

ΥΓ (x,x′)=N
∫

(R3
Σ)
N−1

Γ (x,x2, . . . ,xN ;x′,x2, . . . ,xN)dx2 . . . dxN.

Indeed, a simple calculation yields Tr(TNΓ ) = Tr(− 1
2�rΥΓ ), where �r is the Laplace operator on L2(R3

Σ)-acting
on the space coordinate r. Besides, it is known (see e.g. [6]) that

{Υ | ∃Γ ∈ DN, ρΓ = ρ} = {Υ ∈ RDN | ρΥ = ρ}, (11)

where

RDN = {
Υ ∈ S

(
L2(

R
3
Σ

)) ∣∣ 0 � Υ � 1, Tr(Υ )=N, Tr(−�rΥ ) <∞}
and ρΥ (r) := ∑

σ∈Σ Υ (r, σ ; r, σ ). Hence,

TJ(ρ)= inf

{
Tr

(
−1

2
�rΥ

)
, Υ ∈ RDN, ρΥ = ρ

}
. (12)

It is to be noticed that no such simple expression for T̃KS(ρ) is available because one lacks an N -representation result
similar to (11) for pure state one-particle reduced density operators. In the standard Kohn–Sham model, T̃KS(ρ) is
replaced with the Kohn–Sham kinetic energy functional

TKS(ρ)= inf
{〈Ψ |TN |Ψ 〉, Ψ ∈ QN, Ψ is a Slater determinant, ρΨ = ρ}, (13)

where we recall that a Slater determinant is a wavefunction Ψ of the form

Ψ (x1, . . . ,xN)= 1√
N ! det

(
φi(xj )

)
with φi ∈L2(

R
3
Σ

)
,

∫
R3

φi(x)φj (x) dx = δij .

It is then easy to check that

TKS(ρ)= inf

{
1

2

N∑
i=1

∫
R

3
Σ

∣∣∇φi(x)∣∣2
dx, Φ = (φ1, . . . , φN) ∈ WN, ρΦ = ρ

}
, (14)

where we have set

WN =
{
Φ = (φ1, . . . , φN)

∣∣ φi ∈H 1(
R

3
Σ

)
,

∫
R

3
Σ

φi(x)φj (x) dx = δij
}

and

ρΦ(r)=
N∑
i=1

∑
σ∈Σ

∣∣φi(r, σ )∣∣2
.

Note that for an arbitrary ρ ∈ RN , it holds

TJ(ρ)� T̃KS(ρ)� TKS(ρ).

It is not difficult to check that (12) always has a minimizer. If one of the minimizers Υ of (12) is of rank N , then
Υ = ∑N

i=1|φi〉〈φi | with Φ = (φ1, . . . , φN) ∈ WN , Φ being then a minimizer of (13) and TKS(ρ)= TJ(ρ). Otherwise,
TKS(ρ) > TJ(ρ).
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The density functionals TKS and TJ associated with the non-interacting hamiltonian TN are expected to provide
acceptable approximations of the kinetic energy of the real (interacting) system. Likewise, the Coulomb energy

J (ρ)= 1

2

∫
R3

∫
R3

ρ(r)ρ(r′)
|r − r′| drdr′

representing the electrostatic energy of a classical charge distribution of density ρ is a reasonable guess for the
electronic interaction energy in a system of N electrons of density ρ. The errors on both the kinetic energy and the
electrostatic interaction are put together in the exchange-correlation energy defined as the difference

Exc(ρ)= FLL(ρ)− TKS(ρ)− J (ρ), (15)

or

Exc(ρ)= FL(ρ)− TJ(ρ)− J (ρ), (16)

depending on the choices for the interacting and non-interacting density functionals. We finally end up with the so-
called Kohn–Sham and extended Kohn–Sham models

IKS
N (V )= inf

{
1

2

N∑
i=1

∫
R

3
Σ

∣∣∇φi(x)∣∣2
dx +

∫
R3

ρΦV + J (ρΦ)+Exc(ρΦ), Φ = (φ1, . . . , φN) ∈ WN

}
, (17)

and

IEKS
N (V )= inf

{
Tr

(
−1

2
�rΥ

)
+

∫
R3

ρΥ V + J (ρΥ )+Exc(ρΥ ), Υ ∈ RDN

}
. (18)

Up to now, no approximation has been made, in such a way that for the exact exchange-correlation functionals
((15) or (16)), IKS

N (V )= IEKS
N (V )= IN(V ) for any molecular system containing N electrons. Unfortunately, there is

no tractable expression of Exc(ρ) that can be used in numerical simulations. Before proceeding further, and for the
sake of simplicity, we will restrict ourselves to closed-shell, spin-unpolarized, systems. This means that we will only
consider molecular systems with an even number of electrons N = 2Np , where Np is the number of electron pairs in
the system, and that we will assume that electrons “go by pairs”. In the Kohn–Sham formalism, this means that the
set of admissible states reduces to{

Φ = (ϕ1α,ϕ1β, . . . , ϕNpα,ϕNpβ)
∣∣ ϕi ∈H 1(

R
3), ∫

R3

ϕiϕj = δij
}

where α(|↑〉)= 1, α(|↓〉)= 0, β(|↑〉)= 0 and β(|↓〉)= 1, yielding the spin-unpolarized (or closed-shell, or restricted)
Kohn–Sham model

IRKS
N (V )= inf

{ Np∑
i=1

∫
R3

|∇φi |2 +
∫
R3

ρΦV + J (ρΦ)+Exc(ρΦ), Φ = (φ1, . . . , φNp) ∈
(
H 1(

R
3))Np,

∫
R3

φiφj = δij , ρΦ = 2

Np∑
i=1

|φi |2
}
, (19)

where the factor 2 in the definition of ρΦ accounts for the spin. Likewise, the constraints on the one-electron reduced
density operators originating from the closed-shell approximation read:

Υ
(
r, |↑〉, r′, |↑〉) = Υ (

r, |↓〉, r′, |↓〉) and Υ
(
r, |↑〉, r′, |↓〉) = Υ (

r, |↓〉, r′, |↑〉) = 0.

Introducing γ (r, r′)= Υ (r, |↑〉, r′, |↑〉) and denoting by ργ (r) = 2γ (r, r), we obtain the spin-unpolarized extended
Kohn–Sham model

IREKS
N (V )= inf

{
E(γ ), γ ∈ KNp

}
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where

E(γ )= Tr(−�γ )+
∫
R3

ργ V + J (ργ )+Exc(ργ ),

and

KNp = {
γ ∈ S

(
L2(

R
3)) ∣∣ 0 � γ � 1, Tr(γ )=Np, Tr(−�γ ) <∞}

.

Note that any γ ∈ KNp is of the form

γ =
+∞∑
i=1

ni |φi〉〈φi |

with

φi ∈H 1(
R

3), ∫
R3

φiφj = δij , ni ∈ [0,1],
+∞∑
i=1

ni =Np,
+∞∑
i=1

ni‖∇φi‖2
L2 <∞.

In particular,

ργ (r)= 2
+∞∑
i=1

ni
∣∣φi(r)∣∣2

.

Let us also remark that problem (19) can be recast in terms of density operators as follows

IRKS
N (V )= inf

{
E(γ ), γ ∈ PNp

}
(20)

where

PNp = {
γ ∈ S

(
L2(

R
3)) ∣∣ γ 2 = γ, Tr(γ )=Np, Tr(−�γ ) <∞}

is the set of finite energy rank-Np orthogonal projectors (note that KNp is the convex hull of PNp ). The connection

between (19) and (20) is given by the correspondence γ = ∑Np
i=1|φi〉〈φi |, i.e. γ is the orthogonal projector on the

vector space spanned by the φi ’s. Indeed, as |∇| = (−�) 1
2 , it holds

Tr(−�γ )= Tr
(|∇|γ |∇|) =

Np∑
i=1

∥∥|∇|φi
∥∥2
L2 =

Np∑
i=1

‖∇φi‖2
L2 =

Np∑
i=1

∫
R3

|∇φi |2.

Let us now address the issue of constructing relevant approximations for Exc(ρ). In their celebrated article [13],
Kohn and Sham proposed to use an approximate exchange-correlation functional of the form

Exc(ρ)=
∫
R3

g
(
ρ(r)

)
dr (LDA exchange-correlation functional) (21)

where ρ−1g(ρ) is the exchange-correlation energy density for a uniform electron gas with density ρ, yielding the so-
called local density approximation (LDA). In practical calculations, it is made use of approximations of the function
ρ �→ g(ρ) (from R+ to R) obtained by interpolating asymptotic formulae for the low and high density regimes (see
e.g. [7]) and accurate quantum Monte Carlo evaluations of g(ρ) for a small number of values of ρ [5]. Several
interpolation formulae are available [25,24,33], which provide similar results. In the 80’s, refined approximations
of Exc have been constructed, which take into account the inhomogeneity of the electronic density in real molecular
systems. Generalized gradient approximations (GGA) of the exchange-correlation functional are of the form

Exc(ρ)=
∫
R3

h

(
ρ(r),

1

2

∣∣∇√
ρ(r)

∣∣2
)
dx (GGA exchange-correlation functional). (22)

Contrarily to the situation encountered for LDA, the function (ρ, κ) �→ g(ρ, κ) (from R+ × R+ to R) does not have
a definitive definition. Several GGA functionals have been proposed and new ones come up periodically.
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Remark 1. We have chosen the form (22) for the GGA exchange-correlation functional because it is well suited for
the study of spin-unpolarized two-electron systems (see Theorem 2 below). In the physics literature, spin-unpolarized
LDA and GGA exchange-correlation functionals are rather written as follows

Exc(ρ)=Ex(ρ)+Ec(ρ)

with

Ex(ρ)=
∫
R3

ρ(r)εx
(
ρ(r)

)
Fx

(
sρ(r)

)
dr, (23)

Ec(ρ)=
∫
R3

ρ(r)
[
εc

(
rρ(r)

) +H (
rρ(r), tρ(r)

)]
dr. (24)

In the above decomposition, Ex is the exchange energy, Ec is the correlation energy, εx and εc are respectively the

exchange and correlation energy densities of the homogeneous electron gas, rρ(r) = ( 4
3πρ(r))

− 1
3 is the Wigner–

Seitz radius, sρ(r) = 1
2(3π2)1/3

|∇ρ(r)|
ρ(r)4/3

is the (non-dimensional) reduced density gradient, tρ(r) = 1
4(3π−1)1/6

|∇ρ(r)|
ρ(r)7/6

is
the correlation gradient, Fx is the so-called exchange enhancement factor, and H is the gradient contribution to the
correlation energy. While εx has a simple analytical expression, namely

εx(ρ)= −3

4

(
3

π

) 1
3

ρ
1
3

εc has to be approximated (as explained above for the function g). For LDA, Fx is everywhere equal to one andH = 0.
A popular GGA exchange-correlation energy is the PBE functional [22], for which

Fx(s) = 1 + μs2

1 +μν−1s2
,

H(r, t)= θ ln

(
1 + υ

θ
t2

1 +A(r)t2
1 +A(r)t2 +A(r)2t4

)
with A(r)= υ

θ

(
e−εc(r)/θ − 1

)−1
,

the values of the parameters μ� 0.21951, ν � 0.804, θ = π−2(1 − ln 2) and υ = 3π−2μ following from theoretical
arguments.

3. Main results

Let us first set up and comment on the conditions on the LDA and GGA exchange-correlation functionals under
which our results hold true:

• the function g in (21) is a C1 function from R+ to R, twice differentiable and such that

g(0)= 0, (25)

g′ � 0, (26)

∃0< β− � β+ <
2

3
s.t. sup

ρ∈R+

|g′(ρ)|
ρβ− + ρβ+ <∞, (27)

∃1 � α < 3

2
s.t. lim sup

ρ→0+

g(ρ)

ρα
< 0; (28)

• the function h in (21) is a C1 function from R+ ×R+ to R, twice differentiable with respect to the second variable,
and such that

h(0, κ)= 0, ∀κ ∈ R+, (29)
∂h � 0, (30)

∂ρ
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∃0< β− � β+ <
2

3
s.t. sup

(ρ,κ)∈R+×R+

| ∂h
∂ρ
(ρ, κ)|

ρβ− + ρβ+ <∞, (31)

∃1 � α < 3

2
s.t. lim sup

(ρ,κ)→(0+,0+)

h(ρ, κ)

ρα
< 0, (32)

∃0< a � b <∞ s.t. ∀(ρ, κ) ∈ R+ × R+, a � 1 + ∂h

∂κ
(ρ, κ)� b, (33)

∀(ρ, κ) ∈ R+ × R+, 1 + ∂h

∂κ
(ρ, κ)+ 2κ

∂2h

∂κ2
(ρ, κ)� 0. (34)

Conditions (25)–(28) on the LDA exchange-correlation energy are not restrictive. They are obviously fulfilled by the

LDA exchange functional (gLDA
x (ρ) = − 3

4 (
3
π
)

1
3 ρ

4
3 ), and are also satisfied by all the approximate LDA correlation

functionals currently used in practice (with α = 4
3 and β− = β+ = 1

3 ). Besides, it is easy to see that the set of func-
tions satisfying assumptions (29)–(34) is nonempty, and we have checked numerically that assumptions (29)–(34)
are actually satisfied for the PBE exchange-correlation functional (see Remark 1), when the LDA correlation energy
density εc(r) is given by the PZ81 formula [25].

Remark 2. Our results remain true if (26) and (30) are respectively replaced with the weaker conditions

∃1

3
� β ′− � β+ <

2

3
s.t. sup

ρ∈R+

max(0, g′(ρ))
ρβ

′− + ρβ+
<∞

and

∃1

3
� β ′− � β+ <

2

3
s.t. sup

(ρ,κ)∈R+×R+

max(0, ∂h
∂ρ
(ρ, κ))

ρβ
′− + ρβ+

<∞.

As usual in the mathematical study of molecular electronic structure models, we embed (20) in the family of
problems

Iλ = inf
{

E(γ ), γ ∈ Kλ

}
(35)

parametrized by λ ∈ R+ where

Kλ = {
γ ∈ S

(
L2(

R
3)) ∣∣ 0 � γ � 1, Tr(γ )= λ, Tr(−�γ ) <∞}

,

and introduce the problem at infinity

I∞
λ = inf

{
E ∞(γ ), γ ∈ Kλ

}
(36)

where

E ∞(γ )= Tr(−�γ )+ J (ργ )+Exc(ργ ).

The following results hold true for both the LDA and GGA extended Kohn–Sham models.

Lemma 1. Consider (35) and (36) with Exc given either by (21) or by (22) together with the conditions (25)–(28)
or (29)–(32). Then

1. I0 = I∞
0 = 0 and for all λ > 0, −∞< Iλ < I

∞
λ < 0;

2. the functions λ �→ Iλ and λ �→ I∞
λ are continuous and decreasing;

3. for all 0<μ< λ,

Iλ � Iμ + I∞
λ−μ. (37)

Inequalities (37) in Lemma 1 are classical concentration-compactness type inequalities [20].
Our main results are the following two theorems.
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Theorem 1 (Extended KS-LDA model). Assume that Z � N = 2Np (neutral or positively charged system) and that
the function g satisfies (25)–(28). Then the extended Kohn–Sham LDA model (35) with Exc given by (21) has a mini-
mizer γ0. Besides, γ0 satisfies the self-consistent field equation

γ0 = χ(−∞,εF)(Hργ0 )+ δ (38)

for some εF � 0, where

Hργ0
= −1

2
�+ V + ργ0 � |r|−1 + g′(ργ0),

where χ(−∞,εF) is the characteristic function of the range (−∞, εF) and where δ ∈ S(L2(R3)) is such that 0 � δ � 1
and Ran(δ)⊂ Ker(Hργ0 − εF).

Theorem 2 (Extended KS-GGA model for two-electron systems). Assume thatZ �N = 2Np = 2 (neutral or positively
charged system with two electrons) and that the function h satisfies (29)–(34). Then the extended Kohn–Sham GGA
model (35) with Exc given by (22) has a minimizer γ0. Besides, γ0 = |φ〉〈φ| where φ is a minimizer of the standard
spin-unpolarized Kohn–Sham problem (19) for Np = 1, hence satisfying the Euler equation

−1

2
div

((
1 + ∂h

∂κ

(
ρφ, |∇φ|2))∇φ

)
+

(
V + ρφ � |r|−1 + ∂h

∂ρ

(
ρφ, |∇φ|2))φ = εφ (39)

for some ε < 0, where ρφ = 2φ2. In addition, φ ∈ C0,α(R3) for some 0 < α < 1 and decays exponentially fast at
infinity. Lastly, φ can be chosen non-negative and (ε,φ) is the lowest eigenpair of the self-adjoint operator

−1

2
div

((
1 + ∂h

∂κ

(
ρφ, |∇φ|2))∇·

)
+ V + ρφ � |r|−1 + ∂h

∂ρ

(
ρφ, |∇φ|2).

We have not been able to extend the results of Theorem 2 to the general case of Np electron pairs. This is mainly
due to the fact that the Euler equations for (35) with Exc given by (22) do not have a simple structure for Np � 2 (see
Remark 4 for further details).

Remark 3. Let us explain as of now the usefulness of properties (33) and (34) in the proof of Theorem 2:

• (33) is necessary to make the operator appearing in the Euler–Lagrange equation (39) elliptic;
• (34) implies that the Kohn–Sham energy functional, considered as a function of ρ and κ = |∇√

ρ|2, is convex
w.r.t. κ , and thus ensures some lower semicontinuity property of the gradient terms of the energy for the weak
topology of H 1(R3).

Remark 4. (On the difficulties in extending the results of Theorem 2 to the general case of Np > 1 electron pairs.)
Consider the pure-state Kohn–Sham GGA model (19) for the sake of simplicity. Under assumptions (29) to (34), it is
easy to see that the equivalent of Lemma 8 with N = 2Np > 2 electrons still holds. The main argument is that, using
[10, Theorem 2.5], the condition (34) still ensures the lower semicontinuity of the energy w.r.t. |∇√

ρ|2 for the weak
topology ofH 1(R3;R

Np). Therefore, for all Np ∈ N
∗, if a minimizing sequence (Φn)n∈N is compact in L2(R3;R

Np),
then its limit is a minimizer of the problem.

In our proof of compactness in the case Np = 1, we use in a crucial way the properties of the solutions of the
Euler equation (39), among which boundedness in L∞(R3) and exponential decay at infinity. When Np > 1, denoting
the state vector by Φ = (φ1, . . . , φNp) and assuming that the energy is differentiable, the Euler–Lagrange optimality
conditions turn into the following system: ∀i ∈ �1,Np�,

−1

2
div

(
∇φi + ∂h

∂κ

(
ρΦ,

1

2
|∇√

ρΦ |2
)∑

k φk∇φk∑
k φ

2
k

φi

)
+ 1

2

∂h

∂κ

(
ρΦ,

1

2
|∇√

ρΦ |2
)∑

k φk∇φk∑
k φ

2
k

· ∇φi

− 1

2

∂h

∂κ

(
ρΦ,

1

2
|∇√

ρΦ |2
)∣∣∣∣∑k φk∇φk∑

φ2

∣∣∣∣2

φi +
(
V + ρΦ � |r|−1 + ∂h

∂ρ

(
ρΦ,

1

2
|∇√

ρΦ |2
))
φi = εiφi . (40)
k k
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The study of (40) is much more involved than that of (39). We were not able to prove that solutions of (40) still
have the required regularity properties and behaviour at infinity, and thus to extend our proof from the scalar case to
the vector case.

4. Proofs

For clarity, we will use the following notation

ELDA
xc (ρ)=

∫
R3

g
(
ρ(r)

)
dr,

EGGA
xc (ρ)=

∫
R3

h

(
ρ(r),

1

2

∣∣∇√
ρ(r)

∣∣2
)
dr,

E LDA(γ )= Tr(−�γ )+
∫
R3

ργ V + J (ργ )+
∫
R3

g
(
ργ (r)

)
dr,

E GGA(γ )= Tr(−�γ )+
∫
R3

ργ V + J (ργ )+
∫
R3

h

(
ργ (r),

1

2

∣∣∇√
ργ (r)

∣∣2
)
dr.

The notations Exc(ρ) and E(γ ) will refer indifferently to the LDA or the GGA setting.

4.1. Preliminary results

Most of the results of this section are elementary, but we provide them for the sake of completeness. Let us denote
by S1 the vector space of trace-class operators on L2(R3) (see e.g. [27]) and introduce the vector space

H = {
γ ∈ S1

∣∣ |∇|γ |∇| ∈ S1
}

endowed with the norm ‖ · ‖H = Tr(| · |)+ Tr(||∇| · |∇||), and the convex set

K = {
γ ∈ S

(
L2(

R
3)) ∣∣ 0 � γ � 1, Tr(γ ) <∞, Tr

(|∇|γ |∇|)<∞}
.

Lemma 2. For all γ ∈ K,
√
ργ ∈H 1(R3) and the following inequalities hold true:

– Lower bound on the kinetic energy:

1

2
‖∇√

ργ ‖2
L2 � Tr(−�γ ). (41)

– Upper bound on the Coulomb energy:

0 � J (ργ )� C(Trγ )
3
2
(
Tr(−�γ )) 1

2 . (42)

– Bounds on the interaction energy between nuclei and electrons:

−4Z(Trγ )
1
2
(
Tr(−�γ )) 1

2 �
∫
R3

ργ V � 0. (43)

– Bounds on the exchange-correlation energy:

−C(
(Trγ )1− β−

2
(
Tr(−�γ )) 3β−

2 + (Trγ )1− β+
2

(
Tr(−�γ )) 3β+

2
)
�Exc(ργ )� 0. (44)

– Lower bound on the energy:

E(γ )� 1

2

((
Tr(−�γ )) 1

2 − 4Z(Trγ )
1
2
)2 − 8Z2 Trγ −C(

(Trγ )
2−β−
2−3β− + (Trγ )

2−β+
2−3β+

)
. (45)
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– Lower bound on the energy at infinity:

E ∞(γ )� 1

2
Tr(−�γ )−C(

(Trγ )
2−β−
2−3β− + (Trγ )

2−β+
2−3β+

)
, (46)

for a positive constant C independent of γ . In particular, the minimizing sequences of (35) and those of (36) are
bounded in H.

Proof. (41) is a straightforward consequence of Cauchy–Schwarz inequality; a proof can be found for instance in [4].
Using Hardy–Littlewood–Sobolev [18], interpolation, and Gagliardo–Nirenberg–Sobolev inequalities, we obtain

J (ργ )� C1‖ργ ‖2

L
6
5

� C1‖ργ ‖
3
2
L1‖ργ ‖

1
2
L3 � C2‖ργ ‖

3
2
L1‖∇√

ργ ‖L2 .

Hence (42), using (41) and the relation ‖ργ ‖L1 = 2 Tr(γ ). It follows from Cauchy–Schwarz and Hardy inequalities
and from the above estimates that∫

R3

ργ

| · −Rk| � 2‖ργ ‖
1
2
L1‖∇√

ργ ‖L2 � 4(Trγ )
1
2
(
Tr(−�γ )) 1

2 .

Hence (43). Conditions (25)–(27) for LDA and (29)–(31) for GGA imply that Exc(ρ)� 0 and there exists 1< p− <
p+ < 5

3 (p± = 1 + β±) and some constant C ∈ R+ such that

∀ρ ∈ K,
∣∣Exc(ρ)

∣∣ � C
(∫

R3

ρp− +
∫
R3

ρp+
)
, (47)

from which we deduce (44), using interpolation and Gagliardo–Nirenberg–Sobolev inequalities. Lastly, the esti-
mates (45) and (46) are straightforward consequences of (42)–(44). �
Lemma 3. E and E ∞ are continuous on H.

Proof. Let γ ∈ Kλ and consider a sequence (γn)n∈N converging to γ strongly in H. It is well known that ργn converges
to ργ strongly in Lp(R3) and

√
ργn converges to

√
ργ strongly in H 1(R3). Since the linear form γ �→ Tr(−�γ )

is continuous on H and the functionals u �→ ∫
R3 u

2V and u �→ J (u2) + Exc(u
2) are continuous on H 1(R3), the

continuity of E and E ∞ on H immediately follows. �
4.2. Proof of Lemma 1

Obviously, I0 = I∞
0 = 0 and Iλ � I∞

λ for all λ ∈ R+.
Let us first prove assertion 3. Let 0 < μ < λ, ε > 0 and γ ∈ Kμ such that Iμ � E(γ )� Iμ + ε. Using Lemma 3,

the density of finite-rank operators in H and the density of C∞
c (R

3) in L2(R3), there is no restriction in choosing
γ finite-rank and such that Ran(γ ) ⊂ C∞

c (R
3). Likewise, there exists a finite-rank operator γ ′ ∈ Kλ−μ such that

Ran(γ ′)⊂ C∞
c (R

3) and I∞
λ−μ � E ∞(γ ′)� I∞

λ−μ + ε.
Let e be a unit vector of R

3 and τa the translation operator on L2(R3) defined by τaf = f (·−a) for all f ∈L2(R3).
For n ∈ N, we define γn = γ + τneγ

′τ−ne. It is easy to check that for n large enough, γn ∈ Kλ and

Iλ � E(γn)� E(γ )+ E ∞(γ )+D(ργ , τneργ ′)� Iμ + I∞
λ−μ + 3ε,

where D(ρ,ρ′) := ∫
R3

∫
R3
ρ(r)ρ′(r′)

|r−r′| drdr′. Hence (37).
Making use of similar arguments, it can also be proved that

I∞
λ � I∞

μ + I∞
λ−μ. (48)

Let us now consider a function φ ∈ C∞
c (R

3) such that ‖φ‖L2 = 1. For all σ > 0 and all 0 � λ � 1, the density
operator γσ,λ with density matrix γσ,λ(r, r′)= λσ 3φ(σr)φ(σr′) is in Kλ. Using (28) for LDA and (32) for GGA, we
obtain that there exists 1 � α < 3

2 , c > 0 and σ0 > 0 such that for all 0 � λ� 1 and all 0 � σ � σ0,

I∞
λ � E ∞(γσ,λ)� λσ 2

∫
3

|∇φ|2 + λ2σJ
(
2|φ|2) − cλασ 3(α−1)

∫
3

|φ|2α.

R R
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Therefore I∞
λ < 0 for λ positive and small enough. It follows from (37) and (48) that the functions λ �→ Iλ and

λ �→ I∞
λ are decreasing, and that for all λ > 0,

−∞< Iλ � I∞
λ < 0.

To proceed further, we need the following lemma.

Lemma 4. Let λ > 0 and (γn)n∈N be a minimizing sequence for (35). Then the sequence (ργn)n∈N cannot vanish,
which means (see [20]) that

∃R > 0 s.t. lim
n→∞ sup

x∈R3

∫
x+BR

ργn > 0.

The same holds true for the minimizing sequences of (36).

Proof. Let (γn)n∈N be a minimizing sequence for Iλ. By contradiction, assume that the sequence ργn vanishes, i.e.

∀R > 0, lim
n→∞ sup

x∈R3

∫
x+BR

ργn = 0.

We know from Lemma 2 that γn is bounded in H, and thus that ργn is bounded in H 1(R3). According to Lemma I.1
in [20], this and the fact that ργn is vanishing imply that ργn converge strongly to 0 in Lp(R3) for 1 < p < 3. In
particular, it follows from (47) and from the fact that V ∈ Lr(R3)+Lq(R3) for some 3

2 < r,q <+∞, that

lim
n→∞

∫
R3

ργnV +Exc(ργn)= 0.

As

E(γn)�
∫
R3

ργnV +Exc(ργn),

we obtain that Iλ � 0. This is in contradiction with the previously proved result stating that Iλ < 0. Hence
(ργn)n∈N cannot vanish. The case of problem (36) is easier since the only non-positive term in the energy functional
is Exc(ρ). �

We can now prove that Iλ < I∞
λ . For this purpose let us consider a minimizing sequence (γn)n∈N for I∞

λ . We
deduce from Lemma 4 that there exists η > 0 and R > 0, such that for n large enough, there exists xn ∈ R

3 such that∫
xn+BR

ργn � η.

Let us introduce γ̃n = τx̄1−xnγnτxn−x̄1 . Clearly γ̃n ∈ Kλ and E(γ̃n)� E ∞(γn)− z1η
R

. Thus,

Iλ � I∞
λ − z1η

R
< I∞

λ .

It remains to prove that the functions λ �→ Iλ and λ �→ I∞
λ are continuous. We will deal here with the former one, the

same arguments applying to the latter one. The proof is based on the following lemma.

Lemma 5. Let (αk)k∈N be a sequence of positive real numbers converging to 1, and (ρk)k∈N a sequence of non-
negative densities such that (

√
ρk )k∈N is bounded in H 1(R3). Then

lim
k→∞

(
Exc(αkρk)−Exc(ρk)

) = 0.
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Proof. In the LDA setting, we deduce from (27) that there exists 1<p− � p+ < 5
3 and C ∈ R+ such that for k large

enough∣∣ELDA
xc (αkρk)−ELDA

xc (ρk)
∣∣ � C|αk − 1|

∫
R3

(
ρ
p−
k + ρp+

k

)
.

In the GGA setting, we obtain from (31) and (33) that there exists 1<p− � p+ < 5
3 and C ∈ R+ such that for k large

enough∣∣EGGA
xc (αkρk)−EGGA

xc (ρk)
∣∣ � C|αk − 1|

∫
R3

(
ρ
p−
k + ρp+

k + |∇√
ρk|2

)
.

As (
√
ρk )k∈N is bounded in H 1(R3), (ρk)k∈N is bounded in Lp(R3) for all 1 � p � 3 and (∇√

ρk )k∈N is bounded in
(L2(R3))3, hence the result. �

We can now complete the proof of Lemma 1.
Let λ > 0, and (λk)k∈N be a sequence of positive real numbers converging to λ. Let ε > 0 and γ ∈ Kλ such that

Iλ � E(γ )� Iλ + ε

2
.

For all k ∈ N, γk = λkλ−1γ is in Kλk so that ∀k ∈ N, Iλk � E(γk). Besides, it is easy to see that E(γk) tends to E(γ )
in virtue of Lemma 5. Thus Iλk � Iλ + ε for k large enough. Now, for each k ∈ N, we choose γ̃k ∈ Kλk such that

E(γ̃k)� Iλk + 1
k

. For all k ∈ N, we set γ k = λλ−1
k γ̃k . As γ k ∈ Kλ, it holds Iλ � E(γ k). We then deduce from Lemma 5

that limk→∞(E(γ̃k)− E(γ k))= 0, so that for k large enough we get Iλ−ε � Iλk . This proves the continuity of λ �→ Iλ
on R+ \ {0}. Lastly, it results from the estimates established in Lemma 2 that limλ→0+ Iλ = 0.

4.3. Proof of Theorem 1

Let us first prove the following lemma, which relies on classical arguments.

Lemma 6. Let (γn)n∈N be a sequence of elements of K, bounded in H, which converges to γ for the weak-∗ topology
of H. If limn→∞ Tr(γn)= Tr(γ ), then (ργn)n∈N converges to ργ strongly in Lp(R3) for all 1 � p < 3 and

E LDA(γ )� lim inf
n→∞ E LDA(γn) and E LDA,∞(γ )� lim inf

n→∞ E LDA,∞(γn).

Proof. The fact that (γn)n∈N converges to γ for the weak-∗ topology of H means that for any compact operator K
on L2(R3),

lim
n→∞ Tr(γnK)= Tr(γK) and lim

n→∞ Tr
(|∇|γn|∇|K) = Tr

(|∇|γ |∇|K)
.

For all W ∈ C∞
c (R

3), the operator (1 + |∇|)−1W(1 + |∇|)−1 is compact (it is even in the Schatten class Sp for all
p > 3

2 in virtue of the Kato–Seiler–Simon inequality [29]), yielding∫
R3

ργnW = 2 Tr(γnW)= 2 Tr
((

1 + |∇|)γn(1 + |∇|)(1 + |∇|)−1
W

(
1 + |∇|)−1)

−−−−→n→∞ 2 Tr
((

1 + |∇|)γ (
1 + |∇|)(1 + |∇|)−1

W
(
1 + |∇|)−1) = 2 Tr(γW)=

∫
R3

ργW.

Hence, (ργn)n∈N converges to ργ in D′(R3). As by (41), (
√
ργn )n∈N is bounded inH 1(R3), it follows that (

√
ργn )n∈N

converges to
√
ργ weakly in H 1(R3), and strongly in Lploc(R

3) for all 2 � p < 6. In particular, (
√
ργn )n∈N converges

to
√
ργ weakly in L2(R3). But we also know that

lim
n→∞‖√ργn‖2

L2 = lim
n→∞

∫
3

ργn = 2 lim
n→∞ Tr(γn)= 2 Tr(γ )=

∫
3

ργ = ‖√ργ ‖2
L2 .
R R
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Therefore, the convergence of (
√
ργn )n∈N to

√
ργ holds strongly in L2(R3). Using Hölder’s inequality and the bound-

edness of (
√
ργn )n∈N in H 1(R3), we obtain that (

√
ργn )n∈N converges strongly to

√
ργ in Lp(R3) for all 2 � p < 6,

hence that (ργn)n∈N converges to ργ strongly in Lp(R3) for all 1 � p < 3. This readily implies

lim
n→∞

∫
R3

ργnV =
∫
R3

ργ V, lim
n→∞J (ργn)= J (ργ ), lim

n→∞E
LDA
xc (ργn)=ELDA

xc (ργ ).

Lastly, Fatou’s theorem for non-negative trace-class operators yields

Tr
(|∇|γ |∇|) � lim inf

n→∞ Tr
(|∇|γn|∇|).

We thus obtain the desired result. �
We will also need the following result.

Lemma 7. Consider α > 0 and β > 0 such that α+ β �Np � Z/2. If Iα and I∞
β have minimizers, then

Iα+β < Iα + I∞
β .

Proof. Let γ be a minimizer for Iα . In particular γ satisfies the Euler equation

γ = 1(−∞,εF)(Hργ )+ δ
for some Fermi level εF ∈ R, where

Hργ = −1

2
�+ V + ργ � |r|−1 + g′(ργ ),

and where 0 � δ � 1, Ran(δ) ⊂ Ker(Hργ − εF). As V + ργ � |r|−1 + g′(ργ ) is �-compact, the essential spectrum
of Hργ is [0,+∞). Besides, Hργ is bounded from below,

Hργ � −1

2
�+ V + ργ � |r|−1,

and we know from [19, Lemma II.1] that as −∑M
k=1 zk + ∫

R3 ργ = −Z + 2α <−Z + 2Np � 0, the right-hand side
operator has infinitely many negative eigenvalues of finite multiplicities. Therefore, so has Hργ . Eventually, εF < 0
and

γ =
n∑
i=1

|φi〉〈φi | +
m∑

i=n+1

ni |φi〉〈φi |

where 0 � ni � 1 and where

−1

2
�φi + V φi +

(
ργ � |r|−1)φi + g′(ργ )φi = εiφi

ε1 < ε2 � ε3 � · · ·< 0 denoting the negative eigenvalues of Hργ including multiplicities (by standard arguments the
ground state eigenvalue of Hργ is non-degenerate). It then follows from elementary elliptic regularity results that all
the φi ’s, hence ργ , are in H 2(R3) and therefore vanish at infinity. Using Lemma 13, all the φi decay exponentially
fast to zero at infinity.

Now consider γ ′ a minimizer for I∞
β . γ ′ satisfies

γ ′ = 1(−∞,ε′F)
(
H∞
ργ ′

) + δ′

where

H∞
ργ ′ = −1

2
�+ ργ ′ � |r|−1 + g′(ργ ′),

and where 0 � δ′ � 1, Ran(δ′)⊂ Ker(H∞
ρ ′ − ε′F), and εF′ � 0.

γ



2440 A. Anantharaman, E. Cancès / Ann. I. H. Poincaré – AN 26 (2009) 2425–2455
First consider the case εF′ < 0. Then

γ ′ =
n′∑
i=1

∣∣φ′
i

〉〈
φ′
i

∣∣ +
m′∑

i=n′+1

n′
i

∣∣φ′
i

〉〈
φ′
i

∣∣,
all the φi ’s being in C∞(R3) and decaying exponentially fast at infinity. For n ∈ N large enough, the operator

γn = min
(
1,‖γ + τneγ

′τ−ne‖−1)(γ + τneγ
′τ−ne)

then is in K and Tr(γn)� (α+ β), which implies Iα+β � ITr(γn) due to Lemma 1. As both the φi ’s and the φ′
i ’s decay

exponentially fast to zero, a simple calculation shows that there exists some δ > 0 such that for n large enough

E LDA(γn)= E LDA(γ )+ E LDA,∞(γ ′)− 2α(Z − 2β)

n
+O(

e−δn
) = Iα + I∞

β − 2α(Z − 2β)

n
+O(

e−δn
)
.

Since 2β < 2Np � Z, we have for n large enough

Iα+β � ITr(γn) � E LDA(γn) < Iα + I∞
β .

Now if εF′ = 0, 0 is an eigenvalue of H∞
ργ ′ and there exists ψ ∈ Ker(H∞

ργ ′ ) ⊂ H 2(R3) such that ‖ψ‖L2 = 1 and

γ ′ψ = μψ with μ> 0. For 0< η <μ, γ + η|φm+1〉〈φm+1| and γ ′ − η|ψ〉〈ψ | are in K and it is easy to see that

E LDA(
γ + η|φm+1〉〈φm+1|

) = Iα + 2ηεm+1 + o(η)
and

E LDA,∞(
γ ′ − η|ψ〉〈ψ |) = I∞

β + o(η).
Since Tr(γ + η|φm+1〉〈φm+1|)= α + η and Tr(γ ′ − η|ψ〉〈ψ |)= β − η, we deduce

Iα+η � Iα + 2ηεm+1 + o(η) and I∞
β−η � I∞

β + o(η).
Then, according to Lemma 1, we obtain for η small enough

Iα+β � Iα+η + I∞
β−η � Iα + I∞

β + 2ηεm+1 + o(η) < Iα + I∞
β . �

We are now in position to prove Theorem 1, and even more generally that problem (35) with (21) has a minimizer
for λ � Np . Let (γn)n∈N be a minimizing sequence for Iλ with λ � Np . We know from Lemma 2 that (γn)n∈N is
bounded in H and that (

√
ργn )n∈N is bounded in H 1(R3). Replacing (γn)n∈N by a suitable subsequence, we can

assume that (γn) converges to some γ ∈ K for the weak-∗ topology of H and that (
√
ργn )n∈N converges to

√
ργ

weakly in H 1(R3), strongly in Lploc(R
3) for all 2 � p < 6 and almost everywhere.

If Tr(γ )= λ, then γ ∈ Kλ and according to Lemma 6,

E LDA(γ )� lim inf
n→+∞ E LDA(γn)= Iλ

yielding that γ is a minimizer of (35).
The rest of the proof consists in ruling out the eventuality when Tr(γ ) < λ.
Let us first rule out the case Tr(γ )= 0. By contradiction, assume that Tr(γ )= 0, which implies ργ = 0. Then ργn

converges to 0 strongly in Lploc(R
3) for 1 � p < 6, from which we deduce

lim
n→+∞

∫
R3

ργnV = 0.

Consequently,

I∞
λ � lim

n→+∞ E LDA,∞(γn)= lim
n→+∞ E LDA(γn)= Iλ

which contradicts the first assertion of Lemma 1.
Let us now set α = Tr(γ ) and assume that 0 < α < λ. Following e.g. [9], we consider a quadratic partition of

the unity ξ2 + χ2 = 1, where ξ is a smooth, radial function, nonincreasing in the radial direction, such that ξ(0)= 1,
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0 � ξ(x) < 1 if |x|> 0, ξ(x)= 0 if |x| � 1, ‖∇ξ‖L∞ � 2 and ‖∇(1− ξ2)
1
2 ‖L∞ � 2. We then set ξR(·)= ξ( ·

R
). For all

n ∈ N, R �→ Tr(ξRγnξR) is a continuous nondecreasing function which vanishes at R = 0 and converges to Tr(γn)= λ
when R goes to infinity. Let Rn > 0 be such that Tr(ξRnγnξRn)= α. The sequence (Rn)n∈N goes to infinity; otherwise,
it would contain a subsequence (Rnk )k∈N converging to a finite value R∗, and we would then get∫

R3

ργ (x)ξ
2
R∗(x) dx = lim

k→∞

∫
R3

ργnk (x)ξ
2
Rnk
(x) dx = 2 lim

k→∞ Tr(ξRnk γnk ξRnk )= 2α =
∫
R3

ργ (x) dx.

As ξ2
R∗ < 1 on R

3 \ {0}, we reach a contradiction. Consequently, (Rn)n∈N indeed goes to infinity. Let us now introduce

γ1,n = ξRnγnξRn and γ2,n = χRnγnχRn.
Note that γ1,n and γ2,n are trace-class self-adjoint operators on L2(R3) such that 0 � γj,n � 1, that ργn = ργ1,n +ργ2,n

and that Tr(γ1,n)= α while Tr(γ2,n)= λ− α. Besides, using the IMS formula

−�= χRn(−�)χRn + ξRn(−�)ξRn − |∇χRn |2 − |∇ξRn |2,
it holds

Tr(−�γn)= Tr(−�γ1,n)+ Tr(−�γ2,n)− Tr
((|∇χRn |2 + |∇ξRn |2

)
γn

)
� Tr(−�γ1,n)+ Tr(−�γ2,n)− 4λ

R2
n

, (49)

from which we infer that both (γ1,n)n∈N and (γ2,n)n∈N are bounded sequences of H. As for all φ ∈ C∞
c (R

3),

Tr
(
γ1,n

(|φ〉〈φ|)) = Tr
(
γn

(|ξRnφ〉〈ξRnφ|))
= Tr

(
γn

(∣∣(ξRn − 1)φ
〉〈ξRnφ|)) + Tr

(
γn

(|φ〉〈(ξRn − 1)φ
∣∣)) + Tr

(
γn

(|φ〉〈φ|))
−−−−→n→∞ Tr

(
γ
(|φ〉〈φ|)),

we obtain that (γ1,n)n∈N converges to γ for the weak-∗ topology of H. Since Tr(γ1,n) = α = Tr(γ ) for all n, we
deduce from Lemma 6 that (ργ1,n )n∈N converges to ργ strongly in Lp(R3) for all 1 � p < 3, and that

E LDA(γ )� lim
n→∞ E LDA(γ1,n). (50)

As a by-product, we also obtain that (ργ2,n )n∈N converges strongly to zero in Lploc(R
3) for all 1 � p < 3 (since

ργ2,n = ργn − ργ1,n with (ργn)n∈N and (ργ1,n )n∈N both converging to ργ in Lploc(R
3) for all 1 � p < 3). Besides, using

again (49), it holds

E LDA(γn)= Tr(−�γn)+
∫
R3

ργnV + J (ργn)+
∫
R3

g(ργn)

� Tr(−�γ1,n)+ Tr(−�γ2,n)+
∫
R3

ργ1,nV +
∫
R3

ργ2,nV

+ J (ργ1,n )+ J (ργ2,n )+
∫
R3

g(ργ1,n + ργ2,n )−
4λ

R2
n

= E LDA(γ1,n)+ E LDA,∞(γ2,n)+
∫
R3

ργ2,nV +
∫
R3

(
g(ργ1,n + ργ2,n )− g(ργ1,n )− g(ργ2,n )

) − 4λ

R2
n

.

For R large enough, one has on the one hand∣∣∣∣ ∫
R3

ργ2,nV

∣∣∣∣ � 2Z

(∫
BR

ργ2,n

) 1
2 ‖∇√

ργ2,n‖L2 + 2Z(λ− α)
R

,

and on the other hand
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∣∣∣∣ ∫
R3

(
g(ργ1,n + ργ2,n )− g(ργ1,n )− g(ργ2,n )

)∣∣∣∣
�

∫
BR

∣∣g(ργ1,n + ργ2,n )− g(ργ1,n )
∣∣ +

∫
BR

∣∣g(ργ2,n )
∣∣ +

∫
BcR

∣∣g(ργ1,n + ργ2,n )− g(ργ2,n )
∣∣ +

∫
BcR

∣∣g(ργ1,n )
∣∣

� C
(∫
BR

(
ργ2,n + ρ2

γ2,n

) + ‖ργ1,n‖L2

(∫
BR

ρ2
γ2,n

) 1
2
)

+C
(∫
BR

ρ
p−
γ2,n + ρp+

γ2,n

)

+C
(∫
BcR

(
ργ1,n + ρ2

γ1,n

) + ‖ργ2,n‖L2

(∫
BcR

ρ2
γ1,n

) 1
2
)

+C
(∫
BcR

ρ
p−
γ1,n + ρp+

γ1,n

)

for some constantC independent ofR and n. Yet, we know that (√ργ1,n )n∈N and (√ργ2,n )n∈N are bounded inH 1(R3),
that (ργ1,n )n∈N converges to ργ in Lp(R3) for all 1 � p < 3 and that (ργ2,n )n∈N converges to 0 in Lploc(R

3) for all
1 � p < 3. Consequently, there exists for all ε > 0, some N ∈ N such that for all n�N ,

E LDA(γn)� E LDA(γ1,n)+ E LDA,∞(γ2,n)− ε � Iα + I∞
λ−α − ε.

Letting n go to infinity, ε go to zero, and using (37), we obtain that Iλ = Iα + I∞
λ−α and that (γ1,n)n∈N and (γ2,n)n∈N

are minimizing sequences for Iα and I∞
λ−α respectively. It also follows from (50) that γ is a minimizer for Iα .

Let us now analyze more in details the sequence (γ2,n)n∈N. As it is a minimizing sequence for I∞
λ−α , (ργ2,n )n∈N

cannot vanish, so that there exists η > 0, R > 0 such that for all n ∈ N,
∫
yn+BR ργ2,n � η for some yn ∈ R

3. Thus, the
sequence (τynγ2,nτ−yn)n∈N converges for the weak-∗ topology of H to some γ ′ ∈ K satisfying Tr(γ ′) � η > 0. Let
β = Tr(γ ′). Reasoning as above, one can easily check that γ ′ is a minimizer for I∞

β , and that Iλ = Iα+ I∞
β + I∞

λ−α−β .
On the other hand, Lemma 7 yields Iα+β < Iα + I∞

β .
All in all we obtain Iλ > Iα+β + I∞

λ−α−β , which contradicts Lemma 1. The proof is complete.

4.4. Proof of Theorem 2

For φ ∈H 1(R3), we set ρφ(x)= 2|φ(x)|2 and

E(φ)=
∫
R3

|∇φ|2 +
∫
R3

ρφV + J (ρφ)+EGGA
xc (ρφ).

For all φ ∈H 1(R3) such that ‖φ‖L2 = 1, γφ = |φ〉〈φ| ∈ K1 and E(γφ)=E(φ). Therefore,

I1 � inf

{
E(φ), φ ∈H 1(

R
3), ∫

R3

|φ|2 = 1

}
.

Conversely, for all γ ∈ K1, φγ =
√
ργ
2 satisfies φγ ∈H 1(R3), ‖φ‖L2 = 1 and

E GGA(γ )= E GGA(|φγ 〉〈φγ |) + Tr(−�γ )− 1

2

∫
R3

|∇√
ργ |2 � E GGA(|φγ 〉〈φγ |) =E(φγ ).

Consequently,

I1 = inf

{
E(φ), φ ∈H 1(

R
3), ∫

3

|φ|2 = 1

}
(51)
R



A. Anantharaman, E. Cancès / Ann. I. H. Poincaré – AN 26 (2009) 2425–2455 2443
and (20) has a minimizer forNp = 1, if and only if (51) has a minimizer φ (γφ then is a minimizer of (20) for Np = 1).
We are therefore led to study the minimization problem (51). In the GGA setting we are interested in, E(φ) can be
rewritten as

E(φ)=
∫
R3

|∇φ|2 +
∫
R3

ρφV + J (ρφ)+
∫
R3

h
(
ρφ, |∇φ|2).

Conditions (29)–(33) guarantee thatE is Fréchet differentiable onH 1(R3) (see [1] for details) and that for all (φ,w) ∈
H 1(R3)×H 1(R3),

E′(φ) ·w = 2

(
1

2

∫
R3

(
1 + ∂h

∂κ

(
ρφ, |∇φ|2))∇φ · ∇w+

∫
R3

(
V + ρφ � |r|−1 + ∂h

∂ρ

(
ρφ, |∇φ|2))φw)

.

We now embed (51) in the family of problems

Jλ = inf

{
E(φ), φ ∈H 1(

R
3), ∫

R3

|φ|2 = λ
}

(52)

and introduce the problem at infinity

J∞
λ = inf

{
E∞(φ), φ ∈H 1(

R
3), ∫

R3

|φ|2 = λ
}

(53)

where

E∞(φ)=
∫
R3

|∇φ|2 + J (ρφ)+
∫
R3

h
(
ρφ, |∇φ|2).

Note that reasoning as above, one can see that Jλ = Iλ and J∞
λ = I∞

λ for all 0 � λ� 1 (while these equalities do not
a priori hold true for λ > 1).

The rest of this section consists in proving that (52) has a minimizer for all 0 � λ� 1. Let us start with a simple
lemma.

Lemma 8. Let 0 � μ� 1 and let (φn)n∈N be a minimizing sequence for Jμ (resp. for J∞
μ ) which converges to some

φ ∈H 1(R3) weakly in H 1(R3). Assume that ‖φ‖2
L2 = μ. Then φ is a minimizer for Jμ (resp. for J∞

μ ).

Proof. Let (φn)n∈N be a minimizing sequence for Jμ which converges to φ weakly in H 1(R3). For almost all x ∈ R
3,

the function z �→ |z|2 + h(ρφ(x), |z|2) is convex on R
3 due to (34). Besides the function t �→ t + h(ρφ(x), t) is

Lipschitz on R+, uniformly in x due to (33). It follows that the functional

ψ �→
∫
R3

(|∇ψ |2 + h(ρφ, |∇ψ |2))
is convex and continuous on H 1(R3). As (φn)n∈N converges to φ weakly in H 1(R3), we get∫

R3

(|∇φ|2 + h(ρφ, |∇φ|2)) � lim inf
n→∞

∫
R3

(|∇φn|2 + h(ρφ, |∇φn|2)).
Besides, we deduce from (31) that∣∣∣∣∫

R3

(
h
(
ρφn, |∇φn|2

) − h(ρφ, |∇φn|2))∣∣∣∣ � C‖φn − φ‖L2,

where the constant C only depends on h and on the H 1 bound of (φn)n∈N. As (φn)n∈N converges to φ weakly in
L2(R3) and as ‖φ‖L2 = ‖φn‖L2 for all n ∈ N, the convergence of (φn)n∈N to φ holds strongly in L2(R3). Therefore,
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∫
R3

|∇φ|2 +EGGA
xc (ρφ)=

∫
R3

(|∇φ|2 + h(ρφ, |∇φ|2))
� lim inf

n→∞

∫
R3

(|∇φn|2 + h(ρφ, |∇φn|2)) + lim
n→∞

∫
R3

(
h
(
ρφn, |∇φn|2

) − h(ρφ, |∇φn|2))
= lim inf

n→∞

∫
R3

|∇φn|2 +EGGA
xc (ρφn).

Finally, as (φn)n∈N is bounded in H 1 and converges strongly to φ in L2(R3), we infer that the convergence holds
strongly in Lp(R3) for all 2 � p < 6, yielding

lim
n→∞

∫
R3

ρφnV + J (ρφn)=
∫
R3

ρφV + J (ρφ).

Therefore,

E(φ)� lim inf
n→∞ E(φn)= Iμ.

As ‖φ‖2
L2 = μ, φ is a minimizer for Jμ. Obviously, the same arguments can be applied to a minimizing sequence

for J∞
μ . �

Next, we show that the equivalent of Lemma 7 in the GGA setting holds.

Lemma 9. Consider α > 0 and β > 0 such that α + β � 1. If Jα and J∞
β have minimizers, then

Jα+β < Jα + J∞
β .

Proof. Let u and v be minimizers for Jα and J∞
β respectively. Since E(φ)= E(|φ|) ∀φ ∈H 1(R3), we can assume

that u and v are non-negative. u satisfies the Euler equation

−1

2
div

((
1 + ∂h

∂κ

(
ρu, |∇u|2

))∇u
)

+
(
V + ρu � |r|−1 + ∂h

∂ρ

(
ρu, |∇u|2

))
u+ θ1u= 0 (54)

and v satisfies the Euler equation

−1

2
div

((
1 + ∂h

∂κ

(
ρv, |∇v|2

))∇v
)

+
(
ρv � |r|−1 + ∂h

∂ρ

(
ρv, |∇v|2

))
v + θ2v = 0 (55)

where θ1 and θ2 are two Lagrange multipliers.
Using properties (31) and (33) and classical elliptic regularity arguments [11] (see also the proof of Lemma 13

below), we obtain that both u and v are in C0,α(R3) for some 0< α < 1 and vanish at infinity.
Using again (31), this implies that ∂h

∂ρ
(ρu, |∇u|2)u vanishes at infinity. Since it is a non-positive function, applying

Lemma 12 (proved in Appendix A) to (54) then yields θ1 > 0.
Moreover, the function λ �→ J∞

λ being decreasing on [0,1], θ2 is non-negative.
Let us first assume θ2 > 0. Applying Lemma 13, we then obtain that there exists γ > 0, f1 ∈H 1(R3), f2 ∈H 1(R3),

g1 ∈ (L2(R3))3 and g2 ∈ (L2(R3))3 such that

u= e−γ |·|f1, v = e−γ |·|f2, ∇u= e−γ |·|g1, ∇v = e−γ |·|g2. (56)

In addition, as u� 0 and v � 0, we also have f1 � 0 and f2 � 0. Let e be a given unit vector of R
3. For t > 0, we set

wt(r)= αt
(
u(r)+ v(r − te)) where αt = (α + β) 1

2
∥∥u+ v(· − te)∥∥−1

L2 .

Obviously, wt ∈H 1(R3) and ‖wt‖L2 = α + β , so that

E(wt)� Jα+β. (57)
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Besides, a little calculation (see [1] for details) shows that

E(wt)= Jα + J∞
β +

∫
R3

V
∣∣v(· − te)∣∣2 +D(ρu,ρv(·−te))+O

(
e−γ t

)
,

the main difficulty being to verify that (31), (33), (56) and the boundedness of u and v in L∞(R3) yield∣∣∣∣ ∫
R3

h
(
ρwt , |∇wt |2

) − h(ρu, |∇u|2) − h(ρv(·−te), ∣∣∇v(· − te)∣∣2)∣∣∣∣ =O(
e−γ t

)
.

Next, using (56), we get∫
R3

Vρv(·−te) +D(ρu,ρv(·−te))= −Zt−1
∫
R3

ρu + t−1
∫
R3

ρv

∫
R3

ρu + o(t−1)
= −2α(Z − 2β)t−1 + o(t−1).

Finally, for t large enough and since 2β < 2 � Z,

Jα+β �E(wt)� Jα + J∞
β − 2α(Z − 2β)t−1 + o(t−1)< Jα + J∞

β .

Let us now assume that θ2 = 0. Using (54) and (55), we easily get that for η > 0 small enough,

J(1+η)2α �E(u+ ηu)=E(u)− ηθ1α + o(η)= Jα − ηθ1α + o(η)
while

J∞
(1−2 α

β
η)2β

�E∞
(
v− 2

α

β
ηv

)
=E∞(v)+ o(η)= J∞

β + o(η).
Lemma 1 then yields

J(1+η)2α+(1−2 α
β
η)2β � J(1+η)2α + J∞

(1−2 α
β
η)2β

� Jα + J∞
β − ηθ1α+ o(η),

and for η small enough, it holds (1 + η)2α + (1 − 2α
β
η)2β � α + β so that

Jα+β � J(1+η)2α+(1−2 α
β
η)2β � Jα + J∞

β − ηθ1α+ o(η) < Jα + J∞
β . �

In order to prove that the minimizing sequences for Jλ (or at least some of them) are indeed precompact in L2(R3)

and to apply Lemma 8, we will use the concentration-compactness method due to P.-L. Lions [20], for the simpler
method used in the LDA setting does not seem to work anymore. Consider an Ekeland sequence (φn)n∈N for (52),
that is [8] a sequence (φn)n∈N such that

∀n ∈ N, φn ∈H 1(
R

3) and
∫
R3

φ2
n = λ, (58)

lim
n→+∞E(φn)= Jλ, (59)

lim
n→+∞E

′(φn)+ θnφn = 0 in H−1(
R

3) (60)

for some sequence (θn)n∈N of real numbers. As in the proof of Lemma 9, we can assume that

∀n ∈ N, φn � 0 a.e. on R
3 and θn � 0. (61)

Lastly, up to extracting subsequences, there is no restriction in assuming the following convergences:

φn ⇀ φ weakly in H 1(
R

3), (62)

φn → φ strongly in Lploc

(
R

3) for all 2 � p < 6, (63)

φn → φ a.e. in R
3, (64)

θn → θ in R, (65)
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and it follows from (61) that φ � 0 a.e. on R
3 and θ � 0. Note that the Ekeland condition (60) also reads

−1

2
div

((
1 + ∂h

∂κ

(
ρφn, |∇φn|2

))∇φn
)

+
(
V + ρφn � |r|−1 + ∂h

∂ρ

(
ρφn, |∇φn|2

))
φn + θnφn = ηn

with ηn −−−→
n→0

0 in H−1(
R

3). (66)

We can then apply the concentration-compactness method to the sequence (φn)n∈N and obtain the following lemma.

Lemma 10. Consider (φn)n∈N satisfying (58)–(65). Then, using the terminology introduced in the concentration-
compactness lemma in [20],

1. if some subsequence (φnk )k∈N of (φn)n∈N satisfies the compactness condition, then (φnk )k∈N converges to φ
strongly in Lp(R3) for all 2 � p < 6;

2. a subsequence of (φn)n∈N cannot vanish;
3. a subsequence of (φn)n∈N cannot satisfy the dichotomy condition.

Consequently, (φn)n∈N converges to φ strongly in Lp(R3) for all 2 � p < 6. It follows that φ is a minimizer to (52).

Proof of the first two assertions of Lemma 10. Assume that there exists a sequence (yk)k∈N in R
3, such that for all

ε > 0, there exists R > 0 such that

∀k ∈ N,

∫
yk+BR

φ2
nk

� λ− ε.

Two situations may be encountered: either (yk)k∈N has a converging subsequence, or limk→∞ |yk| = ∞. In the latter
case, we would have φ = 0, and therefore

lim
k→∞

∫
R3

φ2
nk
V = 0.

Hence

I∞
λ � lim

k→∞E
∞(φnk )= lim

k→∞E(φnk )= Iλ,
which is in contradiction with the first assertion of Lemma 1. Therefore, (yk)k∈N has a converging subsequence. It is
then easy to see, using the strong convergence of (φn)n∈N to φ in L2

loc(R
3), that∫

R3

φ2 �
∫

y+BR
φ2 � λ− ε,

where y is the limit of some converging subsequence of (yk)k∈N. This implies that ‖φ‖2
L2 = λ, hence that (φn)n∈N

converges to φ strongly in L2(R3). As (φn)n∈N is bounded in H 1(R3), this convergence holds strongly in Lp(R3) for
all 2 � p < 6.

Assume now that (φnk )k∈N is vanishing. Then we would have φ = 0, an eventuality that has already been ex-
cluded. �
Proof of the third assertion of Lemma 10. Let us first introduce two functions ξ and χ in C∞(R3) such that
0 � ξ,χ � 1, ξ(x) = 1 if |x| � 1, ξ(x) = 0 if |x| � 2, χ(x) = 0 if |x| � 1, χ(x) = 1 if |x| � 2, ‖∇χ‖L∞ � 2 and
‖∇ξ‖L∞ � 2. For R > 0, we denote by ξR(·)= ξ( ·

R
) and χR(·)= χ( ·

R
).

Replacing (φn)n∈N with a subsequence and using the detailed construction of the dichotomy case given in [20], we
can assume that in addition to (58)–(65), there exist

• δ ∈ ]0, λ[,
• a sequence (yn)n∈N of points in R

3,
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• two increasing sequences of positive real numbers (R1,n)n∈N and (R2,n)n∈N such that

lim
n→∞R1,n = ∞ and lim

n→∞
R2,n

2
−R1,n = ∞

such that the sequences φ1,n = ξR1,n (· − yn)φn and φ2,n=χR2,n/2(· − yn)φn satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φn = φ1,n on yn +BR1,n ,

φn = φ2,n on R
3 \ (yn +BR2,n ),

lim
n→∞

∫
R3

φ2
1,n = δ, lim

n→∞

∫
R3

φ2
2,n = λ− δ,

lim
n→∞

∥∥φn − (φ1,n + φ2,n)
∥∥
Lp(R3)

= 0 for all 2 � p < 6,

lim
n→∞‖φn‖Lp(yn+(BR2,n\BR1,n ))

= 0 for all 2 � p < 6,

lim
n→∞ dist(Suppφ1,n,Suppφ2,n)= ∞,
lim inf
n→∞

∫
R3

(|∇φn|2 − |∇φ1,n|2 − |∇φ2,n|2
)
� 0.

Besides, it obviously follows from the construction of the functions φ1,n and φ2,n that

∀n ∈ N, φ1,n � 0 and φ2,n � 0 a.e. on R
3. (67)

A straightforward calculation leads to

E(φn)=E∞(φ1,n)+
∫
R3

ρφ1,nV +E∞(φ2,n)+
∫
R3

ρφ2,nV +
∫
R3

(|∇φn|2 − |∇φ1,n|2 − |∇φ2,n|2
) +

∫
R3

ρ̃nV

+D(ρφ1,n , ρφ2,n )+D(ρ̃n, ρφ1,n + ρφ2,n )+
1

2
D(ρ̃n, ρ̃n)

+
∫
R3

(
h
(
ρφn, |∇φn|2

) − h(ρφ1,n , |∇φ1,n|2
) − h(ρφ2,n , |∇φ2,n|2

))
, (68)

where we have denoted by ρ̃n = ρφn − ρφ1,n − ρφ2,n . As

|ρ̃n| � 31yn+(BR2,n\BR1,n )
|φn|2,

where 1yn+(BR2,n\BR1,n )
is the characteristic function of yn + (BR2,n \ BR1,n ), the sequence (ρ̃n)n∈N goes to zero

in Lp(R3) for all 1 � p < 3, yielding∫
R3

ρ̃nV +D(ρ̃n, ρφ1,n + ρφ2,n )+
1

2
D(ρ̃n, ρ̃n)−−−−→n→∞ 0.

Besides,

D(ρφ1,n , ρφ2,n )� 4 dist(Suppφ1,n,Suppφ2,n)
−1‖φ1,n‖2

L2‖φ2,n‖2
L2 −−−−→n→∞ 0

and ∣∣∣∣ ∫
R3

(
h
(
ρφn, |∇φn|2

) − h(ρφ1,n , |∇φ1,n|2
) − h(ρφ2,n , |∇φ2,n|2

))∣∣∣∣
�

∫
yn+(BR2,n\BR1,n )

∣∣h(ρφn, |∇φn|2)∣∣ + ∣∣h(ρφ1,n , |∇φ1,n|2
)∣∣ + ∣∣h(ρφ2,n , |∇φ2,n|2

)∣∣
� C

(‖ρφn‖p−
Lp− (yn+(B \B ))

+ ‖ρφn‖p+
Lp+ (yn+(B \B ))

) −−−−→n→∞ 0

R2,n R1,n R2,n R1,n
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(recall that 1<p± = 1 + β± < 5
3 ). Lastly, as limn→∞ dist(Suppφ1,n,Suppφ2,n)= ∞,

min

(∣∣∣∣ ∫
R3

ρφ1,nV

∣∣∣∣, ∣∣∣∣ ∫
R3

ρφ2,nV

∣∣∣∣) −−−−→n→∞ 0.

It therefore follows from (68) and from the continuity of the functions λ �→ Jλ and λ �→ J∞
λ that at least one of the

inequalities below holds true

Jλ � Jδ + J∞
λ−δ (case 1) or Jλ � J∞

δ + Jλ−δ (case 2). (69)

As the opposite inequalities are always satisfied, we obtain

Jλ = Jδ + J∞
λ−δ (case 1) or Jλ = J∞

δ + Jλ−δ (case 2) (70)

and (still up to extraction){ lim
n→∞E(φ1,n)= Jδ,
lim
n→∞E

∞(φ2,n)= J∞
λ−δ

(case 1) or

{
lim
n→∞E

∞(φ1,n)= J∞
δ ,

lim
n→∞E(φ2,n)= Jλ−δ (case 2). (71)

Let us now prove that the sequence (ψn)n∈N, whereψn = φn−(φ1,n+φ2,n), goes to zero inH 1(R3). For convenience,
we rewrite ψn as ψn = enφn where en = 1 − ξR1,n (· − yn)− χR2,n/2(· − yn) and Ekeland’s condition (66) as

−div(an∇φn)+ V φn + (
ρφn � |r|−1)φn + V −

n φ
1+2β−
n + V +

n φ
1+2β+
n + θnφn = ηn (72)

where⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

an = 1

2

(
1 + ∂h

∂κ

(
ρφn, |∇φn|2

))
,

V −
n = 2β−ρ−β−

φn

∂h

∂ρ

(
ρφn, |∇φn|2

)
χρφn�1,

V +
n = 2β+ρ−β+

φn

∂h

∂ρ

(
ρφn, |∇φn|2

)
χρφn>1.

Due to assumption (32), V −
n and V +

n are bounded in L∞(R3).

The sequence (V φn+ (ρφn � |r|−1)φn+V −
n φ

1+2β−
n +V +

n φ
1+2β+
n + θnφn)n∈N is bounded in L2(R3), (ηn)n∈N goes

to zero in H−1(R3), and the sequence (ψn)n∈N is bounded in H 1(R3) and goes to zero in L2(R3). We therefore infer
from (72) that∫

R3

an∇φn · ∇ψn −−−−→n→∞ 0.

Besides ∇ψn = en∇φn + φn∇en with 0 � en � 1 and ‖∇en‖L∞ → 0. Thus∫
R3

anen|∇φn|2 −−−−→n→∞ 0.

As

0<
a

2
� an = 1

2

(
1 + ∂h

∂κ

(
ρφn, |∇φn|2

))
� b

2
<∞ a.e. on R

3 (73)

and 0 � e2
n � en � 1, we finally obtain∫

R3

e2
n|∇φn|2 −−−−→n→∞ 0,

from which we conclude that (∇ψn)n∈N goes to zero in L2(R3). Plugging this information in (72) and using the fact
that the supports of φ1,n and φ2,n are disjoint and go far apart when n goes to infinity, we obtain
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−div(an∇φ1,n)+ V φ1,n + (
ρφ1,n � |r|−1)φ1,n + V −

n φ
1+2β−
1,n + V +

n φ
1+2β+
1,n + θnφ1,n

H−1−−−−→n→∞ 0,

−div(an∇φ2,n)+ V φ2,n + (
ρφ2,n � |r|−1)φ2,n + V −

n φ
1+2β−
2,n + V +

n φ
1+2β+
2,n + θnφ2,n

H−1−−−−→n→∞ 0.

We can now assume that the sequences (φ1,n)n∈N and (φ2,n)n∈N, which are bounded inH 1(R3), respectively converge
to φ1 and φ2 weakly in H 1(R3), strongly in Lploc(R

3) for all 2 � p < 6 and a.e. in R
3. In virtue of (67), we also have

φ1 � 0 and φ2 � 0 a.e. on R
3. To pass to the limit in the above equations, we use a H -convergence result proved in

Appendix A (Lemma 11). The sequence (an)n∈N satisfying (73), there exists a∞ ∈ L∞(R3) such that a2 � a∞ � b2

2a
and (up to extraction) anI3 ⇀H a∞I3 (where I3 is the rank-3 identity matrix). Besides, the sequence (V ±

n )n∈N is
bounded in L∞(R3), so that there exists V ± ∈ L∞(R3), such that (up to extraction) (V ±

n )n∈N converges to V ± for
the weak-∗ topology of L∞(R3). Hence for j ∈ �1,2� (and up to extraction)⎧⎪⎪⎨⎪⎪⎩

V φj,n −−−−→n→∞ V φj strongly in H−1(
R

3),
V ±
n φ

1+2β±
j,n −−⇀n→∞ V

±φ1+2β±
j weakly in L2

loc

(
R

3),(
ρφj,n � |r|−1)φj,n + θnφj,n −−−−→n→∞

(
ρφj � |r|−1)φj + θφj strongly in L2

loc

(
R

3).
We end up, for j ∈ �1,2�, with

−div(a∞∇φj )+ V φj + (
ρφj � |r|−1)φj + V −φ1+2β−

j + V +φ1+2β+
j + θφj = 0. (74)

Remark 5. The elliptic operator involved in Eq. (72) being monotone, it appears that we could also pass to the limit
using Leray–Lions theory instead of H -convergence. Since we are not interested in the very precise structure of the
limit equation, we chose not to follow that way.

By classical elliptic regularity arguments already stated in the proof of Lemma 9, both φ1 and φ2 are in C0,α(R3)

for some 0< α < 1 and vanish at infinity. Besides, exactly one of the two functions φ1 and φ2 is different from zero.
Indeed, if both φ1 and φ2 were equal to zero, then we would have φ = 0, an eventuality that we have already excluded
in the proof of the first two assertions of Lemma 10. On the other hand, as dist(Suppφ1,n,Suppφ2,n)→ ∞, at least
one of the functions φ1 and φ2 is equal to zero.

We only consider here the case when φ2 = 0, corresponding to case 1 in (69)–(71), since the other case can be dealt
with the same arguments. A key point of the proof consists in noticing, as in the proof of Lemma 9, that applying
Lemma 12 to (74) (note that W = V −φβ−

1 + V +φβ+
1 is non-positive and goes to zero at infinity) yields

θ > 0. (75)

Consider now the sequence (φ̃1,n)n∈N defined by φ̃1,n = δ 1
2φ1,n‖φ1,n‖−1

L2 . It is easy to check that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀n ∈ N, φ̃1,n ∈H 1(
R

3), ∫
R3

φ̃ 2
1,n = δ and φ̃1,n � 0 a.e. on R

3,

lim
n→+∞E(φ̃1,n)= Jδ,
−div(a1,n∇φ̃1,n)+ V φ̃1,n + (

ρφ̃1,n
� |r|−1)φ̃1,n + V −

1,nφ̃
1+2β−
1,n + V +

1,nφ̃
1+2β+
1,n + θnφ̃1,n

H−1−−−−→n→∞ 0,

(φ̃1,n)n∈N converges to φ̃1 �= 0 weakly in H 1, strongly in Lploc for 2 � p < 6 and a.e. on R
3

(with in fact φ̃1 = φ). Likewise, the sequence ((λ − δ)
1
2 ‖φ2,n‖−1

L2 φ2,n)n∈N being a minimizing sequence for

J∞
λ−δ , it cannot vanish. Therefore, there exists γ > 0, R > 0 and a sequence (xn)n∈N of points of R

3 such that∫
xn+BR |φ2,n|2 � γ . Then, defining φ̃2,n = (λ− δ) 1

2 ‖φ2,n‖−1
L2 φ2,n(· − xn),⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∀n ∈ N, φ̃2,n ∈H 1(
R

3), ∫
R3

φ̃ 2
2,n = λ− δ and φ̃2,n � 0 a.e. on R

3,

lim
n→+∞E

∞(φ̃2,n)= J∞
λ−δ,

−div(a2,n∇φ̃2,n)+
(
ρφ̃2,n

� |r|−1)φ̃2,n + V −
2,nφ̃

1+2β−
2,n + V +

2,nφ̃
1+2β+
2,n + θnφ̃2,n

H−1−−−−→n→∞ 0,

(φ̃ ) converges to φ̃ �= 0 weakly in H 1, strongly in Lp for 2 � p < 6 and a.e. on R
3.
2,n n∈N 2 loc
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It is important to note that the sequences (aj,n)n∈N and (V ±
j,n)n∈N for j ∈ �1,2�, which we do not detail for their exact

expression is not of use, are such that

a

2
� aj,n � b

2
and

∥∥V ±
j,n

∥∥
L∞ � 2β+C,

where the constants a, b and C are those arising in (31) and (33).
We can now apply the concentration-compactness lemma to (φ̃1,n)n∈N and to (φ̃2,n)n∈N. As these sequences cannot

vanish, they are either compact or split into subsequences that are either compact or split, and so on. The next step
consists in showing that this process necessarily terminates after a finite number of iterations. By contradiction, assume
that it is not the case. We could then construct by repeated applications of the concentration-compactness lemma
(see [1] for details) an infinity of sequences (ψ̃k,n)n∈N, such that for all k ∈ N⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∀n ∈ N, ψ̃k,n ∈H 1(
R

3), ∫
R3

ψ̃2
k,n = δk and ψ̃k,n � 0 a.e. on R

3,

−div(̃ak,n∇ψ̃k,n)+
(
ρψ̃k,n � |r|−1)ψ̃k,n + Ṽ −

k,nψ̃
1+2β−
k,n + Ṽ +

k,nψ̃
1+2β+
k,n + θnψ̃k,n H−1−−−−→n→∞ 0,

(ψ̃k,n)n∈N converges to ψ̃k �= 0 weakly in H 1, strongly in Lploc for 2 � p < 6 and a.e. on R
3,

with ∑
k∈N

δk � λ, (76)

and ∀k ∈ N, ∀n ∈ N,

a

2
� ãk,n � b

2
and

∥∥Ṽ ±
k,n

∥∥
L∞ � 2β+C.

Using Lemma 11 to pass to the limit with respect to n in the equation satisfied by ψ̃k,n, we obtain

−div(̃ak∇ψ̃k)+
(
ρψ̃k � |r|−1)ψ̃k + Ṽ −

k ψ̃
1+2β−
k + Ṽ +

k ψ̃
1+2β+
k + θψ̃k = 0, (77)

with

a

2
� ãk � b2

2a
and

∥∥Ṽ ±
k

∥∥
L∞ � 2β+C.

Besides, we infer from (76) that
∑
k∈N

‖ψ̃k‖2
L2 � λ, hence that

lim
k→∞‖ψ̃k‖L2 = 0.

It then easily follows from (77) that

lim
k→∞

∥∥div(̃ak∇ψ̃k)
∥∥
L2 = 0.

We can now make use of the elliptic regularity result [11] (see also the proof of Lemma 13) stating that there exists
a constant C, depending only on the positive constants a and b, such that for all k ∈ N

‖ψ̃k‖L∞ � C
(‖ψ̃k‖L2 + ∥∥div(̃ak∇ψ̃k)

∥∥
L2

)
and obtain

lim
k→∞‖ψ̃k‖L∞ = 0.

Lastly, we deduce from (77) that

θ‖ψ̃k‖2
L2 � C

(‖ψ̃k‖2β−
L∞ + ‖ψ̃k‖2β+

L∞
)‖ψ̃k‖2

L2 .

As ‖ψ̃k‖L2 > 0 for all k ∈ N, we obtain that

θ � C
(‖ψ̃k‖2β−∞ + ‖ψ̃k‖2β+∞

) −−−→ 0,
L L k→∞
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which obviously contradicts (75). We therefore conclude from this analysis that, if dichotomy occurs, (φn)n∈N splits
in a finite number, say K , of compact bits having mass δk > 0 with

∑K
k=1 δk = λ. We are now going to prove that this

cannot be.
If this was the case, there would exist two sequences (u1,n)n∈N and (u2,n)n∈N such that⎧⎪⎨⎪⎩

∀n ∈ N, u1,n ∈H 1(
R

3), ∫
R3

|u1,n|2 = δ1, u1 � 0 a.e. on R
3,

lim
n→∞E(u1,n)= Jδ1

and ⎧⎪⎪⎨⎪⎪⎩
∀n ∈ N, u2,n ∈H 1(

R
3), ∫

R3

|u2,n|2 = δ2, u2 � 0 a.e. on R
3,

lim
n→∞E

∞(u2,n)= Jδ2
and converging weakly in H 1(R3) to u1 and u2 respectively, with ‖u1‖2

L2 = δ1 and ‖u2‖2
L2 = δ2 (as the weak limit of

(φn)n∈N in L2(R3) is nonzero, one bit stays at finite distance from the nuclei). It then follows from Lemma 8 that u1
and u2 are minimizers for Jδ1 and J∞

δ2
, and from Lemma 9 that Jδ1+δ2 < Jδ1 + J∞

δ2
.

Applying (70) twice, we also have Jλ = Jδ1 + J∞
δ2

+ J∞
λ−δ1−δ2 , so that we infer Jλ > Jδ1+δ2 + J∞

λ−δ1−δ2 which is
a contradiction to Lemma 1. �
End of the proof of Lemma 10. As a consequence of the concentration-compactness lemma and of the first three
assertions of Lemma 10, the sequence (φn)n∈N converges to φ weakly in H 1(R3) and strongly in Lp(R3) for all
2 � p < 6. In particular,∫

R3

φ2 = lim
n→∞

∫
R3

φ2
n = λ.

It follows from Lemma 8 that φ is a minimizer to (52). �
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Appendix A

In this appendix, we state three technical lemmas, which we make use of in the proof of Theorem 2. These lemmas
are concerned with second-order elliptic operators of the form −div(A∇·). For the sake of generality, we deal with
the case when A is a matrix-valued function, although A is a real-valued function in the two-electron GGA model.

For Ω an open subset of R
3 and 0 < λ � Λ < ∞, we denote by Ms(λ,Λ,Ω) the closed convex subset of

L∞(Ω,R3×3) consisting of the symmetric matrix fields A ∈ L∞(Ω,R3×3) such that for almost all x ∈Ω ,

λ�A(x)�Λ.
The first lemma is a H -convergence result which allows to pass to the limit in the Ekeland condition (66). We shall

not give the proof, for it is very similar to the proofs that can be found in the original article by Murat and Tartar [21].
Recall that a sequence (An)n∈N of elements ofMs(λ,Λ,Ω) is said toH -converge to some A ∈Ms(λ′,Λ′,Ω), which
is denoted by An ⇀H A, if for every ω �Ω the following property holds: ∀f ∈ H−1(ω), the sequence (un)n∈N of
the elements of H 1

0 (ω) such that −div(An∇un)= f |ω in H−1(ω), satisfies{
un ⇀ u weakly in H 1

0 (ω),
2
An∇un ⇀A∇u weakly in L (ω)
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where u is the solution in H 1
0 (ω) to −div(A∇u)= f |ω . It is known [21] that from any bounded sequence (An)n∈N in

Ms(λ,Λ,Ω) one can extract a subsequence which H -converges to some A ∈Ms(λ,λ−1Λ2,Ω).

Lemma 11. Let Ω be an open subset of R
3, 0< λ�Λ<∞, 0< λ′ �Λ′ <∞, and (An)n∈N a sequence of elements

of Ms(λ,Λ,Ω) which H -converges to some A ∈Ms(λ′,Λ′,Ω). Let (un)n∈N, (fn)n∈N and (gn)n∈N be sequences of
elements of H 1(Ω), H−1(Ω) and L2(Ω) respectively, and u ∈H 1(Ω), f ∈H−1(Ω) and g ∈ L2(Ω) such that⎧⎪⎪⎨⎪⎪⎩

−div(An∇un)= fn + gn in H−1(Ω) for all n ∈ N,

un ⇀ u weakly in H 1(Ω),

fn → f strongly in H−1(Ω),

gn ⇀ g weakly in L2(Ω).

Then −div(A∇u)= f + g and An∇un ⇀A∇u weakly in L2(Ω).

The second lemma is an extension of [19, Lemma II.1] and of a classical result on the ground state of Schrödinger
operators [28]. Recall that

L2(
R

3) +L∞
ε

(
R

3) = {
W

∣∣ ∀ε > 0, ∃(W2,W∞) ∈L2(
R

3) ×L∞(
R

3) s.t. ‖W∞‖L∞ � ε, W = W2 + W∞
}
.

Lemma 12. Let 0< λ�Λ<∞,A ∈Ms(λ,Λ,R3),W ∈L2(R3)+L∞
ε (R

3) such thatW+ = max(0,W) ∈L2(R3)+
L3(R3) and μ a positive Radon measure on R

3 such that μ(R3) < Z = ∑M
k=1 zk . Then,

H = −div(A∇·)+ V +μ � |r|−1 +W
defines a self-adjoint operator on L2(R3) with domain

D(H)= {
u ∈H 1(

R
3) ∣∣ div(A∇u) ∈ L2(

R
3)}.

Besides, D(H) is dense in H 1(R3) and included in L∞(R3) ∩C0,α(R3) for some α > 0, and any function of D(H)
vanishes at infinity. In addition,

1. H is bounded from below, σess(H)⊂ [0,∞) and H has an infinite number of negative eigenvalues;
2. the lowest eigenvalue μ1 of H is simple and there exists an eigenvector u1 ∈D(H) of H associated with μ1 such

that u1 > 0 on R
3;

3. if w ∈D(H) is an eigenvector of H such that w � 0 on R
3, then there exists α > 0 such that w = αu1.

The third lemma is used to prove that the ground state density of the GGA Kohn–Sham model exhibits exponential
decay at infinity (at least for the two-electron model considered in this article).

Lemma 13. Let 0< λ�Λ<∞, A ∈Ms(λ,Λ,R3), V a function of L
6
5
loc(R

3) which vanishes at infinity, θ > 0 and
u ∈H 1(R3) such that

−div(A∇u)+ Vu+ θu= 0 in D′(
R

3).
Then there exists γ > 0 depending on (λ,Λ, θ) such that eγ |r|u ∈H 1(R3).

Proof of Lemma 12. The quadratic form q0 on L2(R3) with domain D(q0)=H 1(R3), defined by

∀(u, v) ∈D(q0)×D(q0), q0(u, v)=
∫
R3

A∇u · ∇v,

is symmetric and positive. It is also closed since the norm
√

‖ · ‖2
L2 + q0(·) is equivalent to the usual H 1 norm.

This implies that q0 is the quadratic form of a unique self-adjoint operator H0 on L2(R3), whose domain D(H0)

is dense in H 1(R3). It is easy to check that D(H0) = {u ∈ H 1(R3) | div(A∇u) ∈ L2(R3)} and that ∀u ∈ D(H0),
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H0u= −div(A∇u). Using classical elliptic regularity results [11], we obtain that there exist two constants 0< α < 1
and C ∈ R+ (depending on λ and Λ) such that for all regular bounded domainsΩ � R

3, and all v ∈H 1(Ω) such that
div(A∇v) ∈ L2(Ω),

‖v‖C0,α(Ω) := sup
Ω

|v| + sup
(r,r′)∈Ω×Ω

|v(r)− v(r′)|
|r − r′|α � C

(‖v‖L2(Ω) +
∥∥div(A∇v)∥∥

L2(Ω)

)
.

It follows that on the one hand, D(H0) ↪→L∞(R3)∩C0,α(R3), with

∀u ∈D(H0), ‖u‖L∞(R3) + sup
(r,r′)∈R3×R3

|v(r)− v(r′)|
|r − r′|α � C

(‖u‖L2 + ‖H0u‖L2

)
, (78)

and that on the other hand, any u ∈D(H0) vanishes at infinity.
Let us now prove that the multiplication by W = V +μ� |r|−1 +W defines a compact perturbation of H0. For this

purpose, we consider a sequence (un)n∈N of elements ofD(H0) bounded for the norm ‖ ·‖H0 = (‖ ·‖2
L2 +‖H0 · ‖2

L2)
1
2 .

Up to extracting a subsequence, we can assume without loss of generality that there exists u ∈D(H0) such that:{
un ⇀ u in H 1

(
R

3
)

and Lp
(
R

3
)

for 2 � p � 6,

un → u in Lploc

(
R

3
)

with 2 � p < 6 and a.e.

Besides, it is then easy to check that the potential W = V + μ � |r|−1 +W belongs to L2 + L∞
ε (R

3). Let ε > 0 and
(W2,W∞) ∈ L2(R3)×L∞(R3) such that ‖W∞‖L∞ � ε and W = W2 + W∞. On the one hand, ‖W∞(un−u)‖L2 �
2ε supn∈N‖un‖H0 , and on the other hand limn→∞‖W2(un − u)‖L2 = 0. The latter result is obtained from Lebesgue’s
dominated convergence theorem, using the fact that it follows from (78) that (un)n∈N is bounded in L∞(R3). Conse-
quently,

lim
n→∞‖Wun − Wu‖L2 = 0,

which proves that W is a H0-compact operator. We can therefore deduce from Weyl’s theorem that H = H0 + W
defines a self-adjoint operator onL2(R3)with domainD(H)=D(H0), and that σess(H)= σess(H0). As q0 is positive,
σ(H0)⊂ R+ and therefore σess(H)⊂ R+.

Let us now prove that H has an infinite number of negative eigenvalues which form an increasing sequence con-
verging to zero. First, H is bounded below since for all v ∈D(H) such that ‖v‖L2 = 1,

〈v|H |v〉 =
∫
R3

A∇v · ∇v+
∫
R3

Wv2 � λ‖∇v‖2
L2 − ‖W2‖L2‖∇v‖

3
2
L2 − ε

� − 27

256
λ−3‖W2‖4 − ε.

In order to prove that H has at least N negative eigenvalues, including multiplicities, first notice that we have

H � −Λ�+ V +μ � |r|−1 +W+ (79)

with W+ ∈ L2(R3) + L3(R3). It is proven in [19, Lemma II.1] that the operator in the right-hand side of (79) has
infinitely many eigenvalues including multiplicities. Therefore by the minimax principle, H also has infinitely many
negative eigenvalues, including multiplicities.

The lowest eigenvalue of H , which we denote by μ1, is characterized by

μ1 = inf

{∫
R3

A∇u · ∇u+
∫
R3

W |u|2, u ∈H 1(
R

3), ‖u‖L2 = 1

}
, (80)

and the minimizers of (80) are exactly the set of the normalized eigenvectors of H associated with μ1. Let u1 be
a minimizer (80). As for all u ∈ H 1(R3), |u| ∈ H 1(R3) and ∇|u| = sgn(u)∇u a.e. on R

3, |u1| also is a minimizer
to (80). Up to replacing u1 with |u1|, there is therefore no restriction in assuming that u1 � 0 on R

3. We thus have

u1 ∈H 1(
R

3) ∩C0(
R

3), u1 � 0 and −div(A∇u1)+ gu1 = 0
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with g = W −μ1 ∈ Lploc(R
3) for some p > 3

2 (take p = 2). A Harnack-type inequality due to Stampacchia [30] then
implies that if u1 has a zero in R

3, then u1 is identically zero. As ‖u1‖L2 = 1, we therefore have u1 > 0 on R
3. Using

classical arguments (see e.g. [28]), it is then not difficult to prove that μ1 is simple. The proof of the third assertion of
the lemma then is straightforward. �
Proof of Lemma 13. Consider R > 0 large enough to ensure that θ2 � V(r)+ θ � 3θ

2 a.e. on BcR := R
3 \ BR . It is

straightforward to see that u is the unique solution in H 1(BcR) to the elliptic boundary problem{−div(A∇v)+ Vv+ θv = 0 in BcR,
v = u on ∂BR.

Let γ > 0, ũ= u exp−γ (|·|−R) and w = u− ũ. The function w is in H 1(R3) and is the unique solution in H 1(BcR) to{−div(A∇w)+ Vw+ θw = div(A∇ũ)− V ũ− θũ in BcR,
w = 0 on ∂BR.

(81)

Let us now introduce the weighted Sobolev space Wγ

0 (B
c
R) defined by

W
γ

0

(
BcR

) = {
v ∈H 1

0

(
BcR

) ∣∣ eγ |·|v ∈H 1(BcR)}
endowed with the inner product (v,w)Wγ

0 (B
c
R)

= ∫
BcR
eγ |r|(v(r)w(r)+ ∇v(r) · ∇w(r)) dr. Multiplying (81) by φe2γ |·|

with φ ∈ D(BcR) and integrating by parts, we obtain∫
BcR

Aeγ |r|∇w · eγ |r|∇φ + 2γ
∫
BcR

Aeγ |r|∇w · r
|r|e

γ |r|φ +
∫
BcR

(V + θ)eγ |r|weγ |r|φ

= −
∫
BcR

Aeγ |r|∇ũ · eγ |r|∇φ − 2γ
∫
BcR

Aeγ |r|∇ũ · r
|r|e

γ |r|φ −
∫
BcR

(V + θ)eγ |r|ũeγ |r|φ. (82)

Due to the definitions ofWγ

0 (B
c
R) and ũ, (82) actually holds for (w,φ) ∈Wγ

0 (B
c
R)×Wγ

0 (B
c
R), and it is straightforward

to see that (82) is a variational formulation equivalent to (81). It is also easy to check that the right-hand side in (82) is
a continuous form on Wγ

0 (B
c
R), so that we only have to prove the coercivity of the bilinear form in the left-hand side

of (82) to be able to apply Lax–Milgram lemma. We have for v ∈Wγ

0 (B
c
R)∫

BcR

Aeγ |r|∇v · eγ |r|∇v+ 2γ
∫
BcR

Aeγ |r|∇v · r
|r|e

γ |r|v +
∫
BcR

(V + θ)eγ |r|veγ |r|v

� λ
∥∥eγ |r|∇v∥∥2

L2(BcR)
− 2Λγ

∥∥eγ |r|∇v∥∥
L2(BcR)

∥∥eγ |r|v
∥∥
L2(BcR)

+ θ

2

∥∥eγ |r|v
∥∥2
L2(BcR)

� (λ−Λγ )∥∥eγ |r|∇v∥∥2
L2(BcR)

+
(
θ

2
−Λγ

)∥∥eγ |r|v
∥∥2
L2(BcR)

.

Thus the bilinear form is clearly coercive if γ <min( λ
Λ
, θ2Λ), and there is a unique w solution of (81) inWγ

0 (B
c
R) for

such a γ . Now since u=w+ ũ, it is clear that eγ |·|u ∈H 1(BcR), and then eγ |·|u ∈H 1(R3). �
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