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Abstract

Starting from a mass transportation proof of the Brunn–Minkowski inequality on convex sets, we improve the inequality showing
a sharp estimate about the stability property of optimal sets. This is based on a Poincaré-type trace inequality on convex sets that is
also proved in sharp form.
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1. Introduction

We deal with the Brunn–Minkowski inequality: given E and F non-empty subsets of R
n, we have

|E + F |1/n � |E|1/n + |F |1/n, (1)

where E+F = {x+y: x ∈ E, y ∈ F } is the Minkowski sum of E and F , and where | · | stands for the (outer) Lebesgue
measure on R

n. The central role of this inequality in many branches of Analysis and Geometry, and especially in the
theory of convex bodies, is well explained in the excellent survey [11] by R. Gardner. Concerning the case E and F

are open bounded convex sets (shortly: convex bodies), it may be proved (see [4,14]) that equality holds in (1) if and
only if E and F are homothetic, i.e.

∃λ > 0, x0 ∈ R
n: E = x0 + λF. (2)

Theorem 1 provides a refined Brunn–Minkowski inequality on convex bodies, in the spirit of [7,12,18,17]. We define
the relative asymmetry of E and F as

A(E,F) := inf
x0∈Rn

{ |E�(x0 + λF)|
|E| : λ =

( |E|
|F |

)1/n}
, (3)
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and the relative size of E and F as

σ(E,F ) := max

{ |F |
|E| ,

|E|
|F |

}
. (4)

We note that A(E,F) = A(F,E) and σ(E,F ) = σ(F,E).

Theorem 1. If E and F are convex bodies, then

|E + F |1/n �
(|E|1/n + |F |1/n

){
1 + A(E,F)2

C0(n)σ (E,F )1/n

}
. (5)

In [10], inequality (5) was derived as a corollary of the sharp quantitative Wulff inequality, with a constant
C0(n) ≈ n7 and with explicit examples proving the sharpness of decay rate of A(E,F) and σ(E,F ) in the regime
β(E,F ) → 0. Here, we introduce the Brunn–Minkowski deficit of the pair (E,F ) by setting

β(E,F ) := |E + F |1/n

|E|1/n + |F |1/n
− 1,

so that (5) becomes equivalent to

C0(n)

√
β(E,F )σ(E,F )1/n � A(E,F). (6)

As in [10], our approach to (5) is based on the theory of mass transportation. A one-dimensional mass transporta-
tion argument is at the basis of the beautiful proof of (1) by Hadwiger and Ohmann [13], see [9, 3.2.41] and
[11, Proof of Theorem 4.1]. The impact of mass transportation theory in the field of sharp functional-geometric in-
equalities is now widely recognized, with many old and new inequalities treated from a unified and elegant viewpoint
(see [19, Chapter 6] for an introduction). A proof of the Brunn–Minkowski inequality in this framework is already
contained in the seminal paper by McCann [16], see also Step two in the proof of Theorem 1.

In Section 3 of this note we present a direct proof of (5), independent from the structure theory for sets of finite
perimeter that was heavily used in [10]. As a technical drawback, this approach does not provide a polynomial bound
on C0(n), but only an exponential behavior in n. However, we believe this proof is more broadly accessible and
substantially simpler. A technical element of this proof that we believe of independent interest is the Poincaré-type
trace inequality on convex sets proved in Section 2, with a constant having sharp dependence on the dimension n and
on the ratio between the in-radius and the out-radius of the set (see Remark 3).

2. A Poincaré-type trace inequality on convex sets

In this section we aim to prove the following Poincaré-type trace inequality for a convex body:

Lemma 2. Let E be a convex body such that Br ⊂ E ⊂ BR , for 0 < r < R. Then

n
√

2

log(2)

R

r

∫
E

|∇f | � inf
c∈R

∫
∂E

|f − c|dHn−1, (7)

for every f ∈ C∞(Rn) ∩ L∞(Rn).

It is quite easy to prove (7) by a contradiction argument, if we allow to replace n(R/r) by a constant generically
depending on E. However, in order to prove Theorem 1, we need to express this dependence just in terms of n

and R/r , and thus require a more careful approach. Let us also note that, by a standard density argument, (7) holds
true for every f ∈ BV (Rn) ∩ L∞(Rn) (see [1,8]), in the form

n
√

2

log(2)

R

r
|Df |(E) � inf

c∈R

∫
∂E

∣∣trE(f ) − c
∣∣dHn−1,

where |Df | denotes the total variation measure of Df and where trE(f ) is the trace of f on ∂E, defined as an element
of L1(Hn−1�∂E) (see [1, Theorem 3.87]). However, we shall not need this stronger form of the inequality.
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Given a convex body E containing the origin in its interior, we introduce a weight function on directions defined
for ν ∈ Sn−1 as

‖ν‖E := sup{x · ν: x ∈ E}.
When F is a set with Lipschitz boundary and outer unit normal νF , we define the anisotropic perimeter of F with
respect to E as

PE(F) :=
∫
∂F

∥∥νF (x)
∥∥

E
dHn−1(x),

and recall that PE(E) = n|E|. Then, the anisotropic isoperimetric inequality, or Wulff inequality,

PE(F) � n|E|1/n|F |(n−1)/n, (8)

holds true, as it can be shown starting from (1) (see [11, Section 3]).

Proof of Lemma 2. Let us set

τ(E) := inf
F

Hn−1(E ∩ ∂F )

Hn−1(F ∩ ∂E)

where F ranges over the class of open sets of R
n with smooth boundary such that |E ∩ F | � |E|/2. Then, fixed

f ∈ C∞(Rn) ∩ L∞(Rn), we set Ft = {x ∈ R
n: f (x) > t} for every t ∈ R. The proof of the lemma is then achieved

on combining the following two statements.

Step one: We have that∫
E

|∇f | � τ(E)

∫
∂E

|f − m|dHn−1,

where m is a median of f in E, i.e.

|Ft ∩ E| � |E|
2

, ∀t � m,

|Ft ∩ E| > |E|
2

, ∀t < m.

Indeed, let g = max{f − m,0} and let Gt = {x ∈ R
n: g(x) > t}. Then by the Coarea Formula, the choice of m and

the definition of τ(E) (note that Ft is admissible in τ(E) for a.e. t � m by Morse–Sard Lemma)

∫
E∩Fm

|∇f | =
∫
E

|∇g| =
∞∫

0

Hn−1(E ∩ ∂Gt ) dt

� τ(E)

∞∫
0

Hn−1(Gt ∩ ∂E)dt = τ(E)

∫
∂E

g dHn−1

= τ(E)

∫
∂E

max{f − m,0}dHn−1.

The choice of m allows to argue similarly with max{m − f,0} in place of g and to eventually achieve the proof of
Step one.

Step two: We have that

τ(E) � r
(

1 − 1
1/n

)
.

R 2
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To prove this, let us consider an admissible set F for τ(E) and set for simplicity

λ := Hn−1(E ∩ ∂F )

Hn−1(F ∩ ∂E)
. (9)

On denoting F1 = F ∩ E and F2 = E \ F , we have that

E ∩ ∂F1 = E ∩ ∂F2 = E ∩ ∂F, with νF = νF1 = −νF2 on E ∩ ∂F.

Therefore

PE(E) � PE(F1) + PE(F2) −
∫

E∩∂F1

‖νF1‖E dHn−1 −
∫

E∩∂F2

‖νF2‖E dHn−1

� PE(F1) + PE(F2) − 2RHn−1(E ∩ ∂F )

= PE(F1) + PE(F2) − 2RλHn−1(F ∩ ∂E)

� PE(F1) + PE(F2) − 2RλHn−1(∂F1)

�
(

1 − 2λ
R

r

)
PE(F1) + PE(F2), (10)

where we have used (9) and the elementary inequality

r � ‖ν‖E � R,

for every ν ∈ Sn−1. On combining (10), the anisotropic isoperimetric inequality (8) and the fact that PE(E) = n|E|,
we come to

n|E| � n|E|1/n

{(
1 − 2λ

R

r

)
|F1|1/n′ + |F2|1/n′

}
,

i.e. we have proved that

λt1/n′ � r

2R

(
t1/n′ + (1 − t)1/n′ − 1

)
,

where t = |F1|/|E|. As t ∈ (0,1/2] by construction and

s1/n′ + (1 − s)1/n′ − 1 �
(
2 − 21/n′)

s1/n′
, ∀s ∈ (0,1/2],

the proof of Step two is easily concluded. �
Remark 3. Let us point out that the dependence on n and R/r given in the above result, that is n(R/r), is sharp. In
R

n = R
n−1 × R, it suffices to consider the box E defined as

E = Q × [−R0,R0], Q =
[
− r

2
,
r

2

]n−1

.

We clearly have that Br ⊂ E ⊂ BR , with R =
√

R2
0 + (n − 1)r2. Now, let us consider as a test set for the trace constant

the half-space F = R
n−1 × (0,∞), so that

∂F ∩ E = Q × {0}, ∂E ∩ F = (
∂Q × (0,R0)

) ∪ (
Q × {R0}

)
.

The boundary ∂Q is the union of 2(n − 1) cubes of dimension (n − 2) and size r . Thus,

Hn−1(∂F ∩ E) = rn−1, Hn−1(∂E ∩ F) = 2(n − 1)R0r
n−2 + rn−1.

For R0 � √
n − 1 r we have R ≈ R0, and therefore

n
√

2

log(2)

R

r
� τ(E) � 2(n − 1)R0r

n−2 + rn−1

rn−1
≈ n

R0

r
≈ n

R

r
.

This shows the sharpness of our trace constant, up to a numeric factor.
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3. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. We consider two convex bodies E and F , and we aim to
prove (6). Without loss of generality, we may assume that |E| � |F |. By approximation, we can also assume that E

and F are smooth and uniformly convex. Eventually, we can directly consider the case

β(E,F )σ(E,F )1/n � 1. (11)

Indeed, as we always have A(E,F) � 2, if β(E,F )σ(E,F )1/n > 1 then (6) holds trivially with C0(n) = 2. Observe
further that, since σ(E,F ) � 1, (11) implies

β(E,F ) � 1. (12)

We divide the proof in several steps.

Step one: John’s normalization. A classical result in the theory of convex bodies by F. John [15] ensures the
existence of a linear map L : R

n → R
n such that

B1 ⊂ L(E) ⊂ Bn.

We note that

β(E,F ) = β
(
L(E),L(F )

)
, A(E,F ) = A

(
L(E),L(F )

)
,

∣∣L(E)
∣∣ �

∣∣L(F)
∣∣.

Therefore in the proof of Theorem 1 we may also assume that

B1 ⊂ E ⊂ Bn. (13)

In particular, under this assumption one has 1 � r � R � n, so that by Lemma 2 we can write

n2
√

2

log(2)

∫
E

|∇f | � inf
c∈R

∫
∂E

|f − c|dHn−1 (14)

for every f ∈ C∞(Rn) ∩ L∞(Rn).

Step two: Mass transportation proof of Brunn–Minkowski. We prove the Brunn–Minkowski inequality by mass
transportation. By the Brenier Theorem [2,3], there exists a convex function ϕ : R

n → R such that its gradient T = ∇ϕ

defines a map T ∈ BV (Rn,F ) pushing forward |E|−11E(x)dx to |F |−11F (x) dx, i.e.

1

|F |
∫
F

h(y)dy = 1

|E|
∫
E

h
(
T (x)

)
dx, (15)

for every Borel function h : R
n → [0,∞). As shown by Caffarelli [5,6], under our assumptions the Brenier map is

smooth up to the boundary, i.e. T ∈ C∞(E,F ). Moreover, the push-forward condition (15) takes the form

det∇T (x) = |F |
|E| , ∀x ∈ E. (16)

We are going to consider the eigenvalues {λk(x)}k=1,...,n of ∇T (x) = ∇2ϕ(x), ordered so that λk � λk+1 for 1 � k �
n − 1. We also define, for every x ∈ E,

λA(x) =
∑n

k=1 λk(x)

n
, λG(x) =

(
n∏

k=1

λk(x)

)1/n

.

Thanks to (16) we have

λG(x) =
( |F |)1/n
|E|
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for every x ∈ E. We are in the position to prove the Brunn–Minkowski inequality. Let S(x) := x +T (x), then S(E) ⊂
E + F . As det∇S = ∏n

k=1(1 + λk) > 1, we have |det∇S| = det∇S. Thus

|E + F |1/n �
∣∣S(E)

∣∣1/n =
( ∫

E

det∇S

)1/n

=
( ∫

E

n∏
k=1

(1 + λk)

)1/n

. (17)

We observe that
n∏

k=1

(1 + λk) = 1 +
n∑

m=1

∑
{1�i1<···<im�n}

m∏
j=1

λij . (18)

Note that the set of indexes (i1, . . . , im) with 1 � ij < ij+1 � n counts
(
n
m

)
elements. For each fixed m � 1, the

arithmetic–geometric mean inequality implies that

∑
{1�i1<···<im�n}

m∏
j=1

λij �
(

n

m

) ∏
{1�i1<···<im�n}

(
m∏

j=1

λij

)1/(n
m)

. (19)

This last term is equal to(
n

m

) n∏
k=1

λ
(n−1
m−1)/(

n
m)

k =
(

n

m

)
λm

G. (20)

On putting (18), (19) and (20) together, and applying the binomial formula to (1 + λG)n we come to
n∏

k=1

(1 + λk) − (1 + λG)n =
n∑

m=1

Γm, (21)

where Γm denotes the difference between the left- and the right-hand side of (19). We observe that Γm � 0 whenever
1 � m � n, and in particular Γ1 = n(λA − λG). On combining this with (17), (16), and λG = (det∇T )1/n, we find
that

|E + F |1/n �
( ∫

E

(1 + λG)n
)1/n

= |E|1/n

(
1 +

( |F |
|E|

)1/n)
= |E|1/n + |F |1/n,

i.e. we prove the Brunn–Minkowski inequality for E and F .

Step three: Lower bounds on the deficit. In this step we aim to prove

1

|E|
∫
E

∣∣∇T (x) − λG Id
∣∣dx � C(n)

√
β(E,F )

√
β(E,F ) + σ(E,F )−1/n. (22)

Let us set, for the sake of brevity,

s = 1

|E|
∫
E

det∇S, t = (1 + λG)n.

From Step two we deduce that

|E + F |1/n − (|E|1/n + |F |1/n)

|E|1/n
� s1/n − t1/n = s − t∑n

h=1 s(n−h)/nt(h−1)/n
. (23)

As t � s and |E|s = |S(E)| � |E + F |,
n∑

h=1

s(n−h)/nt(h−1)/n � ns(n−1)/n � n

( |E + F |
|E|

)(n−1)/n

= n

((
1 + β(E,F )

) |E|1/n + |F |1/n

1/n

)n−1

� C(n), (24)
|E|
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where we have also made use of (12) and of the fact that |F | � |E|. A similar argument shows that the left-hand side
of (23) is controlled by 2β(E,F ), and therefore we conclude that

C(n)β(E,F ) � s − t = 1

|E|
∫
E

(
n∏

k=1

(1 + λk) − (1 + λG)n

)
dx. (25)

Then, by (25) and (21), as Γm � 0 whenever 1 � m � n and Γ1 = n(λA − λG), we get

C(n)β(E,F ) � 1

|E|
∫
E

n∑
m=1

Γm(x)dx � 1

|E|
∫
E

Γ1(x) dx = n

|E|
∫
E

(λA − λG). (26)

An elementary quantitative version of the arithmetic–geometric mean inequality proved in [10, Lemma 2.5], ensures
that

7n2(λA − λG) � 1

λn

n∑
k=1

(λk − λG)2.

In particular, as (λn − λ1)
2 � 2[(λn − λG)2 + (λG − λ1)

2] we obtain from (26)

C(n)β(E,F ) � 1

|E|
∫
E

(λn − λ1)
2

λn

dx. (27)

By Hölder inequality

1

|E|
∫
E

(λn − λ1) dx � C(n)

√√√√β(E,F )
1

|E|
∫
E

λn. (28)

As λ1 � (|F |/|E|)1/n = σ(E,F )−1/n, from (28) we come to

1

|E|
∫
E

λn � C(n)

√√√√β(E,F )
1

|E|
∫
E

λn + σ(E,F )−1/n,

which easily implies

1

|E|
∫
E

λn � C(n)
(
β(E,F ) + σ(E,F )−1/n

)
(29)

by Young’s inequality. We eventually combine (29) with (28), and prove that

1

|E|
∫
E

(λn − λ1) dx � C(n)
√

β(E,F )

√
β(E,F ) + σ(E,F )−1/n. (30)

Then (22) follows immediately.

Step four: Trace inequality. On combining (22) with (14), we conclude that, up to a translation of F ,

C(n)
√

β(E,F )

√
β(E,F ) + σ(E,F )−1/n|E| �

∫
∂E

∣∣T (x) − λGx
∣∣dHn−1(x).

If F ′ = λ−1
G F and P : R

n \ F ′ → ∂F ′ denotes the projection of R
n \ F ′ over F ′, then, since by construction T takes

value in F , we get

C(n)
√

β(E,F )

√
β(E,F ) + σ(E,F )−1/n � λG

|E|
∫

′

∣∣P(x) − x
∣∣dHn−1(x). (31)
∂E\F
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We now consider the map Φ : (∂E \ F ′) × (0,1) → E \ F ′ defined by

Φ(x, t) = tx + (1 − t)P (x).

Let {εk(x)}n−1
k=1 be a basis of the tangent space to ∂E at x. Since Φ is a bijection, we find

|E \ F ′| =
1∫

0

dt

∫
(∂E\F ′)

∣∣∣∣∣(x − P(x)
) ∧

(
n−1∧
k=1

(
tεk(x) + (1 − t) dPx

(
εk(x)

)))∣∣∣∣∣dHn−1(x), (32)

where dPx denotes the differential of the projection P at x. As P is the projection over a convex set, it decreases
distances, i.e. |dPx(e)| � 1 for every e ∈ Sn−1. Thus,∣∣tεk(x) + (1 − t)dPx

(
εk(x)

)∣∣ � 1, ∀k ∈ {1, . . . , n − 1}.
Recalling that λG = σ(E,F )−1/n, we combine this last inequality with (31) and (32) to get

|E \ F ′|
|E| � 1

|E|
∫

∂E\F ′

∣∣x − P(x)
∣∣dHn−1(x)

� C(n)σ (E,F )1/n
√

β(E,F )

√
β(E,F ) + σ(E,F )−1/n

� C(n)σ (E,F )1/n
√

β(E,F )
(√

β(E,F ) + σ(E,F )−1/2n
)

= C(n)
(√

β(E,F )σ(E,F )1/n + β(E,F )σ(E,F )1/n
)

� C(n)

√
β(E,F )σ(E,F )1/n,

where in the last inequality we have used (11). As

A(E,F) � |E�F ′|
|E| = 2

|E \ F ′|
|E| ,

this proves (6) and we achieve the proof of the theorem.

We conclude noticing that the constant C0(n) in the above theorem can be taken to be

C0(n) ≈ p(n)cn
0 ,

where p(n) is a polynomial in n, and c0 is any constant greater than
√

2. Indeed, a quick inspection of the proof
shows that all the terms to be considered for C(n) are polynomials, except for the estimate given in Step three – more
precisely in (24) – which gives a term like ncn, with c > 2 (recall that, up to loosing a numeric factor in C0(n), we
can assume from the beginning that β(E,F ) is smaller than an arbitrarily small constant). Eventually, when applying
Hölder inequality in (28) we take a square root of the constant C(n) appearing in (27), thus coming to the choice
c0 >

√
2.
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