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Abstract

This paper is concerned with some extensions of the classical Liouville theorem for bounded harmonic functions to solutions
of more general equations. We deal with entire solutions of periodic and almost periodic parabolic equations including the elliptic
framework as a particular case. We derive a Liouville type result for periodic operators as a consequence of a result for operators
periodic in just one variable, which is new even in the elliptic case. More precisely, we show that if c � 0 and aij , bi , c, f are
periodic in the same space direction or in time, with the same period, then any bounded solution u of

∂tu − aij (x, t)∂ij u − bi(x, t)∂iu − c(x, t)u = f (x, t), x ∈ RN, t ∈ R,

is periodic in that direction or in time. We then derive the following Liouville type result: if c � 0, f ≡ 0 and aij , bi , c are periodic in
all the space/time variables, with the same periods, then the space of bounded solutions of the above equation has at most dimension
one. In the case of the equation ∂tu − Lu = f (x, t), with L periodic elliptic operator independent of t , the hypothesis c � 0 can be
weakened by requiring that the periodic principal eigenvalue λp of −L is nonnegative. Instead, the periodicity assumption cannot
be relaxed, because we explicitly exhibit an almost periodic function b such that the space of bounded solutions of u′′ +b(x)u′ = 0
in R has dimension 2, and it is generated by the constant solution and a non-almost periodic solution.

The above counterexample leads us to consider the following problem: under which conditions are bounded solutions necessarily
almost periodic? We show that a sufficient condition in the case of the equation ∂tu − Lu = f (x, t) is: f is almost periodic and L

is periodic with λp � 0.
Finally, we consider problems in general periodic domains under either Dirichlet or Robin boundary conditions. We prove

analogous properties as in the whole space, together with some existence and uniqueness results for entire solutions.
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1. Introduction

1.1. Statement of the main results

We study the properties of bounded entire solutions – that is, solutions for all times – of the parabolic equation

Pu = 0, x ∈ RN, t ∈ R, (1)

with

Pu = ∂tu − aij (x, t)∂ij u − bi(x, t)∂iu − c(x, t)u

(the convention is adopted for summation from 1 to N on repeated indices, and ∂i , ∂ij denote the space-directional
derivatives). We want to find in particular conditions under which the Liouville property (LP) holds. In analogy with
the classical result for harmonic functions, we say that the LP holds if the space of bounded solutions has at most
dimension one.

In some statements, we will restrict ourselves to time-independent operators, that we write as P = ∂t − L, with L

a general elliptic operator in non-divergence form:

Lu = aij (x)∂ij u + bi(x)∂iu + c(x)u.

The associated stationary solutions satisfy the elliptic equation −Lu = 0 in RN .
Our assumptions on the coefficients are: aij , bi ∈ L∞(RN × R) ∩ UC(RN × R) (where UC stands for uniformly

continuous), c ∈ L∞(RN × R) and the matrix field (aij )i,j is symmetric and uniformly elliptic, that is,

∀t ∈ R, x, ξ ∈ RN, a|ξ |2 � aij (x, t)ξiξj � a|ξ |2,
for some constants 0 < a � a. Let us mention that, in the case of elliptic equations, the uniform continuity of the bi

can be dropped. We will sometimes denote the generic space/time point (x, t) ∈ RN × R by X ∈ RN+1.
We consider in particular operators with periodic and almost periodic coefficients. We say that a function

φ : RN+1 → R is periodic in the m-th variable, m ∈ {1, . . . ,N + 1}, with period lm > 0, if φ(X + lmem) = φ(X)

for X ∈ RN+1, where (e1, . . . , eN+1) denotes the canonical basis of RN+1. If φ is periodic in all the variables we
simply say that it is periodic, with period (l1, . . . , lN+1). A linear operator is said to be periodic (resp. periodic in the
m-th variable) if all its coefficients are periodic (resp. periodic in the m-th variable) with the same period.

The crucial step to prove the LP consists in showing that the periodicity of the operator P and of the function f is
inherited by bounded solutions1 of

Pu = f (x, t), x ∈ RN, t ∈ R. (2)

Unless otherwise specified, the function f is only assumed to be measurable.

Theorem 1.1. Let u be a bounded solution of (2), with P , f periodic in the m-th variable, with the same period lm,
and with c � 0. Then, u is periodic in the m-th variable, with period lm.

From the above result it follows in particular that if P and f do not depend on t and c � 0, then all bounded
solutions of (2) are stationary, that is, constant in time. Another consequence of Theorem 1.1 is that if P and f are
periodic (in all the variables) with the same period, then all bounded solutions are periodic. In particular, they admit
global maximum and minimum and then the strong maximum principle implies the LP.

1 For us, a solution of a parabolic equation such as (2) is a function u ∈ L
p
loc(R

N+1), for all 1 < p < ∞, such that ∂t u, ∂iu, ∂ij u ∈ L
p
loc(R

N+1)

and the equation holds a.e. We use an analogous definition for elliptic equations. In the sequel, we will omit to write a.e. for properties concerning
measurable functions, and we will simply denote by inf and sup the ess inf and ess sup.
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Corollary 1.2. Let u be a bounded solution of (1) with P periodic and c � 0. Then, two possibilities occur:

(1) c ≡ 0 and u is constant;
(2) c 	≡ 0 and u ≡ 0.

Clearly, without the assumption c � 0 the LP no longer holds in general, even in the case of constant coefficients.
As an example, the space of solutions of −u′′ + u = 0 in R is generated by u1 = sinx and u2 = cosx. However,
if P = ∂t − L, condition c � 0 in Corollary 1.2 is not necessary and can be relaxed by requiring that the periodic
principal eigenvalue of −L in RN be nonnegative (cf. Theorem 1.3 below). Henceforth, λp(−L) will always stand
for the periodic principal eigenvalue of −L in RN and ϕp for the associated principal eigenfunction (see Section 2 for
the definitions).

Theorem 1.3. Let P = ∂t − L, with L periodic with period (l1, . . . , lN ), and let f be periodic with period
(l1, . . . , lN+1). If u is a bounded solution of (2) we have that:

(i) if λp(−L) � 0 then u is periodic, with period (l1, . . . , lN+1);
(ii) if λp(−L) = 0 and either f � 0 or f � 0 then u ≡ kϕp , for some k ∈ R, and f ≡ 0;

(iii) if λp(−L) > 0 and f ≡ 0 then u ≡ 0.

In the particular case of stationary solutions, that is, solutions of the elliptic equation Lu = 0, statements (ii) and
(iii) of Theorem 1.3 are contained in [21] (see the next section for further details). Theorem 1.3 part (iii) immediately
implies the uniqueness of bounded solutions to (2). The existence result is also derived (cf. Corollary 2.2 below).

We next consider the problem of the validity of the LP if we relax the periodicity assumptions on aij , bi , c and f .
A natural generalization of periodic functions of a single real variable are almost periodic functions, introduced by
Bohr [7]. This notion can be readily extended to functions of several variables through a characterization of continu-
ous almost periodic functions due to Bochner [6].

Definition 1.4. We say that a function φ ∈ C(RN+1) is almost periodic (a.p.) if from any arbitrary sequence (Xn)n∈N

in RN+1 can be extracted a subsequence (Xnk
)k∈N such that (φ(X + Xnk

))k∈N converges uniformly in X ∈ RN+1.

It is straightforward to check that continuous periodic functions are a.p. (this is no longer true if we drop the
continuity assumption). We say that a linear operator is a.p. if its coefficients are a.p.

By explicitly constructing a counterexample, we show that the Liouville type result of Corollary 1.2 does not hold
in general – even for elliptic equations – if we require the operator to be only a.p.

Counterexample 1. There exists an a.p. function b : R → R such that the space of bounded solutions to

u′′ + b(x)u′ = 0 in R (3)

has dimension 2, and it is generated by the function u1 ≡ 1 and a function u2 which is not a.p.

This also shows that bounded solutions of a.p. equations with nonpositive zero order term may not be a.p., in
contrast with what happens for the periodicity (cf. Theorem 1.1). Actually, the function b in Counterexample 1 is
limit periodic, that is, it is the uniform limit of a sequence of continuous periodic functions (see Definition 3.1 below).
Limit periodic functions are a subset of a.p. functions because, as it is easily seen from Definition 1.4, the space of
a.p. functions is closed with respect to the L∞ norm (see e.g. [2,14]).

Next, we look for sufficient conditions under which all bounded solutions of (2) are necessarily a.p. Under the
additional assumption c ∈ C(RN), we derive the following.

Theorem 1.5. Let P = ∂t − L with L periodic and let f be a.p. If u is a bounded solution of (2) we have that:

(i) if λp(−L) � 0 then u is a.p.;
(ii) if λp(−L) = 0 and either f � 0 or f � 0 then u ≡ kϕp , for some k ∈ R, and f ≡ 0.
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In the above statement, we require c to be continuous because, in the proof, we will make use of the fact that it is
in particular a.p. Actually, using some weak compactness arguments, one can check that the continuity assumption on
c could be removed.

Lastly, we prove analogous results to Theorems 1.1, 1.3 and Corollary 1.2 for equations in general periodic do-
mains, under either Dirichlet or Robin boundary conditions. The analogue of Theorem 1.1 holds, in the case of
Dirichlet boundary conditions, for domains periodic just in the direction em, whereas under Robin conditions we are
able to prove the result only for domains periodic in all the directions. The Liouville type result in the Dirichlet case
is stronger than in the whole space (Corollary 1.2) and it is actually a uniqueness result. An existence result is also
obtained using a sub and supersolution method. In some of the statements for general domains, we require that the
coefficients of the operator are Hölder continuous because we need some gradient estimates near the boundary.

1.2. A brief survey of the related literature

Starting from the end of the 50s, the classical Liouville theorem has been improved to the self-adjoint elliptic
equation

∂i

(
aij (x)∂ju

) + c(x)u = 0 in RN. (4)

In the case c ≡ 0 (without any periodicity assumption on aij ), the LP follows directly from the estimate on the
oscillation of weak solutions proved by De Giorgi in the celebrated paper [13]. Another classical way to derive the
LP is by applying the Harnack inequality in the balls Br , provided that one can bound the constants uniformly with
respect to r . This has been done by Gilbarg and Serrin [16] for the equation aij (x)∂ij u = 0, with aij (x) converging
to constants as |x| → ∞. Analogous Liouville type results can be derived in the parabolic case using the same type
of estimates (see e.g. [22]). The case c 	≡ 0 has been treated in many papers, using different techniques, such as
probabilistic methods, semigroup or potential theory. With a purely pde approach, it is proved by Brezis, Chipot
and Xie in the recent work [8], that the LP holds for (4) in the following cases: N � 2 and c � 0; N > 2, c � 0 and
c(x) � −c0(x) for |x| large, with either c0(x) = C|x|−β , C > 0, β > 2, or c0 nonnegative nontrivial periodic function.
General nonvariational operators such as L defined in Section 1.1 are also considered in [8] and the LP is derived for
the equation

Lu = 0 in RN, (5)

when c � 0 and c(x) � −C|x|−2,
∑N

i=1 bi(x)xi � C, for some C > 0 and |x| large. For the parabolic case, Hile and
Mawata proved in [18] that the LP holds for a class of quasilinear equations satisfying some conditions at infinity.
Their result applies in particular to Eq. (1) when c � 0, (aij (X))i,j → identity and bi(X), c(X) → constant, with a
suitable rate, as |X| → ∞.

Some authors treated the problem of the existence and uniqueness of nonnegative bounded solutions to linear el-
liptic equations in divergence form from the point of view of the criticality property of the operator. Starting from
the ideas of Agmon [1] and Pinchover, and combining analytic and probabilistic techniques (such as the Martin
representation theorem) Pinsky showed in [30] that if L is a periodic operator satisfying λp(−L) = 0, then the
unique (up to positive multiples) positive bounded solution of (5) is ϕp (see [29] for an extensive treatment of the
subject). This result is a particular case of Theorem 1.3 part (ii) above and, since when c ≡ 0 there is no differ-
ence between studying bounded solutions and positive bounded solutions, it contains the case (1) of Corollary 1.2
when one restricts it to elliptic equations (except for the fact that some stronger regularity assumptions are required
in [30]).

Another related topic is that of the characterization of polynomially growing solutions of periodic equations in the
whole space. We stress out that the LP – as intended in the present paper – is obtained as a particular case considering
polynomials of degree zero. In that framework, using some homogenization techniques, Avellaneda and Lin [3], and
later Moser and Struwe [27], proved that the LP holds for (4) if c ≡ 0 and the aij are periodic (with the same period).
The results of [3] and [27] have been improved by Kuchment and Pinchover [21] to the general non-self-adjoint
elliptic equation (5), with L periodic and aij , b, c smooth (see also Li and Wang [23] for the case aij measurable
and bi , c ≡ 0). The restriction to bounded solutions of Theorem 28 part 3 in [21] is equivalent to the restriction to
stationary solutions of statements (ii) and (iii) of Theorem 1.3 here. However, the method used in [21] – based on
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the Floquet theory – is quite involved and it is not clear to us whether or not it adapts to operators with non-smooth
coefficients.

To our knowledge, no results about operators periodic in just one variable, such as Theorem 1.1, have been previ-
ously obtained.

For nonlinear operators, the LP simply refers to uniqueness of bounded (sometimes nonnegative) solutions in
unbounded domains. The following works – amongst many others – deal with this subject in the elliptic case: [15,4,24]
(semilinear operators, see also [5] for the parabolic case), [12] (quasilinear operators), [9,11,10,32] (fully nonlinear
operators).

There is a vast literature on the problem of almost periodicity of bounded solutions of linear equations with a.p. co-
efficients (see e.g. [2,14,28,20]). Usually ordinary differential equations or systems are considered, often of the first
order. As emphasized in [26], some authors made use in proofs of the claim that any bounded solution in R of a second
order linear elliptic equation with a.p. coefficients has to be a.p. This claim is false, as shown by Counterexample 1
and also by a counterexample in [26]. There, the authors constructed an a.p. function c(x) such that the equation

u′′ + c(x)u = 0 in R,

admits bounded solutions which are not a.p. In their case, the space of bounded solutions has dimension one and
then the LP holds. They also addressed the following open question: if every solution of a linear equation in R

with a.p. coefficients is bounded are all solutions necessarily a.p.? Counterexample 1 shows that the answer is no.
A negative answer was also given in [19], where the authors exhibit a class of linear ordinary differential equations
of order n � 2 for which all solutions are bounded in R, yet no nontrivial solution is a.p. Thus, this also provides an
example where the LP does not hold, but it is not interesting in this sense because the zero order term considered there
is not nonpositive.

1.3. Organization of the paper

In Section 2, we consider the case when P and f are periodic and we prove Theorem 1.1, Corollary 1.2 and
Theorem 1.3. In order to prove the periodicity of any bounded solution u, we show that the difference between u

and its translation by one period is identically equal to 0. This is achieved by passing to a limit equation and making
use of a supersolution v with positive infimum. We take v ≡ 1 in the case of Theorem 1.1 and v ≡ ϕp in the case of
Theorem 1.3. We further derive the existence and uniqueness of bounded entire solutions to (2) when P = ∂t − L and
L is periodic and satisfies λp(−L) > 0.

Section 3 is devoted to the construction of the function b of Counterexample 1, which will be defined by an explicit
recursive formula.

Theorem 1.5 is proved in Section 4. The basic idea to prove statement (i) is that, up to subsequences, all subse-
quences of a given sequence of translations of u converge to a solution of the same equation. Also, one can come back
to the original equation by translating in the opposite direction. Then, the result follows from Theorem 1.3 parts (ii)
and (iii).

In Sections 5, we derive results analogous to Theorems 1.1 and 1.3 for the Dirichlet and the Robin problems in
periodic domains. There, the periodic principal eigenvalue λp(−L) is replaced respectively by λp,D(−L) (see Sec-
tion 5.1) and λp,N (−L) (see Section 5.2) which take into account the boundary conditions. Existence and uniqueness
results are presented as well.

2. The LP for periodic operators

Let us preliminarily recall the notion of periodic principal eigenvalue and eigenfunction. If L is periodic then the
Krein Rutman theory yields the existence of a unique real number λ, called periodic principal eigenvalue of −L

(in RN ), such that the eigenvalue problem{−Lϕ = λϕ in RN,

ϕ is periodic, with the same period as L

admits positive solutions. Furthermore, the positive solution ϕ is unique up to a multiplicative constant, and it is
called periodic principal eigenfunction. We denote by λp(−L) and ϕp respectively the periodic principal eigenvalue
and eigenfunction of −L.
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The next lemma is the key tool to prove our results for periodic operators.

Lemma 2.1. Assume that the operator P and the function f are periodic in the m-th variable, with the same period lm.
If there exists a bounded function v satisfying

inf
RN+1

v > 0, P v = φ for x ∈ RN, t ∈ R,

for some nonnegative function φ ∈ L∞(RN+1), then any bounded solution u of (2) is periodic in the m-th variable,
with period lm.

Proof. Let u be a bounded solution of (2). Define the functions

ψ(X) := u(X + lmem) − u(X), w(X) := ψ(X)

v(X)
.

We want to show that they are nonpositive. Assume by way of contradiction that k := supRN+1 w > 0, and con-
sider a sequence (Xn)n∈N in RN+1 such that w(Xn) → k. Define the sequence of functions (ψn)n∈N by ψn(X) :=
ψ(X + Xn). Since the ψn are uniformly bounded and satisfy

∂tψn − aij (X + Xn)∂ijψn − bi(X + Xn)∂iψn − c(X + Xn)ψn = 0 in RN+1, (6)

interior parabolic estimates together with the Rellich–Kondrachov compactness theorem (see e.g. [17, Chapter 7])
imply that (a subsequence of) the sequence (ψn)n∈N converges locally uniformly in RN+1 to a bounded function
ψ∞ and that ∂tψn → ∂tψ∞, ∂iψn → ∂iψ∞, ∂ijψn → ∂ijψ∞ weakly in L

p

loc(R
N+1), for any 1 < p < ∞. Let ãij , b̃i

be the locally uniform limits and c̃ be the weak limit in L
p

loc(R
N+1) of a converging subsequence respectively of

aij (X + Xn), bi(X + Xn) and c(X + Xn). Thus, passing to the weak limit in (6) we derive

P̃ψ∞ = 0 in RN+1,

where

P̃ := ∂t − ãij (X)∂ij − b̃i (X)∂i − c̃(X).

Analogously, the functions v(X + Xn) converge (up to subsequences) locally uniformly in RN+1 to a function v∞
satisfying

inf
RN+1

v∞ > 0, P̃ v∞ � 0 in RN+1.

The function w∞ := ψ∞/v∞ reaches its maximum value k at 0. Moreover,

0 = P̃ψ∞
v∞

= ∂tw∞ − M̃w∞ + P̃ v∞
v∞

w∞ in RN+1,

where the operator M̃ is defined by

M̃ := ãij ∂ij + (
2v−1∞ ãij ∂j v∞ + b̃i

)
∂i .

Since the term (P̃ v∞)/v∞ is nonnegative, we can apply the parabolic strong maximum principle to the function w∞
(see [31] for the smooth case and [22,25] for the case of strong solutions) and derive

∀x ∈ RN, t � 0, w∞(x, t) = k.

Using a diagonal method, we can find a subsequence of (Xn)n∈N (that we still call (Xn)n∈N) and a sequence (ζh)h∈N

in [0, supu] such that

∀h ∈ N, lim
n→∞u(−hlmem + Xn) = ζh.

As a consequence,

∀h ∈ N, ζh − ζh+1 = ψ∞
(−(h + 1)lmem

) = kv∞
(−(h + 1)lmem

)
,
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and then limh→∞ ζh = −∞: contradiction. We have shown that w � 0, that is, u(X + lmem) � u(X) for X ∈ RN .
The opposite inequality can be obtained following the same arguments, with lm replaced by −lm. This time, the
contradiction reached is that the sequence (ζh)h∈N as defined above tends to +∞ as h → ∞. �
Proof of Theorem 1.1. Apply Lemma 2.1 with v ≡ 1. �
Proof of Corollary 1.2. If u is a bounded solution to (1) then Theorem 1.1 implies that u is periodic (in all the
variables). In particular, it attains its maximum M and minimum m in RN+1 at some points (xM, tM) and (xm, tm)

respectively. Hence, the strong maximum principle implies that if M � 0 then u(x, t) = M for t � tM and x ∈ RN ,
otherwise u(x, t) = m for t � tm and x ∈ RN . Therefore, u is constant because it is periodic in t . The statement then
follows. �
Proof of Theorem 1.3. (i) The function v(x, t) := ϕp(x) is bounded and satisfies

inf
RN+1

v > 0, P v = φ for x ∈ RN, t ∈ R,

with φ = λp(−L)ϕp � 0. Hence, the statement is a consequence of Lemma 2.1.
(ii) Up to replacing u with −u, it is not restrictive to assume that f � 0. Set

k := sup
x∈R

N

t∈R

u(x, t)

ϕp(x)
.

Since u is periodic by (i) – with the same space period (l1, . . . , lN ) as ϕp – it follows that there exists X0 ∈ [0, l1) ×
· · · × [0, lN+1) where the nonnegative function w(x, t) := kϕp(x) − u(x, t) vanishes. Furthermore,

Pw = kλp(−L)ϕp − f � 0 in RN+1.

Therefore, the strong maximum principle and the time-periodicity of w yield w ≡ 0, that is, u ≡ kϕp and f ≡ 0.
(iii) Suppose that supu � 0 (otherwise replace u with −u). Proceeding as in (ii), one can find a constant k � 0 such

that the periodic function w(x, t) := kϕp(x)−u(x, t) is nonnegative, vanishes at some point X0 ∈ RN+1 and satisfies
Pw = kλp(−L)ϕp � 0. Once again, the strong maximum principle implies w ≡ 0. Hence, kλp(−L)ϕp ≡ 0, that is,
k = 0 and then u ≡ 0. �
Remark 1. If L is periodic and c ≡ 0 then λp(−L) = 0, with ϕp ≡ 1. If c � 0, c 	≡ 0, then λp(−L) > 0, as it is easily
seen by applying the strong maximum principle to ϕp . Hence, in the case P = ∂t − L, Corollary 1.2 is contained in
Theorem 1.3 parts (ii) and (iii). Furthermore, the existence and uniqueness result of Corollary 2.2 below apply when
c � 0, c 	≡ 0.

By Theorem 1.3 part (iii), λp(−L) > 0 implies the uniqueness of bounded entire solutions of ∂tu − Lu = f .
Indeed, it is also a sufficient condition for the existence when f is bounded.

Corollary 2.2. If P = ∂t − L, with L periodic such that λp(−L) > 0, and f ∈ L∞(RN+1) then (2) admits a unique
bounded solution.

Proof. A standard method to construct entire solutions in the whole space is to consider the limit as r → ∞ of
solutions ur of (for instance) the Dirichlet problems⎧⎨

⎩
Pur = f (x, t), x ∈ Br, t ∈ (−r, r),

ur = 0, x ∈ ∂Br, t ∈ (−r, r),

ur = 0, x ∈ Br, t = −r

(7)

(here, Br denotes the ball in RN with radius r and centre 0). The so obtained solution is bounded provided that the
family (ur)r>0 is uniformly bounded. This will follow from the strict positivity of λp(−L). Define the function
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v(x) := ‖f ‖L∞(RN+1)

λp(−L)minRN ϕp

ϕp(x).

Since −v and v are respectively a sub and a supersolution of (7), the parabolic comparison principle yields

∀r > 0, −v � ur � v in Br × (−r, r).

Thus, using interior estimates and the embedding theorem, we can find a diverging sequence (rn)n∈N such that
(urn)n∈N converges locally uniformly in RN+1 to a bounded solution of (2). The uniqueness result is an immedi-
ate consequence of Theorem 1.3 part (iii). �

We remark that if f is periodic then one can prove the existence result of Corollary 2.2 by a standard functional
method: after regularizing the operator in order to write it in divergence form, one considers the problem in the space
of periodic functions and, owing to Theorem 1.3 part (iii), applies the Fredholm alternative to the inverse operator.
Also, note that by Theorem 1.3 part (ii), the equation ∂tu − ∂xxu = 1 does not admit entire bounded solutions and
then the hypothesis λp(−L) > 0 is sharp for the existence result of Corollary 2.2.

3. Counterexample when L is almost periodic

This section is devoted to the construction of Counterexample 1. Note that, by the uniqueness of solutions of the
Cauchy problem, any non-constant solution of (3) must be strictly monotone.

We first construct a discontinuous function σ , then we modify it to obtain a Lipschitz continuous limit periodic
function b. Let us recall the definition of limit periodic functions, which are a proper subset of a.p. functions.

Definition 3.1. We say that a function φ ∈ C(RN) is limit periodic if there exists a sequence of continuous periodic
functions converging uniformly to φ in RN .

We start defining σ on the interval (−1,1]:

σ(x) =
{−1 if −1 < x � 0,

1 if 0 < x � 1.

Then in (−3,3] setting

∀x ∈ (−3,−1], σ (x) = σ(x + 2) − 1,

∀x ∈ (1,3], σ (x) = σ(x − 2) + 1,

and, by iteration,

∀x ∈ (−3n+1,−3n
]
, σ (x) = σ

(
x + 2 · 3n

) − 1

(n + 1)2
, (8)

∀x ∈ (
3n,3n+1], σ (x) = σ

(
x − 2 · 3n

) + 1

(n + 1)2
. (9)

By construction, the function σ satisfies ‖σ‖∞ = 1 + ∑∞
n=1 n−2, and it is odd except for the set Z, in the sense that

σ(−x) = −σ(x) for x ∈ R\Z.

Proposition 3.2. There exists a sequence of bounded periodic functions (φn)n∈N converging uniformly to σ in R and
such that

∀n ∈ N, φn ∈ C(R\Z), φn has period 2 · 3n.

Proof. Fix n ∈ N. For x ∈ (−3n,3n] set φn(x) := σ(x), then extend φn to the whole real line by periodicity, with
period 2 · 3n. We claim that

‖σ − φn‖∞ �
∞∑ 1

k2
,

k=n+1
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which would conclude the proof. We prove our claim by a recursive argument, showing that the property

(Pi ) ∀x ∈ (−3n+i ,3n+i
]
,

∣∣σ(x) − φn(x)
∣∣ �

n+i∑
k=n+1

1

k2

holds for every i ∈ N. Let us check (P1). By (8) and (9) we get

σ(x) =

⎧⎪⎪⎨
⎪⎪⎩

σ(x + 2 · 3n) − 1
(n+1)2 if −3n+1 < x � −3n,

φn(x) if −3n < x � 3n,

σ (x − 2 · 3n) + 1
(n+1)2 if 3n < x � 3n+1.

Property (P1) then follows from the periodicity of φn.
Assume now that (Pi ) holds for some i ∈ N. Let x ∈ (−3n+i+1,3n+i+1]. If x ∈ (−3n+i ,3n+i] then

∣∣σ(x) − φn(x)
∣∣ �

n+i∑
k=n+1

1

k2
�

n+i+1∑
k=n+1

1

k2
.

Otherwise, set

y :=
{

x + 2 · 3n+i if x < 0,

x − 2 · 3n+i if x > 0.

Note that y ∈ (−3n+i ,3n+i] and |x − y| = 2 · 3n+i . Thus, (8), (9), (Pi ) and the periodicity of φn yield∣∣σ(x) − φn(x)
∣∣ �

∣∣σ(x) − σ(y)
∣∣ + ∣∣σ(y) − φn(y)

∣∣
� 1

(n + i + 1)2
+

n+i∑
k=n+1

1

k2

=
n+i+1∑
k=n+1

1

k2
.

This means that (Pi+1) holds and then the proof is concluded. �
Note that σ is not limit periodic because it is discontinuous on Z.

Proposition 3.3. The function σ satisfies

∀x � 1,

x∫
0

σ(t) dt � x

2(log3 x + 1)2
. (10)

Proof. For y ∈ R, define F(y) := ∫ y

0 σ(t) dt . Let us preliminarily show that, for every n ∈ N, the following formula
holds:

∀y ∈ [
0,3n

]
, F (y) � y

2n2
. (11)

We shall do it by iteration on n. It is immediately seen that (11) holds for n = 1. Assume that (11) holds for some
n ∈ N. We want to prove that (11) holds with n replaced by n + 1. If y ∈ [0,3n] then

F(y) � y

2n2
� y

2(n + 1)2
.

If y ∈ (3n,2 · 3n] then, by computation,

F(y) = F
(
2 · 3n − y

) +
y∫

n

σ (t) dt � 2 · 3n − y

2n2
+

y−3n∫
n

σ
(
τ + 3n

)
dτ.
2·3 −y −(y−3 )
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Fig. 1. Graphs of σ and b.

Using property (9), one sees that

y−3n∫
−(y−3n)

σ
(
τ + 3n

)
dτ =

0∫
−(y−3n)

σ
(
τ + 3n

)
dτ +

y−3n∫
0

σ
(
τ − 3n

)
dτ + y − 3n

(n + 1)2

= y − 3n

(n + 1)2
,

where the last equality holds because σ is odd except in the set Z. Hence,

F(y) � 2 · 3n − y

2n2
+ y − 3n

(n + 1)2
� y

2(n + 1)2
.

Let now y ∈ (2 · 3n,3n+1]. Since F(2 · 3n) � 3n(n + 1)−2, as we have seen before, and (9) holds, it follows that

F(y) = F
(
2 · 3n

) +
y∫

2·3n

σ (t) dt � 3n

(n + 1)2
+ F

(
y − 2 · 3n

) + y − 2 · 3n

(n + 1)2
.

Using the hypothesis (11) we then get

F(y) � y − 3n

(n + 1)2
+ y − 2 · 3n

2n2
� y

2(n + 1)2
.

We have proved that (11) holds for any n ∈ N. Consider now x � 1. We can find an integer n = n(x) such that
x ∈ [3n−1,3n). Applying (11) we get F(x) � x(2n2)−1. Therefore, since n � log3 x + 1, we infer that

F(x) � x

2(log3 x + 1)2
. �

In order to define the function b, we introduce the following auxiliary function z ∈ C(R) vanishing on Z: z(x) :=
2|x| if x ∈ [−1/2,1/2], and it is extended by periodicity with period 1 outside [−1/2,1/2]. Then we set

b(x) := σ(x)z(x).

The definition of b is easier to understand by its graph (see Fig. 1).

Proposition 3.4. The function b is odd and limit periodic.

Proof. Let us check that b is odd. For x ∈ Z we find b(−x) = 0 = −b(x), while, for x ∈ R\Z,
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b(−x) = σ(−x)z(−x) = −σ(x)z(x) = −b(x).

In order to prove that b is limit periodic, consider the sequence of periodic functions (φn)n∈N given by Proposition 3.2.
Then define

ψn(x) := φn(x)z(x).

Clearly, the functions ψn are continuous (because z vanishes on Z) and periodic, with period 2 · 3n (because z has
period 1). Also, for n ∈ N,

|b − ψn| = |σ − φn|z � |σ − φn|.
Therefore, ψn converges uniformly to b as n goes to infinity. �
Proposition 3.5. All solutions of (3) are bounded and they are generated by u1 ≡ 1 and a non-a.p. function u2.

Proof. The two-dimensional space of solutions of (3) is generated by u1 ≡ 1 and

u2(x) :=
x∫

0

exp

(
−

y∫
0

b(t) dt

)
dy.

Since u2 is strictly increasing, it cannot be a.p. So, to prove the statement it only remains to show that u2 is bounded.
By construction, it is clear that, for m ∈ Z,

m∫
0

b(t) dt = 1

2

m∫
0

σ(t) dt.

Consequently, by (10), we get for x � 1

x∫
0

b(t) dt = 1

2

[x]∫
0

σ(t) dt +
x∫

[x]
b(t) dt � x − 1

4(log3 x + 1)2
− ‖b‖∞

and then

0 � u2(x) � e‖b‖∞
x∫

0

exp

(
− y − 1

4(log3 y + 1)2

)
dy

� e‖b‖∞
+∞∫
0

exp

(
− y − 1

4(log3 y + 1)2

)
dy.

Since b is odd, it follows that u2 is odd too and then it is bounded on R. �
Remark 2. The function b = σz we have constructed before is uniformly Lipschitz continuous, with Lipschitz con-
stant equal to 2‖σ‖L∞(R). Actually, one could use a suitable C∞ function instead of z in order to obtain a function
b ∈ C∞(R).

Remark 3. The reason why the LP fails to hold in the a.p. case is that, as shown by the previous counterexample,
an a.p. linear equation with nonpositive zero order coefficient may admit non-a.p. bounded solutions in the whole
space. Instead, the space of a.p. solutions of (1), with c � 0 and without any almost periodicity assumptions on L,
has at most dimension one, that is, the LP holds if all bounded solutions are a.p. More precisely, the result of Corol-
lary 1.2 holds true if one requires u to be a.p., even by dropping the periodicity assumption on L. To see this, consider
an a.p. solution u of (1). Up to replacing u with −u, we can assume that U := supu � 0. Let (Xn)n∈N be a se-
quence in RN+1 such that u(Xn) → U . Then, up to subsequences, the functions un(X) := u(X + Xn) converge
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locally uniformly in X ∈ RN+1 to a solution u∞ of a linear equation P̃ = 0 in RN+1, with nonpositive zero order
term (see the arguments in the proof of Lemma 2.1). The strong maximum principle then yields u∞ ≡ U for t � 0.
Since the convergence of a subsequence of un is also uniform in RN+1, by the almost periodicity of u, we find that
limt→−∞ u(x, t) = U uniformly in x ∈ RN . Arguing as in the proof of Theorem 1.5 part (ii) below, we infer that
u ≡ U and then the conclusion of Corollary 1.2 holds.

4. Sufficient conditions for the almost periodicity of solutions

Proof of Theorem 1.5. (i) consider an arbitrary sequence (Xn)n∈N = ((xn, tn))n∈N in RN × R. Since aij , bi , c and f

are a.p. (because aij , bi, c ∈ C(RN) are periodic) there exists a subsequence of (Xn)n∈N (that we still call (Xn)n∈N)
such that aij (x + xn), bi(x + xn), c(x + xn) and f (x + xn, t + tn) converge uniformly in x ∈ RN , t ∈ R. We claim
that u(X + Xn) converges uniformly in X ∈ RN+1 too. Assume by contradiction that this is not the case. Then, there
exist ε > 0, a sequence (Yn)n∈N = ((yn, τn))n∈N in RN × R and two subsequences (X1

n)n∈N and (X2
n)n∈N of (Xn)n∈N

such that

∀n ∈ N,
∣∣u(

Yn + X1
n

) − u
(
Yn + X2

n

)∣∣ > ε. (12)

For σ = 1,2 set (Zσ
n )n∈N := (Yn +Xσ

n )n∈N. Applying again the definition of almost periodicity, we can find a common
sequence (nk)k∈N in N such that, for σ = 1,2, the functions f (X +Zσ

nk
) converge to some functions f σ uniformly in

X ∈ RN+1. As f (X + Xn) converges uniformly in X ∈ RN+1, we see that

∀x ∈ RN+1, f 1(X) = lim
k→∞f

(
X + Ynk

+ X1
nk

) = lim
k→∞f

(
X + Ynk

+ X2
nk

) = f 2(X).

Let (ηk)k∈N be a sequence in [0, l1) × · · · × [0, lN ) such that ynk
+ x1

nk
− ηk ∈ ∏N

i=1 liZ and let η be the limit of
(a subsequence of) (ηk)k∈N. Owing to the periodicity and the uniform continuity of c, we get

c(x + η) = lim
k→∞ c(x + ηk) = lim

k→∞ c
(
x + ynk

+ x1
nk

) = lim
k→∞ c

(
x + ynk

+ x2
nk

)
,

uniformly in x ∈ RN . Analogously, for σ = 1,2,

lim
k→∞aij

(
x + ynk

+ xσ
nk

) = aij (x + η), bi

(
x + ynk

+ xσ
nk

) = bi(x + η),

uniformly with respect to x ∈ RN . By standard parabolic estimates and compact injection theorem, it follows that there
exists a subsequence of (nk)k∈N (that we still call (nk)k∈N) such that, for σ = 1,2, the sequences uσ

k := u(· + Zσ
nk

)

converge locally uniformly in RN+1 to some functions uσ and ∂tu
σ
k → ∂tu

σ , ∂iu
σ
k → ∂iu

σ , ∂ij u
σ
k → ∂ij u

σ weakly in
L

p

loc(R
N+1), for 1 < p < ∞. Passing to the weak limit in the equations satisfied by the uσ

k , we infer that the uσ satisfy

inf
RN+1

u � uσ � sup
RN+1

u, ∂tu
σ − Lηu

σ = f 1 in RN+1, (13)

where

Lη := aij (· + η)∂ij + bi(· + η)∂i + c(· + η).

Clearly, if ϕp is the periodic principal eigenfunction of −L, then ϕp(· + η) is the periodic principal eigenfunction
of −Lη. This shows that λp(−Lη) = λp(−L) � 0. As ∂t (u

1 − u2) − Lη(u
1 − u2) = 0 in RN+1, statements (ii)

and (iii) of Theorem 1.3 yield

∀x ∈ RN, t ∈ R, u1(x, t) − u2(x, t) = kϕp(x + η), (14)

for some k ∈ R. In order to show that k = 0, we come back to the original equation. For σ = 1,2, the following limits
hold uniformly in X = (x, y) ∈ RN × R:

lim
k→∞f 1(X − Zσ

nk

) = lim
k→∞f

((
X − Zσ

nk

) + Zσ
nk

) = f (X),

lim
k→∞aij

(
x + η − ynk

− xσ
nk

) = aij (x), lim
k→∞bi

(
x + η − ynk

− xσ
nk

) = bi(x),

lim c
(
x + η − ynk

− xσ
nk

) = c(x).

k→∞
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Therefore, with usual arguments, we see that, for σ = 1,2, uσ (· − Zσ
nk

) converges (up to subsequences) locally
uniformly to a function vσ satisfying

inf
RN+1

uσ � vσ � sup
RN+1

uσ , Pvσ = f in RN+1. (15)

Hence, P(u − vσ ) = 0 and then, again by Theorem 1.3 parts (ii)–(iii), there exists a constant hσ ∈ R such that
u − vσ ≡ hσ ϕp . Since infRN+1 u � vσ � supRN+1 u by (13) and (15), we infer that h1 = h2 = 0, that is, v1 ≡ v2 ≡ u.
Consequently,

inf
RN+1

u1 = inf
RN+1

u2 = inf
RN+1

u, sup
RN+1

u1 = sup
RN+1

u2 = sup
RN+1

u,

and then, by (14), u1 ≡ u2. This is a contradiction because, by (12), |u1(0) − u2(0)| � ε.
(ii) Up to replacing u with −u, we can assume that f � 0. Set

k := sup
x∈R

N

t∈R

u(x, t)

ϕp(x)

and v(x, t) := kϕp(x)−u(x, t). Thus, v � 0 and there exists a sequence (Xn)n∈N = ((xn, tn))n∈N in RN × R such that
limn→∞ v(Xn) = 0. Arguing as above, we find that (up to subsequences) v(· + Xn) converges locally uniformly to a
nonnegative function ṽ satisfying

ṽ(0) = 0, ∂t ṽ − aij (· + η)∂ij ṽ − bi(· + η)∂i ṽ − c(· + η)ṽ � 0 in RN+1,

for some η ∈ [0, l1) × · · · × [0, lN ). Applying the strong maximum principle, we get ṽ(x, t) = 0 for x ∈ RN , t � 0.
As v is a.p. by part (i), we infer that limn→∞ v(X + Xn) = ṽ(X) uniformly with respect to X ∈ RN+1. Thus,
limt→−∞ v(x, t) = 0 uniformly in x ∈ RN . Again by the almost periodicity, we can find a sequence (tn)n∈N in R

tending to −∞ and such that v(x, t + tn) converges uniformly with respect to (x, t) ∈ RN × R. Since

∀x ∈ RN, t ∈ R, lim
n→∞v(x, t + tn) = 0,

we derive v ≡ 0. �
Corollary 2.2 and Theorem 1.5 part (i) imply the existence of a unique a.p. solution of (2) when P = ∂t − L, L is

periodic, λp(−L) > 0 and f is a.p.
We conclude this section with a result concerning solutions of (2) when P is periodic and f is uniformly continuous

(UC) and a.p. in just one variable, i.e. there exists m ∈ {1, . . . ,N + 1} such that, for any (X1, . . . ,Xm−1,Xm+1, . . . ,

XN+1) ∈ RN , Xm �→ f (X1, . . . ,Xm, . . . ,XN+1) is a.p.

Theorem 4.1. Let u be a bounded solution of (2), with f ∈ UC(RN+1) a.p. in the m-th variable and either P periodic
in the m-th variable, c � 0, or P = ∂t − L, L periodic, λp(−L) � 0. Then, u is a.p. in the m-th variable.

Owing to the next consideration, the proof of Theorem 4.1 is essentially the same as that of Theorem 1.5 part (i).

Lemma 4.2. Let φ ∈ UC(RN+1) be a.p. in the m-th variable. Then, from any real sequence (sn)n∈N can be ex-
tracted a subsequence (snk

)k∈N such that, for all (X1, . . . ,Xm−1,Xm+1, . . . ,XN+1) ∈ RN , the sequence (φ(X1, . . . ,

Xm + snk
, . . . ,XN+1))k∈N converges uniformly in Xm ∈ R.

Proof. The proof is similar to that of the Arzela–Ascoli theorem. For simplicity, consider the case m = N + 1.
Let (sn)n∈N be a sequence in R. As for any q ∈ QN there exists a subsequence (s

q
n )n∈N of (sn)n∈N such that

(φ(q, t +s
q
n ))n∈N converges uniformly in t ∈ R, using a diagonal method we can find a common subsequence (snk

)k∈N

such that (φ(q, t + snk
))k∈N converges uniformly in t ∈ R, for all q ∈ QN . Fix x ∈ RN . By the uniform continuity

of φ, for any ε > 0 there exists q ∈ QN such that

∀t ∈ R,
∣∣φ(x, t) − φ(q, t)

∣∣ <
ε
.

3
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Therefore,∣∣φ(x, t + snk
) − φ(x, t + snh

)
∣∣ <

2

3
ε + ∣∣φ(q, t + snk

) − φ(q, t + snh
)
∣∣ < ε

for h, k big enough, independent of t ∈ R. �
Remark 4. Statement (i) of Theorem 1.5 does not follow from Theorem 4.1 because being a.p. separately in each vari-
able does not imply the almost periodicity in the sense of Definition 1.4. For example, the function φ(x, y) = sin(xy)

is periodic in each variable but it is not a.p., because it is known that any a.p. function is uniformly continuous (see
e.g. [2]).

5. General periodic domains

Henceforth, Ω denotes a uniformly smooth domain in RN . The symbol ν stands for the outer unit normal vector
field to Ω .

We fix l1, . . . , lN+1 > 0. The domain Ω ⊂ RN is said to be periodic in the direction em, m ∈ {1, , . . . ,N}, if
Ω + {lmem} = Ω . If Ω is periodic in all directions, we simply say that it is periodic. From now on, when we say that
a function or an operator is periodic (resp. periodic in the m-th variable with m ∈ {1, . . . ,N + 1}) we mean that its
period is (l1, . . . , lN+1) (resp. lm).

Besides the assumptions of Section 1.1, we will sometimes require in the sequel that the coefficients of P and the
function f are uniformly Hölder continuous.2 This is because, in some proofs, we need the solutions to be Lipschitz
continuous. In the elliptic case, this property follows from W 2,p estimates, for p > N , and embedding theorem and
indeed the Hölder continuity assumption is not necessary.

5.1. Dirichlet boundary conditions

We deal with the Dirichlet problem{
Pu = f (x, t), x ∈ Ω, t ∈ R,

u = g(x, t), x ∈ ∂Ω, t ∈ R,
(16)

with f measurable and g ∈ C0(∂Ω × R). The boundary condition in (16) is understood in classical sense:
u ∈ C0(Ω × R) and u = g on ∂Ω × R.

If L is a periodic elliptic operator (as defined in Section 1.1), then λp,D(−L) and ϕp,D denote respectively the
periodic principal eigenvalue and eigenfunction of −L in Ω , with Dirichlet boundary conditions. That is, λp,D(−L)

is the unique real number such that the problem{−Lϕp,D = λp,D(−L)ϕp,D in Ω,

ϕp,D = 0 on ∂Ω

admits a solution ϕp,D (unique up to a multiplicative constant) which is positive in Ω and periodic.
The next result is the analogue of Theorem 1.1.

Theorem 5.1. Let u be a bounded solution of (16), with P , f , g periodic in the m-th variable, as well as Ω if
m 	= N + 1, and with c � 0. Then, u is periodic in the m-th variable.

Proof. We use the same method as in the proof of Lemma 2.1, with v ≡ 1. As before, it is sufficient to show that the
function

ψ(X) := u(X + lmem) − u(X)

2 We denote by C
2n+γ,n+ γ

2 , with n ∈ {0,1} and γ ∈ [0,1), the space of functions whose space derivatives up to order 2n and time derivative, if
n = 1, are locally Hölder continuous with exponent γ with respect to x and with exponent γ /2 with respect to t . If these derivatives are uniformly

Hölder continuous then we say that the function belongs to C
2n+γ,n+ γ

2
b

.
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is nonpositive. Assume by contradiction that k := supΩ×R ψ > 0. Let (Xn)n∈N = ((xn, tn)n)n∈N in Ω × R be such
that ψ(Xn) → k. We consider the translated ψn(X) := ψ(X + Xn). The problem is that, in principle, these functions
are well defined only at {(0, . . . ,0)} × R. As ψ is a solution of (16) with f ≡ g ≡ 0 and Ω is uniformly smooth,
parabolic estimates up to the boundary together with embedding theorem yield ψ ∈ UC(Ω × R). Hence, there exists
r > 0 such that ψn > 0 in Br × (−r, r) for n large enough. In particular, the set

R := {
r > 0: Br + {xn} ⊂ Ω for n large enough

}
is not empty. We claim that R = R+. Let r ∈ R. We know that, for n large enough, the ψn are well defined and
uniformly bounded in Br × R. Moreover, again by the estimates up to the boundary, for any 1 < p < ∞,

‖∂tψn‖Lp(Br×(−r,r)),‖∂iψn‖Lp(Br×(−r,r)),‖∂ijψn‖Lp(Br×(−r,r)) � C,

where C > 0 is independent of n. Therefore, by the compact injection of Lp in C0, we infer that the ψn converge (up
to subsequences) to a bounded solution ψ∞ of

∂tψ∞ − ãij (x, t)∂ijψ∞ − b̃i (x, t)∂iψ∞ − c̃(x, t)w∞ = 0, x ∈ Br, t ∈ (−r, r),

where ãij = limn→∞ aij (· + Xn), b̃i = limn→∞ bi(· + Xn) uniformly in Br × (−r, r) and c̃ = limn→∞ c(· + Xn)

weakly in Lp(Br × (−r, r)). We know that ψ∞ attains its maximum value k at 0 and then the strong maximum
principle yields ψ∞(x, t) = k for x ∈ Br , t ∈ (−r,0] (note that c̃ � 0). As a consequence, for n large, ψn � k/2
in Br × (−r,0] and then, by the uniform continuity, there exists δ > 0 independent of r and n such that ψn > 0 in
Br+δ × (−r,0]. This shows that R = R+. We then get a contradiction exactly as in the proof of Lemma 2.1. �

From Theorem 5.1 it follows immediately the following uniqueness result (which implies in particular the LP).

Corollary 5.2. If Ω and P are periodic and c � 0 then problem (16) admits at most a unique bounded solution.

Proof. Suppose that u1, u2 solve (16). Applying Theorem 5.1 we infer that v := u1 − u2 is periodic and then it has
a global maximum and minimum in Ω . Since either maxv � 0 or minv � 0, the strong maximum principle implies
that v is constant. But it vanishes on ∂Ω and then v ≡ 0. �

In order to prove the LP when P = ∂t − L and λD(−L) � 0, we will make use of the following consideration.

Lemma 5.3. Let v1 ∈ W 1,∞(Ω × R) and v2 ∈ C1(Ω × R) be such that

v1 � v2 on ∂Ω × R, ∇v2 ∈ UC(Ω × R),

sup
∂Ω×R

(
v1 − v2 + min(∂νv2,0)

)
< 0, (17)

∀ε > 0, inf
{
v2(x, t): dist

(
x,Ωc

)
> ε, t ∈ R

}
> 0. (18)

Then, there exists a positive constant k such that kv2 � v1 in Ω × R.

Proof. Assume by way of contradiction that there exist two sequences (xn)n∈N in Ω and (tn)n∈N in R such that
nv2(xn, tn) < v1(xn, tn). Hence, limn→∞ v2(xn, tn) = 0 and then dist(xn, ∂Ω) → 0 by (18). For n ∈ N, let yn denote
a projection of xn on ∂Ω . We find that

0 � lim
n→∞

(
v2(yn, tn) − v1(yn, tn)

) = lim
n→∞

(
v2(xn, tn) − v1(xn, tn)

)
� lim

n→∞
(
v2(xn, tn) − nv2(xn, tn)

) = 0.

Therefore, by (17),

lim sup
n→∞

∂νv2(yn, tn) < 0.

As ∇v2 ∈ UC(Ω × R), we then infer that
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lim
n→∞

v1(xn, tn) − v1(yn, tn)

|xn − yn| � lim
n→∞

nv2(xn, tn) − v2(yn, tn)

|xn − yn|
� lim

n→∞n
v2(xn, tn) − v2(yn, tn)

|xn − yn|
= +∞,

which is a contradiction. �
We need the following uniform Hölder continuity assumptions:

aij , bi, c ∈ C
γ

b (Ω), (19)

f ∈ C
γ,

γ
2

b (Ω × R), g ∈ C
2+γ,1+ γ

2
b (∂Ω × R), (20)

for some 0 < γ < 1.

Theorem 5.4. Let P = ∂t − L with coefficients satisfying (19) and let Ω , L, f , g be periodic. If u is a bounded
solution of (16) we have that:

(i) if λp,D(−L) � 0 then u is periodic, with the same period as f , g;
(ii) if λp,D(−L) = 0 and f , g satisfy (20) and either f,g � 0 or f,g � 0 then u ≡ kϕp,D , for some k ∈ R, and

f,g ≡ 0;
(iii) if λp,D(−L) > 0 and f,g ≡ 0 then u ≡ 0.

Proof. (i) Fix m ∈ {1, . . . ,N + 1} and set

ψ(X) := u(X + lmem) − u(X).

Let us check that the functions v1 = ψ and v2 = ϕp,D fulfill the hypotheses of Lemma 5.3. Parabolic and elliptic

estimates up to the boundary yield v1, v2 ∈ C
2+γ,1+ γ

2
b (Ω × R). Moreover,

v1 = v2 = 0, ∂νv2 < 0, on ∂Ω × R,

the last inequality following from the Hopf lemma. Therefore, the hypotheses of Lemma 5.3 are satisfied owing to the
periodicity of ϕp,D . As a consequence, there exists k > 0 such that kϕp,D � ψ . Define

k∗ := inf{k > 0: kϕp,D � ψ}.
Assume by contradiction that k∗ > 0. The function w(x, t) := k∗ϕp,D(x) − ψ(x, t) is nonnegative by the definition
of k∗. We distinguish two different cases.

Case 1: w satisfies (18).

If sup∂Ω×R ∂νw � 0 then there exist a sequence (Zn)n∈N in Zl1 × · · · × ZlN+1 and a sequence (Yn)n∈N in ∂Ω × R

converging to some (y, τ ) ∈ ∂Ω × R such that

lim sup
n→∞

∂νw(Yn + Zn) � 0.

The sequence w(· + Zn) converges (up to subsequences) in C
2+γ̃ ,1+ γ̃

2
b (K × (−r, r)), for any 0 < γ̃ < γ , compact set

K ⊂ Ω and r > 0, to a nonnegative function w∞ satisfying

Pw∞ � 0 in Ω × R, w∞ = 0 on ∂Ω × R, ∂νw∞(y, τ ) � 0.

By Hopf’s lemma it follows that w∞ = 0 in Ω × (−∞, τ ], which is impossible because w satisfies (18). This shows
that sup∂Ω×R ∂νw < 0 and then (17) holds with v1 = ψ and v2 = w. Therefore, by Lemma 5.3 we can find another
positive constant k′ such that k′w � ψ in Ω × R. That is,

k′
′ k∗ϕp,D � ψ,
k + 1
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which contradicts the definition of k∗. This case is ruled out.

Case 2: w does not satisfies (18).

There exist then a sequence (Zn)n∈N in Zl1 × · · · × ZlN+1 and a sequence (Yn)n∈N in Ω × R converging to some
(y, τ ) ∈ Ω × R such that

lim
n→∞w(Yn + Zn) = 0.

With usual arguments, we find that (a subsequence of) the sequence w(· + Zn) converges to 0 locally uniformly in
Ω × (0, τ ]. Defining the bounded sequence (ζh)h∈N as at the end of the proof of Theorem 5.1, we get the following
contradiction:

∀h ∈ N, ζh − ζh+1 = k∗ϕp,D(y).

In both Cases 1 and 2, we have shown that k∗ = 0, that is, u(X+ lmem) � u(X). The converse inequality is obtained
in analogous way by replacing lm with −lm.

(ii) Up to replacing u with −u, it is not restrictive to assume that f,g � 0. Hence, u(x, t) � ϕp,D(x) for x ∈ ∂Ω ,

t ∈ R. Note that by parabolic estimates up to the boundary, u ∈ C
2+γ,1+ γ

2
b (Ω × R). Applying Lemma 5.3 with v1 = u

and v2 = ϕp,D , we find a positive constant k such that kϕp,D � u. Set

k∗ := inf{k ∈ R: kϕp,D � u}.
The function w := k∗ϕp,D − u is nonnegative, periodic, by (i), and satisfies

Pw = −f � 0 in Ω × R.

If w vanishes somewhere in Ω × R then the parabolic strong maximum principle and the time-periodicity of w yields
w ≡ 0, which concludes the proof of the statement. Otherwise, for any x ∈ ∂Ω , t ∈ R such that w(x, t) = 0, the Hopf
lemma yields ∂νw(x, t) < 0. Consequently,

∀x ∈ ∂Ω, t ∈ R, −w(x, t) + min
(
∂νw(x, t),0

)
< 0.

As ϕp,D and w are periodic, we see that the hypotheses of Lemma 5.3 are satisfied by v1 = ϕp,D and v2 = w and then
we there exists another positive constant h such that hw � ϕp,D . Hence, (k∗ − h−1)ϕp,D � u which contradicts the
definition of k∗.

(iii) It is not restrictive to assume that supu � 0 (if not, replace u with −u). We proceed exactly as in the proof
of (ii). Now, the constant k∗ is nonnegative and then the function w := k∗ϕp,D − u satisfies

Pw = k∗λp,D(−L)ϕp,D � 0.

Then, as before, we derive w ≡ 0. From the above expression we see that k∗ = 0 and then u ≡ 0. �
Remark 5. Theorem 5.4 part (i) when λp,D(−L) > 0 and part (iii) hold without the additional assumption (19). In
fact, the latter is only used to have the Lipschitz continuity of solutions required to apply Lemma 5.3. But this can
be avoided by approximating Ω by a sequence of domains (Om)m∈N which contain Ω . Then, one argues as before,
with ϕp,D replaced by the periodic principal eigenfunction associated with Om. This function is strictly positive in
Ω and is still a supersolution of −L = 0 provided that m is large enough, because λp,D(−L) > 0 (see the proof of
Corollary 5.5 below). This allows one to define the function w – which does not satisfy (18) – and obtain the same
contradiction as before.

Corollary 5.5. If P = ∂t − L, the domain Ω and L are periodic, λp,D(−L) > 0 and f ∈ L∞(Ω × R), g ∈
W

2,1∞ (Ω × R),3 then problem (16) admits a unique bounded solution.

3 W
2,1∞ denotes the space of functions u such that u, ∂iu, ∂ij u, ∂t u ∈ L∞.
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Proof. Note that, up to replacing f with f − Pg, it is not restrictive to assume that g ≡ 0. As in the proof of
Corollary 2.2, we find a solution u as the limit as n → ∞ of solutions un of the problems⎧⎨

⎩
Pun = f (x, t), x ∈ Ωn, t ∈ (−n,n),

un = 0, x ∈ ∂Ωn, t ∈ (−n,n),

un(x,−n) = 0, x ∈ Ωn,

(21)

where (Ωn)n∈N is a family of bounded domains recovering Ω (defined below). The proof of the uniform boundedness
of the un is now more delicate, because ϕp,D is not bounded from below away from zero and then we cannot take as
sub- and supersolution of (21) the functions −kϕp,D and kϕp,D with k large enough. We overcome this difficulty by
extending aij , bi , c to the whole space and by considering a domain which is slightly larger than Ω . Let (Om)m∈N be
a uniformly smooth family of periodic domains satisfying

∀m ∈ N, Om ⊃ Om+1 ⊃ Ω,
⋂
m∈N

Om = Ω.

For any m ∈ N let λm and ϕm be the periodic principal eigenvalue and eigenfunction of −L in Om, with Dirichlet
boundary conditions, such that ‖ϕm‖L∞(Om) = 1. It follows from the maximum principle that the sequence (λm)m∈N is
increasing and bounded from above by λp,D(−L). Owing to the uniform smoothness of the Om, elliptic estimates up
to the boundary imply that the ϕm converge (up to subsequences) uniformly in Ω to a nonnegative periodic solution ϕ

of −Lϕ = λϕ in Ω , where λ = limn→∞ λm. Moreover, since for any ε > 0 there exists δ such that

∀m ∈ N, dist(x, ∂Om) � δ ⇒ ϕm(x) � ε

(by gradient estimates up to the boundary), we see that ϕ vanishes on ∂Ω and that ‖ϕ‖L∞(Ω) = 1. Hence, ϕ > 0 in Ω

by the strong maximum principle. This shows that λ = λp,D(−L). Thus, there exists m∗ ∈ N such that λm∗ > 0. The
function

v(x) := ‖f ‖L∞(Ω×R)

λm∗ minΩ ϕm∗
ϕm∗(x)

is the strictly positive supersolution we need to show that the solutions un of (21) are uniformly bounded for n ∈ N.
The smooth domains Ωn are defined in such a way that, for n ∈ N, Ωn ⊂ Bn+1 and Ωn ∩ Bn coincides with the
connected component of Ω ∩ Bn containing 0 (which can be assumed to belong to Ω). It is easily seen that for any
compact K ⊂ RN there exists n0 ∈ N such that Ω ∩ K ⊂ Ωn for n � n0. Then, we proceed exactly as in the proof of
Corollary 2.2, with Br replaced by Ωn. The uniqueness result follows from Theorem 5.4 part (iii) and Remark 5. �
Remark 6. If c � 0 then λp,D(−L) > 0 and then the existence and uniqueness result of Corollary 5.5 applies (in
contrast with the whole space case, cf. Remark 1). This is easily seen by applying the strong maximum principle to
the periodic principal eigenfunction ϕp,D .

5.2. Robin boundary conditions

We consider now the Robin problem{
Pu = f (x, t), x ∈ Ω, t ∈ R,

N u = h(x, t), x ∈ ∂Ω, t ∈ R,
(22)

where

N u = α(x, t)u + β(x, t) · ∇u,

with α, β bounded and satisfying

α � 0, inf
x∈∂Ω

β(x) · ν(x) > 0.

We always assume in this section that

aij , bi, c ∈ C
γ,

γ
2 (Ω × R),
b
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for some 0 < γ < 1, and solutions of (22) are understood in classical sense. Hence, (22) admits solution only if f and
h satisfy some regularity conditions, but for our uniqueness results we do not need to impose them.

If P = ∂t − L,

α = α(x), β = β(x), α,β ∈ C
1+γ

b (∂Ω), (23)

and Ω , L, N are periodic then λp,N and ϕp,N denote respectively the periodic principal eigenvalue and eigenfunction
of −L in Ω , under Robin boundary conditions. That is, λp,N is the unique (real) number such that the eigenvalue
problem{−Lϕp,N = λp,N ϕp,N in Ω,

N ϕp,N = 0 on ∂Ω

admits a positive periodic solution ϕp,N (unique up to a multiplicative constant).
The strategy used to prove our results is exactly the same as in Section 2, the following lemma being the analogue

of Lemma 2.1. While in the whole space case we used interior estimates for strong solutions, here we need Hölder
estimates up to the boundary (see [22,25], or [17,33] for the elliptic case).

Lemma 5.6. Assume that Ω is periodic and that the operators P , N and the functions f , h are periodic in the m-th
variable. If there exists a function v ∈ C

2,1
b (Ω × R) satisfying

inf
Ω

v > 0,

{
Pv � 0, x ∈ Ω, t ∈ R,

N v � 0, x ∈ ∂Ω, t ∈ R,

then any bounded solution of (22) is periodic in the m-th variable.

Proof. The proof is similar to that of Lemma 2.1 and we will skip some details. But now we translate the functions ψ ,
v and the coefficients of the equation by Zn instead of Xn, where (Zn)n∈N is the sequence in Zl1 × · · · × ZlN+1 such
that Yn := Xn − Zn ∈ [0, l1) × · · · × [0, lN+1). Then, the only situation which is not covered by the arguments in the
whole space is when w∞ < k in Ω and Yn converges (up to subsequences) to some Y∞ = (y∞, η∞) ∈ ∂Ω ×[0, lN+1].
Let us show that this cannot occur. Let α∗ and β∗ be the limits of (subsequences of) α(Y∞ + Zn) and β(Y∞ + Zn)

respectively. Clearly,

α∗ � 0, β∗ · ν(y∞) > 0.

Thus, since w∞ is a solution of a linear parabolic equation with nonpositive zero order term achieving a positive
maximum at Y∞, the Hopf lemma yields β∗ · ∇w∞(Y∞) > 0. This is impossible, because

0 = α∗ψ∞(Y∞) + β∗ · ∇ψ∞(Y∞)

= α∗(w∞v∞)(Y∞) + β∗ · ∇(w∞v∞)(Y∞)

= k
(
α∗v∞(Y∞) + β∗ · ∇v∞(Y∞)

) + v∞(Y∞)β∗ · ∇w∞(Y∞)

� v∞(Y∞)β∗ · ∇w∞(Y∞)

> 0. �
Applying Lemma 5.6 with v ≡ 1 we immediately get

Theorem 5.7. Let u be a bounded solution of (22), with Ω periodic, P , N , f , h periodic in the m-th variable and
c � 0. Then, u is periodic in the m-th variable.

Compare the previous statement with Theorem 5.1, which holds for domains periodic just in the direction em. In
the case of Robin boundary conditions, we are only able to deal with domains periodic in all directions.

Corollary 5.8. Let u be a bounded solution of{
Pu = 0, x ∈ Ω, t ∈ R,

(24)

N u = 0, x ∈ ∂Ω, t ∈ R,



2500 L. Rossi / Ann. I. H. Poincaré – AN 26 (2009) 2481–2502
with Ω , P , N periodic and c � 0. Then, two possibilities occur:

(1) c ≡ 0, α ≡ 0 and u is constant;
(2) ‖c‖L∞(Ω) + ‖α‖L∞(∂Ω) 	= 0 and u ≡ 0.

Proof. By Theorem 5.7 we know that u is periodic in every space/time variables and then it has global maximum and
minimum in Ω ×R. Let M = maxu = u(x0, t0). Up to replacing u with −u, we can assume without loss of generality
that M � 0. Thus, by the strong maximum principle, either u = M in Ω × (−∞, t0], or u < M in Ω × (−∞, t0] and
x ∈ ∂Ω . The second case is ruled out because, by Hopf’s lemma we would have

0 < β(x0, t0) · ∇u(x0, t0) � N u(x0, t0) = 0.

Therefore, u = M in Ω × (−∞, t0] and then, by periodicity, in Ω × R. The statement follows. �
Theorem 5.9. Let P = ∂t − L, the functions α, β satisfy (23) and Ω , L, N , f , h be periodic. If u is a bounded
solution of (22) we have that

(i) if λp,N (−L) � 0 then u is periodic;
(ii) if λp,N (−L) = 0 and either f,h � 0 or f,h � 0 then u ≡ kϕp,N , for some k ∈ R, and f,h ≡ 0;

(iii) if λp,N (−L) > 0 and f,h ≡ 0 then u ≡ 0.

Proof. First, we show that

inf
Ω

ϕp,N > 0,

no matter what the sign of λp,N (−L) is. Indeed, if infΩ ϕp,N = 0, then the periodicity and the positivity of ϕp,N in
Ω yield ϕp,N (y) = 0 for some y ∈ ∂Ω . Hence,

0 = N ϕp,N (y) = β(y) · ∇ϕp,N (y),

which contradicts the Hopf lemma.
(i) The statement follows by applying Lemma 5.6 with v = ϕp,N .
(ii)–(iii) We can argue exactly as in the proof of Theorem 1.3 parts (ii) and (iii). The only different situation is if

w > 0 in Ω × R and vanishes at (x0, t0) ∈ ∂Ω × R. In this case, we get

β(x0) · ∇w(x0, t0) = N w(x0, t0) = −N u(x0, t0) = −h(x0, t0) � 0

(we recall that it is not restrictive to assume that f,h � 0). Once again, this is in contradiction with the Hopf
lemma. �

We conclude with the existence and uniqueness result for (22). We assume that

f ∈ C
γ,

γ
2

b (Ω × R), h ∈ C
2+γ,1+ γ

2
b (∂Ω × R), (25)

and we strengthen the regularity condition on β in (23):

α = α(x), β = β(x), α ∈ C
1+γ

b (∂Ω), β ∈ C
2+γ

b (∂Ω). (26)

Theorem 5.10. If P = ∂t − L, conditions (25)–(26) hold, L, N are periodic and λp,N (−L) > 0, then problem (22)
admits a unique bounded solution u. If in addition f and h are also periodic, then u is periodic.

Proof. From the uniform smoothness of Ω it follows that there exists δ > 0 such that each point in Ωδ :=
{x ∈ Ω: dist(x, ∂Ω) < δ} admits a unique projection π(x) on ∂Ω . Hence, the function dist(x, ∂Ω) is well defined
and smooth in Ωδ . Let χ ∈ C∞(R) be a cut-off function such that χ = 1 in (0, δ/2), χ = 0 in (δ,+∞). The function

ψ(x, t) := h(π(x), t)
dist(x, ∂Ω)χ

(
dist(x, ∂Ω)

)

β(π(x)) · ν(π(x))
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belongs to C2+γ,1+ γ
2 (Ω × R) and satisfies N ψ = h on ∂Ω . Therefore, replacing f by f − Pψ , we can take h ≡ 0

in (22). Define the domains (Ωn)n∈N as in the proof of Corollary 5.5. Consider a family of cut-off functions (χn)n∈N

uniformly bounded in C
2+γ,1+ γ

2
b (RN) such that, for n > 1,

χn = 1 in Bn−1, χn > 0 in Bn\Bn−1, χn = 0 in RN\Bn.

Proceeding as in the proof of Corollary 2.2, with BR replaced by Ωn and ϕp by ϕp,N (which has positive infimum),
we see that, as n → ∞, the unique solution of⎧⎨

⎩
Pun = f (x, t), x ∈ Ωn, t ∈ (−n,n),(
χnN + (1 − χn)

)
un = 0, x ∈ ∂Ωn, t ∈ (−n,n),

un(x,−n) = 0, x ∈ Ωn,

converges (up to subsequences) in C
2,1
b (Ω ∩ K,(−r, r)), for any compact K ⊂ RN and any r > 0, to a bounded

solution of (22). The uniqueness result is a consequence of Theorem 5.9 part (iii). �
Using the Hopf lemma, one can readily check that if L, N are periodic, c � 0 and α, c are not identically equal to

zero, then λp,N (−L) > 0. Therefore, the result of Theorem 5.10 applies in this case.
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