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Abstract

Given a compact manifold M , we prove that any bracket generating family of vector fields on M , which is invariant under
multiplication by smooth functions, generates the connected component of the identity of the group of diffeomorphisms of M .

Résumé

Soit M une variété compacte, nous montrons que toute famille de champs de vecteurs satisfaisant la condition du rang et étant
invariante par multiplication par fonctions lisses engendre la composante connexe de l’identité du groupe DiffM .
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1. Introduction

In this paper we give a simple sufficient condition for a family of flows on a smooth compact manifold M to
generate the group Diff0(M) of all diffeomorphisms of M that are isotopic to the identity.

If all flows are available then the result follows from the simplicity of the group Diff0(M) (see [9]). Indeed, flows
are just one-parametric subgroups of Diff0(M) and all one-parametric subgroups generate a normal subgroup. In other
words, any isotopic to the identity diffeomorphism of M can be presented as composition of exponentials of smooth
vector fields.

In this paper we prove that a stronger result holds for a proper subset of the space of smooth vector fields on M .
Our main result is as follows.

Theorem 1.1. Let F ⊂ VecM be a family of smooth vector fields and let Gr F = {et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F ,

k ∈ N}.
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If Gr F acts transitively on M then there exist a neighborhood O of the identity in Diff0(M) and a positive integer m

such that every P ∈ O can be presented in the form

P = ea1f1 ◦ · · · ◦ eamfm,

for some f1, . . . , fm ∈ F and a1, . . . , am ∈ C∞(M).

In particular, if F is a bracket generating family of vector fields then any diffeomorphism in Diff0(M) can be
presented as composition of exponentials of vector fields in F rescaled by smooth functions. In fact, a stronger
result is valid. The theorem states that every diffeomorphism sufficiently close to the identity can be presented as the
composition of m exponentials, where the number m depends only on F .

The structure of the paper is the following. In Section 2 we fix the notation used throughout the paper and we
make some remarks about tools used in the sequel. In Section 3 we state some simple corollaries of the main result
and explain its meaning for geometric control theory. Then we start the proof of Theorem 1.1 showing, in Section 4,
an auxiliary result concerning local diffeomorphisms in R

n. Namely, given n vector fields over R
n, X1, . . . ,Xn,

linearly independent at the origin, we find a closed neighborhood V of the origin in R
n such that the image of the map

φ : (a1, . . . , an) �→ ea1X1 ◦ · · · ◦ eanXn |V
from C∞

0 (Rn)n to C∞
0 (V )n has nonempty interior. In Section 5 we show how to reduce the proof of Theorem 1.1 to

the mentioned auxiliary fact using a geometric idea that goes back to the Orbit Theorem of Sussmann [8].

2. Preliminaries

Let M be a smooth n-dimensional compact connected manifold. Throughout the paper smooth means C∞.
We denote by VecM the Lie algebra of smooth vector fields on M and by Diff0 M the connected component of the

identity of the group of diffeomorphisms of M .
If V is a neighborhood of the origin in R

n we set C∞
0 (V ) = {a ∈ C∞(V ): a(0) = 0}. Similarly, if U is an open

subset of M then C∞
q (U,M) is the Fréchet manifold of smooth maps F : U → M such that F(q) = q . All the spaces

above are endowed with the standard C∞ topology.
Given an autonomous vector field f ∈ VecM we denote by t �→ etf , with t ∈ R, the flow on M generated by f ,

which is a one-parametric subgroup of Diff0(M).
If fτ is a nonautonomous vector field, using “chronological” notation (see [1]), we denote by −−→exp

∫ t

0 fτ dτ the
“nonautonomous flow” at time t of the time-varying vector field fτ .

Given a family of vector fields F ⊂ VecM we associate to F the subgroup of Diff0(M)

Gr F = {
et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N

}
.

Lie F is the Lie subalgebra of VecM generated by F and the algebra of vector fields in Lie F evaluated at q ∈ M is
Lieq F = {V (q): V ∈ Lie F }.

Definition 1. A family F ∈ VecM is called bracket generating, or completely nonholonomic, if

Lieq F = TqM, for every q ∈ M.

A classical result in Control Theory is the Rashevsky–Chow Theorem (see [7,2]) that gives a sufficient condition
for controllability.

Theorem 2.1 (Rashevsky–Chow). Let M be a compact connected manifold. If F is bracket generating then Gr F acts
transitively on M .

Another classical result, due to Lobry [5], claims that Gr{f1, f2} acts transitively on M for a generic pair of smooth
vector fields (f1, f2). Namely, the set of pairs of vector fields (f1, f2) such that Gr{f1, f2} acts transitively on M is
an open dense (in the C∞ topology) subset of the product space VecM × VecM .
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Moreover, if M has the structure of a semisimple Lie group then the set of pairs (f1, f2) of left-invariant vector
fields such that Gr{f1, f2} acts transitively on M is an open dense subset in the Cartesian square of the Lie algebra
(see [4]).

3. Corollaries of the main result

A direct consequence of Theorem 1.1 is the following.

Corollary 3.1. Let F ⊂ VecM , if Gr F acts transitively on M , then

Gr
{
af : a ∈ C∞(M), f ∈ F

} = Diff0(M).

Last corollary shows the relation between the Rashevsky–Chow Theorem and Theorem 1.1. Indeed, if F is a
bracket generating family of vector fields, then, by Rashevsky–Chow Theorem, for every pair of points q0, q1 ∈ M

there exist t1, . . . , tk ∈ R and f1, . . . , fk ∈ F such that

q0 = q1 ◦ et1f1 ◦ · · · ◦ etkfk ,

and, by Corollary 3.1, for every diffeomorphism P ∈ Diff0(M) there exist a1, . . . , a� ∈ C∞(M) and g1, . . . , g� ∈ F
such that

P = ea1g1 ◦ · · · ◦ ea�g� .

In other words, we have that controllability of a system of vector fields on the manifold implies a certain “control-
lability” on the group of diffeomorphisms. Namely, if it is possible to join every two points of the manifold M by
exponentials of vector field in F then we can realize every diffeomorphism as composition of exponentials of vector
fields in F rescaled by suitable smooth functions.

Let us reformulate Corollary 3.1 in terms of control systems. Consider the control system on M

q̇ =
k∑

i=1

ui(t, q)fi(q), q ∈ M, (1)

where {f1, . . . , fk} is a bracket generating family of vector fields and u1, . . . , uk are time varying feedback controls,
that is

ui : [0,1] × M → R,

such that ui(t, q) is piecewise constant in t for every q and smooth with respect to q for every t . Then Corollary 3.1
states that for every P ∈ Diff0(M) there exist time-varying feedback controls u1, . . . , uk , such that q(1) = P(q(0))

for any solution q(·) of system (1); in other words,

P = −−→exp

1∫
0

k∑
i=1

ui(t, ·)fi dt.

The next corollary is stated from a geometric viewpoint, in terms of completely nonholonomic vector distributions.

Corollary 3.2. Let � ⊂ T M be a completely nonholonomic vector distribution. Then every diffeomorphism of M that
is isotopic to the identity can be written as ef1 ◦ · · · ◦ efk , where f1, . . . , fk are sections of �.

4. An auxiliary result

Proposition 4.1. Let X1, . . . ,Xn ∈ Vec R
n be such that

span
{
X1(0), . . . ,Xn(0)

} = R
n.



2506 A.A. Agrachev, M. Caponigro / Ann. I. H. Poincaré – AN 26 (2009) 2503–2509
Then there exist a compact neighborhood V of the origin in R
n and an open subset V of C∞

0 (V )n such that every
F ∈ V can be written as

F = ea1X1 ◦ · · · ◦ eanXn |V ,

for some a1, . . . , an ∈ C∞
0 (Rn).

In order to prove this result we need the following lemma.

Lemma 4.2. Let X1, . . . ,Xn ∈ VecR
n be such that

span
{
X1(0), . . . ,Xn(0)

} = R
n,

and let U0 be a neighborhood of the identity in C∞
0 (Rn)n. Then there exist a neighborhood V of the origin in R

n and
a neighborhood U of the identity in C∞

0 (V )n such that for every F ∈ U there exist ϕ1, . . . , ϕn ∈ U0 such that

F = ϕ1 ◦ · · · ◦ ϕn|V ,

where ϕk preserves the 1-foliation generated by the trajectories of the equation q̇ = Xk(q) for k = 1, . . . , n.

Proof. Since X1, . . . ,Xn are linearly independent at 0 then there exists a neighborhood of the origin V ⊂ R
n such

that

span
{
X1(q), . . . ,Xn(q)

} = R
n, for every q ∈ V̄ .

Now, there exists a ball B ⊂ R
n containing 0 ∈ R

n such that, for every q ∈ V , the map

(t1, . . . , tn) �→ q ◦ et1X1 ◦ · · · ◦ etnXn (2)

is a local diffeomorphism from B to a neighborhood of q . Let

Uε = {
F ∈ C∞

0 (V )n: ‖F − I‖C1 < ε
}
,

where I denotes the identical map and ε is to be chosen later. If ε is sufficiently small, then, for every F ∈ Uε and
q ∈ V , F(q) belongs to the image of map (2). Therefore, given every F ∈ Uε , it is possible to associate with every
q ∈ V an n-uple of real numbers (t1(q), . . . , tn(q)) ∈ B such that

F(q) = q ◦ et1(q)X1 ◦ · · · ◦ etn(q)Xn .

We claim that there exists η(ε) such that η(ε) → 0 as ε → 0 and ‖ti‖C1 < η(ε) for every i = 1, . . . , n and for F ∈ Uε .
Indeed ‖F − I‖C0 < ε implies that ‖ti‖C0 < cε, for i = 1, . . . , n and for some constant c. Moreover, if q ∈ V , for
every ξ ∈ R

n we have

DqFξ = (
et1(q)X1 ◦ · · · ◦ etn(q)Xn

)
∗ξ +

n∑
i=1

et1(q)X1 ◦ · · · ◦ dti

dq
· ξXi ◦ · · · ◦ etn(q)Xn .

Therefore ‖DqFξ − ξ‖C0 < ε implies ‖ti‖C1 < η(ε), where η → 0 as ε → 0.
Now consider, for every k = 1, . . . , n, the map

Φk(q) = q ◦ et1(q)X1 ◦ · · · ◦ etk(q)Xk .

Note that Φ0 = I and Φn = F . For every k, Φk is a smooth diffeomorphism being smooth and invertible by the
Implicit Function Theorem. Indeed, for every q ∈ V the differential of Φk at q is

DqΦkξ = (
et1(q)X1 ◦ · · · ◦ etk(q)Xk

)
∗ξ +

k∑
i=1

et1(q)X1 ◦ · · · ◦ dti

dq
ξXi ◦ · · · ◦ etk(q)Xk .

Denote T (ξ) = DqΦkξ − ξ . If ε is sufficiently small we have ‖T ‖0 < 1. Therefore DqΦk is of the form I + T , with
T contraction, and thus invertible.

Finally call U = Uε and define for every k = 1, . . . , n, the smooth maps

ϕk(q) = q ◦ etk(Φ
−1
k−1(q))Xk ,

then the statement follows. �
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Thanks to the last lemma our problem is to find an appropriate exponential representation of every of the func-
tions ϕk .

The main idea of the proof of Proposition 4.1 lies in the fact that a linear diffeomorphism is the exponential of a
linear vector field. So, our goal is to find a change of coordinates that linearizes ϕk along trajectories of the equation
q̇ = Xk(q).

Proof of Proposition 4.1. Let V , U , and U0 be as in Lemma 4.2. We denote by Xk the set of all ϕ ∈ U0 such that
ϕ preserves 1-foliation generated by the equation q̇ = Xk(q). Every F ∈ U can be written as F = ϕ1 ◦ · · · ◦ϕn|V . Now
consider the open subset of C∞

0 (V )n

V ⊆ {
F ∈ U : F = ϕ1 ◦ · · · ◦ ϕn|V , ϕk ∈ Xk, (Dqϕk)Xk(q) �= Xk(q), q ∈ ϕ−1

k (0), k = 1, . . . , n
}
.

Since every F ∈ U is close to the identity, then so is ϕk for every k. Moreover, ϕk(0) = 0 and Xk transversal
to the hypersurface ϕ−1

k (0) at any point. Therefore we may rectify the field Xk in a neighborhood of the ori-
gin in such a way that, in new coordinates, ϕk(x1, . . . , xk−1,0, xk+1, . . . , xn) = 0 and Xk = ∂

∂xk
. Set x := xk and

y := (x1, . . . , xk−1, xk+1, . . . , xn).
Since the following argument does not depend on k = 1, . . . , n the subscript k is omitted.
Let α(y) = log( ∂

∂x
ϕ(0, y)). Note that by the definition of V we have α(y) �= 0 for every y. In what follows we

treat y as an (n − 1)-dimensional parameter and, for the sake of readability, we omit it. We will show, step by step,
that the argument holds for every value of the parameter y and all maps and vector fields under consideration depend
smoothly on y. Consider the homotopy from ϕ to the identity

ϕt (x) = eα(t−1)ϕ(tx)/t, t ∈ [0,1].
There exists a nonautonomous vector field a(t, x) ∂

∂x
such that

ϕt = −−→exp

t∫
0

a(τ, ·) ∂

∂x
dτ.

It is easy to see that ∂a
∂x

(t,0) = α. Let a(t, x) = αx + b(t, x)x with b(t,0) = 0. We want to find a time-dependent
change of coordinates ψ(t, x) that linearizes the flow generated by a(t, x). Namely if x(t) is a solution of ẋ = a(t, x)

and z(t) = ψ(t, x(t)) then we want ż(t) = αz(t). We can suppose ψ(t,0) = 0 and write ψ(t, x) = xu(t, x), where
u(0, x) = 1. On one hand we have

d

dt
z = d

dt

(
xu(t, x)

) = ẋu(t, x) + xẋ
∂u

∂x
(t, x) + x

∂u

∂t
(t, x) = a(t, x)u(t, x) + xa(t, x)

∂u

∂x
(t, x) + x

∂u

∂t
(t, x),

and, on the other hand,

d

dt
z = αz = αxu(t, x).

Therefore, we can find u by solving

x

(
a(t, x)

∂u

∂x
(t, x) + ∂u

∂t
(t, x) + b(t, x)u(t, x)

)
= 0.

The first-order linear PDE

a(t, x)
∂u

∂x
(t, x) + ∂u

∂t
(t, x) + b(t, x)u(t, x) = 0 (3)

can be solved by the method of characteristics. The characteristic lines of (3) are of the form ξt = (t, ϕt (x0)) with
initial data (0, x0). Note that these characteristic lines depend smoothly on y and are well defined for every y. Along ξt ,
Eq. (3) becomes the linear (parametric with parameter y) ODE

u̇ = −b̃(t)u,
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where b̃(t) = b(ξt ). Now we can define u(ξt ) = e− ∫ t
0 b̃(τ ) dτ . This formula, being applied to all characteristics, defines

a smooth solution to Eq. (3). In particular u(t,0) = 1 since b(t,0) = 0.
We have constructed a time-dependent change of coordinates ψ(t, x) such that

ψ(t, ·) ◦ −−→exp

t∫
0

a(τ, ·) ∂

∂x
dτ ◦ ψ(t, ·)−1 = etαx ∂

∂x , for every t ∈ [0,1].

Recall that −−→exp
∫ 1

0 a(τ, ·) ∂
∂x

dτ = ϕ. Therefore

ϕ = ψ(1, ·)−1 ◦ eαx ∂
∂x ◦ ψ(1, ·) = eψ(1,·)∗αx ∂

∂x .

Hence, we provide the desired exponential representation for every of the functions ϕ1, . . . , ϕn from Lemma 4.2 and
the proposition follows. �
5. Proof of Theorem 1.1

Set

P = Gr
{
af : a ∈ C∞(M), f ∈ F

}
and

Pq = {
P ∈ P : P(q) = q

}
, q ∈ M.

Lemma 5.1. Any q ∈ M possesses a neighborhood Uq ⊂ M such that the set

{P |Uq : P ∈ Pq} (4)

has nonempty interior in C∞
q (Uq,M).

Proof. According to the Orbit Theorem of Sussmann [8] (see also the textbook [1]), the transitivity of the action
of Gr F on M implies that

TqM = span
{
P∗f (q): P ∈ Gr F , f ∈ F

}
.

Take Xi = Pi∗fi for i = 1, . . . , n with Pi ∈ Gr F and fi ∈ F in such a way that X1(q), . . . ,Xn(q) form a basis
of TqM . Then, for all smooth functions a1, . . . , an, vanishing at q , the diffeomorphism

ea1X1 ◦ · · · ◦ eanXn = P1 ◦ e(a1◦P1)f1 ◦ P −1
1 ◦ · · · ◦ Pn ◦ e(an◦Pn)fn ◦ P −1

n

belongs to the group Pq . The desired result now follows from Proposition 4.1. �
Corollary 5.2. The interior of set (4) contains the identical map.

Proof. Let A be an open subset of C∞
q (Uq,M) that is contained in (4) and take P0|Uq ∈ A. Then P −1

0 ◦ A is a
neighborhood of the identity contained in (4). �
Definition 2. Given P ∈ Diff(M), we set suppP = {x ∈ M: P(x) �= x}.

Lemma 5.3. Let O be a neighborhood of the identity in Diff(M). Then for any q ∈ M and any neighborhood Uq ⊂ M

of q , we have

q ∈ int
{
P(q): P ∈ O ∩ P , suppP ⊂ Uq

}
.
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Proof. Consider n vector fields X1, . . . ,Xn as in the proof of Lemma 5.1 and let b ∈ C∞(M) be a cut-off function
such that suppb ⊂ Uq and q ∈ intb−1(1). Then the diffeomorphism

Q(s1, . . . , sn) = es1bX1 ◦ · · · ◦ esnbXn

belongs to O ∩ P for any n-uple of real numbers (s1, . . . , sn) sufficiently close to 0. Moreover suppQ(s1, . . . , sn)⊂Uq .
On the other hand, the map

(s1, . . . , sn) �→ Q(s1, . . . , sn)(q)

is a local diffeomorphism in a neighborhood of 0. �
The next lemma is due to Palis and Smale (see [6, Lemma 3.1]).

Lemma 5.4. Let
⋃

j Uj = M be a covering of M by open subsets and let O be a neighborhood of identity in Diff(M).
Then the group Diff0(M) is generated by the subset {P ∈ O: ∃j such that suppP ⊂ Uj }.

Proof. The group Diff0(M) is a path-connected topological group. Therefore it is generated by any neighborhood of
the identity O.

Since M is compact we can assume that the covering {Uj } is finite, namely U1 ∪ · · · ∪ Uk = M . Now let P ∈ O
and consider the isotopy H : M × [0,1] → M such that H(0, ·) = I and H(1, ·) = P . Consider a partition of unity

{λj :M → R | suppλj ⊂ Uj }
subordinated to the covering {Uj }kj=1. Let suppλj = Vj and let μj : M → M ×[0,1] the map μj = (I, λ1 +· · ·+λj ).

Consider Qj = H ◦ μj , then Qk = P and Qj = Qj−1 on M \ Vj . Finally, setting Pj = Qj ◦ Q−1
j−1, we have P =

Pk ◦ · · · ◦ P1 and suppPj ⊂ Uj . The lemma is proved. �
Proof of the theorem. According to Lemma 5.4, it is sufficient to prove that, for every q ∈ M , there exist a neighbor-
hood Uq ⊂ M and a neighborhood of the identity O ⊂ Diff(M) such that any diffeomorphism P ∈ O, whose support
is contained in Uq , belongs to P . Moreover, Lemma 5.3 allows to assume that P(q) = q . Finally, Corollary 5.2
completes the proof. �
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