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Abstract

An alternative construction to Andreu et al. (2005) [12] is given for L1
w([0, T ],BV(Ω)) solutions to the relativistic heat equa-

tion (1) (see Brenier (2003) [14], Mihalas and Mihalas (1984) [37], Rosenau (1992) [40], Chertock et al. (2003) [20], Caselles
(2007) [19]) under the assumption of initial data bounded from below and from above. For that purpose, we introduce a time
discretized scheme in the style of Jordan et al. (1998) [30], Otto (1996) [38] involving an optimal transportation problem with
a discontinuous hemispherical cost function. The limiting process is based on a monotonicity argument and on a bound of the
Fisher information by an entropy balance characteristic of the minimization problem.

Résumé

Nous présentons ici une construction alternative à celle d’Andreu et al. (2005) [12] de solution L1
w([0, T ],BV(Ω)) de l’équa-

tion de la chaleur relativiste (1) (voir Brenier (2003) [14], Mihalas et Mihalas (1984) [37], Rosenau (1992) [40], Chertock et al.
(2003) [20], Caselles (2007) [19]) dans le cas de conditions initiales bornées inférieurement et supérieurement. Pour cela, nous
introduisons un schéma discret en temps dans le style de Jordan et al. (1998) [30], Otto (1996) [38] basé sur un problème de trans-
port optimal faisant intervenir une fonction de coût hémisphérique et discontinue. Le passage à la limite lorsque le pas de temps
tend vers zéro repose sur un argument de monotonie et une borne de l’information de Fisher par la variation de l’entropie, inégalité
caractéristique du problème de transport optimal.
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1. Introduction

We consider in this work a relativistic heat equation which has been introduced for example in the paper of Rose-
nau [40] (see also [20]) or Mihalas and Mihalas [37]; it fills in a gap in the Fokker–Planck theory by imposing an
upper bound for the propagation velocity. This equation can be written

∂tρ = div

(
ρ

∇ρ√
ρ2 + |∇ρ|2

)
= div

(
ρ

∇ logρ√
1 + |∇ logρ|2

)
. (1)
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Viewing the ordinary heat equation as a transport equation by velocity ∇ logρ, then Eq. (1) involving the velocity
∇ρ√

ρ2+|∇ρ|2 motivates the appellation relativistic.

The aim of this present work is to construct solutions to Eq. (1) following a strategy introduced by Jordan,
Kinderlehrer, Otto [30] and Otto [38], subsequently developed by many authors, M. Agueh [1] and Ambrosio, Gigli,
Savaré [3] in particular, and suggested in the relativistic context by Brenier [14]. This strategy applies to finding
a solution to general transport equations given by

∂tρ = div
(
ρ∇c∗(∇(F ′(ρ)

)))
(2)

where c∗ is a convex mobility function on R
d and F is a convex function on [0,∞[ representing the entropy. It is

based on a new point of view on (2) saying that the transport of the density ρ is seen as the gradient flow of the convex
function F with respect to a distance induced by the cost function c, the Legendre transform of c∗ (see [2,3,5,43] for
the notion of gradient flow). The solution is obtained as a limit of a solution of a time discretized scheme and the
peculiarity of the method is that this discrete scheme involves an optimal mass transport problem.

This work comes after a series of papers. In [30], the case of the Wasserstein distance c(z) = |z|2
2 and entropy

F(ρ) = ρ logρ − Vρ were addressed by Jordan, Kinderlehrer and Otto, who obtain the Fokker–Planck equation

∂tρ = div(ρ∇V ) + β−1�ρ where V is a given smooth function.

In [38], Otto treated the case of c(z) = |z|q
q

with F(ρ) = nρb

b(b−1)
and b = n + (p − 2)/(p − 1) which leads to the

doubly degenerate equation

∂tρ = div
(∣∣∇ρn

∣∣p−2∇ρn
)

with
1

p
+ 1

q
= 1, p � 2.

And in [1], Agueh considered the case of cost functions satisfying

β|z|q � c(z) � α
(|z|q + 1

)
for all z ∈ R

d, where α,β > 0 and q > 1,

which includes a very large class of equations such as the Fokker–Planck equation, the porous medium and fast
diffusion equation, the p-Laplacian and the doubly degenerate diffusion equation.

Note that for the relativistic heat equation, the entropy is F(ρ) = ρ logρ − ρ and

∇c∗(z) = z√
1 + |z|2 ,

which gives

c∗(z) =
√

1 + |z|2 − 1.

The corresponding cost function

c(z) =
{

1 −√
1 − |z|2 if |z| � 1,

+∞ if |z| > 1

is hemispherical and discontinuous, hence does not belong to the set of cost function for which this strategy has been
successful.

The aim of this paper is to apply this “Optimal Transportation Strategy” to the Cauchy problem for Eq. (1), and
more precisely for any cost functions satisfying

c(z) =
{

c̃(|z|) � 0 if |z| � 1,

+∞ if |z| > 1

where c̃ is a continuous strictly convex function on [0,1] belonging to C2([0,1[) and with |∇c(z)| → ∞ when
|z| → 1 (and hence c∗ ∈ C2(Rd)) and, as in the work of Agueh [1], for any strictly convex entropy functions satisfying
F ∈ C2(R) such that F(λ)

λ
→ ∞ when λ → ∞ and λdF (λ−d) is convex.

The Cauchy problem for such an equation has been recently studied by Andreu, Caselles and Mazón [11,12] and
the speed of propagation for the support of its solutions has been studied by Andreu, Caselles, Mazón and Moll
in [13]. The convergence of the relativistic equation toward the heat equation as the light speed goes to infinity has
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been also investigated very recently by Caselles [19]. Those works belong to a large program (see the long series
of paper [7,9–12]) where the Cauchy problem is examined for degenerate elliptic and parabolic equations. As in the
strategy of Jordan, Kinderlehrer and Otto, the proof of the existence of solution to this equation by Andreu, Caselles
and Mazón involves a discrete in time equation. In their work, the time discrete density ρh is obtained by solving the
elliptic equation on each time interval [ih; (i + 1)h]

ρh
i − ρh

i−1 = hdiv
(
ρh

i ∇c∗(D logρh
i

))
.

We will assume in this work that the initial density is bounded from below and from above while in their work,
Andreu, Caselles and Mazón assume only that the initial data is non-negative.

Nevertheless, the point of view of this present work is interesting since the method employed — in particular the
construction of the discrete scheme — involves the study of a mass transport problem with a discontinuous convex
cost function. The limiting process remains a delicate step because of the weak regularity of the discrete sequence
constructed via the minimization process, and presents a real difficulty. As far as we know, the construction of op-
timal transport maps for discontinuous cost functions has not been completed before but is a necessary condition to
obtain relativistic phenomena for the corresponding transport equation. However, the Kantorovich duality for discon-
tinuous cost functions has been investigated in the paper of Ambrosio and Pratelli [4], and the use of approximate
differentiability as in Ambrosio, Gigli, Savaré [3] also proves a crucial tool.

1.1. Description of the “Optimal transportation strategy”

Fix Ω � R
d bounded throughout. The method consists in constructing a time discrete scheme as follows:

Let P(Ω) be the set of Borel probability measures on Ω , ρ0 ∈ P(Ω) given, find ρh(t, y) ∈ P([0, T ] × Ω) defined
by {

ρh(0, y) = ρ0(y),

ρh(t, y) = ρh
i (y) for t ∈ ]ih; (i + 1)h

]
, h (being the time step)

(3)

where ρh
i (y) is a solution of the minimization problem P h

i defined by

I
(
ρh

i−1, ρ
h
i

)= inf
ρ∈P(Ω)

I
(
ρh

i−1, ρ
)

with

I
(
ρh

i−1, ρ
)=

∫
Ω

F
(
ρ(y)

)
dy + h inf

γ∈Γ h
i (ρh

i−1,ρ)

∫
Ω×Ω

c

(
x − y

h

)
dγ (x, y),

Γ h
i denoting the set of probability measures that have ρh

i−1 and ρ as marginals and c is the convex cost function, the
Legendre transform of c∗ defined as in [15] by

c∗(z) = sup
w∈Rd

(
w · z − c(w)

)
. (4)

This process follows the ideas presented in the work of Otto [38] which extends the notion of gradient flow to
more general cost functions (cf. also Villani’s book [43]). This point of view is particularly simple to explain when the
cost function is the quadratic function, minimizing E(ρ) + h|ρ0−ρ

h
|2 gives formally ρ0−ρ

h
= E′(ρ) which is a discrete

version of ∂tρ = E′(ρ), meaning that ρ is a gradient flow of E. In a more general setting, we minimize the entropy
among all the densities reachable at time T by moving along geodesics induced by the cost function c.

Let us now describe the different steps of the construction of a solution to (2):
Step 1. Prove that the minimization problem has a unique solution, the optimal transport plan γ .
Step 2. Define an optimal map corresponding to this optimal measure and derive the Euler–Lagrange equation of

this minimization problem which gives formally

∇c

(
Sh

i (y) − y

h

)
= ∇(F ′(ρh

i

))
where Sh denotes the optimal map pushing ρh forward to ρh .
i i i−1
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Using ∇c∗(∇c(y)) = y, this leads to

Sh
i (y) − y = h∇c∗(∇(F ′(ρh

i

)))
. (5)

Step 3. Obtain an approximate time discrete equation and pass to the limit when the time step goes to zero:
By multiplying Eq. (5) by ρ∇ξ where ξ is a smooth test function, we obtain in the sense of distributions

ρh
i − ρh

i−1 = hdiv
(
ρh

i ∇c∗(∇(F ′(ρh
i

))))+ Correction terms. (6)

Solutions to (2) are obtained by passing to the limit in (6) when h goes to zero. The identification of A, the limit of
ρh

i ∇c∗(∇(F ′(ρh
i ))) involves a Minty–Browder argument (see for example Evans’s book [25]) based on a monotonicity

property of the gradient of the mobility function c∗. Indeed, we prove for any test function ξ(t, x) � 0 and ζ(t, x) ∈
C∞(Rd ,R

d)∫
ξ
(
A − ρ∇c∗(ζ )

)(
Dac

(
F ′(ρ)

)− ζ
)
� 0 (7)

which yields A = ρ∇c∗(Dac(F ′(ρ))) by taking ζ = Dac(F ′(ρ))+ δw, and by passing successively to the limit δ ↘ 0
and δ ↗ 0.

Formally, to obtain (7), we pass to the ε < h → 0 limit in

T∫
0

∫
Ω

ξ(t, y)ρεh(t, y)
(∇c∗(∇(F ′(ρεh(t, y)

)))− ∇c∗(ζ(t, y)
)) · (∇(F ′(ρεh(t, y)

))− ζ(t, y)
)
dy dt � 0.

This limiting process is strongly based:
1. On the displacement convexity [35] of the entropy function (ensured by the monotonicity of F and the con-

vexity of λdF (λ−d )) that yields formally the Fisher information-entropy inequality satisfied by the minimizer ρh of
problem P h

i

T∫
0

∫
Ω

ρh(t, y)∇c∗(∇(F ′(ρh(t, y)
))) · ∇(F ′(ρh(t, y)

))
dy dt �

∫
Ω

(
F
(
ρh(0, y)

)− F
(
ρh(T , y)

))
dy (8)

or its localized version

T∫
0

∫
Ω

ξ(t, y)ρh(t, y)∇c∗(∇(F ′(ρh(t, y)
))) · ∇(F ′(ρh(t, y)

))
dy dt

� −
T∫

0

∫
Ω

∇ξ(t, y)ρh(t, y) · ∇c∗(∇(F ′(ρh(t, y)
)))

F ′(ρh(t, y)
)
dy dt −

T∫
0

∫
Ω

ξ(t, y)∂tF
(
ρh(t, y)

)
dy dt.

2. On the corresponding equality satisfied formally by any smooth solution ρ̃ of (1) and obtained by multiplying
the equation by F ′(ρ̃(t, y)) and integrating by parts:∫

Ω

ρ̃(t, y)∇F ′(ρ̃(t, y)
) · ∇c∗(∇F ′(ρ̃(t, y)

))
dy dt =

∫
Ω

[
F
(
ρ0(y)

)− F
(
ρ̃(T , y)

)]
dy. (9)

These relations avoid the problem of nonlinearities in ρh since we will prove a strong convergence which allows
us to pass to the limit in the right-hand side of (8).

1.2. Assumptions on the cost function and on the entropy function

We will here give some direct consequences of the assumptions on the cost function that justify its relation with
relativistic phenomena.
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Recall that we deal with cost functions satisfying

c(z) =
{

c̃(|z|) � 0 if |z| � 1,

+∞ if |z| > 1

where c̃ ∈ C2([0,1[) is bounded and strictly convex with c̃′′(λ) > 0 and c̃′(λ) → ∞ as λ → 1. Assume also that
c̃(0) = 0 = c̃′(0); then c∗ ∈ C2(Rd).

Recall that we have the two relations ∇c(∇c∗(z)) = z and z · ∇c∗(z) = c(∇c∗(z)) + c∗(z) and note that since c∗ is
radial, ∇c∗(z) = z

|z|ω(|z|) which implies that z · ∇c∗(z) = |z||∇c∗(z)|.
Remark then that the discontinuity of c — implying its infinite part — is strongly linked with the bound on ∇c∗(z).

Indeed, since c is defined from c∗ by

c(z) = sup
w∈Rd

(z · w) − c∗(w),

the fact that c is not finite when |z| > 1 means that the supremum is not attained and then the relation z = ∇c∗(w)

cannot be matched by any w ∈ R
d . This means that |∇c∗| � 1 (and reciprocally) so we recover that the discontinuity

of the cost function is equivalent to the relativistic aspect of the transport. It also implies — since |∇c∗(z)| = ω(|z|)
is a non-decreasing function of |z| — that lim|z|→∞|∇c∗(z)| = 1.

As we said, we consider any strictly convex entropy functions satisfying F ∈ C2(R) such that F(λ)
λ

→ ∞ when
λ → ∞ and λdF (λ−d) is convex, the last condition being necessary for displacement convexity of the entropy [35].

1.3. Notations and definitions

1.3.1. Optimal transport theory
We now recall two ways to link pairs of probability measures.

Definition 1.1. Let ρ1 ∈ P(Ω) and S be a Borel map S :Ω → Ω . We say that ρ0 is the push-forward of ρ1 through S

if for any bounded Borel function ϕ∫
Ω

ϕ
(
S(x)

)
dρ1(x) =

∫
Ω

ϕ(x)dρ0(x).

Definition 1.2. Given two probability measures ρ0 and ρ1, the set of transport plans between them refers to joint
probability measures on Ω × Ω with ρ0 and ρ1 as marginals:

Γ (ρ0, ρ1) =
{
γ (x, y) ∈ P(Ω × Ω) s.t.

∫
Ω×Ω

ϕ(x)dγ (x, y) =
∫
Ω

ϕ(x)dρ0(x) and

∫
Ω×Ω

ϕ(y)dγ (x, y) =
∫
Ω

ϕ(y)dρ1(y)

}

for all Borel test functions ϕ :Ω → R.

Finally, we need to define the c-superdifferential of a function

Definition 1.3. x ∈ ∂cϕ(y) if |x − y| � 1 and for all v ∈ Ω

ϕ(v) � c(x − v) − c(x − y) + ϕ(y).

1.3.2. Definition of BV functions and of functions of BV functions
In this section, we recall definitions that can be found in the series of paper of Andreu, Caselles and Mazón, that

we will use throughout the second part of this paper and that are fundamental for the understanding of the notion of
solution to Eq. (1) which we construct.
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Some functional spaces
Throughout this paper, we will deal with BV functions, the set of ρ ∈ L1(Ω) functions such that the gradient of ρ

defined as a distribution is a vector valued Radon measure whose total variation, i.e.

‖ρ‖BV = ‖Dρ‖T V = sup

{∫
Ω

ρ div(ξ) dx where ξ ∈ C∞
0

(
Ω;R

d
)

s.t.
∣∣ξ(x)

∣∣� 1

}

is finite.
A sequence ρi of BV functions is said to converge w∗BV(Ω) toward ρ if ρi → ρ in L1

loc(Ω) and its gradient Dρi

converges toward Dρ, weak∗ as measures, i.e. against any compactly supported continuous test function.
We also need to introduce the space L1([0, T ],BV2(Ω)) where BV2(Ω) = BV(Ω) ∩ L2(Ω) with the norm

‖ρ‖BV2(Ω) = ‖ρ‖L2(Ω) + ‖Dρ‖T V contained in the space where the solution will live, L1
w([0, T ],BV(Ω)). The dif-

ference between those two spaces comes from the fact that BV(Ω) is not separable.

Definition 1.4. A function ρ belongs to L1([0, T ],BV(Ω)) if it is a limit almost everywhere in time of a sequence of
simple functions, i.e. defined by

∑
1[ti ,ti+1]ρi where ρi ∈ BV(Ω), hence Bochner integrable.

In particular C([0, T ],BV(Ω)) ⊂ L1([0, T ],BV(Ω)).

Definition 1.5. A function ρ belongs to L1([0, T ],BV2(Ω)) if it is a limit almost everywhere in time of a sequence
of simple functions, i.e. defined by

∑
1[ti ,ti+1]ρi where ρi ∈ BV2(Ω).

Whereas:

Definition 1.6. L1
w([0, T ],BV(Ω)) is the space of weakly measurable functions ρ : [0, T ] → BV(Ω) (i.e., t : [0, T ] →

〈ρ(t); ζ 〉 is measurable for every ζ ∈ BV(Ω)′), such that
∫ T

0 ‖ρ(t)‖BV(Ω) dt < ∞.

Note that, since BV(Ω) has a separable predual, it follows for ρ ∈ L1
w([0, T ],BV(Ω)), that t : [0, T ] →

‖ρ(t)‖BV(Ω) is measurable.
The first space is useful because we know its dual L1([0, T ],BV2(Ω))′ equals (see Dunford and Schwartz [24])

L∞([0, T ],BV2(Ω)′
)=

{
ρ weak∗ measurable functions, ρ : [0, T ] → BV(Ω)′2 such that

ess sup
[0,T ]

sup
‖ξ‖BV2(Ω)�1

∣∣∣∣
∫
Ω

ρξ

∣∣∣∣< ∞
}

and we define the duality bracket for ρ ∈ L1([0, T ],BV2(Ω)) and ρ̃ ∈ L∞([0, T ],BV2(Ω)′) by

〈ρ; ρ̃〉 =
T∫

0

〈
ρ(t); ρ̃(t)

〉
dt.

As a matter of fact, the solution will live in L∞([0, T ] × Ω) ∩ L1
w([0, T ],BV(Ω)) and the equation will hold in

the sense of distributions, which leads to one of the principal difficulties of the third step of the proof, namely that the
solution cannot be taken as a test function to obtain (9).

Functions defined on BV
As we will see, Dρ, the gradient of the BV function ρ can be decomposed as the sum of its absolute continuous

part Dacρ (with respect to the Lebesgue measure), also called the Radon–Nikodym derivative of Dρ (which coincides
with the approximate derivative) of ρ, and its singular part Dsρ, divided into a jump part Djρ and a Cantor part Dcρ.
So we write

Dρ = Dacρ + Dsρ = Dacρ + Djρ + Dcρ.
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Moreover, we will need to define the composition of certain functions with BV functions and their derivatives. For
example, if f (x,λ, ξ) is an integrand depending on the space variable x, on λ ∈ R and on the vector field ξ , we will
define the functional F (ρ,Dρ) of a BV function ρ as in the paper of Dal Maso [22] by

F (ρ,Dρ) =
T∫

0

∫
Ω

f
(
x,ρ,Dacρ

)
dt dx +

∫
Ω

f 0
(

x,ρ,
Dρ

|Dρ|
)∣∣Dcρ

∣∣

+
∫
Jρ

( ρ+(x)∫
ρ−(x)

f 0(x, s, νρ(x)
)
ds

)
dHd−1(x) (10)

where f 0 is the recession function equal to limt→0 tf (x,λ,
ξ
t
), Jρ is the set of approximate jump points of ρ, νρ =

Dρ/|Dρ| the Radon–Nikodym derivative of Dρ with respect to its total variation |Dρ|. Indeed with those definition,
the jump part of the singular part of Dρ can be written

Djρ = (ρ+ − ρ−)νρ Hd−1
|Jρ

where Hd−1 is the d − 1 Hausdorff measure on R
d .

For example, in the theorem cited below, there is in fact no ambiguity in the right-hand side term of Eq. (14) since
the corresponding recession function is zero.

We can also compute g0 in the case where f = g(λ, ξ) = λξ · ∇c∗(ξ). We obtain easily using the properties of the
cost function that

lim
t→0

tf

(
x,λ,

ξ

t

)
= lim

t→0
λ|ξ |

∣∣∣∣∇c∗
(

ξ

t

)∣∣∣∣= λ|ξ |. (11)

Finally, we also need the result of De Cicco, Fusco and Verde about the L1-lower semi-continuity in BV .

Theorem 1.7 (L1-lower semi-continuity in BV). (See [23].) Let Ω be an open set of R
d and h :Ω ×R×R

d → [0,∞)

a locally bounded Caratheodory function (that is, measurable with respect to x in Ω for every (λ, ξ) ∈ R × R
d , and

continuous with respect to (λ, ξ) for almost every x in Ω) such that for every (λ, ξ) ∈ R × R
d , the function h(·, λ, ξ)

is of class C1(Ω). Let us assume that:

(i) h(x,λ, ·) is convex in R
d for every (x,λ) ∈ Ω × R;

(ii) h(x, ·, ξ) is continuous in R for every (x, ξ) ∈ Ω × R
d .

Then the functional H defined by

H(ρ,Dρ) =
T∫

0

∫
Ω

h
(
x,ρ,Dacρ

)
dt dx +

∫
Ω

h0
(

x,ρ,
Dρ

|Dρ|
)∣∣Dcρ

∣∣+ ∫
Jρ

( ρ+(x)∫
ρ−(x)

h0(x, s, νρ(x)
)
ds

)
dHd−1(x)

is lower semi-continuous with respect to L1(Ω) convergence.

This extension of the functional F to BV functions allows us to extend the definition of
T∫

0

∫
Ω

DF ′(ρ) · ∇c∗(D(F ′(ρ)
))

to ρ ∈ L1([0, T ],BV(Ω)) by decomposing ξ · ∇c∗(ξ) = c(∇c∗(ξ)) + c∗(ξ) and by applying Theorem 1.7 to c∗(ξ).

Definition of the measure (z,Dρ)

There is another way of defining (DF ′(ρ);∇c∗(D(F ′(ρ)))), for ρ ∈ L∞([0, T ] × Ω) and div(∇c∗(D(F ′(ρ)))) ∈
L1([0, T ] × Ω) which is inspired by [6]. But in this present work, this is not relevant since the last property is not
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satisfied even at the time discrete level. This make the notion of entropic solution more difficult to introduce in this
framework and this property and the uniqueness of solution coming from it is not addressed here.

However, we define (z;Dρ) as a distribution when z ∈ L∞([0, T ] × Ω;R
d), ρ ∈ L1([0, T ],BV2(Ω)) ∩

L∞([0, T ] × Ω), when div z = B in the sense of distributions, B is the weak∗ limit of a bounded sequence Bh

in the dual of L1([0, T ],BV2(Ω)) and z is the weak∗ limit of a bounded sequence zh. Indeed, for any test function ξ ,
we write

〈
ξ ; (z;Dρ)

〉= −
T∫

0

〈B;ρξ 〉L1([0,T ],BV2(Ω))′;L1([0,T ],BV2(Ω)) dt −
T∫

0

∫
Ω

zρ∇ξ dt dy.

But if z is the weak∗ limit of a bounded sequence zh, we still have to prove that

〈
ξ ; (z;Dρ)

〉= lim
h→0

〈
ξ ; (zh;Dρ

)〉= lim
h→0

(
−

T∫
0

∫
Ω

div zhρξ dt dy −
T∫

0

∫
Ω

zhρ∇ξ dt dy

)
.

For that to be true, we need that div zh = Bh for h and t fixed in L1(Ω). Indeed, in this case, we can write

〈
ξ ; (z;Dρ)

〉= −
T∫

0

〈B;ρξ 〉L1([0,T ],BV2(Ω))′;L1([0,T ],BV2(Ω)) dt dy −
T∫

0

∫
Ω

zρ∇ξ dt dy

= − lim
h→0

T∫
0

∫
Ω

Bhρξ dt dy −
T∫

0

∫
Ω

zρ∇ξ dt dy

= − lim
h→0

T∫
0

∫
Ω

div zhρξ dt dy −
T∫

0

∫
Ω

zρ∇ξ dt dy

= − lim
h→0

( T∫
0

∫
Ω

div zhρξ dt dy +
T∫

0

∫
Ω

zhρ∇ξ dt dy

)
.

Moreover, (z;Dρ) is a Radon measure since by Theorem 1.5 in [6], we have

〈
ξ ; (z;Dρ)

〉= lim
h→0

[
−

T∫
0

∫
Ω

div zhρξ dt dy −
T∫

0

∫
Ω

zhρ∇ξ dt dy

]

� ‖z‖L∞([0,T ]×Ω)‖ξ‖L∞([0,T ]×Ω)

T∫
0

∫
Ω

|Dρ|dy dt.

We define the measure (z;Dsρ) as the subtraction(
z;Dsρ

)= (z;Dρ) − zDacρL = lim
h→0

(
zh;Dsρ

)
where L denotes the Lebesgue measure. It is proven in [31] that (zh;Dsρ) is a singular measure and that∣∣(zh;Dsρ

)∣∣� ∥∥zh
∥∥

L∞(Ω)

∣∣Dsρ
∣∣.

Then we also have when ξ � 0

〈
ξ ; (z;Dsρ

)〉
� ‖z‖L∞([0,T ]×Ω)

T∫
0

∫
Ω

ξ
∣∣Dsρ

∣∣dy dt. (12)



R.J. McCann, M. Puel / Ann. I. H. Poincaré – AN 26 (2009) 2539–2580 2547
1.4. Statement of the result

Throughout this paper, we assume Ω � R
d to be a bounded convex domain, and 0 < m < ρ0 < M which implies∫

Ω
F(ρ0) < ∞. The support sptμ of a measure μ on R

d refers to the smallest closed set of full mass. Let us now state
our main result.

Theorem 1.8. Let Ω � R
d be a bounded convex domain, and ρ0 ∈ P(Ω) satisfy 0 < m < ρ0 < M . Let c : Rd →

[0,∞] be a cost function on R
d given by c(z) = c̃(|z|), where c̃ ∈ C0([0,1]) ∩ C2([0,1[) with |∇c(z)| → ∞ as

|z| → 1, c̃(0) = 0 = c̃′(0) and c̃′′(λ) > 0 on [0,1[. Let F ∈ C2(R) be a convex function such that F(λ)
λ

→ ∞ when
λ → ∞ and λdF (λ−d) is convex.

(i) Characterization of the support of the optimal measure: Finite speed of propagation.
If γ h

i is the optimal measure for the minimization problem (P h
i ) with second marginal ρh

i , then ρih ∈ BV(Ω) and

sptγ h
i ⊂

{
(x, y)

∣∣ |x − y|
h

< 1

}
∪ Zh

i with γ h
i

(
Zh

i

)= 0.

(ii) Euler–Lagrange equation: A discrete scheme.
There exists a one-to-one map Sh

i ∈ L∞(Ω;Ω) defined Lebesgue-a.e. by

Sh
i (y) = y + h∇c∗(Dac

(
F ′(ρh

i (y)
)))

(13)

such that γ h
i = (Sh

i × id)#ρ
h
i and Dac(F ′(ρh

i (y))) = F ′′(ρh
i (y))Dacρh

i .
(iii) Convergence of the measure ρh.

Let ρh be the piecewise constant function defined from ρh
i by (3). As h → 0, a subsequence of ρh converges

strongly in L1([0, T ] × Ω) towards ρ ∈ L∞([0, T ] × Ω) ∩ L1
w([0, T ],BV(Ω)) and Dρh ⇀ Dρ in the sense of

measures.
(iv) Limiting equation.

Up to a subsequence, the limit of ρh, ρ belongs to L1
w([0, T ],BV(Ω)) ∩ L∞([0, T ] × Ω) and satisfies in the

sense of distributions

∂tρ = div
(
ρ∇c∗(Dac

(
F ′(ρ)

)))
. (14)

Let us now make some remarks about this theorem.

• The first point of the theorem gives the finite speed of propagation, indeed, since in a time interval of length h, the
displacement is bounded by h, the speed of propagation is bounded by 1. This property characterizes a relativistic
transport.

• In (13), since F ∈ C2(]0,1[) and ρh is bounded from below, F ′(ρh) belongs to BV(Ω) and the chain rule for BV
functions gives Dac(F ′(ρh

i (y))) = F ′′(ρh
i (y))Dacρh

i .
• The second point of this theorem is the most important one. First, it claims the existence of an optimal map for

the minimization problem P h
i and it gives the Euler–Lagrange equation. The existence of an optimal map for

a discontinuous cost function cannot be obtained by the same argument as for a smooth cost function. Indeed,
the proof of the existence of a map for a smooth test function by the Kantorovich duality (see Gangbo and
McCann [28], Villani [43]) is based on a uniform Lipschitz bound on the potential function given by the module
of continuity of the cost function. More precisely, let γopt be the optimal measure for the minimization problem,
the Kantorovich duality gives∫

Ω×Ω

hc

(
x − y

h

)
dγopt(x, y) =

∫
Ω

φ(x)dρi−1(x) +
∫
Ω

ψ(y)dρi(y),

where the potential functions ψ and φ are linked by the following relation

hc

(
x − y

)
− φ(x) − ψ(y) � 0 ∀(x, y) ∈ Ω × Ω, (15)
h
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which becomes

hc

(
x − y

h

)
− φ(x) − ψ(y) = 0 ∀(x, y) ∈ sptγopt. (16)

When the cost function c is smooth, the relations (15)–(16) imply that the potential function ψ is Lipschitz —
and then differentiable — and then it implies also the equality between the gradients

∇ψ(y) = ∇c

(
x − y

h

)
(17)

that gives directly the shape of the optimal map x = S(y) = y + h∇c∗(∇ψ(y)) since ∇c∗ = (∇c)−1. In this
present work, the potential function will not be Lipschitz anymore and then we have to find another argument to
prove its almost everywhere differentiability. Moreover, to write an equality like (17), we need that the support of
the optimal measure γ is — up to a negligible set — included in {(x, y) such that |x−y|

h
< 1} to be able to define

the gradient of c.
So we introduce a mollified problem and pass to the limit. The sequence ρh will not be Lipschitz but will be in
BV(Ω) which gives only the almost everywhere approximate differentiability. As Ambrosio, Gigli and Savaré
showed in Theorem 6.4.2 [3], this is sufficient to define an optimal map. The strategy of cost mollification has
often been used, for example in proof of the existence of a map for (non-strictly) convex cost via decomposition
on one-dimensional rays by Ambrosio and Pratelli [4] (see also [26]).
Note that the regularity results for the optimal map of Ma, Trudinger and Wang [34] and Loeper [33] do not apply
for this sign of cost function.
Note that the shape of the Euler–Lagrange equation involves ∇c∗ and then we recover the finite speed of propa-
gation (the relativistic effect) since ∇c∗ is bounded.

• The proof is strongly based on a Fisher information-entropy inequality which thanks to the lower bound on the
density gives the L1([0, T ],BV(Ω)) bound on the solution.

• To pass to the limit when h goes to zero, we want to use a monotonicity argument (see Otto [38], Lions’s book [32]
or Evan’s book [25]) to identify the nonlinear term. The identification of the weak limit of the flux is based on (8)
and on the entropy equation (9) where in fact we would like to use the solution as a test function in the limiting
equation. Then we have to define all terms of those relations very carefully and find the most precise framework
in which the equation holds. For that purpose, we need the generalization of functionals to BV introduced in the
previous paragraph and the introduction of the distribution (z;Dρ) because in one sense, it replaces the product
div zρ when ρ ∈ BV(Ω) and z ∈ L∞(Ω).

• Note that the correction terms in (6) prevent the divergence term from being L1 which means that the time discrete
function is less regular than in Andreu, Caselles and Mazón [12] even if we recover the expected regularity in
the continuous time limit. To avoid this difficulty, we introduce a different approximation of the right-hand side
which will be in L1 which is a crucial point in the definition of the distribution (z;Dρ).

• The notion of entropic solution and the uniqueness [12] of solution in the class of L1
w([0, T ],BV2(Ω)) is not

available here because of the approximation in the discrete in time equation and is not addressed in this paper.
• Particular case: Dimension 1.

In dimension 1, this problem becomes radically simpler (see [18]). Let ρ ∈ P(Ω), we can extend it to R and
following Villani’s notations in [43], we introduce cumulative distribution functions

l(x) =
x∫

−∞
dρ = dρ

[
(−∞, x]].

The function l is right-continuous, non-decreasing, and has limits l(−∞) = 0 and l(+∞) = 1. Then we define
the generalized inverse of l on [0,1]

l−1(t) = inf
{
x ∈ R s.t. l(x) > t

}
.

In the particular case of dimension 1, the optimal transport plan and the optimal map does not depend on the
convex cost function as soon as c(x, y) = c(|x − y|) (cf. [36]). The optimal transport plan is given by

γi = (
l−1 × l−1) dH1

i−1 i #
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where li−1 is the cumulative distribution function for ρi−1 and li is the cumulative distribution function for ρi .
The optimal map is given — when ρi−1 does not give mass to points — by

ρi−1 = (
l−1
i−1 ◦ li

)
#ρi.

Then the Euler–Lagrange equation given by (5) gives directly

l−1
i−1 ◦ li (y) − y = h∇c∗(∇(F ′(l′i (y)

)))
or

l−1
i−1(x) − l−1

i (x)

h
= ∇c∗(∇(F ′(l′i(l−1

i (x)
))))

= ∇c∗
(

∇
(

F ′
(

1

(l−1
i )′(li ◦ l−1

i (x))

)))
= ∇c∗

(
∇
(

F ′
(

1

(l−1
i )′(x)

)))

which corresponds to an implicit Euler scheme for l−1.

In the following section, we prove the existence of the infimum for problem (Pi (h)). In Section 3, we prove
some optimal transport theory (construction of an optimal map corresponding to the optimal measure and study of
its properties) and we derive the Euler–Lagrange equation of the minimization problem (5). Then, in Section 4, we
construct the piecewise constant function ρh which satisfies a time discrete version of (1). Finally, in the last section,
we pass to the limit when the time step goes to zero, we use an argument of monotonicity to identify the limiting
equation with Eq. (1).

2. Existence of solution to the minimization problem

Let us first study the minimization problem (P ) = (P 1
1 ) for the first step when h = 1 (we drop the superscript h = 1

and subscript i = 1 in this case):
ρ0 ∈ P(Ω) given, find ρ1 ∈ P(Ω) such that

I (ρ0, ρ1) = inf
ρ∈P(Ω)

I (ρ0, ρ)

with

I (ρ0, ρ) =
∫
Ω

F ′(ρ(y)
)
dy + inf

γ∈Γ (ρ0,ρ)

∫
Ω×Ω

c(x − y)dγ (x, y),

Γ (ρ0, ρ) denoting the set of measures that have ρ0 and ρ as marginals.

Notations. We will use the following notations: given γ ∈ Γ (ρ0, ρ),

E(ρ) =
∫
Ω

F
(
ρ(y)

)
dy =: Ẽ(γ ), when seen as a function of γ,

W̃ (γ ) =
∫

c(x − y)dγ (x, y), and

Wc(ρ0, ρ) = inf
γ∈Γ (ρ0,ρ)

W̃ (γ ).

Following Agueh [1], we can prove that

Proposition 2.1. Recall that we assume m < ρ0 < M .

(i) There exists a unique minimum ρR
1 satisfying

I
(
ρ0, ρ

R
1

)= inf
ρ<R

I (ρ0, ρ).

(ii) There is a maximum principle that insures that m < ρR
1 < M when R is chosen such that 2M < R.
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Proof. Let us denote IR = infρ<R I (ρ0, ρ).
(i) To prove the existence of a minimizer, we use that IR � I (ρ0, ρ0) = E(ρ0) < ∞ and thanks to Jensen’s inequal-

ity, since
∫
Ω

ρ(y)dy = 1, we can write that IR � infρ E(ρ) � |Ω|F( 1
|Ω| ). Thus IR is finite. Let ρ(n) be a minimizing

sequence. Since ρ(n) < R, the sequence is bounded in L∞(Ω) and since Ω is bounded, up to a subsequence, ρ(n) con-
verges in L1(Ω)′ towards ρR

1 ∈ L∞(Ω) satisfying ρR
1 � R. Because of the lower semi-continuity of I (ρ), we obtain

I
(
ρ0, ρ

R
1

)
� lim

n→∞ inf I
(
ρ0, ρ

(n)
)
� IR � I

(
ρ0, ρ

R
1

)
.

The uniqueness comes from the strict convexity of I . Note that

E
(
ρR

1

)
� I

(
ρ0, ρ

R
1

)
� I (ρ0, ρ0) = E(ρ0).

(ii) To prove the maximum principle, we argue by contradiction to prove that m < ρR
1 < M . Note that it implies also

that ρR
1 does not depend on R. Let us do the argument for the upper bound, the same proof leads to the lower bound.

For that, assume that H = {x | such that ρR
1 > M} has a strictly positive Lebesgue measure; we can then construct

a new measure that would be a better measure, which gives us a contradiction. Starting from γopt, the optimal measure
associated to ρR

1 , let us construct a sequence of measures γ η with second marginal ρη depending on η, that will make
the cost decrease proportionately to η while the entropy increases proportionately to η2. Then for η small enough, the
total I (ρ0, ρ

η) will be smaller than I (ρ0, ρ
R
1 ).

To be precise, we recall the construction of this sequence which follows the argument made by Martial Agueh
in [1].

Note that γopt(H
c × H) > 0 where Hc = R

d \ H ; otherwise

M|H | <
∫
H

ρR
1 (y) dy = γopt

(
R

d × H
)= γopt(H × H) � γopt

(
H × R

d
)=

∫
H

ρ0(x) dx � M|H |.

On Hc × H , for a part of the measure depending on η, we will leave x in place instead of sending x to y, i.e. we
define the action of the sequence γ η against a test function ξ by∫

Rd×Rd

ξ(x, y) dγ η(x, y) =
∫

Rd×Rd

ξ(x, y) dγopt(x, y) + η

∫
Hc×H

(
ξ(x, x) − ξ(x, y)

)
dγopt(x, y).

The corresponding marginal ρη can also be defined as ρR
1 +η(v0 −v1) where v0 is the first marginal of ν = γopt1Hc×H ,

the restriction of γopt to the set Hc × H (respectively, v1 is the second marginal of ν). Since ν � γopt, we have

• 0 � v0 � M a.e., and 0 � v1 � R a.e.,

• v0 = 0 on H and v1 = 0 on Hc. (18)

Then 0 � ρη � M + ηM � R on Hc and M − ηv1 � ρη � R on H , so we obtain 0 � ρη � R (η is chosen such that
ηR < M and 2M � R). Moreover,∫

Ω

ρη(y) dy = 1 + η
(
γopt

(
Hc × H

)− γopt
(
Hc × H

))= 1.

So we effectively have constructed a new measure γ η belonging to Γ (ρ0, ρ
η) with ρη � R. We still have to prove

that I (ρ0, ρ
η) < I (ρ0, ρ

R
1 ). For that, we will compute

Wc

(
ρ0, ρ

η
)− Wc

(
ρ0, ρ

R
1

)
�

∫
Rd×Rd

c(x − y)dγ η(x, y) −
∫

Rd×Rd

c(x − y)dγopt(x, y)

= −η

∫
c

c(x − y)dγopt(x, y).
H ×H
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This means that with the new measure, we have managed to lower the cost by a quantity of order η. But the entropy
has to increase: let us check how much by computing∫

Ω

(
F
(
ρη(y)

)− F
(
ρR

1 (y)
))

dy.

Using the convex property of F and (18), we decompose∫
Ω

(
F
(
ρη(y)

)− F
(
ρR

1 (y)
))

dy =
∫
Hc

(
F
(
ρη(y)

)− F
(
ρR

1 (y)
))

dy +
∫
H

(
F
(
ρη(y)

)− F
(
ρR

1 (y)
))

dy

� η

[ ∫
Hc

F ′(ρR
1 (y) + ηv0(y)

)
v0(y) dy −

∫
H

F ′(ρR
1 (y) − ηv1(y)

)
v1(y) dy

]

� η

[ ∫
Hc

F ′(M + ηv0(y)
)
v0(y) dy −

∫
H

F ′(M − ηv1(y)
)
v1(y) dy

]

since ρR
1 (y) � M if y ∈ Hc and ρR

1 (y) � M if y ∈ H , and F ′ is non-decreasing. But also∫
Hc

F ′(M + ηv0(y)
)
v0(y) dy −

∫
H

F ′(M − ηv1(y)
)
v1(y) dy

=
∫

Hc×H

(
F ′(M + ηv0(x)

)− F ′(M − ηv1(y)
))

dγopt(x, y)

� η sup|F ′′| sup
Ω

|v0 − v1|.

Since F is C2(R+), the entropy increases by a quantity of order η2, which means that for η small enough, I (ρ0, ρ
η) <

I (ρ0, ρ
R
1 ). This contradiction establishes Proposition 2.1. �

3. Optimal transport theory: a time discrete equation

In this work we deal with a convex cost function which may be discontinuous and takes infinity as a value.
As we said in the Introduction, for this kind of cost function, we cannot apply the classical result of Gangbo and
McCann [28,29] or Caffarelli [17] to define an optimal map associated to the optimal measure involved in initial time
step P 1

0 . To construct a map in the present case, we will use the properties of the optimal map for a mollified case
using strongly the double minimization process (combining the cost minimization with respect to γ for a fixed ρ with
the entropy minimization with respect to ρ). Indeed, note that for given ρ0, it is easy to construct ρ1 such that the
value of

Wc(ρ0, ρ1) = inf
γ∈Γ (ρ0,ρ1)

∫
c(x − y)dγ (x, y),

the double minimization always produces ρ1 for which the infimum is finite.

3.1. Previous results

We recall in this section Propositions 2.6 and 2.7 of the paper of M. Agueh [1] (see also [35]) and a result due to
D. Cordero-Erausquin [21] and F. Otto [38] also quoted in [1] that we will use for the mollified approximation of P .
L. Ambrosio, Gigli, and G. Savaré’s Theorem 6.2.7 [3] could also be used.

Proposition 3.1. (See [21,38].) Let ρ0, ρ1 ∈ P(Ω) and assume that c : Rd → [0,∞[ is strictly convex and satisfies
c, c∗ ∈ C2(Rd). Denote by S, the c-optimal map that pushes ρ1 forward to ρ0, and define the interpolant map St , and
the interpolant measure μ1−t , by

St = (1 − t)Id + tS and μ1−t = (St )#ρ1,

for t ∈ [0,1]. Then
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(i) St is injective for t < 1, and μ1−t is absolutely continuous with respect to Lebesgue.

Moreover, there exists a subset B of Ω , of full measure for μ1 = ρ1(y) dy, such that, for y ∈ B and t ∈ [0,1],

(ii) ∇S(y) is diagonalizable with positive eigenvalues.
(iii) The pointwise Jacobian det∇S satisfies

0 �= ρ1(y) = ρ1−t

(
St (y)

)
det
[
(1 − t)Id + t∇S(y)

]
, (19)

where ρ1−t is the density function of μ1−t .

In addition, if ρ1 > 0 a.e., then:

(iv) The pointwise divergence divS is integrable on Ω , and∫
Ω

div
(
S(y) − y

)
ξ(y) dy � −

∫
Ω

〈
S(y) − y;∇ξ

〉
dy,

for ξ � 0 in C∞
c (Rd).

Proposition 3.2 (Optimal map for smooth cost function). (See [1].) Let ρ0 ∈ P(Ω) be such that m � ρ0 � M a.e.
Assume that F : [0,∞[ → R is strictly convex, and satisfies F ∈ C2((0,∞)), and c : Rd → [0,∞[ is strictly convex,
of class C1 such that 0 = c(0) < c(|z|) for |z| �= 0 and c coercive, i.e. lim|z|→∞ c(z) = ∞. If ρ1 denotes the minimizer
for (P 1

0 ), then the following holds:∫
Ω×Ω

∇c(x − y) · ξ(y) dγ (x, y) +
∫
Ω

PF

(
ρ1(y)

)
div ξ(y) dy = 0,

for ξ ∈ C∞
c (Ω;R

d); here PF (λ) = λF ′(λ) − F(λ) for λ ∈ (0,∞), and γ is the c-optimal measure in Γ (ρ0, ρ1).
Moreover,

(i) PF (ρ1) ∈ W 1,∞(Ω).
(ii) If S is the c-optimal map that pushes ρ1 forward to ρ0, then

S(y) − y = ∇c∗[∇(F ′(ρ1(y)
))]

, (20)

for a.e. y ∈ Ω , and for ξ ∈ C2(Ω),∣∣∣∣
∫
Ω

(
ρ1(y) − ρ0(y)

)
ξ(y) dy +

∫
Ω

ρ1(y)∇c∗[∇(F ′(ρ1(y)
))] · ∇ξ(y) dy

∣∣∣∣
� 1

2
sup
x∈Ω

∣∣D2ξ(x)
∣∣ ∫
Ω×Ω

|x − y|2 dγ (x, y).

Proposition 3.3 (Displacement convexity of energy (above-tangent form)). (See [1].) Let ρ0, ρ1 ∈ P(Ω) be density
functions of two Borel probability measures μ0 and μ1 on R

d , respectively. Let c : Rd → [0,∞[ be strictly convex,
such that c, c∗ ∈ C2(Rd). Let F : [0,∞) → R be differentiable on ]0,∞[, such that F(0) = 0, and λ → λdF (λ−d) be
convex non-increasing on ]0,∞[. Then, the internal energy inequality holds, i.e.∫

Ω

F
(
ρ0(y)

)
dy −

∫
Ω

F
(
ρ1(y)

)
dy � −

∫
Ω

PF

(
ρ1(y)

)
div
(
S(y) − y

)
dy.

In addition, if PF (ρ1) ∈ W 1,∞(Ω) and ρ1 > 0 a.e., then∫
Ω

F
(
ρ0(y)

)
dy −

∫
Ω

F
(
ρ1(y)

)
dy �

∫
Ω

∇[F ′(ρ1(y)
)] · (S(y) − y

)
ρ1(y) dy. (21)
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3.2. Construction of an optimal map for (P 1
0 ): a mollification process

Definition of the mollified problem
Recall that the hemispherical cost

c(z) =
{

1 −√
1 − |z|2 where |z| � 1,

+∞ where |z| > 1,

is the motivating example, whose Legendre transform (4) is given by the hyperboloid

c∗(z) =
√

1 + |z|2 − 1.

In a more general setting, we deal with radial cost functions c : Rd → [0,∞] satisfying c(z) = c̃(|z|) where c̃ ∈
C2([0,1[) ∩ C0([0,1]) satisfies c̃′′(λ) > 0 on [0,1[ and c̃(0) = 0 = c̃′(0) and |∇c(z)| → ∞ as |z| → 1. Let mollify
those general cost functions c by the Yosida regularization [16]

cε(z) = inf
w∈Rd

(
c(z − w) + |w|2

2ε

)
.

Note that from w = 0 we obtain cε(z) � c(z). In fact, the Legendre transform cε∗ of this mollified cost is a strict
convexification of c∗, namely

cε∗(z) = c∗(z) + ε

2
|z|2.

Note that the mollified cε is finite and convex, hence continuous.
Here, we recall an argument of [1] to justify the regularity of cε . The function cε∗(z) is a C2(Rd) function non-

negative and strictly convex and ∇cε = (∇cε∗)−1 and then cε belongs to C1(Rd) and the function

z → cof(D2cε∗[∇cε(z)])
det(D2cε∗[∇cε(z)]) := D2cε(z)

is well defined and is continuous on R
d . Then cε ∈ C2(Rd).

Consider the sequence of approximate minimization problems (P ε).
Find γ ε with first marginal ρ0 and second marginal ρε such that

I ε
(
ρ0, ρ

ε
)= Ĩ ε

(
γ ε
)= min

γ∈P0(Ω×Ω)

(
Ẽ(γ ) + W̃cε (γ )

)
where P0(Ω ×Ω) = {γ such that

∫
Ω×Ω

ϕ(x)dγ (x, y) = ∫
Ω

ϕ(x)dρ0(x)} i.e. the probabilities with first marginal ρ0.
Here ρ0 represents any ρi and is assumed to satisfy m � ρ0 � M .
The mollification allows us to apply the previous results quoted above to this sequence of problems since cε has

the regularity required.

Lemma 3.1 (The Kantorovich duality for the mollified problem). For ε > 0 fixed, we have∫
Ω×Ω

cε(x − y)dγ ε(x, y) =
∫
Ω

φε(x) dρ0(x) +
∫
Ω

ψε(y) dρε(y) (22)

where the potential ψε = −F ′(ρε) and φε is the corresponding c-transform given by

φε(x) = inf
y∈Ω

(
cε(x − y) − ψε(y)

)
. (23)

Proof. First recall the Kantorovich duality theory for smooth cost described in Rachev and Rüschendorf [39] which
gives that

inf
γ∈Γ (ρε

0 ,ρε)

∫
Ω×Ω

cε(x − y)dγ (x, y) = sup
φ,ψ∈Tc

∫
Ω

φ(x)dρ0(x) +
∫
Ω

ψ(y)dρε(y)

= sup
ψ,ψc

∫
ψc(x)dρ0(x) +

∫
ψ(y)dρε(y)
Ω Ω
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where φ,ψ ∈ Tc mean that ψ(y)+φ(x) � cε(x−y) for all x, y ∈ Ω , and ψc is given by (23). Moreover the supremum
is attained. In our study, since ρε is the second marginal corresponding to the optimal measure of the complete
minimization problem P ε , the Euler–Lagrange equation (20) for this problem is (see [1])

Sε(y) − y = ∇cε∗(∇(F ′(ρε(y)
)))

where Sε(y) is the optimal map associated to the potential ψε by

Sε(y) − y = −∇cε∗(∇ψε(y)
)
.

This means that up to a constant (that we can fix to be zero without loss of generality since
∫
Ω

ρε(y) dy = 1), we have

ψε(y) = −F ′(ρε(y)
)
. �

Lemma 3.2 (Existence of a limiting measure).

(i) Up to a subsequence, γ ε converges, as ε → 0, towards the probability γ ∞ in C0(Ω)′.
(ii) The support of the limiting measure γ ∞ is included in �1 = {(x, y) such that |x − y| � 1}.

(iii) Identification of the limiting measure:
The limiting measure is the optimal measure for the initial problem, i.e.

γ ∞ = γopt or Ĩ
(
γ ∞)= min

γ∈P0(Ω×Ω)

(
Ẽ(γ ) + W̃c(γ )

)
.

Proof. (i) Since γ ε is a sequence of probability measures, it is relatively compact and converges up to a subsequence
in C0(Ω)′.

(ii) Let us define Nδ = {(x, y) ∈ Ω × Ω such that |x − y| � 1 + δ}, we claim that γ ε(Nδ) → 0 when ε → 0. Then
we obtain that γ ∞(Nδ) = 0 for any δ > 0, hence sptγ ∞ ⊂ �1.

Note that,

C � E(ρ0) � Ĩ ε
(
γ ε
)
�
∫
Nδ

cε(x − y)dγ ε(x, y) � c̃ε(1 + δ)γ ε(Nδ).

Since c̃ε(1 + δ) → ∞ when ε → 0, the previous inequality implies that γ ε(Nδ) → 0 when ε → 0 and then (ii) holds.
(iii) First of all, we prove that Ĩ ε(γ ε) → Ĩ (γ ∞).
Let us first prove that

lim sup
ε→0

(
Ĩ
(
γ ∞)− Ĩ ε

(
γ ε
))

� 0. (24)

The lower semi-continuity of the entropy leads to the first part of the inequality

Ẽ
(
γ ∞)� lim inf

ε→0
Ẽ
(
γ ε
)
.

For the part involving the cost function, we use the fact that cε � 0 and that the support of the limiting measure γ ∞ is
a subset of �1. Indeed, it leads to∫

Ω×Ω

c(x − y)dγ ∞(x, y) −
∫

Ω×Ω

cε(x − y)dγ ε(x, y)

�
∫
�1

[
c(x − y)dγ ∞(x, y) − cε(x − y)dγ ε(x, y)

]

=
∫
�1

(
c(x − y) − cε(x − y)

)
dγ ε(x, y) +

∫
�1

c(x − y)
(
dγ ∞(x, y) − dγ ε(x, y)

)
.

Up to the introduction of a C0(Ω) extension of the restriction of c to the unit ball, since the sequence γ ε → γ ∞ in
the sense of measures (or in C0(Ω)′), the second term goes to zero.
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To prove that the first term goes to zero, we will prove that∥∥c(z) − cε(z)
∥∥

L∞({|z|�1}) � M(ε) (25)

where M(ε) → 0 when ε → 0.
Indeed, for any t ∈ [0,1] and t > θ > 0

c̃(t) − c̃(t − θ) � c̃(1) − c̃(1 − θ)

since for θ fixed, t → c̃(t) − c̃(t − θ) is a non-decreasing function. Note also that

c(z) − cε(z) = sup
w∈B(z,1)

(
c(z) − c̃

(|z − w|)− |w|2
2ε

)
= sup

w∈B(z,1)

(
c̃
(|z|)− c̃

(|z| − |w|)− |w|2
2ε

)
.

Since for any w ∈ B(z,1),

c(z) − c̃
(|z| − |w|)− |w|2

2ε
� c̃(1) − c̃

(
1 − |w|)− |w|2

2ε
� c̃(1) − c̃ε(1),

we finally obtain

c(z) − cε(z) � c̃(1) − c̃ε(1).

By taking M(ε) = c̃(1) − c̃ε(1), (25) holds.
Since γ ε(�1) � 1, we have∫

�1

(
c(x − y) − cε(x − y)

)
dγ ε(x, y) � M(ε)

and then (24) holds.
Let us now prove the other inequality

Ĩ
(
γ ∞)� lim sup

ε→0
Ĩ
(
γ ε
)
.

Recall that we have the following inequalities,

Ĩ ε
(
γ ε
)
� Ĩ ε(γ ) � Ĩ (γ )

for any γ which has ρ0 as first marginal, including γ = γ ∞.
Thus, we obtain the expected inequality since

lim sup
ε→0

Ĩ ε
(
γ ε
)
� Ĩ (γ )

for any measure γ which has ρ0 as first marginal and in particular for γ ∞.
To conclude the proof of (iii), we use the last inequality to obtain that

Ẽ
(
γ ∞)+

∫
Ω×Ω

c(x − y)dγ ∞(x, y) � inf
γ

[
Ẽ(γ ) +

∫
Ω×Ω

c(x − y)dγ (x, y)

]

and then γ ∞ is equal to γopt, the minimizer for the initial problem (P ) and ρ∞ = ρ1. �
Lemma 3.3 (The Kantorovich duality for the limiting problem).

(i) There exist φ∞ ∈ L∞(Ω) and ψ∞ ∈ L∞(Ω) ∩ BV(Ω) such that, up to a subsequence, the potentials (ψε,φε)

from (26)–(27) satisfy

ψε ⇀ ψ∞ weak in BV(Ω), strong in L1(Ω),

ρε ⇀ ρ∞ = ρ1 = (F ∗)′
(−ψ∞) weak in BV(Ω), strong in L1(Ω),

φε ⇀ φ∞ weak∗ in L∞(Ω) = L1(Ω)′.
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(ii) The Kantorovich duality holds for the limiting problem∫
Ω×Ω

c(x − y)dγopt(x, y) =
∫
Ω

φ∞(x) dρ0(x) +
∫
Ω

ψ∞(y) dρ1(y). (26)

Moreover,

c(x − y) − φ∞(x) − ψ∞(y) � 0 (27)

almost everywhere on Ω × Ω and the equality holds γopt-almost everywhere.

Proof. (i) Since for all ε, ψε(y) = −F ′(ρε(y)) with m < ρε < M , up to a subsequence, ψε converges weak∗ in
L∞(Ω) towards ψ∞ ∈ L∞(Ω). Moreover, using (21) and (20), applied for cε , we obtain∫

Ω

∇(F ′(ρε(y)
)) · ρε(y)∇c∗(∇(F ′(ρε(y)

)))+ ερε(y)
∣∣∇(F ′(ρε(y)

))∣∣2 dy �
∫
Ω

(
F
(
ρ0(y)

)− F
(
ρε(y)

))
dy

which gives in particular∫
Ω

ρε(y)∇(F ′(ρε(y)
)) · ∇c∗(∇(F ′(ρε(y)

)))
dy �

∫
Ω

(
F
(
ρ0(y)

)− F
(
ρε(y)

))
dy (28)

and then, since m < ρε < M (see [1]), ∇ρε is a bounded sequence in L1(Ω). Indeed,∫
Ω

∣∣∇ρε(y)
∣∣dy =

∫
|∇ρε |<1

∣∣∇ρε(y)
∣∣dy +

∫
|∇ρε |>1

∣∣∇ρε(y)
∣∣dy � |Ω| +

∫
|∇ρε |>1

∣∣∇ρε(y)
∣∣dy.

Since we can write |∇(F ′(ρε))| = |∇ρε||F ′′(ρε)|, we have∫
|∇ρε |>1

∣∣∇ρε(y)
∣∣dy =

∫
|∇ρε |>1

|∇(F ′(ρε(y)))|
|F ′′(ρε(y))| dy

� 1

K

∫
Ω

∣∣∇(F ′(ρε(y)
))∣∣dy

where K = inf[m,M] F ′′.
Recall that we have the relation |z||∇c∗(z)| = |z · ∇c∗(z)| which implies |z| � |z·∇c∗(z)|

w(s)
when |z| > s since

|∇c∗(z)| = ω(|z|) is a non-decreasing function of |z|.
Moreover, when |∇ρε| > 1, |∇(F ′(ρε))| � K and then∫

|∇ρε |>1

∣∣∇ρε(y)
∣∣dy � 1

Km|∇c∗(K)|
∫
Ω

ρε(y)∇(F ′(ρε(y)
)) · ∇c∗(∇(F ′(ρε(y)

)))

� C

∫
Ω

[
F
(
ρ0(y)

)− F
(
ρε(y)

)]
dy

and then∥∥∇ρε
∥∥

L1(Ω)
� C (29)

where the constant C does not depend on ε.
Then, ρ1 ∈ BV(Ω) and consequently, ψ∞, the limit of ψε belongs also to BV(Ω) and the convergence is strong

in L1(Ω) (cf. [27, Theorem 4, Section 5.2.3]).
Finally, since φε is defined from ψε by (23), φε is a bounded sequence in L∞(Ω). Indeed by (23)

−ψε(y) � −ψε(y) + cε(x − y) = φε(x) � −ψε(x) ⇒ ∀x ∈ Ω, − sup
[m,M]

F ′ � φε(x) � − inf[m,M]F
′.

Then, up to the extraction of a subsequence φε converges in weak∗ in L∞(Ω).
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(ii) In the previous lemma, we proved that

lim
ε→0

Ẽ
(
γ ε
)+

∫
Ω×Ω

cε(x − y)dγ ε(x, y) = Ẽ(γopt) +
∫

Ω×Ω

c(x − y)dγopt(x, y). (30)

On the other hand, (22) says that

Ẽ
(
γ ε
)+

∫
Ω×Ω

cε(x − y)dγ ε(x, y) = Ẽ
(
γ ε
)+

∫
Ω

φε(x) dρ0 +
∫
Ω

ψε(y) dρε.

Since φε converges toward φ∞ in weak∗ in L∞(Ω) = L1(Ω)′, we have

lim
ε→0

∫
Ω

φε(x) dρ0(x) =
∫
Ω

φ∞(x) dρ0(x).

Moreover ρε → ρ1 strongly in L1(Ω) and ρε is bounded in L∞(Ω), so the dominated convergence theorem yields

Ẽ
(
γ ε
)+

∫
Ω

ψε(y) dρε(y) =
∫
Ω

F
(
ρε(y)

)
dy −

∫
Ω

ρε(y)F ′(ρε(y)
)
dy

→
∫
Ω

F
(
ρ1(y)

)
dy −

∫
Ω

ρ1(y)F ′(ρ1(y)
)
dy

= E(γopt) +
∫
Ω

ψ∞(y) dρ1(y).

Combined with (30), this gives

Ẽ(γopt) +
∫

Ω×Ω

c(x − y)dγopt(x, y) = Ẽ(γopt) +
∫
Ω

φ∞(x) dρ0(x) +
∫
Ω

ψ∞(y) dρ1(y)

which leads to (26).
Finally, since for all ε,

cε(x − y) − φε(x) − ψε(y) � 0

using the fact that cε(x − y) � c(x − y) we have

c(x − y) − φε(x) − ψε(y) � 0

which gives (27) at the limit.
Since (26) holds, the equality holds in the support of γopt. �

Lemma 3.4 (Existence of an optimal map).

(i) The support of γopt is included, up to a negligible set, in the c-superdifferential of the potential function ψ∞, i.e.
if (x, y) ∈ spt(γopt), x ∈ ∂cψ∞(y).

(ii) The set {y ∈ Ω; ∃x1, �= x2 with |x1 − y| < 1 and (x1, y) ∈ spt(γopt) and (x2, y) ∈ spt(γopt)} is a negligible set.
(iii) Let γopt be the optimal measure for the minimization problem (P ),

sptγopt ⊂ {
(x, y) with |x − y| < 1

}∪ Z0 with γopt(Z0) = 0.

More precisely, for each δ ∈ ]0,1[, we obtain an estimate of the measure of the set Zδ = {(x, y) ∈ sptγopt with
|x − y| > 1 − δ},

γopt(Zδ) � E(ρ0) − E(ρ1)

(1 − δ)|∇c(1 − δ)| . (31)
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(iv) We define Lebesgue almost everywhere a one-to-one map by

S(y) = y − ∇c∗(∇ψ∞(y)
)= y + ∇c∗(∇(F ′(ρ1(y)

)))
satisfying γopt = (S × id)#ρ1 (32)

where, when ρ ∈ BV(Ω), ∇ρ ∈ L1(Ω) denotes the approximate derivative (or Radon–Nikodym derivative of Dρ

with respect to the Lebesgue measure also called the absolute continuous part Dacρ).

Remark 3.1. As we said before in the setting of the result, there is no ambiguity in the formulation of Eq. (32) since
the recession function associated to ∇c∗ is zero and then, we could also write ∇c∗(Dρ1).

Before proving this lemma, let us recall the following result.

Lemma 3.5. If both ψ1(z) and ψ2(z) are approximately differentiable at z = y, if ψ1(y) = ψ2(y) and ψ1(z) � ψ2(z)

in a neighborhood of y, then

∇ψ1(y) = ∇ψ2(y).

Proof. Step 1. Let us first consider the case where ψ1 = 0. Assume ψ̃(z) approximately differentiable at z = y,
ψ̃(y) = 0 and ψ̃(z) � 0 near z = y. Let us prove that ∇ψ̃(y) = 0.

For a contradiction, suppose ∇ψ̃(y) = λen where en is a given direction and λ > 0.
For any a > 0, the definition of approximate differentiability [27] asserts that

D =
{
z ∈ R

n such that
|ψ̃(z) − λ(zn − yn)|

|z − y| < a

}
has full Lebesgue density at z = y.

In particular, it must intersect the cone

C = {
z ∈ R

n such that zn − yn >

√
|z1 − y1|2 + · · · + |zn−1 − yn−1|2

}
inside each ball B(y, 1

k
) = {z ∈ R

n such that |z − y| � 1
k
}.

Fix a < λ√
2

and choose a sequence zk ∈ C ∩ B(y, 1
k
) ∩ D. Since zk ∈ C , 2|zk

n − yn|2 > |zk − y|2 and then we find

−λ
∣∣zk

n − yn

∣∣< −a
∣∣zk − y

∣∣< ψ̃
(
zk
)− λ

(
zk
n − yn

)
which means that ψ̃(zk) > 0 which leads to a contradiction.

Step 2. Apply Step 1 to ψ̃(z) = ψ2(z) − ψ1(z). �
Proof of Lemma 3.4. (i) On the support of γopt, we have almost everywhere

c(x − y) = φ∞(x) + ψ∞(y)

and then, since

φ∞(x) = inf
v∈Ω

(
c(x − v) − ψ∞(v)

)
,

we obtain for all (x, y) ∈ spt(γopt) and for all v ∈ Ω

ψ∞(v) � c(x − v) − c(x − y) + ψ∞(y) (33)

which means that the support of γopt is included in the c-superdifferential of the potential function ψ∞.
(ii) The proof of this point is based on the approximate differentiability of ψ∞. Indeed, since ψ∞ ∈ BV(Ω), by

Theorem 4 of Section 6.1.3 in [27], ψ∞ is approximately differentiable almost everywhere. Let us denote ∇ψ∞ its
approximate derivative which belongs to L1(Ω). (As we said before, the absolute continuous part of Dψ∞ coincides
with the approximate derivative of ψ∞ so in this section, we will keep this notation to insist on the fact that we talk
about L1(Ω) functions.) We will prove that this avoids the two possible problems,

Case 1. ∃(x1, x2) such that (x1, y) ∈ spt(γopt), (x2, y) ∈ spt(γopt), |x1 − y| < 1 and |x2 − y| < 1.
Case 2. ∃(x1, x2) such that (x1, y) ∈ spt(γopt), (x2, y) ∈ spt(γopt), |x1 − y| < 1 and |x2 − y| = 1.
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To prove a contradiction in the first case, apply Lemma 3.5 to the functions ψ1(v) = ψ∞(y)−c(x1 −y)+c(x1 −v)

and ψ2(v) = ψ∞(v) from (33) which leads to ∇ψ∞(y) = −∇c(x1 − y), and then apply Lemma 3.5 a second time
to ψ1(v) = ψ∞(y) − c(x2 − y) + c(x2 − v) and ψ2(v) = ψ∞(v) which leads to ∇ψ∞(y) = −∇c(x2 − y). Which
leads to a contradiction since ∇c(x2 − y) = ∇c(x1 − y) implies that x1 = x2.

In the second case, we assume that ∃x1 and x2 such that |x1 − y| < 1 and |x2 − y| = 1 with

ψ∞(z) − ψ∞(y) � c
(
xi − z

)− c
(
xi − y

)
for i = 1,2.

Note that the previous point says that if ψ∞ is approximately differentiable at y, ∇ψ∞(y) = −∇c(x1 − y). The
problem is that ∇c(x2 − y) cannot be defined since |x2 − y| = 1.

To get a contradiction, denote B(y, r) = {|z − y| � r}, we will prove that exists a set S such that

|S ∩ B(y, r)|
|B(y, r)| = C where C is a constant (34)

satisfying for any z ∈ S , for any a > 0,

ψ∞(z) − ψ∞(y) − ∇ψ∞(y) · (z − y) < −a|z − y|
which contradicts the fact that ψ∞ is approximately differentiable at the point y.

Without loss of generality, we assume that x2 = y + en (or x2
i = yi + δi,n).

Take S = {z such that zn − yn >
√|z1 − y1|2 + · · · + |zn−1 − yn−1|2 }. S ∩ B(y, r) satisfies (34).

For any z ∈ S , we claim that:

(a) Since z ∈ S , then |z − y| < √
2|zn − yn|.

(b) |z − x2| < 1.

Indeed, we have∣∣z − x2
∣∣2 = |z1 − y1|2 + · · · + |zn−1 − yn−1|2 + ∣∣zn − (1 + yn)

∣∣2
= |z − y|2 + 1 − 2(zn − yn)

� 1 + 2|zn − yn|2 − 2(zn − yn).

Then, if 0 < zn − yn < 1 — which can be ensured by taking r < 1 — we get |z − x2| < 1.

(c) The inequality

−a|z − y| − ∇ψ∞(y) · (z − y) � ψ∞(z) − ψ∞(y) � c
(
xi − z

)− c
(
xi − y

)
(35)

is not possible.

Indeed, we can write

−a|z − y| − ∇ψ∞(y) · (z − y) = −a|z − y| − λ · (z − y)

�
√

2
[
−a − nmax

i

(|λi |
)]|zn − yn| = C|zn − yn|

and

c
(
x2 − z

)− c
(
x2 − y

)= c
(
x2 − z

)− c̃(1)

� c̃
(√

1 − 2(zn − yn) + |z − y|2 )− c̃(1)

� ∇ c̃
(√

1 − 2(zn − yn) + |z − y|2 )(√1 + |z − y|2 − 2(zn − yn) − 1
)

since c̃(1) − c̃(1 − θ) � ∇ c̃(1 − θ)θ . And then since |z − y| < √
2|zn − yn|, we obtain

c
(
x2 − z

)− c
(
x2 − y

)
� ∇ c̃

(√
1 − 2(zn − yn) + 2|zn − yn|2

)(|zn − yn|2 − (zn − yn) + o
(|zn − yn|

))
.
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So if (35) for i = 2 holds, we would have for δ = (zn − yn) > 0

C
1

∇ c̃(
√

1 − 2δ + 2δ2 )
� −1 + δ + o(1)

which is not possible for any C since passing to the limit δ → 0, it would give 0 � −1.
(iii) We will first prove (31) from where it is easy to deduce the first claim of (iii).
Define γ1−η(x, y) = (x, ηx + (1 − η)y)#γopt and ρ1−η its second marginal (the use of this interpolation map has

been introduced in McCann’s paper [35]).
We will use the fact that

I (ρ0, ρ1) � I (ρ0, ρ1−η)

for any η to obtain an estimate on γopt(Zδ).
On the first hand, we use the convexity of the entropy. Indeed, the entropy satisfies

E(ρ1−η) � ηE(ρ0) + (1 − η)E(ρ1).

The convexity of t → E(ρ1−t ) is classical (see Agueh [1] and McCann [35]) for t ∈ [0,1[ and t ∈ ]0,1] then for
t ∈ [0,1].

On the other hand, we compute the difference of both terms involving the cost.
Let us compute

Wc(ρ0, ρ1) − Wc(ρ0, ρ1−η) �
∫

Ω×Ω

c(x − y)dγopt(x, y) −
∫

Ω×Ω

c(x − y)dγ1−η(x, y)

�
∫
Zδ

(
c(x − y) − c

(
(1 − η)(x − y)

))
dγopt(x, y)

since c((1 − η)(x − y)) � c(x − y) yields∫
Ω×Ω/Zδ

(
c(x − y) − c

(
(1 − η)(x − y)

))
dγopt(x, y) � 0.

And then, using the fundamental theorem of calculus, we obtain

Wc(ρ0, ρ1) − Wc(ρ0, ρ1−η) �
∫
Zδ

η|x − y|∣∣∇c
(
(1 − θ)(x − y)

)∣∣dγopt(x, y)

where θ ∈ [0, η]. Since |∇c(z)| = ∇ c̃(|z|) is increasing with respect to |z| and

|1 − θ ||x − y| � |1 − η| inf
(x,y)∈Zδ

|x − y|,

it leads to

Wc(ρ0, ρ1) − Wc(ρ0, ρ1−η) � ηγopt(Zδ) inf
Zδ

(|x − y|)∣∣∣∇ c̃
(
(1 − η) inf

Zδ
|x − y|

)∣∣∣
� ηγopt(Zδ)(1 − δ)∇ c̃

(
(1 − η)(1 − δ)

)
.

Finally, since

Wc(ρ0, ρ1) + E(ρ1) � Wc(ρ0, ρ1−η) + E(ρ1−η)

we have

Wc(ρ0, ρ1) − Wc(ρ0, ρ1−η) � E(ρ1−η) − E(ρ1) � η
(
E(ρ0) − E(ρ1)

)
and then, dividing by η and letting η → 0, we obtain

γopt(Zδ) � E(ρ0) − E(ρ1)

(1 − δ)|∇ c̃(1 − δ)|
which goes to zero when δ → 0.
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(iv) Points (ii) and (iii) imply that almost everywhere in the support of γopt, |x−y| < 1 and −∇c(x−y) = ∇ψ∞(y)

which means that

x = S(y) = y − ∇c∗(∇ψ∞(y)
)
.

It means that since sptγ ⊂ �1, it is in fact supported almost everywhere on the graph of a one-to-one function
which is the optimal map. �
Remark 3.2 (The optimal map in dimension 1). In dimension 1, the whole argument is much simpler since the map is
already known and does not depend on the cost function and then does not depend on h or ε.

3.3. The optimal map for an arbitrary h

From now on, we deal with the complete minimization problem when h > 0 and for any problem P h
i . We use the

notation ch(x − y) = c(
x−y

h
).

Proposition 3.4.

(i) Let γ h
i be the optimal measure for the minimization problem (P h

i ),

sptγ h
i ∈

{
(x, y)

∣∣ |x − y|
h

< 1

}
∪ Zh

i with γ h
opt

(
Zh

i

)= 0.

(ii) More precisely, we obtain an estimate of the measure of the set Zh
iδ = {(x, y) ∈ sptγ h

i | |x−y|
h

> 1 − δ},

γ h
i

(
Zh

iδ

)
�

E(ρi−1) − E(ρh
i )

h(1 − δ)|∇c(1 − δ)| .

(iii) We define Lebesgue almost everywhere a one-to-one map Sh
i (y) ∈ L∞(Ω,Ω) by

Sh
i (y) = y − h∇c∗(∇ψh

i (y)
)= y + h∇c∗(∇(F ′(ρh

i (y)
)))

satisfying γ h
i = (

Sh
i × id

)
#ρ

h
i (36)

where ρh
i and ψh

i belong to BV(Ω).

Proof. To prove (i) to (iii), apply the previous result replacing x − y by x−y
h

and E(ρ0) − E(ρh
1 ) by

E(ρi−1)−E(ρh
i )

h
.

Note also that since Ω is a bounded domain, Sh
i (y) ∈ L∞(Ω,Ω). �

4. From the discrete equation to the continuous equation

In this section, we have to pass to the limit when the time step goes to zero.
For this purpose, we use a monotonicity argument quoted in Evans [25], Lions [32] or in Otto [38] and since we

deal with BV functions, we use also very delicate concepts defined in Andreu, Caselles and Mazón [8,12].

4.1. Construction, compactness and convergence of the measure ρh

In the sequel, we will assume without loss of generality that h is chosen such that T
h

is an integer.

Notation. In the sequel, the gradient of ρh will involve both its absolute continuous part and its singular part and then,
we will now use the notation Dacρh instead of ∇ρh for the absolute continuous part of Dρh. We shall also need the
following space of distributions u(t, y) on [0, T ] × Ω :

L1([0, T ]; (W 2,∞(Ω)
)′)=

{
u

∣∣∣
T∫

0

∫
Ω

uξ dt dy � Cu‖ξ‖W 2,∞(Ω) for any test function ξ ∈ C∞
c (Ω)

}
.
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Proposition 4.1 (Compactness and convergence of ρh). Let ρh be the piecewise constant in time function defined
by (3). Then:

(i) The sequence ρh is bounded in L1
w([0, T ];BV(Ω)) and its time derivative ∂tρ

h is a bounded sequence in
L1([0, T ]; (W 2,∞(Ω))′).

(ii) A subsequence of ρh converges strongly in L1([0, T ] × Ω) and weakly∗ in L1
w([0, T ],BV(Ω)) to a limit ρ ∈

L∞([0, T ] × Ω) ∩ L1
w([0, T ],BV2(Ω)) as h → 0.

Proof. (i) Recall that for a fixed h, ρh
i (y) is the L1(Ω) strong and w∗BV(Ω) limit of ρεh

i solution of the mollified
problem P ε

i . Then we have∥∥D(ρh
)∥∥([0, T ] × Ω

)
� lim inf

ε→0

∥∥∇ρεh
∥∥

L1([0,T ]×Ω)
= lim inf

ε→0

∑
i

h
∥∥∇ρεh

i

∥∥
L1(Ω)

� C

where the constant C depends neither on h nor on ε (cf. (29)) and then ρh is a bounded sequence in L1
w([0, T ],BV(Ω)).

Concerning the time derivative, we have

T∫
0

∣∣∣∣
∫
Ω

∂tρ
hξ(x) dx

∣∣∣∣dt | =
T
h∑

i=1

∣∣∣∣h
∫
Ω

(ρh
i − ρh

i−1)

h
ξ(x) dx

∣∣∣∣

=
T
h∑

i=1

∣∣∣∣h
∫
Ω

(ξ(y) − ξ(x))

h
dγ h

i (x, y)

∣∣∣∣dt

�
T
h∑

i=1

∣∣∣∣
∫
Ω

(x − y) · ∇ξ(y) dγ h
i (x, y)

∣∣∣∣dt + Ch
∥∥D2ξ

∥∥
L∞(Ω)

�
T
h∑

i=1

h

∫
Ω

∇c∗(Dac
(
F ′(ρh

i (y)
)))

ρh
i (y) · ∇ξ(y) dy dt + Ch

∥∥D2ξ
∥∥

L∞(Ω)

� C‖∇ξ‖L∞(Ω) + Ch
∥∥D2ξ

∥∥
L∞(Ω)

.

(ii) The sequence ρh is bounded in L1
w([0, T ],BV(Ω)), and BV(Ω) is compactly imbedded in L1(Ω). On the other

hand ∂tρ
h is bounded in L1([0, T ], (W 2,∞(Ω))′) and L1(Ω) ⊂ (W 2,∞(Ω))′. The Aubin Lemma (see [32,41,42]) then

implies that ρh is relatively compact in L1([0, T ] × Ω). �
4.2. Properties of the sequence ρεh

We first recall a result proved by Agueh in [1] presented here for C2(Rd) cost functions but proved in fact for
a larger set of cost functions.

Proposition 4.2 (Displacement convexity of the L∞ norm). (See [1].) Let ρ0, ρ1 ∈ P(Ω) be such that ρ0, ρ1 � M

a.e., and assume that 0 � c ∈ C2(Rd) strictly convex satisfies c(0) = 0 with Legendre transform c∗ ∈ C2(Rd). Denote
by S the c-optimal map that pushes ρ1 forward ρ0, and define the interpolant map

St = (1 − t)id + tS, for t ∈ [0, T ].
Then ‖(St )#ρ1‖L∞(Ω) � M , meaning for non-negative functions ξ ∈ Cc(R

d) we have∫
Ω

ξ
(
St (y)

)
ρ1(y) dy � M

∫
Ω

ξ(x) dx. (37)
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The proof of this proposition for regular cost function consists in introducing ρ1−t = (St )#ρ1 and prove that
ρ1−t � M .

The next proposition establishes local and global inequalities (38) and (40) relating the generalized Fisher infor-
mation integrated along the curve t ∈ [0, T ] → ρεh to the net change in entropy. We hereafter refer to such bounds as
entropy-information inequalities.

Proposition 4.3 (Localized entropy-information inequality).

(i) At each instant in time, ρεh belongs to W 1,∞(Ω) and lies in a ball in L∞(Ω) ∩ W 1,1(Ω) whose radius is
independent of t ∈ [0, T ] and ε > 0. Moreover the entropy-information inequality

T∫
0

∫
Ω

ρεh(t, y)∇F ′(ρεh(t, y)
) · ∇cε∗(∇(F ′(ρεh(t, y)

)))
dy

�
∫
Ω

(
F
(
ρh(0, y)

)− F
(
ρεh(T , y)

))
dy +

T
h∑
1

oε(1) (38)

is satisfied where oε(1) → 0 when ε → 0. This integration in time yields

∥∥∇ρεh
∥∥

L1([0,T ]×Ω)
+ √

ε
∥∥∇ρεh

∥∥
L2([0,T ]×Ω)

� C +
T
h∑
1

oε(1) (39)

where the constant C is now independent of h > 0 as well as of ε > 0.
(ii) Space compactness: ρεh satisfies

T
h∑
1

h

∫
Ω

∣∣ρεh
i−1(y) − ρεh

i−1

(
Sεh

i (y)
)∣∣dy = O(h) +

T
h∑
1

oε(1).

(iii) Time compactness: ρεh satisfies

T
h∑
1

h

∫
Ω

∣∣ρεh
i (y) − ρh

i−1(y)
∣∣dy dt = δ(ε,h)

with 0 = limh→0 limε→0 δ(ε,h).
(iv) The sequence ρεh(t, y) satisfies a localized entropy-information inequality for any test function ξ(t, y) � 0

T∫
0

∫
Ω

ξ(t, y)ρεh(t, y)∇c∗(∇(F ′(ρεh(t, y)
))) · ∇(F ′(ρεh(t, y)

))
dy dt

� −
T∫

0

∫
Ω

∇ξ(t, y)ρεh(t, y) · ∇c∗(∇(F ′(ρεh(t, y)
)))

F ′(ρεh(t, y)
)
dt dy

−
T∫

0

∫
Ω

[
ξ(t, y)∂t

(
F
(
ρεh(t, y)

))]
dt dy + δ̃(ε, h) (40)

where 0 = limh→0 limε→0 δ̃(ε, h).
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Proof. (i) Each term ρεh � M and Eq. (21) implies that ‖h∇ρεh
i ‖L1(Ω) is bounded independently of ε and by sum-

ming

h

∫
Ω

ρεh
i (y)∇F ′(ρεh

i (y)
) · ∇cε∗(∇(F ′(ρεh

i (y)
)))

dy �
∫
Ω

(
F
(
ρh

i−1(y)
)− F

(
ρεh

i (y)
))

dy

on each time interval, we obtain (38) since limε→0
∫
Ω

(F(ρεh
i (y)) − F(ρh

i (y))) dy = 0.
Then (39) holds. Moreover, for ε fixed, we can use an argument of [1] to prove that ∇ρεh ∈ L∞(Ω). Indeed since

∇ρεh
i F ′′(ρεh

i

)= ∇(F ′(ρεh
i (y)

))= ρεh
i (y)

ρεh
i (y)

∇cε

(
Sεh

i (y) − y

h

)

we obtain for any test function ξ∣∣∣∣
∫
Ω

∇ρεh
i (y)ξ(y) dy

∣∣∣∣� 1

m inf[m,M] F ′′

∣∣∣∣
∫
Ω

ρεh
i (y)∇cε

(
Sεh

i (y) − y

h

)
ξ(y) dy

∣∣∣∣
= 1

m inf[m,M] F ′′

∣∣∣∣
∫

Ω×Ω

∇cε

(
x − y

h

)
ξ(y) dγ εh

i (x, y)

∣∣∣∣
� 1

m inf[m,M] F ′′ ‖ξ‖L1(Ω) sup
x,y∈Ω×Ω

∣∣∣∣∇cε

(
x − y

h

)∣∣∣∣
and since cε ∈ C1(Rd) we deduce that ρεh

i ∈ W 1,∞(Ω).
(ii) Since ρεh

i ∈ W 1,∞(Ω) (it may be approximated by a sequence of C1(Ω) function), the fundamental theorem
of calculus (FTOC) yields

Ia =
T
h∑
1

h

∫
Ω

∣∣ρεh
i−1(y) − ρεh

i−1

(
Sεh

i (y)
)∣∣dy

=
T
h∑
1

h

∫
Ω

∣∣∣∣∣
1∫

0

∇(ρεh
i−1

)(
y + s

(
Sεh

i (y) − y
)) · (Sεh

i (y) − y
)
ds

∣∣∣∣∣dy.

Since Sεh
i (y) − y = h∇c∗(∇(F ′(ρεh

i (y)))) + hε∇(F ′(ρεh
i (y))), it leads to

Ia �
T
h∑
1

h2
∫
Ω

1∫
0

∣∣∇(ρεh
i−1

)(
y + s

(
Sεh

i (y) − y
))∣∣ds dy

+
T
h∑
1

h2ε

∫
Ω

1∫
0

∣∣∇(ρεh
i−1

)(
y + s

(
Sεh

i (y) − y
))∣∣∣∣∇(F ′(ρεh

i−1

))
(y)
∣∣dy ds

and then

Ia � 1

m

1∫
0

T
h∑
1

h2
∫
Ω

∣∣∇ρεh
i−1

(
y + s

(
Sεh

i (y) − y
))∣∣ρεh

i (y) dy ds

+ hε√
m

sup
[m,M]

|F ′′|
1∫

0

( T
h∑
1

h

∫
Ω

∣∣∇(ρεh
i−1

)(
y + s

(
Sεh

i (y) − y
))∣∣2ρεh

i (y) dy

) 1
2

×
( T

h∑
1

h

∫ ∣∣∇(ρεh
i−1

)
(y)
∣∣2 dy

) 1
2

ds
Ω
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which becomes using (37) (by approaching |∇ρεh
i−1| by C∞(Ω) non-negative function) in both terms

Ia � h

m
M

1∫
0

T
h∑
1

h

∫
Ω

∣∣∇ρεh
i−1(y)

∣∣dy ds

+ h√
m

√
M sup

[m,M]
|F ′′|

1∫
0

( T
h∑
1

h

∫
Ω

ε
∣∣∇(ρεh

i−1

)
(y)
∣∣2 dy

) 1
2
( T

h∑
1

h

∫
Ω

ε
∣∣∇(ρεh

i−1

)
(y)
∣∣2 dy

) 1
2

ds

�
(

C +
T
h∑
1

oε(1)

)
h

by the L1([0, T ] × Ω) bound on the sequence ∇ρεh and the L2([0, T ] × Ω) bound on
√

ε∇ρεh written in (38).
(iii) Once again, we adapt arguments involved in [1]. We will in fact prove that

T∫
h

∫
Ω

(
F ′(ρεh(t, y)

)− F ′(ρh(t − h,y)
))(

ρεh(t, y) − ρh(t − h,y)
)
dy dt

=
T
h∑
1

h

∫
Ω

(
F ′(ρεh

i (y)
)− F ′(ρh

i−1(y)
))(

ρεh
i (y) − ρh

i−1(y)
)
dy � Ch

which means when ε < h → 0 by denoting ρ+ the L1([0, T ]×Ω) limit of ρεh(t, y) and ρ− the L1([0, T ]×Ω) limit
of ρh(t − h,y) that ρ+ = ρ− since at the limit

0 �
(
F ′(ρ+) − F ′(ρ−)

)
(ρ+ − ρ−) � 0.

And then ρ+ = ρ− or

lim
ε<h→0

T∫
h

∫
Ω

∣∣ρεh(t, y) − ρh(t − h,y)
∣∣dy dt = 0.

But by denoting Φi(y) = F ′(ρεh
i (y)) − F ′(ρεh

i−1(y)) we can rewrite

Ib =
T
h∑
1

h

∫
Ω

(
F ′(ρεh

i (y)
)− F ′(ρεh

i−1(y)
))(

ρεh
i (y) − ρh

i−1(y)
)
dy

+
T
h∑
1

h

∫
Ω

(
F ′(ρεh

i−1(y)
)− F ′(ρh

i−1(y)
))(

ρεh
i (y) − ρh

i−1(y)
)
dy

=
T
h∑
1

h

∫
Ω

(
Φi(y) − Φi

(
Sεh

i (y)
))

ρεh
i (y) dy + h

T
h∑
1

oε(1).

And then by the FTOC, we obtain

Ib =
T
h∑
1

h

∫
Ω

1∫
0

(
Sεh

i (y) − y
) · ∇Φi

(
y + s

(
Sεh

i (y) − y
))

ρεh
i (y) dy ds + h

T
h∑
1

oε(1)

�
(

C +
T
h∑

oε(1)

)
h

1
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using the same argument as above by applying (37) for both terms, the uniform L1([0, T ]×Ω) bound on the sequence
∇ρεh and the L2([0, T ] × Ω) bound of

√
ε∇ρεh.

(iv) We now want to prove the localized inequality (40) for the mollified problem. For a fixed test function
ξ(t, x) � 0, take h small enough such that spt ξ ⊂ [h,T ] × Ω .

We want an estimate for the following quantity

T∫
0

∫
Ω

ξ(t, y)∇F ′(ρεh(t, y)
)
ρεh(t, y) · ∇c∗(∇(F ′(ρεh(t, y)

)))
dy dt

=
T
h∑
1

h

∫
Ω

ξ(ti , y)∇F ′(ρεh
i (y)

)
ρεh

i (y) · ∇c∗(∇(F ′(ρεh
i (y)

)))
dy + O(h) + h

T
h∑
1

oε(1).

Indeed by inequality (21),

∣∣∣∣∣
T∫

0

∫
Ω

ξ(t, y)∇(F ′(ρεh(t, y)
)) · ∇c∗(∇(F ′(ρεh(t, y)

)))
dy dt

−
T
h∑
1

h

∫
Ω

ξ(ti , y)∇(F ′(ρεh
i (y)

)) · ∇c∗(∇(F ′(ρεh
i (y)

)))
dy

∣∣∣∣∣
� ‖∂t ξ‖L∞

T
h∑
1

h

∫
Ω

(
F
(
ρεh(0, y)

)− F
(
ρεh(T , y)

)
dy
)

�
(

C +
T
h∑
1

oε(1)

)
h.

Then by introducing PF (λ) = λF ′(λ) − F(λ), we can write

T
h∑
1

h

∫
Ω

ξ(ti , y)∇F ′(ρεh
i (y)

)
ρεh

i (y) · ∇c∗(∇(F ′(ρεh
i (y)

)))
dy

=
T
h∑
1

h

∫
Ω

ξ(ti , y)∇(PF

(
ρεh

i (y)
)) · ∇c∗(∇(F ′(ρεh

i (y)
)))

dy.

Moreover since ξ � 0,

T
h∑
1

h

∫
Ω

ξ(ti , y)∇(PF

(
ρεh

i (y)
)) · ∇c∗(∇(F ′(ρεh

i (y)
)))

dy

�
T
h∑
1

h

∫
Ω

ξ(ti , y)∇(PF

(
ρεh

i (y)
)) · ∇cε∗(∇(F ′(ρεh

i (y)
)))

dy.

So we will consider the quantity

I0 =
T
h∑
1

h

∫
ξ(ti , y)∇(PF

(
ρεh

i (y)
)) · ∇cε∗(∇(F ′(ρεh

i (y)
)))

dy
Ω
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= −
T
h∑
1

h

∫
Ω

∇ξ(ti , y)PF

(
ρεh

i (y)
) · ∇cε∗(∇(F ′(ρεh

i (y)
)))

dy

−
T
h∑
1

h

∫
Ω

ξ(ti , y)PF

(
ρεh

i (y)
)

div∇cε∗(∇(F ′(ρεh
i (y)

)))
dy

= I1 + I2.

But since Sεh
i (y) − y = h∇cε∗(∇(F ′(ρεh

i (y)))) we obtain

I2 = −
T
h∑
1

∫
Ω

ξ(ti , y)PF

(
ρεh

i (y)
)

div
(
Sεh

i (y) − y
)
dy.

We now use the intermediate result proved by Agueh in [1]

−PF

(
ρεh

i (y)
)

div
(
Sεh

i (y) − y
)= −PF

(
ρεh

i (y)
)

tr
(∇Sεh

i (y) − Id
)

= ρεh
i (y)

[
−d

(
1

(ρεh
i (y))1/d

)(d−1)

PF

((
1

(ρεh
i (y))1/d

)−d)( tr(∇Sεh
i (y))

d(ρεh
i (y))1/d

− 1

(ρεh
i (y))1/d

)]

� ρεh
i (y)

[
F

((
tr∇Sεh

i (y)

d(ρεh
i (y))1/d

)−d)( tr∇Sεh
i (y)

d(ρεh
i (y))1/d

)−d

− F

((
1

(ρεh
i (y))1/d

)−d)( 1

(ρεh
i (y))1/d

)−d]

� F

(
ρεh

i (y)

det∇Sεh
i (y)

)
det∇Sεh

i (y) − F
(
ρεh

i (y)
)

since λdF (λ−d) (which derivative is −dλd−1PF (λ−d)) is convex and non-decreasing and det∇Sεh
i (y) � (

tr∇Sεh
i (y)

d
)d

(see the displacement convexity in [35]).
Since ξ(ti , y) � 0, we obtain

I2 �
T
h∑
1

∫
Ω

ξ(ti , y)

(
F

(
ρεh

i (y)

det∇Sεh
i (y)

)
det∇Sεh

i (y) − F
(
ρεh

i (y)
))

dy

and then

I2 �
T
h∑
1

∫
Ω

ξ
(
ti , S

εh
i (y)

)
F

(
ρεh

i (y)

det∇Sεh
i (y)

)
det∇Sεh

i (y) − ξ(ti , y)F
(
ρεh

i (y)
)
dy

+
T
h∑
1

∫
Ω

(
ξ(ti , y) − ξ

(
ti , S

εh
i (y)

))
F

(
ρεh

i (y)

det∇Sεh
i (y)

)
det∇Sεh

i (y) dy.

The two right-hand terms I21 + I22 can be treated as follows using the relation

ρh
i−1

(
Sεh

i (y)
)

det∇Sεh
i (y) = ρεh

i (y)

and we obtain

I21 =
T
h∑
1

∫
Ω

ξ
(
ti , S

εh
i (y)

)
F
(
ρh

i−1

(
Sεh

i (y)
)) ρεh

i (y)

ρh
i−1(S

εh
i (y))

− ξ(ti , y)F
(
ρεh

i (y)
)
dy

=
T
h∑
1

∫
ξ(ti , y)

(
F
(
ρh

i−1(y)
)− F

(
ρεh

i (y)
))

dy
Ω
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=
T
h∑
1

∫
Ω

ξ(ti , y)
(
F
(
ρεh

i−1(y)
)− F

(
ρεh

i (y)
))

dy +
T
h∑
1

oε(1)

= −
T∫

0

∫
Ω

∂tF
(
ρεh(t, y)

)
ξ(t, y) dy dt +

T
h∑
1

oε(1)

and

I22 =
T
h∑
1

∫
Ω

(
ξ(ti , y) − ξ

(
ti , S

εh
i (y)

))
F
(
ρh

i−1

(
Sεh

i (y)
))

det∇Sεh
i (y) dy

= −
T
h∑
1

∫
Ω

∇ξ(ti , y)
(
Sεh

i (y) − y
)
F
(
ρh

i−1

(
Sεh

i (y)
))

det∇Sεh
i (y) dy + O(h)

= −
T
h∑
1

∫
Ω

h∇ξ(ti , y) · ∇cε∗(∇(F ′(ρεh
i (y)

)))
F
(
ρh

i−1

(
Sεh

i (y)
))

det∇Sεh
i (y) dy + O(h).

We will use that fact that

det∇Sεh
i (y) = ρεh

i (y)

ρh
i−1(S

εh
i (y))

= 1 + ρεh
i (y) − ρh

i−1(S
εh
i (y))

ρh
i−1(S

εh
i (y))

which yields

I22 = −
T
h∑
1

∫
Ω

h∇ξ(ti , y) · ∇cε∗(∇(F ′(ρεh
i (y)

)))
F
(
ρεh

i (y)
)
dy

+
T
h∑
1

∫
Ω

h∇ξ(ti , y) · ∇cε∗(∇(F ′(ρεh
i (y)

)))(
F
(
ρεh

i (y)
)− F

(
ρh

i−1

(
Sεh

i (y)
)))

−
T
h∑
1

∫
Ω

h∇ξ(ti , y) · ∇cε∗(∇(F ′(ρεh
i (y)

)))
F
(
ρh

i−1

(
Sεh

i (y)
))ρεh

i (y) − ρh
i−1(S

εh
i (y))

ρh
i−1(S

εh
i (y))

+ O(h).

Finally, we write that

∣∣∣∣∣−
T
h∑
1

∫
Ω

h∇ξ(ti , y) · ∇c∗(∇(F ′(ρεh
i (y)

)))
F
(
ρh

i−1

(
Sεh

i (y)
))ρεh

i (y) − ρh
i−1(S

εh
i (y))

ρh
i−1(S

εh
i (y))

∣∣∣∣∣
� C‖∇ξ‖L∞([O,T ]×Ω)‖F‖L∞([m,M])

T
h∑
1

h

∫
Ω

∣∣ρεh
i−1

(
Sεh

i (y)
)− ρεh

i (y)
∣∣dy

and ∣∣∣∣∣−
T
h∑
1

∫
Ω

εh∇ξ(ti , y) · ∇(F ′(ρεh
i (y)

))
F
(
ρh

i−1

(
Sεh

i (y)
))ρεh

i (y) − ρh
i−1(S

εh
i (y))

ρh
i−1(S

εh
i (y))

∣∣∣∣∣
� C

√
ε‖∇ξ‖L∞(ΩT )‖F‖L∞([m,M])‖F ′′‖L∞([m,M])

∥∥√ε∇ρεh
∥∥

2
L (ΩT )
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×
( T

h∑
1

h

∫
Ω

∣∣ρεh
i−1

(
Sεh

i (y)
)− ρεh

i (y)
∣∣dy

) 1
2

.

Moreover, since∣∣F (ρh
i−1

(
Sεh

i (y)
))− F

(
ρεh

i (y)
)∣∣� ‖F ′‖L∞([m,M])

∣∣ρh
i−1

(
Sεh

i (y)
)− ρεh

i (y)
∣∣,

we have
T
h∑
1

∫
Ω

h∇ξ(ti , y) · ∇c∗(∇(F ′(ρεh
i (y)

)))(
F
(
ρεh

i (y)
)− F

(
ρh

i−1

(
Sεh

i (y)
)))

� C‖∇ξ‖L∞([O,T ]×Ω)‖F ′‖L∞([m,M])

T
h∑
1

h

∫
Ω

∣∣ρεh
i−1

(
Sεh

i (y)
)− ρεh

i (y)
∣∣dy

and
T
h∑
1

∫
Ω

hε∇ξ(ti , y) · ∇(F ′(ρεh
i (y)

))(
F
(
ρεh

i (y)
)− F

(
ρh

i−1

(
Sεh

i (y)
)))

� C
√

ε‖∇ξ‖L∞(ΩT )‖F ′‖L∞([m,M])‖F ′′‖L∞([m,M])
∥∥√ε∇ρεh

∥∥
L2(ΩT )

×
( T

h∑
1

h

∫
Ω

∣∣ρεh
i−1

(
Sεh

i (y)
)− ρεh

i (y)
∣∣dy

) 1
2

where ΩT = [0, T ] × Ω .
And then, since

T
h∑
1

h

∫
Ω

∣∣ρh
i−1

(
Sεh

i (y)
)− ρεh

i (y)
∣∣dy �

T
h∑
1

h

[ ∫
Ω

∣∣ρh
i−1

(
Sεh

i (y)
)− ρεh

i−1

(
Sεh

i (y)
)∣∣dy

+
∫
Ω

∣∣ρεh
i−1

(
Sεh

i (y)
)− ρεh

i−1(y)
∣∣dy

+
∫
Ω

∣∣ρεh
i−1(y) − ρh

i−1(y)
∣∣dy +

∫
Ω

∣∣ρh
i−1(y) − ρεh

i (y)
∣∣dy

]

�
T
h∑
1

oε(1) + O(h) + δ(ε,h)

we obtain (40) using (ii) and (iii). �
Proposition 4.4 (Approximate equation and entropy-information). The piecewise constant in time function ρh satis-
fies:

(i) The approximate heat equation

T∫
0

∫
Ω

∂tρ
h(y)ξ(t, y) dy dt = O(h) +

T∫
0

∫
Ω

∇c∗(Dac
(
F ′(ρh(y)

)))
ρh(y) · ∇ξ(t, y) dy dt (41)

for any test function ξ , where Dac(F ′(ρh(y))) = Dacρh(y)F ′′(ρh(y)) and Dacρh denotes the Radon–Nikodym
derivative of the measure Dρh with respect to the Lebesgue measure.
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(ii) The entropy-information inequality

G
(
F ′(ρh

);D(F ′(ρh
)))

�
∫
Ω

[
F
(
ρ0(y)

)− F
(
ρh(T , y)

)]
dy (42)

where the left-hand side represents the integral (46) of a function generalizing g(z, ξ) = (F ∗)′ ◦ (F (z))ξ∇c∗(ξ).

Remark 4.1. Note however that the same kind of localized inequality as (40) is also valid for ρh.

Proof. (i) We will first prove the following discrete in time equation localized in time∫
Ω

ρh
i (y) − ρh

i−1(y)

h
ξ(y) dy =

∫
Ω

∇c∗(Dac
(
F ′(ρh

i (y)
)))

ρh
i (y)∇ξ(y) dy + O(h) (43)

holds for any test function ξ ∈ C∞(Ω). Multiplying (36) by ρh
i ∇ξ , we obtain for any test function ξ ∈ C∞

c (Ω)∫
Ω

(
Sh

i (y) − y

h

)
∇ξ(y)ρh

i (y) dy =
∫
Ω

∇c∗(Dac
(
F ′(ρh

i (y)
)))

ρh
i (y)∇ξ(y) dy.

To obtain properly the discrete in time equation, we have to compute for any test function ξ∫
Ω

ρh
i (y) − ρi−1(y)

h
ξ(y) dy = 1

h

∫
Ω×Ω

(
ξ(y) − ξ(x)

)
dγ h

i (x, y).

By using the FTOC applied to the test function ξ , we have∣∣∣∣
∫
Ω

1

h

[(
ξ(y) − ξ(x)

)− (x − y)∇ξ(y)
]
dγ h

i (x, y)

∣∣∣∣� 1

2h
sup
z∈Ω

∣∣D2ξ(z)
∣∣ ∫
Ω

|x − y|2 dγ h
i (x, y) � C

h

2

and since∫
Ω

(
Sh

i (y) − y

h

)
∇ξ(y)ρh

i (y) =
∫

Ω×Ω

x − y

h
∇ξ(y) dγ h

i (x, y),

we obtain the expected discrete in time equation∣∣∣∣
∫
Ω

ρh
i (y) − ρh

i−1(y)

h
ξ(y) dy −

∫
Ω

∇c∗(Dac
(
F ′(ρh

i (y)
)))

ρh
i (y)∇ξ(y) dy

∣∣∣∣
� 1

2h
sup
z∈Ω

∣∣D2ξ(z)
∣∣ ∫
Ω

|x − y|2 dγ h
i (x, y) (44)

and then we have (43). Let us write (43) on each interval ]ih, (i + 1)h] and sum it with respect to i. Since for any test
function ξ ∈ C∞([0, T ] × Ω)

∣∣∣∣∣
T
h∑
1

h

∫
Ω

ρh((i + 1)h, y) − ρh(ih, y)

h
ξ(ti , y) dy dt −

T∫
0

∫
Ω

∇c∗(Dac
(
F ′(ρh(y)

)))
ρh(y)∇ξ(ti , y) dy dt

∣∣∣∣∣
�

T
h∑
1

h
1

h
sup

[0,T ]×Ω

∣∣D2
xξ
∣∣ ∫
Ω

|x − y|2 dγ h
i (x, y)

we obtain (41) because |x − y| < h and
∑ T

h h = T and
1
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∣∣∣∣∣
T
h∑
1

h

∫
Ω

∇c∗(Dac
(
F ′(ρh(y)

)))
ρh(y)∇ξ(ti , y) dy dt −

T∫
0

∫
Ω

∇c∗(Dac
(
F ′(ρh(y)

)))
ρh(y)∇ξ(t, y) dy dt

∣∣∣∣∣
� C‖∂t∇ξ‖L∞h.

(ii) We want to prove that

T∫
0

∫
Ω

ρh∇c∗(D(F ′(ρh
))) · D(F ′(ρh

))
� lim inf

ε→0

T∫
0

∫
Ω

ρεh∇c∗(∇(F ′(ρεh
))) · ∇(F ′(ρεh

))

� lim inf
ε→0

∫
Ω

[
F
(
ρ0(y)

)− F
(
ρεh(T , y)

)]
dy (45)

but since ρh is in BV , we have to give a sense to the left-hand side.

Remark 4.2. In the above expression, we define ρεh(t, y) the same way we defined ρh(t, y) from ρh
i (y) through (3).

Using the same notation as in Andreu, Caselles and Mazón [12], let us denote

g
(
F ′(ρ),D

(
F ′(ρ)

))= (F ∗)′ ◦ F ′(ρ)D
(
F ′(ρ)

) · ∇c∗(D(F ′(ρ)
))

.

We can then define the generalized version of the Fisher information for BV functions by defining

G(ρ,Dρ) =
T∫

0

∫
Ω

g
(
ρ,Dacρ

)
dt dx +

∫
Ω

g0
(

ρ,
Dρ

|Dρ|
)∣∣Dcρ

∣∣+ ∫
Jρ

( ρ+(x)∫
ρ−(x)

g0(s, νρ(x)
)
ds

)
dHd−1(x) (46)

where g0 is the recession function equal to limt→0 tg(x, z,
ξ
t
) = |ξ | cf. (11).

To get the entropy-information inequality, we want to prove a lower semi-continuity for G :

G
(
F ′(ρh

)
,D
(
F ′(ρh

)))
� lim inf

ε→0

T∫
0

∫
Ω

g
(
F ′(ρεh

)
,∇(F ′(ρεh

)))
. (47)

For this purpose, let us decompose this quantity in two parts, which will be semi-continuity. Indeed, we write when
ρ ∈ W 1,1(Ω)

g
(
F ′(ρ),∇(F ′(ρ)

))= (F ∗)′ ◦ F ′(ρ)∇(F ′(ρ)
)∇c∗(∇F ′(ρ)

)
= (F ∗)′ ◦ F ′(ρ)

(
c
(∇c∗(∇(F ′(ρ)

)))+ c∗(∇(F ′(ρ)
)))

.

Using the result of De Cicco, Fusco and Verde on lower semi-continuity for BV functions [23], since c∗ is convex
and (F ∗)′ is continuous, we obtain

T∫
0

∫
Ω

(F ∗)′ ◦ (F ′(ρh
))

c∗(D(F ′(ρh
)))

� lim inf
ε→0

T∫
0

∫
Ω

(F ∗)′ ◦ (F ′(ρε,h
))

c∗(∇(F ′(ρε,h
)))

.

In another hand, since ∇c∗(∇(F ′(ρεh))) is bounded in L∞([0, T ] × Ω), it converges in w∗L∞([0, T ] × Ω). It
still remains to identify this limit. For any test function ξ ∈ D(Ω), we have, for a fixed t∫

Ω

ξ(y)∇c∗∇(F ′(ρεh(t, y)
))

ρεh(t, y) dy

=
∫

ξ(y)∇cε∗∇(F ′(ρεh(t, y)
))

ρεh(t, y) dy − ε

∫
ξ(y)

∣∣∇(F ′(ρεh(t, y)
))∣∣ρεh(t, y) dy
Ω Ω
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=
∫

Ω×Ω

ξ(y)(x − y)dγ
h,ε
i (x, y) + O(

√
ε ) →

∫
Ω×Ω

ξ(y)(x − y)dγ h
i (x, y)

=
∫
Ω

ξ(y)∇c∗(Dac
(
F ′(ρh(t, y)

)))
ρh(t, y) dy

and then the uniqueness of the limit says that ∇c∗(∇(F ′(ρεh))) → ∇c∗(Dac(F ′(ρh))) w∗L∞([0, T ] × Ω) and then∣∣∇c∗(Dac
(
F ′(ρh(t, y)

)))∣∣� lim inf
ε→0

∣∣∇c∗(∇(F ′(ρεh
)))∣∣.

Since c is non-decreasing on R
+, we have

c
(∇c∗(∣∣Dac

(
F ′(ρh

))∣∣))� c
(∣∣∇c∗(∇(F ′(ρεh

)))∣∣)
and then

T∫
0

∫
Ω

ρhc
(∇c∗(Dac

(
F ′(ρh

))))
� lim inf

ε→0

∫
Ω

ρhc
(∇c∗(∇(F ′(ρεh

))))
.

Moreover — using that ρεh converges strongly in L1([0, T ] × Ω) towards ρh — we have

lim
ε→0

T∫
0

∫
Ω

(
ρh − ρεh

)
c
(∇c∗(∇(F ′(ρεh

))))= 0.

Hence we recover the expected lower semi-continuity property (47). �
Remark 4.3. In our case g0(x, z, ξ) = |ξ | and then

∫
Ω

g0
(

ρ,
Dρ

|Dρ|
)∣∣Dcρ

∣∣+ ∫
Jρ

( ρ+(x)∫
ρ−(x)

g0(s, νρ(x)
)
ds

)
dHd−1(x)

=
∫
Ω

∣∣Dcρ
∣∣+ ∫

Jρ

(
ρ+(x) − ρ−(x)

)
dHd−1(x) � 0

so the singular terms are positive and we can write the Fisher information for the absolute continuous part of
D(F ′(ρh)), i.e.

T∫
0

∫
Ω

ρh(t, y)∇c∗(Dac
(
F ′(ρh(t, y)

))) · Dac
(
F ′(ρh(t, y)

))
�
∫
Ω

[
F
(
ρ0(y)

)− F
(
ρh(T , y)

)]
dy.

4.3. Limiting equation

The following proposition represents the keystone which enables us to apply the Minty–Browder technique to
complete the construction.

Proposition 4.5 (The continuous time limit).

(i) The time derivative ∂tρ belongs to L1([0, T ],BV(Ω))′ and is the time derivative of ρ in L1([0, T ],BV(Ω))′,
i.e. for any test function ρ ∈ L1([0, T ],BV2(Ω)) admitting a weak derivative Θ in L1

w([0, T ],BV(Ω)) ∪
L∞([0, T ] × Ω) as defined in [10], meaning

ρ(t, y) =
t∫
Θ(s, y) ds
0
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we have
T∫

0

∫
Ω

∂tρ(t, y)ρ(t, y) dt dy = −
T∫

0

∫
Ω

ρ(t, y)Θ(t, y) dt dy. (48)

(ii) Let A ∈ L∞([0, T ] × Ω) be the weak∗ limit of A(ρh) = ρh∇c∗(Dac(F ′(ρh))), for any test function ξ � 0, we
have then the corresponding localized inequality

−
∫
Ω

∂tF
(
ρ(t, y)

)
ξ(t, y) dt dy −

∫
Ω

∇ξ(t, y)F ′(ρ(t, y)
)
A(t, y) dt dy

�
T∫

0

∫
Ω

ξ(t, y)
(
A(t, y);Dac

(
F ′(ρ(t, y)

)))
dy dt + (

T s; ξ(t, y)
)

(49)

where T s is a purely singular measure. We shall use (49) in lieu of integration by parts.

Remark 4.4. Note that we would originally expect instead of inequality (49) an equality obtained by integration by
part from the equation

∂tρ = div(A)

multiplied by ξF ′(ρ). The problem is that F ′(ρ) is not regular enough — since it belongs to L1
w([0, T ],BV2(Ω)) —

to be used as a test function.

Proof. Let us prove (i) which is fundamental to obtain (ii). We want to prove that ∂tρ belongs to L1([0, T ],BV(Ω))′.
Remark that

T∫
0

∫
Ω

∂tρ(t, y)ξ(t, y) dt dy = lim
h→0

T∫
0

∫
Ω

∂tρ
h(t, y)ξ(t, y) dt dy

= lim
h→0

T
h∑
1

ti∫
ti−1

∫
Ω

(ρh
i (y) − ρh

i−1(y))

h
ξ(t, y) dt dy.

Indeed∣∣∣∣∣
T
h∑
1

ti∫
ti−1

∫
Ω

(ρh
i (y) − ρh

i−1(y))

h

(
ξ(t, y) − ξ(ti , y)

)
dt dy

∣∣∣∣∣

=
∣∣∣∣∣

T
h∑
1

ti∫
ti−1

∫
Ω

(ρh
i (y) − ρh

i−1(y))

h
∂t ξ(t, y)(ti − t) dt dy

∣∣∣∣∣+ o(h)

= ‖∂t ξ‖L∞([0,T ]×Ω) lim
ε→0

δ(ε,h) + o(h).

We therefore consider
T
h∑
1

ti∫
ti−1

∫
Ω

(ρh
i (y) − ρh

i−1(y))

h
ξ(t, y) dt dy

= lim
ε→0

T
h∑

i=1

ti∫
t

∫
ξ(t, y)

(ρεh
i (y) − ρεh

i−1(y))

h
dy
i−1 Ω
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= lim
ε→0

T
h∑

i=1

ti∫
ti−1

∫
Ω

ξ(t, y)
(ρεh

i (y) − ρh
i−1(y))

h
dy +

T
h∑

i=1

oε(1)

= lim
ε→0

T
h∑

i=1

ti∫
ti−1

∫
Ω

(ξ(t, y) − ξ(t, Sεh
i (y)))

h
ρεh

i (y) dy

= lim
ε→0

T
h∑

i=1

ti∫
ti−1

∫
Ω

1∫
0

∇ξ
(
t, y + s

(
Sεh

i (y) − y
)) · (Sεh

i (y) − y)

h
ρεh

i (y) dy ds.

Then since Sεh
i (y) − y = h∇c∗(∇(F ′(ρεh

i (y)))) + ε∇(F ′(ρεh
i (y))) we can write

T
h∑
1

ti∫
ti−1

∫
Ω

(ρh
i (y) − ρh

i−1(y))

h
ξ(t, y) dt dy � lim

ε→0

1∫
0

T
h∑

i=1

ti∫
ti−1

∫
Ω

∣∣∇ξ
(
t, y + s

(
Sεh

i (y) − y
))∣∣ρεh

i (y) dy ds

+ ε‖∇ξ‖L∞([0,T ]×Ω)

∥∥∇ρεh
∥∥

L1([0,T ]×Ω)

� C‖∇ξ‖L1([0,T ]×Ω)

where C does not depend on h. Moreover this integral may also be defined for any ξ ∈ BV2(Ω) since for h fixed, the

piecewise constant function ∂hρ
h = ρh

i −ρh
i−1

h
on [(i − 1)h, ih] belongs to L∞([0, T ] × Ω). Then,

sup
t∈[0,T ]

∫
Ω

∂hρ
hξ dy � C ∀ξ ∈ BV2(Ω),

and the sequence ∂hρ
h is bounded in L1([0, T ],BV2(Ω))′. This implies that ∂tρ is the w∗ limit of ∂hρ

h and then
belong to the dual of L1([0, T ],BV2(Ω)).

In fact, let us define the distribution zh by

〈
zh; ζ 〉=

T∫
0

∫
Ω

1∫
0

ζ
(
t, y + sh∇c∗(∇(F ′(ρh(t, y)

))))∇c∗(∇F ′(ρh(t, y)
))

ρh(t, y) ds dy dt.

The previous computation proves that zh is a bounded sequence in L∞([0, T ]×Ω) and that, for h fixed, div zh = ∂hρ
h

in L1([0, T ] × Ω).
In another hand, we have equality (48). Indeed,

T∫
0

∫
Ω

∂tρ(t, y)ρ(t, y) dt dy = lim
δ→0

lim
h→0

T −δ∫
δ

∫
Ω

∂hρ
h(t, y)ρ(t, y) dt dy

= lim
δ→0

lim
h→0

( T
h
−1∑
2

ti∫
ti−1

∫
Ω

(ρh
i (y) − ρh

i−1(y))

h
ρ(t, y) dt dy

+
t1∫

δ

∫
Ω

(ρh
1 (y) − ρh

0 (y))

h
ρ(t, y) dt dy

+
t T
h

−δ∫
T −1

∫
Ω

(ρh
i (y) − ρh

i−1(y))

h
ρ(t, y) dt dy

)

h
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= − lim
δ→0

lim
h→0

T −δ∫
δ

∫
Ω

(ρ(t − h,y) − ρ(t, y))

h
ρh(t, y) dt dy

= − lim
δ→0

lim
h→0

T −δ∫
δ

∫
Ω

1

h

t∫
t−h

Θ(s, y) ds ρh(t, y) dt dy

= −
T∫

0

∫
Ω

Θ(t, y)ρ(t, y) dt dy.

Indeed, ρh converges strongly in L1([0, T ] × Ω) and 1
h

∫ t

t−h
Θ(s, y) ds is bounded in L∞([0, T ] × Ω) — since Θ is

bounded in L∞([0, T ] × Ω) — and converges toward Θ .
(ii) First of all, zh is a bounded sequence in L∞([0, T ] × Ω) and then, up to a subsequence, converges in the sense

of distributions toward a distribution z which is equal to A in L∞([0, T ] × Ω).
Passing to the limit in the discrete equation (41), we obtain the limiting equation in the sense of distributions.
This point is an adaptation of the argument of [10].
We define as in the introduction for any ρ ∈ L1([0, T ],BV2(Ω)) and any test function ζ

T∫
0

〈
(z,Dρ); ζ 〉dt = −

T∫
0

〈
∂tρ(t, y);ρ(t, y)ζ(y)

〉
L1([0,T ],BV2(Ω))′,L1([0,T ],BV2(Ω))

dt

−
T∫

0

∫
Ω

div zρ(t, y)ζ(y) dy dt.

As we noticed, F ′(ρ) does not belong to L1([0, T ],BV2(Ω)), so we need to introduce a regularization. In this step,
we follow the proposition of [10].

Let the test function ξ(t, y) = η(t)ζ(y) � 0 and introduce Fτ (t, y) = 1
τ

∫ t

t−τ
η(s)F ′(ρ(s, y)) ds. For τ fixed, small

enough such that sptη ⊂ [τ, T −τ ], since F ′(ρ) is integrated in time, Fτ (t, ·) belongs to C0([0, T ],BV2(Ω)) (see [7])
and then belong to L1([0, T ],BV2(Ω)).

Let us now precise the argument of [10] by the following computation. First of all, Eq. (48) implies

T∫
0

∫
Ω

F
(
ρ(t, y)

)
∂t ξ(t, y) dt dy = lim

τ→0

T∫
0

∫
Ω

η(t − τ) − η(t)

−τ
F
(
ρ(t, y)

)
ζ(y) dy dt

= lim
τ→0

T∫
0

∫
Ω

F(ρ(t + τ)) − F(ρ(t))

−τ
η(t)ζ(y) dy dt

and then since F is a convex function

T∫
0

∫
Ω

F(ρ(t + τ)) − F(ρ(t))

−τ
η(t)ζ(y) dy dt

� −
T∫

0

∫
Ω

F ′(ρ(t, y)
)ρ(t + τ, y) − ρ(t, y)

τ
η(t)ζ(y) dt dy

=
T∫ ∫

ρ(t, y)ζ(y)
F ′(ρ(t − τ, y))η(t − τ) − F ′(ρ(t, y))η(t)

−τ
dy dt.
0 Ω
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Since F ′(ρ(t−τ,y))η(t−τ)−F ′(ρ(t,y))η(t)
−τ

∈ L1
w([0, T ],BV2(Ω))∩L∞([0, T ]×Ω) is the time derivative of Fτ as defined

in [10], i.e.

Fτ (t, y) =
t∫

0

F ′(ρ(s − τ, y))η(s − τ) − F ′(ρ(s, y))η(s)

−τ
ds

and since Fτ ∈ L1([0, T ],BV2(Ω)) we obtain

T∫
0

∫
Ω

ρ(t, y)ζ(y)∂tF
τ (t, y) dy dt = −

T∫
0

〈
∂tρ, ζ(y)F τ (t, y)

〉
dt

=
T∫

0

∫
Ω

Fτ (t, y)z · ∇ζ(y) dy dt +
T∫

0

∫
Ω

ζ(y)
(
z;D(Fτ (t, y)

))
dt dy

by definition of the distribution (z,DFτ ).
And then

T∫
0

∫
Ω

F
(
ρ(t, y)

)
∂t ξ(t, y) dt dy � lim

τ→0

T∫
0

∫
Ω

Fτ (t, y)z · ∇ζ(y) dy dt

+ lim
τ→0

1

τ

T∫
0

∫
Ω

t∫
t−τ

ζ(y)η(s)z · Dac
(
F ′(ρ(s, y)

))
dt dy ds

+ lim
τ→0

1

τ

T∫
0

∫
Ω

ζ(y)

(
z;

t∫
t−τ

η(s)Ds
(
F ′(ρ(s, y)

)))
dt dy ds.

First by (12) we write

1

τ

T∫
0

∫
Ω

ζ(y)

(
z;

t∫
t−τ

η(s)Ds
(
F ′(ρ(s, y)

)))
dt dy ds � M

1

τ

0∫
−τ

T∫
0

∫
Ω

ζ(y)η(t + s)
∣∣Ds

(
F ′(ρ(t + s, y)

))∣∣dt dy ds

and then we use that for any 0 � p ∈ L1([0, T ]), limτ→0
1
τ

∫ 0
−τ

p(t + s) ds = p(t) in the sense of measure.

This yields the result since z = A which gives

T∫
0

∫
Ω

F
(
ρ(t, y)

)
∂t ξ(t, y) dt dy �

T∫
0

∫
Ω

η(t)F ′(ρ(t, y)
)
A · ∇ζ(y) dy dt

+
T∫

0

∫
Ω

ζ(y)η(t)A · Dac
(
F ′(ρ(t, y)

))
dt dy

+ ‖A‖L∞([0,T ]×Ω)

T∫
0

∫
Ω

η(t)ζ(y)
∣∣Ds

(
F ′(ρ(t, y)

))∣∣dt dy.

We denote 〈T s; ξ 〉 the singular term ‖A‖L∞([0,T ]×Ω)

∫ T

0

∫
Ω

ξ(t, y)|Ds(F ′(ρ(t, y)))|dt dy. �
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4.4. Identification of the limiting equation: a monotonicity argument

By a monotonicity argument, we achieve the proof of Theorem 1.8 by proving the proposition

Proposition 4.6. The limiting measure ρ of the discrete in time measure ρh satisfying Eq. (41) is solution in the sense
of distributions to the following equation

∂tρ = div
(
ρ∇c∗(D(F ′(ρ)

)))
. (50)

Proof. We want to prove that A = ρ∇c∗(D(F ′(ρ))). For that purpose, we want to use the Minty–Browder’s argument
which means that we have to prove that for any z ∈ R

d ,(
A − A(ρ, z)

)(
Dac

(
F ′(ρ)

)− z
)
� 0

and in fact, we want to prove for any test function ξ(t, x) � 0 and ζ(t, x) ∈ C∞(Rd ,R
d)∫

ξ
(
A − A(ρ, ζ )

)(
Dac

(
F ′(ρ)

)− ζ
)
� 0.

Indeed, this yields the expected equality since by taking ζ = Dac(F ′(ρ)) + δw, we obtain(
A − A

(
ρ;Dac

(
F ′(ρ)

)+ δw
))

δw � 0

and then by passing successively to the limit 0 > δ → 0 and 0 < δ → 0, we obtain the equality A = A(ρ,Dac(F ′(ρ))).
To prove this inequality, we want to pass to the limit when ε and h go to zero in the following inequality that comes

from the convexity of c∗

Λεh =
T∫

0

∫
Ω

ρεh(t, y)
(∇c∗(∇(F ′(ρεh(t, y)

)))− ∇c∗(ζ(t, y)
)) · (∇(F ′(ρεh(t, y)

))− ζ(t, y)
)
dy dt � 0.

Let us develop this quantity as follows

Λεh =
T∫

0

∫
Ω

ξ(t, y)ρεh(t, y)∇(F ′(ρεh(t, y)
))∇c∗(∇(F ′(ρεh(t, y)

)))
dy dt

+
T∫

0

∫
Ω

ξ(t, y)ρεh(t, y)ζ(t, y) · ∇c∗(ζ(t, y)
)
dy dt

−
T∫

0

∫
Ω

ξ(t, y)ρεh(t, y)∇c∗(ζ(t, y)
) · ∇(F ′(ρεh(t, y)

))
dy dt

−
T∫

0

∫
Ω

ξ(t, y)ρεh(t, y)∇c∗(∇(F ′(ρεh(t, y)
))) · ζ(t, y) dy dt.

Term 1. Proposition 4.3 gives us at the limit

lim inf
εh→0

T∫
0

∫
Ω

ξ(t, y)ρεh(t, y)∇(F ′(ρεh(t, y)
))∇c∗(∇(F ′(ρεh(t, y)

)))
dy dt

� −
T∫ ∫

ξ(t, y)∂t

(
F
(
ρ(t, y)

))
dt dy −

T∫ ∫
∇ξ(t, x)F ′(ρ(t, y)

)
A

0 Ω 0 Ω
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=
T∫

0

∫
Ω

ξ(t, y)A(t, y) · ∇(F ′(ρ(t, y)
))

dy dt + (
T s; ξ)

by (49).
Term 2. Since ρεh converges in w∗L∞(Ω) towards ρ, we have

T∫
0

∫
Ω

ξ(t, x)ρεh(t, y)ζ(t, y) · ∇c∗(ζ(t, y)
)
dy dt →

T∫
0

∫
Ω

ξ(t, x)ρ(t, y)ζ(t, y) · ∇c∗(ζ(t, y)
)
dy dt

when ε < h → 0.
Term 3. Using Theorem 1.7 of De Cicco, Fusco and Verde [23] on the L1 semi-continuity of functionals J [ρ,Dρ]

on BV which are convex with respect to the gradient variable and continuous with respect to ρ = F ′(ρεh), we obtain

lim inf
ε→0

T∫
0

∫
Ω

ξ(t, y)∇c∗(ζ(t, y)
) · ∇(F ′(ρεh(t, y)

))
(F ∗)′

(
F ′(ρεh(t, y)

))
dy dt

� lim inf
h→0

T∫
0

∫
Ω

ξ(t, y)∇c∗(ζ(t, y)
) · D(F ′(ρh(t, y)

))
ρh(t, y) dy dt

�
T∫

0

∫
Ω

ξ(t, y)∇c∗(ζ(t, y)
) · D(F ′(ρ(t, y)

))
ρ(t, y) dy dt.

In fact, since J [ρ,Dρ] depends linearly on Dρ in this case, we have that both lim infs can be replace by limits which
converge, and the inequality above becomes an equality.

Term 4.
T∫

0

∫
Ω

ξ(t, x)ρεh(t, y)∇c∗(ρεh(t, y)
) · ζ(t, y) dy dt →

T∫
0

∫
Ω

ξ(t, x)A(t, y) · ζ(t, y) dy dt

when ε < h → 0.
Then the inequality Λεh � 0 becomes(

A
(∇(F ′(ρ)

)− ζ
)− ρ∇c∗(ζ )

(
D
(
F ′(ρ)

)− ζ
)+ T s; ξ)� 0.

By Corollary 1, p. 53 of [27], we know that A(∇(F ′(ρ)) − ζ ) − ρ∇c∗(ζ )(Dac(F ′(ρ)) − ζ ) + T s is a Radon
measure and then by the Lebesgue decomposition of Radon measure, we can conclude that it’s absolute continuous
part is positive which means that(

A − A(ρ, ζ )
)(

Dac
(
F ′(ρ)

)− ζ
)
� 0

for all test function ζ which concludes the proof. �
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