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Abstract

We study the homogenization of the following nonlinear Dirichlet variational problem:

inf{ /{psl(x) |Vu|p8(x) + ﬁhﬂps(x) _ f(x)u}dx: ue Wé’pS(')(_QS)}

Qé‘

in a perforated domain 2% = 2 \ F¢ C R", n > 2, where ¢ is a small positive parameter that characterizes the scale of the
microstructure. The non-standard exponent pg(x) is assumed to be an oscillating continuous function in 2 such that, for any
e>0,1< pe(x) <nin £2; for any x,y € 2, |pe(x) — pe(¥)| < we(]x — y|) with li_m,_)oa)g(r)ln(l/r) = 0; and converges
uniformly in §2 to a function p which satisfies the same properties. Moreover, we assume that pg (x) > pg(x) in £2. Denoting u®
a minimizer in the above variational problem, without any periodicity assumption, for a large range of perforated domains we find,
by means of the variational homogenization technique, the global behavior of u® as ¢ tends to zero. It is shown that u® extended by
zero in F¥¢, converges weakly in w1-P00) (©2) to the solution of the following nonlinear variational problem:

min{ /{ ! [V PO 4 ;Iulp‘)(x) +c(x,u) — f(x)u}dx: ue W(}’pO(')(Q)},
po(x) Po(x)

where the function c(x, u) is defined in terms of the local characteristic of £2¢. This result is then illustrated with a periodic and
a non-periodic examples.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous étudions I’homogénéisation du probleme variationnel de Dirichlet nonlinéaire suivant :

. ! 1 1peC)
inf Vu Pe®) 4 |y e _ xu}dx:ueW Pel)(f }
{fg{pm)' | pe s o)
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dans un domaine perforé 2¢ = 2 \ F¢ C R", n > 2, ol ¢ > 0 est un petit paramétre qui caractérise la taille des perforations.
La fonction puissance pg(x) est nonstandard et supposée étre une fonction continue et oscillante dans £2. Elle vérifie, pour tout
e>0,1< pe(x) <ndans §2, pour tout x,y € 2, |pe(x) — pe ()| < we(|x — y|) avec lian_mws(r)ln(l/r) =0; et elle est
uniformément convergente dans £2 vers une fonction pg qui vérifie les mémes propriétés. De plus, on suppose que pg(x) = po(x)
dans £2. On note u® une solution du probléme de minimisation variationnel ci-dessus, sans hypothése de périodicité et pour
différents milieux perforés, on trouve le probléme limite décrivant le comportement global de u® lorsque ¢ tend vers zéro, en
utilisant la technique de I’homogénéisation variationnelle. On montre que u®, prolongée par zéro dans F¢, converge faiblement
dans w1200 (), quand ¢ tend vers z€ro, vers la solution u du probleme variationel nonlinéaire suivant :

min{/{ L gugpoe 4 ! |u|P0<x>+c(x,u)—f(x)u}dx:ueWé”’O(')(Q),
Po(x) Po(x)

ol la fonction c(x, u) est définie 2 partir des caractéristiques géométriques locales du domaine §2¢. Enfin, nous présentons deux
exemples, un périodique et I’autre nonpériodique, pour illustrer les résultats obtenus.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we study the homogenization of the following nonlinear problem:
—div(|Vu POV + |0 = f ) in 28, wf e Wyt (20), (1.1)

where ¢ is a small positive parameter, £2° = §2 \ F? is a perforated domain in R"” (n > 2) with 2 being a bounded
Lipschitz domain, and p; is a smooth positive oscillating function in §2 satisfying some conditions which will be
specified in Section 3, and uniformly converging in £2 to a smooth function pg. f is a given function. Equations of
such type are called p,(x)-Laplacian equations with non-standard growth conditions.

In recent years, there has been an increasing interest in the study of such equations (in the case where there is
no dependence on the small parameter) motivated by their applications to the mathematical modeling in continuum
mechanics. These equations arise, for example, from the modeling of non-Newtonian fluids with thermo-convective
effects (see, e.g., [7,9]), the modeling of electro-rheological fluids (see, e.g., [30,31]), the thermistor problem (see,
e.g., [39]), the problem of image recovery (see, e.g., [24]), and the motion of a compressible fluid in a heterogeneous
anisotropic porous medium obeying to the nonlinear Darcy law (see, e.g., [8,11]).

Eq. (1.1) is an idealized model for a variety of interesting physical problems; we motivate our work by describing
one of them. We consider a steady flow of a compressible barotropic gaz through a porous medium. The nonlinear
Darcy law with the continuity equation lead to the equation given by [10]

—div(K ()| Vu?P72Vu) + R P 2u = f(x,1). (1.2)

u stands for the fluid pressure, f is a source term and K, p, R are characteristic functions of the heterogeneous porous
medium. For more details on the formulation of such problems see for instance [10,13]. We refer to [10,11,17,18] and
the references therein for a detailed analysis of such equations.

In the present paper we deal with the Dirichlet boundary value problem for the nonlinear equation (1.1). More
precisely, we consider the corresponding variational problem:

inf{g/e{p:(x)WuW(x) + ﬁw’sm —f(x)u}dx: ue W(}”’f“(m)}. (1.3)

The homogenization of the Dirichlet boundary value problem was studied for the first time in [25] and then it was
revisited by many authors (see, e.g., [12,15,16,20,26,33], and the references therein). Note also that the homogeniza-
tion of nonlinear elliptic equations is a long-standing problem and a number of methods have been developed. There is
an extensive literature on this subject. We will not attempt a review of the literature here, but merely mention a few ref-
erences, see for instance [2,14,16,29], and the references therein. Let us mention that the homogenization problems for
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the Lagrangians with variable exponents were first studied in [22,34-37] (see also the book [38]) which focus on the
variational functionals with non-standard growth conditions. In particular, the homogenization and I"-convergence
problems for Lagrangians with variable rapidly oscillating exponents p(x) were considered in [35,36]. Variational
functionals with non-standard growth conditions have also been considered in the book [14], namely Chapter 21 of
this book focuses on the I'-convergence of such functionals in L? spaces. The Dirichlet homogenization problem
and related questions for Lagrangians of p(x) growth in W17e0)(2¢), where £2° is a perforated domain, have been
studied recently in [3-6].

Following the approach developed in [20], instead of a classical periodicity assumption on the structure of the
perforated domain £2%, we impose certain conditions on the so-called local energy characteristics associated with the
boundary value problem (1.1). It will be shown that the asymptotic behavior, as ¢ — 0, of the solution u° is described
by the following variational problem:

inf{/{ ! |Vu| o) 4 ! |u|p0(x)+c(x,u)—f(x)u}dx: ueW(}"’O(‘)(Q)}, (1.4)
po(x) po(x)

2

where the function c(x, u) is calculated by the local energy characteristic of £2¢.

The proof of the main result is based on the variational homogenization technique which is nowadays widely
used in the homogenization theory (see, e.g., [14,26,38] and the references therein). Let us also mention that another
non-periodic homogenization approach was proposed recently in [28] for nonlinear monotone operators.

The paper is organized as follows. In Section 2, for the sake of completeness, we recall the definition and the main
results on the Lebesgue and Sobolev spaces with variable exponents which will be used in the sequel. In Section 3
we state the problem and formulate the main result which will be proved in Section 4. Two examples of periodic and
locally periodic structures are considered in Section 5.

2. Sobolev spaces with variable exponents

In this section we introduce the function spaces used throughout the paper and describe their basic properties, see
for instance [19,21,27,32].
We assume that £2 is a bounded Lipschitz domain in R” and the function p(x) satisfies the following conditions:

1<p)= igfp(x) < px) < s;lzp p(x)=p™P) <400 with p™) <n. (2.1)

Forall x,y € £2,
_ 1
lp(x) — p(»)| <ow(lx —yl) with 1in%w(r)1n(—) =0. (2.2)
T— T

1. By LPY)(£2) we denote the space of measurable functions f in §2 such that

Apiy(f) =f | £0)|"™ dx < +o0.
22

The space L?)(£2) equipped with the norm

. f
||f||Lp(-)(Q) = 1nf{)» >0: Ay (K <1 (2.3)
becomes a Banach space.
2. The following inequalities hold
i PO ) ) P
m1n(||f||Lp(.>(m, ”f”{,,()(g)) < Ap()(f) < maX(”f”Lp(A)(Q)a ”f”Lp(,)(_Q)), 2.4)

1 1 1 1
. (&) ) P&, p)
mln(A;)() ) AIIJ() ) < ”f”LP(')(_Q) < max(A}’,() ) A;)() )
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3. Let f € LPO(2), g € L1V (£2) with
1 1

P g

Then the Holder’s inequality holds

L 1<p?<p)<p™ <00, 1<¢7 <qx) <g™ < +oo.

/ [fgldx <21 fllLro )8l Lao () (2.5)
2

4. According to (2.5), for every 1 < ¢ = const < p{™) < p(x) < 400

I fllLa2) < CNfllppo ey with the constant C =2|[1]| 0 . (2.6)
LPO~4(2)

It is straightforward to check that for domains §2 such that meas £2 < +o0,
1Tl p0 () < 2max{[meas 2127, [meas 21"/27""}. 2.7)
5. The space WP (), p(-) € [p, p™] C 11, +00, is defined by
WwhrO@)={f e LPO(2): [Vfle LPY(2)}.

If condition (2.2) is satisfied, Wé’ PO (£2) is the closure of the set C(‘)’O(SZ) with respect to the norm of wl PO ().
If the boundary of £2 is Lipschitz-continuous and p(x) satisfies (2.2), then C§°(§2) is dense in Wol’ p (')(.Q). The
norm in the space WOl P0) is defined by

”u”WOl"’(') = Z ”Diu”LP(')(Q) + ”u”LP(')(_Q)-
i

If the boundary of £2 is Lipschitz and p € C 0(£2), then the norm | - || is equivalent to the norm

Wol'p(')(ﬂ)

il om0y = D Wil s ) 2.8)
i

6. If pe Co(ﬁ),_then WLPO(§2) is separable and reflexive.
7. If p,q € CO(2),

pxn

pix) = | 1P
+00 if p(x) > n,

P <M and 1< q(x) <supg(x) < inf p.(x),
2

then the embedding Wé PO (2) <> L90)(£2) is continuous and compact.
8. Friedrich’s inequality is valid in the following form: if p(x) satisfies conditions (2.1)—(2.2), then there exists a
constant C > 0 such that for every f € Wol‘p (‘)(.Q)

||f||Lp(->(_Q) < C”Vf”Lp(-)(Q)- (2.9)
3. Statement of the problem and the main result

Let £2 be a bounded domain in R” (n > 2) with sufficiently smooth boundary. Let F? be a closed subset in £2.
Here ¢ is a small parameter characterizing the scale of the microstructure. We assume that F¢ is distributed in an
asymptotically regular way in £2, i.e., for any ball V(y,r) of radius r centered at y € §£2 and ¢ > 0 small enough
(e<eo(r), Vy,r)NFE#Pand V(y,r) N (L2 \ F?) # 0. We set

Q°F =0\ FE. 3.1)

Let p; = pe(x) be a continuous function defined in the domain £2. We assume that, for any ¢ > 0, it satisfies the
following conditions:
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(i) this function is bounded in the following sense:

1< p( ) < p( ) = mlg Pe(x) < pe(x) <max pe(x) = pé"’) < p(+) <n in$2; (3.2)

xef

(ii) for any x, y € §2, we have

T 1
|pe(x) = pe(V)| < @e(lx — yl)  with r11_13)cog(r)ln(;> =0; (3.3)
(iii) the function p, converges uniformly in §2 to a function py, i.e.,
gg% | pe — P0||C0(§) =0, (3.4)

where the limit function pg is assumed to be bounded in the sense of the condition (2.1) and satisfies (2.2);
(iv) the function p; is such that

pe(x) = po(x) in £2. (3.5)
We consider the following variational problem:

min{J®[u]: u € W1 pS()(Q )}

Jf[u]zf{ |V |Pe®) p — ! |u|p£(x)—f(x)u}dx, (3.6)
De(x) De(x)

Qé‘
where f € C 1(.Q). It is known from [1,10,11,17] that, for each ¢ > 0, there exists a unique solution (minimizer)
ut € WhPe©) (229) of problem (3.6). Let us extend u® in F¢ by zero (keeping for it the same notation). Then we obtain
the family {u®} ¢ W1 P¢()(£2). We study the asymptotic behavior of u® as & — 0.
Instead of the classical periodicity assumption on the microstructure of the perforated domain £2¢, we impose
certain conditions on the local energy characteristic of the set 7. To this end we introduce K an open cube centered
at z € £2 with length equal to & (0 <& < h < 1) and we set

Mz, b) = igf/ { ﬁ Ve [P P e (f — b) } dx, (3.7)
&
Ki
where y > 0,
G(US _ b) _ |v£ _b|pg(X) + ‘vs _ b|po(x)’ (3.8)

and the infimum is taken over v¢ € W1P:()(£2) that equal zero in F¢. We assume that:

(C.1) there exists a continuous function c(x, b) such that for any x € £2, and any b € R, and a certain y = yp > 0,

lim lim 27" ¢®" (z, b) = lim lim h™"¢®"(z,b) = c(x, b);

h—0e—0 —-0.0

(C.2) there exists a constant A independent of ¢ such that, for any x € §2,

lim Tim 27" ¢ (z, b) < A(1 + [b|P0W)).

h—0e—0

The examples of the functions p.(x) and the domains £2¢ which satisfy all the above conditions, will be given in
Section 5.
The main result of the paper is the following.

Theorem 3.1. Let conditions (1)—(iv) on the function p. and conditions (C.1)—(C.2) on the local characteristic be
satisfied. Then u® the solution (minimizer) of the variational problem (3.6) (extended by zero in F*) converges weakly
in WhPoO(2) to u the solution (minimizer) of
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inf{/{ |Vu| o) 4 ! [P0 4 e(x, u) — f(x)u}dx: ue Wol"""(')(.Q)}. (3.9)
J 0(x) po(x)

Remark 1. The condition (C.1) and the definition of the local energy characteristic ¢®”(z,b) imply that
meas[F* N Kj | = o(h") for sufficiently small & (¢ < &(h)), uniformly with respect to z € §2. Therefore, meas 7* — 0
as e — 0.

Notation. In what follows C, Cy, C», etc. are generic constants independent of ¢.
4. Proof of Theorem 3.1

It follows from (3.6), (2.4), and the regularity properties of the functions f, p. that

HusHWIvﬂe(')(_Qs) g C. (41)

We extend u® by zero to the set ¢ and consider {u°} as a sequence in the space W17 (£2). It follows from (4.1)
that

”M‘s ||W1’P£(')(_Q) <C. 4.2)

Condition (iv) and (4.2) immediately imply that
”“8 ||W1-po<->(9) <C. (4.3)

Hence, one can extract a subsequence {u?, ¢ = g — 0} that converges weakly to a function u € whroO) (). We will
show that u = u(x) is the solution of the variational problem (3.9). The proof will be done in two mains steps.

4.1. Step 1. Upper bound

Let {x*} be a periodic grid in §2 with a period »’ = h — pity/P® (8 <h<1,0<y <p™). Letus cover the
domain 2 by the cubes K}’ of length 2 > 0 centered at the points x“. We associate with this covering a partition
of unity {@g}: 0 < @u(x) <15 @u(x) =0 for x ¢ K5 9o (x) =1 for x € Kj \ Uﬂ# Kf; D g Pal(x) =1forx € £2;
Voo (x)| < CR=1=7/P

Now let v, = v§, (x) be a function minimizing the functional (3.7)—(3.8) with b = by and z = x*, where b, will be
specified later. It follows from condition (C.1) that, as & — 0,

fim ——|vee|Pax=o(r");  fim S (S, — by)dx = O (B 747, (4.4)

e—0 De (x) e—0 o
Kenee Kgnge

Moreover, condition (iv) implies that

fim Vg | dx = O (k") ash— 0. 4.5)
e—0
Kynge

Denote by K, and [T} the cube of length i’ centered at the point x*, and the set KjY \ K, respectively. It follows

from condltlon (C.1) of Theorem 3.1 that, as 7 — 0,
— 1 . S -
lim / mwvg e gx = o(h"); Tim S (V5 — ba) dx = o(h"HPHY), (4.6)
mengee menee

Moreover, condition (iv) implies that

fim Ve | dx = o(h") ash — 0. 4.7)
e—
gngee
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F B2(e, h; v)

Fig. 1. The set BY (e, h; ©) and the function v.

m

bl‘/

o

\3

a

Fig. 2. The function V.

2463

Now let w be a smooth function in £2 such that w(x) = 0 on 952 and let Ky denotes a subset of the cubes K,‘f

covering §2 such that |w(x)| > 6 > 0 for any x € K}Y. We set
be =w(x*) for Ky €Ky and by,=1 for K} ¢ K.
For any K¢, we also define the set (see Fig. 1)
B*(e, h;9) = {x € Kjf: v5(x)signby < |bg| — 9}
and the function (see Fig. 2)
ve(x) in BY(e, h; 9);
= [ o
by = (Iby| — V) signby in Kj' \ B (¢, h; ),
where 0 < ¥ € 0/2 <« 1.
Now let us estimate meas B* (¢, h; ©). For ¢ sufficiently small, from (4.5), we have
ﬁp(_) measB"‘(e,h; 9) < / |v2 _ba|ps(x) dx < / |v2 _ba|ps(X) dx < Chn+p(+)+)’.
B (g,h;9)N2¢ Kenge
We set # = h. Then

fim meas B* (e, h; 9) = O ("7 P70H) = o(") ash 0.
E—>
In the domain £2¢ we introduce the function

wh = w00+ Y0 " (V@ — b)),

From the definition of the functions {,} and (4.9) we have that wj, € Wé pe) (£29).

(4.8)

4.9)

(4.10)

4.11)
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Since u? is the solution of the variational problem (3.6) then we have
Jo[u] < I [wh]. (4.12)

Let us estimate the right-hand side of the inequality (4.12). It is clear that

“[ws] Z / Fe(x, wj,, Vwf) dx + ) / |Fe (x, wh, Vwp)| dx, (4.13)

* konee ﬁ(KﬂnKﬁ)an
where
! w1 )
Fe(x,u, Vu) = ——|Vu|Pe™ + ——u|P*"Y) — f(x)u. (4.14)
Pe(x) Pe(x)

First, we consider the second term on the right-hand side of (4.13). It follows from the definition of the partition of

unity {¢} that for any intersection K N K| f the number of terms in the sum over «, B is finite and does not depend
on ¢. Then to estimate the second term on the right-hand side of (4.13) it is sufficient to consider the following integral:

) 1
= [ (e g0 -re)
(KENKPHn2e

o
—f(x)(w—i—bﬂ( —by)e. )}dx
=Ji[wi] + 3 [wi] + 55 [wi]- (4.15)
For the first term on the right-hand side of (4.15) we have

ilil= [ p:(x) V( we g bﬁ))

(K¢NKP)nge
1
<G f IVw|Pe®) dx + Cy / ‘Vwb—ﬂ(V;—bZ)goa
o

(KENKHNge (KENKHnge

Pe 1 Pe

+_

w+ el (V(f — bZ)(pa
Pe

by

o

Pe ()

dx

Pe(x)
dx

1 w Pe(x) w Pe(x)
C — | =V d C — (V¢ b \Y% dx. (4.16
(KENKHN2e (KENKPHnee
First, it is clear that
11?}) / |Vw|P*® dx = o(h") ash— 0. (4.17)
£—>
(K¥NKP)ngee
For the second term on the right-hand side of (4.16), from (4.6), we have, as h — 0,
P 1 9 be TE e
lim f ‘Vwﬁ(v;—ba)% dx < C; lim / [vE — by | dx =o(R"). (4.18)
(KENKHNge (KENKPHnee
For the third term on the right-hand side of (4.16), from (4.6), we have, as h — 0,
fim L2 Gy " dx < C3 lim i|Vv£|p"dx=o(h”) (4.19)
e—0 Dse bﬂ o S50 De « ' '
(KeNKHnge (KeNKPHnge

Finally, for the fourth term on the right-hand side of (4.16), from (4.6) and the properties of ¢y, we have
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Pe(x)

bﬂ( —b)\Vgu|  dx

fim /
e—0

(KENKHnge

<o T / 10— b

e—>0 o
(K¢NKPnge

Thus, from (4.15)—(4.20) we get

PO gx = o(h") ash— 0. (4.20)

lim 1 0. 4.21
i i 3y wi] = #20

In a similar way we can estimate the integrals j5[wj ], j5[w} ]. Therefore, for the second term on the right-hand side
of (4.13), we get

lim fim Z / |Fe(x, wi, Vw)|dx =0. (4.22)

h—0e—0
(Khmkf)mm

Consider now the first term on the right-hand side of (4.13). First, let us denote:

B (e,h)= (K NR2°)NB*(e,h;¥) and B (e, h) = (Kj N 2°)\ B (e, h), (4.23)

where the set B%(e, h; 1) is defined in (4.8) with ¥ = h. Then wy (x) = w(x) in B5 (e, h) and
Fg(x, wy, wal) dx = / Fo(x,w, Vw)dx = / Fo(x, w, Vw)dx + I§, (4.24)

B (e,h) B (e,h) B (e,h)

where
1 1

Fo(x, w, Vw) = T|Vw|1’0°‘> + T|w|1’0(x> fxw (4.25)
and

I = / {Fe(x,w, Vw) — Fo(x, w, Vw)} dx. (4.26)

BS (e,h)

Moreover, it follows from (3.4) that

lim | 7§ = 0. 4.27)
e—0
Therefore, from (4.24)—(4.27) and the regularity properties of the functions w, f, we have
li?}) Fg(x,wZ,VwZ)dx < / Fo(x,w,Vw)dx+0(h”) ash — 0. (4.28)
E—>
B (e.h) Ky

Let us consider now the integral over the set BY (e, h) (K}’ € Kp). In the set B} (¢, h) the function wj, has the form:

wi (x) = w(x) + #( b)) inB(e, h). (4.29)
o
Therefore, we have
1 1
Fe(x, w, Vi) dx = / — | Vwi |7 dx + f {—|w,i|”f—w,§f}dx. (4.30)
p p
B (e,h) BY (e,h) ‘ B (e,h) :

Now it follows from the regularity properties of the functions w, f, the estimate for the measure of the set B* (e, k; ©)
(see (4.10)) and the boundedness of the function v, on the set B (e, h; ¥) that
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lim
e—0

=o(h") ash— 0.

1 x
/ {miwmh( ) _ w,i(x)f(x)}dx
B (e,h)

Therefore, from (4.30), (4.31) we obtain

1
Pe(x)

fim [ F(xwt V) dy = fim /
e—0 S(X h wh) * e—0

B (e.h) B¢ (e.h)

Consider now the integral on the right-hand side of (4.32). We have
1
/ |Vw2|p€(x) dx
_ f 1
ey P

pe(x)
w
V(p(vi —b3)>
1(eh *

1 w oo, 9
* f m(x)”v(“@(”‘*_b“))
B¢ )

1(eh

B (e,h)

Pe(x)
dx

Pe(x)

Pe(x)
}dx.

- (e -0)

To estimate the second term on the right-hand side of (4.33) we make use of the following inequality:

’(g + r})[’s() _ gpe()‘ < An(l +§Ps(~)—1 + ,7[75(-)—1)’

where £, >0and A = A(p'™), p(") is a constant. We have

1 w . Pe(x) w .
JRE T

o (e.h)
§C5{measB‘1’(s,h)+ f |v§—ba|p5(x)_ldx+ / |Vv2|p5(x)_ldx}.
B (e,h) B (¢,h)

Pe(x)
}dx

Consider the second term on the right-hand side of (4.35). Since v is bounded in B (¢, h), then

li?}) |vg—ba|pg(x)71dx=0(h”) ash — 0.
£—

B (e.h)

Finally, we consider the third term on the right-hand side of (4.35). To this end we define the following sets

T .(e.h)= {x € B (e h): |Vv§| < e} T.(e,h) = [x € B (e, h: |Vv§| > pen ).
where
_ e
He h = ,u/s,h(x) =h pe(x)—1
Then
|vav |I7s(X)—1 dx < meas B(lx (e, h)h_(p(ﬂ_p(*))
Bf _(e.,h)

and it follows from the definition of the set B (¢, h), (4.23), and (4.10) that

lim Vvl
e—0 f | Vo

B?,<(5‘h)

pe=l gy — o(h") ash— 0.

|sz|p5(x) dx + o(h”) ash — 0.

431

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Furthermore, in the set BY _ (¢, h) we have that

Ms,h|vvé|p€(X)_l <‘va}pg(X)
therefore
_ 1
/ Vo |72 dx < / — |V |7V dx. (4.39)
Me h
B _(e.h) B _(e,h)
Now it follows from (4.39), (4.4), and (4.37) that
fim Ve | dx = o(h") ash— 0. (4.40)
e—
BY _ (e,h)

Finally, from (4.38), (4.40) we conclude that the third term on the right-hand side of (4.35) satisfies the estimate:

fim (Ve[ dx = o(h") ash — 0. (4.41)
e—0
Bf (e,h)
With (4.36) the inequality (4.41) means that the second term on the right-hand side of (4.33) is of order o(h") as
h — 0. Thus
! ¢ Pe0) ! woo oy \["
Vwi | dx = f —V(—v —b ) dx+o(h") ash— 0. (4.42)
/ pg(X)| h| pg(X) bg( o Ot) ( )
B (.h) B (e,h)
Then we can conclude that, as 7 — 0,
fim Lo e — ) " e 99 dx 4 o() (4.43)
e—>0 De(x) bZ * * e—~>0 De(x) * ’ ’
B (,h) B (e,h)
Now from (4.32), (4.33), (4.42), and (4.43) we have
e o 1 e
fim Fe (x, wj, Vwj) dx = lim Vel ©dx+o(h") ash— 0. (4.44)
B (e,h) B (e.h)
Finally, from (4.28), (4.44), and (3.7)—(3.8), for any K}’ € Ky, we get
1'?% Fe(x, wy, Vw; ) dx < / Fo(x, w, Vw)dx + li_r%cg’h(x“, w(x)) +o(h") (4.45)
£~ e—
Ky nee Kpn$2
ash — 0.

In a similar way, for any K’ ¢ Ky, we can obtain the following inequality:

11?}) Fe (x, w, Vwj) dx < [ Fo(x, w, Vw)dx + j(0)O (k") + o(h") ash— 0, (4.46)
E—>

K% Nge K4N2
where j(6) > 0as 6 — 0.

Now we take the union in (4.45) and (4.46) over the corresponding cubes and pass to the limit first as ¢ — 0, then
as h — 0, and, finally, as & — 0. The relations (4.13), (4.22), and condition (C.1) of Theorem 3.1 imply that

h—0e—0

lim lim J°[w}, | < Jpom[w] = /{Fo(x, w, Vw) + c(x, w)} dx. (4.47)
2

Therefore, we have
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lim J¢[u®] < Jpom[w]. (4.48)
e—0

This inequality was obtained under the assumption that w € Cé’o(.Q). It remains true for any w € Wg’p O(')(.Q) due
to the density of C§°(£2) in W(: poC) (£2) (see Section 2) and the following lemma.

Lemma 4.1. The functional Jyop, is continuous in the space wLpoO)(2).

Proof. It is similar to the proof of Lemma 3.2 of [5]. O

4.2. Step 2. Lower bound

Let u € Wh70O(2) be a weak limit in W70 (2) of the sequence {u®} C W(}’pg(')(.Qs) al W(;’p"(‘)(.Qs) =
W(}’pg(')(.Qg) (extended by zero in F*¢) by a subsequence & = gi. Let us show that

lim J* [”8] 2 Jnomlul, (4.49)

e=gr—0
where the functional Jj,,, is defined in (4.47).
First we will obtain some auxiliary results. In what follows we will use the notation:
W(2,F%) ={ue w0 (2°) |u=0in F*}.
The following result holds.

Lemma 4.2. Let w be an arbitrary function from the space W(} P 0(')(.{2) such that

”w“le]’O(')(Q) <1 (4.50)
and let the conditions of Theorem 3.1 be fulfilled. Then there exists a sequence of functions {W¢} C W (82, F¢) which

converges weakly to the function w in WHP00) () and satisfies the following estimate

(7
/et (4.51)

[W2 ey < €Ul g))
Proof. Since C}(£2) is dense in the space Wol’pO(')(.Q), then it is sufficient to prove the lemma for w € C}(£2).

Let wft be the function defined in (4.11). Due to (4.4)—(4.7) wfl € Wé Pe() (£29). Repeating the proof of the inequal-
ity (4.48) one can show that

1 1
f Vg [P dx < 2/{ IVw[PO®) 4 c(x, w)}dx (4.52)
J Pe(x) J po(x)

for sufficiently small 8, i, and ¢ (6 < 5, h < ﬁ(w, 0), e <&(h)).
Let us estimate the right-hand side of (4.52). Using conditions (C.1), (C.2) of Theorem 3.1 and the properties of
the function pg = po(x) we have

1
/{TIVwI”O(") + c(x, w)}dx <Cy /{|Vw|p°(") + [w[Po) 4 wl} dx, (4.53)
po(x

where C| is a constant independent of w. Now it follows from (4.50) and (2.4) that

(=)
/{|Vw|P0(X) + |w|P0(X)} dx < ||w||[v71?'=l’0('>(:2)’ (4.54)
2
where
Py = min po(x). (4.55)

xef
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From Holder’s inequality (2.5), we get

[ wldx < ot o, (4.56)
2
where
= ith pl () = P00
Cr,=2|1 ”Lpé)(‘)(.(z) with po(.) — O 1

Now it follows from (4.50), (4.54), and (4.56) that

/{p I e w)}dx Callwlly 1m0 (2)- (4.57)

Consider now the left-hand side of (4.52). From (2.4), (2.9), and (3.2) we have

/ TS IVwg | dx > c4/ [V |”*® dx > Cs min{ . M)(m}. (4.58)
Then it follows from (4.52), (4.57), and (4.58) that
min{ | wj, HWI o) (52)" } < Collwllyrro o) (4.59)
To obtain the estimate for [[wj, || 1. re()(g2) We consider two different cases. First we suppose that
min{ || w} le PeO)(2)° |w) ”Wl Ps<)(9)} Jw, H[vj;lvps@(g)'
Then
=)
| wh Hlelie(')(Q) < C7(||w||W1,po<-)(9))l/pg . (4.60)
Now if
min{ }
then
e 1/pt"
| wh le,pso(g) < Cg(”w”Wl’PO(')(Q)) - (4.61)

Therefore, from (4.50), (4.60), and (4.61), for sufficiently small 6, z, and ¢ (6 < é, h < ﬁ(u), 0), e < &(h)), we obtain
that
P 1/p

| wj ||WLP8(-)(_Q) < Co(llwllwipe ) . (4.62)
We set We(x) = wj, (x), where h = h(e) = 1/m for é(1/(m + 1)) <& <&(1/m), m =1,2,.... It is clear that
h(e) = 0 as ¢ — 0, and W¥¢ satisfies (4.62). Thus the inequality (4.51) is proved. Finally, using the explicit form
of the function wy, given by (4.11), it is easy to check that the sequence {w*} converges weakly in WP () to the
function w. This completes the proof of Lemma 4.2. O

Now let us prove (4.49). Letu € Wé’pO(')(.Q) be a weak limit in W70 (£2) of the sequence {u®} C Wol’pg(')(.Qs) N

Wol’pO(') (£29) (extended by zero in F*) by a subsequence ¢ = g;. For any § > 0, we introduce a function us € Cé (£2)
such that

llu — u5||W1»P0(')(_Q) <3. (4.63)

It follows from Lemma 4.2 that there exists a sequence {w§} C W(£2, F*) which converges weakly in wLroO)(2) to
the function (1 — us). We set
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us =u® + wj.
Therefore, by (4.63) and Lemma 4.2 we have

. 6 L =0

Using this inequality we can easily show that
lim lim [J°[u§] — J°[u]| =0.
520 e=e1 0 5] = 7]

Moreover, it follows from Lemma 4.1 and (4.63) that
Lim Jhomlusl = Jnomlul.
§—0
Thus, we can easily see that to obtain (4.49), it is sufficient to prove the inequality:

im  J*[us] > Jnomlus].
e=gr—0

(4.64)

(4.65)

(4.66)

4.67)

(4.68)

Let us prove (4.68). To this end let us cover the space R" by cubes K’ centered at the points x* forming a periodic,

with the period #, grid in R"” and with nonintersecting interiors. Let us introduce the following notation:

QF ={xe2|tus>60>0); Q;Ehz{UK;; Kgcsz;t};
o

Qo= U2, ; ngh:(zghuggf’h; O = 2\ 2¢;
952[29098; .Qg’hZQe,hﬂ.Qg; (95:(99098.
Since ug is a smooth function in £2, then

lim meas[$§2y \ £25,,] = 0.

h—0

Let us rewrite J¢[u§] in the following way:

Jg[ug]:/Fg(x,ME,Vug)dx: / Fg(x,ME,Vug)dx—f— / Fg(x,ug,Vug)dx
£2¢ 26 25\,

+ / Fs(x, us, Vug) dx.
e
To estimate the right-hand side of (4.70) from below we use the inequality (see [23, Chapter 5]):

n

of d 0
fox, Vi) — fo(x, Vo) = 3 = (x, Vv)(—” - —”) >0,

P duy, 0x;  0x;

where

fo(x, Vu) = |Vu|Pe )

De(x)

Consider now the second term on the right-hand side of (4.70). We have

1
/ Fe(x, u§, Vug) dx = / fe (x, Vug) dx + / i )|u§ P gy — / f(x)usdx
Pe(X
25\% ), 25\, 25\, 25\
— (5., 0) + 55, h, ) + (5. h. 0).

According to the inequality (4.71), for the first term in the right-hand side of (4.72) we have

(4.69)

(4.70)

.71

(4.72)
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n
' of ous  Ousg
i6.00> [ tevias) | _aui,.("’v””( T )

“ ox;
25\ 25 Slapag,
1 1 1
= / ——[Vus |0 dx + / { |w5|Ps<X>——|w3|l’0<X>}dx
Po(x) Pe(x) po(x)
25\825 2:\82
n
dus ous  dus
Vs P02 228 d
+; / ad il us| 0Xx; 0x; o
TR0\,
n
dug _ oy [Ous Qug
+ —2 | Vug|Pe® =2 _ | Wy PoO=2 28 _ 220 ) gy, 473
l_X]: / axi {| 8| | 6| } 8}6[ 8xi ( )
TR\,

Considering the facts that p, converges uniformly to po, the function u§ converges weakly in wlPoO)(2) (and
strongly in L0 (£2)) to the function ugs (which is a smooth function in £2), and the measure of the set Qg \ Qg h
satisfies (4.69), from (4.73) we get

lim lim (8, h,6)dx > 0. (4.74)

h—0 8:8k—>0

In a similar way we prove that

lim lim i5(8,h,0)dx >0 and lim lim i5(8,h,0)dx >0. (4.75)

h=0¢=g, -0 h=0 =g, —0
Thus, it follows from (4.74)—(4.75) that
lim lim / Fe (x, us, Vug) dx >0. (4.76)
h—=0,—g -0
25\
In a similar way, for the third term on the right-hand side of (4.70), we have
lim lim Fe (x, us, Vug) dx > f Fo(x,us, Vus)dx. 4.77)

h—>08=8k—>0 )
o5 Oy

Consider the first term on the right-hand side of (4.70). Let K7 be an arbitrary cube from .ng n- We get

pmin = III}ianu(s(x) —h, by = b — h.
h

Let us represent the set K’ N §2° as the union of three nonintersecting sets
o & & & &
K,ynge = wy , U, Vs,
where
’az{xeK}OfﬂQS’ui <h}; a)gaz{xeK}‘fﬂ.Qg’hgug gbg”'"};

o o = {x e Kf N Q° |u§ > b)™"}.

&
wq

Since uj € Wé’pS(')(.Qs) N Wé’m(')(Q‘E) converges weakly in W100)(£2) to the function us, then one can show
that for sufficiently small ¢ (e < £(h)),

/ S (s —us)dx = O (R +2), (4.78)
Ky

Therefore,
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W*" meas[wf , Ua5, ] < / S(u§ — us) dx = O (" 2+27) (4.79)
0] U5
and
meas[wf , Uas ] = O (R +%7), (4.80)
Using the séme arguments which were used to obtain (4.76), (4.77) we get
lim / Fg(x,ug,Vug)dx>/Fo(x,u(s,Vug)dx—i—o(h") ash — 0. (4.81)
T g e £

To estimate the integral over the set @f , we introduce the function:

0 inwiau(fsﬂl(fl‘);
vi(x) =4 (s —h) inaf ; (4.82)
by in a)g,a.

Since u§ is bounded in a)i o then using (4.80), for sufficiently small & (¢ < £(h)), we have

/ Fg(x,ug,Vug)dx=/{piwvmpa(x)dx+h_p(+)_7/6(vg—ba)}dx+0(h”) ash— 0.
&
®) Kj

Therefore, from the definition of ¢" (x%, by),

f Fe(x, u§, Vu§) dx > =" (x%, by) +0o(h") ash — 0. (4.83)

&
w2,ot

Thus, it follows from (4.81) and (4.83) that, for any K}Of cRF,ash— 0,

lim f Fe(x, uf, Vus§) dx > f Fo(x,us, Vus)dx + lim " (x%, by) +o(h"). (4.84)
e=gr—0 e=gr—0
KenQe K
We can easily obtain the same inequality for any K} C £2,.
Summing up these inequalities over all cubes K}’ C £2y 5 and passing to the limit, as & — 0, by (4.76), (4.77) and
condition (C.1) of Theorem 3.1 we get

lim Fe (x, us, Vug) dx > / Fo(x, us, Vus)dx + / c(x,u)dx. (4.85)
e=gr—0
o 2 20

Itis clear that |y £20 = {x € £2 | lus| > 0}. Itis also easy to see from the conditions of Theorem 3.1 that ¢(x, 0) = 0.
Now we pass to the limit as & — 0 in (4.85) and immediately obtain (4.68) and, therefore, (4.49).
Finally it follows from (4.48) and (4.49) that

Jhom[u] < Jpom[w]

for any w € WH700) (£2) such that w = 0 on 9£2. This means that any weak limit of the solution of problem (3.6)
extended to the set 7° by zero, is the solution of the homogenized problem (3.9). This completes the proof of Theo-
rem 3.1.

5. Periodic and non-periodic examples

As an application of the previous general result, we now give two examples of perforated media, where the distri-
bution of the perforated domain and the growth function are specified.

Theorem 3.1 of Section 3 provides sufficient conditions for the existence of the homogenized problem (3.9). The
goals of this section are to prove that, for appropriate examples, all the conditions of Theorem 3.1 are satisfied and to
compute the function c(x, u) in the homogenized problem (3.9) explicitly.
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5.1. A periodic example

Let £2 be a bounded domain in R? with sufficiently smooth boundary. Let F¢ be a union of balls Fi(=
1,2,..., Ng) periodically distributed in the domain §2 with a period ¢. We assume that the ball .7-',"3 is centered at
the point x"-¢ and its radius r, is defined by

ro = ted, (5.1)

where t > 0. It is clear that meas ¢ — 0 as ¢ — 0.
We will study the following variational problem:

inf{Je[u): u e Wy PO (2°)),

1 1
JE[u] = /{ |V |Pe) f g Pe@®) — f(x)u}dx, (5.2)
De(x) De(x)
QS
where f € C!(£2), and the function p, € C'(£2) is defined as follows.

Definition 5.1. Let Bi /8 and Bé /4 be the balls centered at the point x*¢ and of radii /8 and &/4, respectively. The
function p is a smooth e-periodic function in §2 such that

2 inB g (i=1,2,..., Ne);
pe(x) = { 24 7. (Ix —x"¢]) in 82/4\[5;/8 (i=1,2,...,N); (5.3)
24¢ inQ\UiBé/4,

where 7, is a smooth e-periodic function in §2 such that 0 < . (x) < e.
It is clear that the function p,. satisfies the conditions (i)—(iv), p§+) =2+e, pé_) =p™) =2, and it converges
uniformly in £2 to the function pg(x) = 2.

The following result holds.

Theorem 5.2. Let u® be the solution (minimizer) of the variational problem (5.2). Then u® converges weakly in HOl (£2)
to u the minimizer of the following variational problem:

inf{ Jhom[ul: u € Hy(2)},
Jhomlul = /{%Wulz + (% +4m)|u|2 — f(x)u} dx. (5.4)
2

5.1.1. Proof of Theorem 5.2

We have to verify the conditions of Theorem 3.1 and to calculate the function c¢(x, b) in the condition (C.1) explic-
itly.

First we notice that the local energy characteristic (3.7) in this case has the form:

1 x
" (z,b) :iqf/{p o Ve | P e (vf —b)}dx, (5.5)
v e

Kh
where 0 < y < p™,

G(US _b) — |v£ _b|[75(x) + ‘US _b 2

) (5.6)

and the infimum is taken over v¢ € W1P:()(£2) that equal zero in F°.
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Condition (C.2). We set
o =as' X, (3.7
where a > 0 and 0 < k¥ < 1. We denote by v}, the solution of the following boundary value problem:

1 0 ov5
—28—(,028—1’) =0 forr, <p <ay;
p=op 0

V(re) =b

vy, (ag) =0.

(5.8)

It is clear that

1_1
Vi(p):bi = (5.9)

re Ae

Let us introduce the following function:
0 in K; N F*;

et (5.10)
b= Y vyl = xR in K\ 77,

We(x) = {

where ¢ (1) is a smooth positive function defined by: ¢ € C?(Ry) with ¢(t) =1 for r < 1/2; ¢(t) =0 for t > 1. It is
clear that W& € W1-P()(£2) and it equals zero in F¢.
Now it follows from the definition of the functional ¢ (z, b), (5.5)—(5.6), that

(e, b)</{ (x)|vwf|”f()‘)+h P g (we b)}deAg’h(z). (5.11)
Kh

Consider the first integral on the right-hand side of (5.11). According to the definition of the function p, and the
parameter o, we have

“Lawe T lawe|?
/|VW€ POy =dn Y /’ p2dp + f ‘—' p2dp ). (5.12)
Frok? dp dp
K} i CKjy N re ae/2
Here
[ lawe|?
/‘ y p?dp =b*re(1+0(1)) ase—0 (5.13)
re
and
aws 2
f ‘ p2dp < Cz——C385 “ (5.14)
8

e /2
Now it follows from (5.12)—(5.14) and the definition of r,, (5.1), that

f VWP dx = deb®h® (14 0(1))  as e — 0. (5.15)
Kj;

Consider the second term on the right-hand side of (5.11). We have that

3
h- P(”*V/G b)dx < Cyh P 3 %e (5.16)
&
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Therefore, from (5.15)—(5.16) we get
lim Iim 2 ~"¢%" (z, b) < 4meh? (5.17)

h—0e—0

and condition (C.2) is satisfied.

Condition (C.1). Now let v5, =
function in the form:

Upiin () = WE(x) + ¢° (), (5.18)
where the function W¥ is defined in (5.10). Then

1
&,h b /{ Ve
c (Z ) i pg(x) | I’I‘lll‘l

K,

ve . (x) be the function that minimizes the functional (5.5). Let us represent this

P | PPy b|2}dx. (5.19)

We will prove that the function ¢ gives a vanishing contribution (as ¢ — 0 and & — 0) in (5.19) and, therefore, the
functional (3.7) may be computed by the function W¢.
It follows from (5.15)—(5.16) that

&z, b) <A (2) = dneb®h3 + B (z)  with lim B (z) =0, (5.20)
£—

where A®" () is defined in (5.11). '
Now let B‘ be the ball centered at x*¢ and radius o, and let By, = |; B;,, . By the definition of the functions W*
and p, we have

Mapr= [ W e e e o) o

KjNBy,

\Y%
/ {pm' ¢

Ki\Be,

e L p g (gt )}dx. (5.21)

For the first term on the right-hand side of (5.21), from the definition of the function p,, we obtain

1
V WE &
/ {pa(x)| ( e )

e o=y (we 4 ) — b|2} dx

KiNBy,
1 1
= f {§|VW8|2+Eyv;fy2+(VW8,v;8)}dx
KjNBy,
+2n~P7 Y / [[We —b|* +2(W* —b)¢® + [¢°]*} dx (5.22)

KinBy,

Now it follows from (5.21)—(5.22) that

Mz, ) =A" () + 37" () + / [(VWE,VE8) +4h~P =7 (We — )¢} dx, (5.23)
K;iNBuy,
where
Jh(2) =/{L|Vﬁ|”fm +h_p(+)‘y6(§8)}dx. (5.24)
) De(x)
Kj

Therefore, integrating by parts in the third term of the right-hand side of (5.23) and taking into account (5.20), we
get



2476 B. Amaziane et al. / Ann. 1. H. Poincaré — AN 26 (2009) 2457-2479
Jehz) <2 / {|AWE| +4r=P =7 |(We = b)|}|¢°| dx. (5.25)
KinBy,

Let n° (x) = AW?. Then this function equals zero everywhere in the cube K ; except the set Dy, = Ul- Dég’ where
D ={x €K} |a/2 <|x —x"¥| <} and

g AW = L2 ( ,OWE

— inD. .
P2 dp (p)) e

Moreover, the following estimate holds
8 . [
— inD, . 5.26
|77 | Olg Qe ( )

Now from (5.25), (5.26) and the Cauchy inequality we get

e ey [ 3R] /2
JFheo<c {—g +h” }[ 83} (Z / |§|dx> . (5.27)

K;nBi,

To estimate the integral on the right-hand side of (5.27) we make use of the following lemma.

Lemma 5.1. Let K? be a cube centered at the point zero and of length & and Bgs be a ball centered at zero and of
radius . Then for any v e WP (KC8) we have

/|v| dx < { /G(v)dx+eoz5/|Vv|1’5(x)dx+8(e)} (5.28)

where
8(e) = e, (5.29)

Proof. We make use of the following inequality (see Section 7.5 in [26]):

3
/|v|2dxéC{z—g/lvlzdx—l—sagfwwzdx}. (5.30)
BY, Ke Ke

This inequality was proved for any v € H (), therefore, it is valid for any v € W1P¢()(K#), where the function p;
is given by Definition 5.1.
Consider the right-hand side of (5.30), we have

3
—/|v| dx+8a£/|Vv| dx < /G(U)dx—i—sag[|Vv|2dx+8a£/|Vv|2dx, (5.31)
8
Kce Kce Ke Ke

where 2 = {x € £%: |Vv| > 1} and K& = {x € K*: |Vv| < 1}. Then it is clear that

8058/|Vv|2dx+sa£/|Vv|2dx<8a£/|Vv|pf(x)dx+84oz8gfle|P£(x)dx+84ag.

This inequality together with (5.30), (5.31) proves the lemma. O
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Now it follows from (5.27)—(5.29) that
h sp([re 202y OF re g 4y o7 pe(x)
Jh@) <cn¥ <[—86+h‘ P V—Z]f@(gg)dx+ [—86—2 +hP ‘V—g]f|ws| " dx
£ & al e &
e ICe
2.3 3 !
+ [h3r—86°‘—ga(s)+h3—P”)—V “—gs(s)D . (5.32)
al e e

Since r, =te3, a, = ae' %, and §(¢) is given by (5.29), then, for ¢ sufficiently small, we have that

Je,/’t(z) < Ch3/2+p(+)/2+3//2(']8,h(z) +0(1))1/2 as & — 0, (533)
and, therefore,

fim J*' () = o(h). (5.34)

E—>

This means that we can calculate the function ¢(x, b) from the test function W¢. We obtain that ¢(x, b) = 4 tb?. This
completes the proof of Theorem 5.2.

5.2. A non-periodic example

In this example, we consider a locally periodic perforated domain. More precisely, let £2 be a bounded domain in
R with sufficiently smooth boundary and {x¢} be a periodic grid in §2 with a period ¢. We define the sets F¢ and
£2¢ in the following way:

Fe=JFo and Q°=Q\F, (5.35)

where fr(f> (i=1,2,..., Ng) is the closed ball centered at the point x"¢ and of radius rg(i) defined by

réi) = R(xi)ES. (5.36)

Here R = R(x) is a strictly positive smooth function in §2. As in the periodic case, it is clear that meas 7 — 0 as
e—0.

Consider the variational problem (5.2), where f € C'(£2) and the function p, is given by Definition 5.1. Following
the lines of the proof of Theorem 5.2 (with corresponding modifications) we can obtain the following result.

Theorem 5.3. Let u® be the solution of the variational problem (5.2) considered in the domain 2°¢ defined in (5.35).
Then u® converges weakly in Hd (82) to u the solution of the following variational problem:

inf{ Jhom[ul: u € Hy(2)},

Jhomlu] = /{%WW + G +47rR(x))|u|2 - f(x)u}dx. (5.37)
2

5.3. Some generalizations

In Sections 5.1, 5.2 the proof of (5.25) and some other inequalities relies on the fact that, in the case under consid-
eration, p. equals 2 in the neighbourhood of the inclusions 77 . In more general situation, for example, if we assume
that in the said neighbourhood p, is equal to a constant p > 2, the proof of similar inequalities relies on the following
statement.

Lemma 5.2. Let p. = p.(x) be a continuous function satisfying the bound

2<p < p7) = min pe (x) < pe (x) < max pe (x) = PP <pP<n ing. (5.38)
X xXe
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Then, for any vectors &1,& € RY (d=1,2,...), there exists 8 € (0, 1), which does not depend on &, such that

&1 + &P > [£1P<0) + 816,70 + p ()&= D72 (&1, £2)a, (5.39)

where (-,-)4 is the scalar product in the space R4,

Proof. Without loss of generality we may assume that £; = &, where & is the first coordinate vector in R. Then the
inequality (5.39) is equivalent to the following inequality:

e +£17°0 > 14815170 + p(§, (5.40)
where & = & and £! is the first component of the vector £. We denote
G, () (&) = &1 + €170 — 1= p. ()€
It is clear that G, ()(0) =0 and V¢G,)(§) =0 for & =0.
It is easy to verify that there is » > 0 such that
1 Pe()
Gp.()(§) = EIEI ‘

for all || > » and all the functions p. satisfying condition (5.38). Therefore, it suffices to prove that

Gpe() () = 8]&|7<V)
for all |&] < x. Computing the second order derivatives of the function G, .y, we conclude that
9> G, ()
2 7
and
9> G, ()
92&
for all & such that |£] < 1/2 with 81 (n) independent of p.. Here [ is the unit matrix. For & € 3 /2, where

Z81(ml

1
Bip= {Ei &1 < 5},
we have

Gp.()(§) = Gp. () (§) = Gp. (1 (0) =G}y, B)&
w1th§el§’1/2 Thus, Gp, (&) > él(n)|$|2 By convexity, for anyE 5 < |&] < x, we have

1 2 1\? 1
Gm()(é)/GpE()(zé') ( ) :2:2 1(n)/<§) 81(ﬂ);|€|2-

Lemma 5.2 is proved. O
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