Available online at www.sciencedirect.com

ScienceDirect

ANNALES
DE LINSTITUT
HENRI
POINCARE

ANALYSE
NON LINEAIRE

= =
ELSEVIER Ann. L. H. Poincaré — AN 26 (2009) 2539-2580

www.elsevier.com/locate/anihpc

Constructing a relativistic heat flow by transport time steps

Robert J. McCann #, Marjolaine Puel **

& Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
b Laboratoire MIP, Institut de Mathématiques, Université Paul Sabatier, 31062 Toulouse, France

Received 2 August 2007; accepted 18 June 2009
Available online 5 August 2009

Abstract

An alternative construction to Andreu et al. (2005) [12] is given for Lllv([O, T1, BV(S2)) solutions to the relativistic heat equa-
tion (1) (see Brenier (2003) [14], Mihalas and Mihalas (1984) [37], Rosenau (1992) [40], Chertock et al. (2003) [20], Caselles
(2007) [19]) under the assumption of initial data bounded from below and from above. For that purpose, we introduce a time
discretized scheme in the style of Jordan et al. (1998) [30], Otto (1996) [38] involving an optimal transportation problem with
a discontinuous hemispherical cost function. The limiting process is based on a monotonicity argument and on a bound of the
Fisher information by an entropy balance characteristic of the minimization problem.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous présentons ici une construction alternative a celle d’Andreu et al. (2005) [12] de solution L}U([O, T1, BV (£2)) de I'équa-
tion de la chaleur relativiste (1) (voir Brenier (2003) [14], Mihalas et Mihalas (1984) [37], Rosenau (1992) [40], Chertock et al.
(2003) [20], Caselles (2007) [19]) dans le cas de conditions initiales bornées inférieurement et supérieurement. Pour cela, nous
introduisons un schéma discret en temps dans le style de Jordan et al. (1998) [30], Otto (1996) [38] basé sur un probleme de trans-
port optimal faisant intervenir une fonction de colit hémisphérique et discontinue. Le passage a la limite lorsque le pas de temps
tend vers zéro repose sur un argument de monotonie et une borne de 1’information de Fisher par la variation de 1’entropie, inégalité
caractéristique du probleme de transport optimal.
© 2009 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider in this work a relativistic heat equation which has been introduced for example in the paper of Rose-
nau [40] (see also [20]) or Mihalas and Mihalas [37]; it fills in a gap in the Fokker—Planck theory by imposing an
upper bound for the propagation velocity. This equation can be written

5 o di ( Vo ) di ( Vlogp ) 0
ho=div| p—==) =div| p————=).
Vor+IVpl? V1+4|Vliogpl?
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Viewing the ordinary heat equation as a transport equation by velocity V log p, then Eq. (1) involving the velocity
Vo motivates the appellation relativistic.

A 0241V pl?

The aim of this present work is to construct solutions to Eq. (1) following a strategy introduced by Jordan,
Kinderlehrer, Otto [30] and Otto [38], subsequently developed by many authors, M. Agueh [1] and Ambrosio, Gigli,
Savaré [3] in particular, and suggested in the relativistic context by Brenier [14]. This strategy applies to finding
a solution to general transport equations given by

dp=div(oVc*(V(F'(p)))) ()

where ¢* is a convex mobility function on R? and F is a convex function on [0, oo[ representing the entropy. It is
based on a new point of view on (2) saying that the transport of the density p is seen as the gradient flow of the convex
function F with respect to a distance induced by the cost function ¢, the Legendre transform of ¢* (see [2,3,5,43] for
the notion of gradient flow). The solution is obtained as a limit of a solution of a time discretized scheme and the

peculiarity of the method is that this discrete scheme involves an optimal mass transport problem.

2
This work comes after a series of papers. In [30], the case of the Wasserstein distance c(z) = % and entropy

F(p) = plogp — Vp were addressed by Jordan, Kinderlehrer and Otto, who obtain the Fokker—Planck equation
orp =div(pVV) + ﬁfl Ap where V is a given smooth function.

In [38], Otto treated the case of ¢(z) = % with F(p) = b(%fn and b=n+ (p —2)/(p — 1) which leads to the
doubly degenerate equation

0 p =div(|Vp”|p72V,0") with ! + 1 =1, p>2.
P 4q

And in [1], Agueh considered the case of cost functions satisfying
Blzl? <c(x) <aflz|?+1) forallzeR?, wherew, > 0andg > 1,

which includes a very large class of equations such as the Fokker—Planck equation, the porous medium and fast
diffusion equation, the p-Laplacian and the doubly degenerate diffusion equation.
Note that for the relativistic heat equation, the entropy is F(p) = plogp — p and

Z

I+

Vc*(z) =

which gives

(D) =y1+z> =1

The corresponding cost function

C(Z):{1—,/1—|z|2 if |z <1,

~+o00 if |z] > 1

is hemispherical and discontinuous, hence does not belong to the set of cost function for which this strategy has been
successful.

The aim of this paper is to apply this “Optimal Transportation Strategy” to the Cauchy problem for Eq. (1), and
more precisely for any cost functions satisfying

c(lzD =0 if|z] <1,
400 if |z] > 1

c(z) = {

where ¢ is a continuous strictly convex function on [0, 1] belonging to C 2([0, 1) and with |Ve(z)] — oo when
|z| = 1 (and hence ¢* € C*(R%)) and, as in the work of Agueh [1], for any strictly convex entropy functions satisfying
F € C2(R) such that @ — 0o when A — oo and A4 F(1~%) is convex.

The Cauchy problem for such an equation has been recently studied by Andreu, Caselles and Mazén [11,12] and
the speed of propagation for the support of its solutions has been studied by Andreu, Caselles, Mazén and Moll
in [13]. The convergence of the relativistic equation toward the heat equation as the light speed goes to infinity has
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been also investigated very recently by Caselles [19]. Those works belong to a large program (see the long series
of paper [7,9-12]) where the Cauchy problem is examined for degenerate elliptic and parabolic equations. As in the
strategy of Jordan, Kinderlehrer and Otto, the proof of the existence of solution to this equation by Andreu, Caselles
and Mazén involves a discrete in time equation. In their work, the time discrete density p” is obtained by solving the
elliptic equation on each time interval [ih; (i + 1)A]

,o,h — ,ol-h_1 =h diV(pihVC* (Dlog ,o,h)).

We will assume in this work that the initial density is bounded from below and from above while in their work,
Andreu, Caselles and Mazo6n assume only that the initial data is non-negative.

Nevertheless, the point of view of this present work is interesting since the method employed — in particular the
construction of the discrete scheme — involves the study of a mass transport problem with a discontinuous convex
cost function. The limiting process remains a delicate step because of the weak regularity of the discrete sequence
constructed via the minimization process, and presents a real difficulty. As far as we know, the construction of op-
timal transport maps for discontinuous cost functions has not been completed before but is a necessary condition to
obtain relativistic phenomena for the corresponding transport equation. However, the Kantorovich duality for discon-
tinuous cost functions has been investigated in the paper of Ambrosio and Pratelli [4], and the use of approximate
differentiability as in Ambrosio, Gigli, Savaré [3] also proves a crucial tool.

1.1. Description of the “Optimal transportation strategy”

Fix £ € R? bounded throughout. The method consists in constructing a time discrete scheme as follows:
Let P(82) be the set of Borel probability measures on §2, pg € P(82) given, find p"(t, y) € P([0, T] x §2) defined
by

h _
{p 0, y) = po(), 3)

ph(t, y) = pih(y) fort e ]ih; i+ l)h], h (being the time step)
where ,ol.h (y) is a solution of the minimization problem Pih defined by

(1. p) = int 1(piy.p)

with

) xX—y
I(,olhi],,o)zv/F(,O(y))dy+h ImE f c< ; )dy(x,y),
o yer"l(p"_l’p)gxg

1"ih denoting the set of probability measures that have ,Ol.h_l and p as marginals and c is the convex cost function, the
Legendre transform of c* defined as in [15] by
c*(z) = sup (w-z —c(w)). 4)
weRd

This process follows the ideas presented in the work of Otto [38] which extends the notion of gradient flow to
more general cost functions (cf. also Villani’s book [43]). This point of view is particularly simple to explain when the
cost function is the quadratic function, minimizing E(p) + h|2-£ ? gives formally 2 0L = E'(p) which is a discrete
version of ;0 = E’(p), meaning that p is a gradient flow of E. In a more general setting, we minimize the entropy
among all the densities reachable at time 7 by moving along geodesics induced by the cost function c.

Let us now describe the different steps of the construction of a solution to (2):

Step 1. Prove that the minimization problem has a unique solution, the optimal transport plan y .

Step 2. Define an optimal map corresponding to this optimal measure and derive the Euler—Lagrange equation of
this minimization problem which gives formally

ve( L0 —v(r o)

h : : h h
where S;' denotes the optimal map pushing p;' forward to p;’_;.
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Using Vc*(Ve(y)) =y, this leads to
SE(y) —y =hVe* (V(F' (o]))). (5)

Step 3. Obtain an approximate time discrete equation and pass to the limit when the time step goes to zero:
By multiplying Eq. (5) by pV& where £ is a smooth test function, we obtain in the sense of distributions

,oih — ,05’71 =h diV(,Oih vc* (V(F/ (plh)))) + Correction terms. (6)

Solutions to (2) are obtained by passing to the limit in (6) when & goes to zero. The identification of A, the limit of
pl.h VX (V(F'( ,oih))) involves a Minty—Browder argument (see for example Evans’s book [25]) based on a monotonicity
property of the gradient of the mobility function ¢*. Indeed, we prove for any test function §(¢, x) > 0 and ¢ (¢, x) €
C®[R?, RY)

/ £(A - pVer () (D“(F'(p)) —£) >0 9

which yields A = pVc* (D% (F'(p))) by taking ¢ = D*(F’(p)) + 8w, and by passing successively to the limit § \ 0
and § 0.
Formally, to obtain (7), we pass to the ¢ < h — 0 limit in

T
f f £, )"t y) (Ve (V(F (01, ) — Ve (¢, ) - (V(F (0" (2, »))) — ¢ (2, y)) dydt > 0.
0 2

This limiting process is strongly based:

1. On the displacement convexity [35] of the entropy function (ensured by the monotonicity of F and the con-
vexity of A¢ F(1~¢)) that yields formally the Fisher information-entropy inequality satisfied by the minimizer p” of
problem Pl-h

T
/ f P Ve (V(E (o (1)) - V(F (o 1, ) dy di < / (F(o" (0, ) — F(o"(T. ) dy ®)
0 2

Q
or its localized version

T

/ / £, )" )V (V(F (0" (1. 1)) - V(F' (0" 1. y))) dyar

0 2
T T
< —//Vé(t,y)p”(t,y)-Vc*(V(F/(ph(t,y))))F/(ph(t,y))dydt—//E(t,y)8tF(ph(t,y))dydt-
0 2 0 2

2. On the corresponding equality satisfied formally by any smooth solution p of (1) and obtained by multiplying
the equation by F’(6(¢, y)) and integrating by parts:

/ Pt YV (p(t,y)) Ve (VF'(p(t,y)))dydt = f [F(po(») = F(A(T, y))]dy. ©)
Q2 2
These relations avoid the problem of nonlinearities in p” since we will prove a strong convergence which allows
us to pass to the limit in the right-hand side of (8).

1.2. Assumptions on the cost function and on the entropy function

We will here give some direct consequences of the assumptions on the cost function that justify its relation with
relativistic phenomena.
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Recall that we deal with cost functions satisfying

c(lz) =0 iflzl <1,
400 if |z] > 1

c(z) = {

where ¢ € C2([0, 1[) is bounded and strictly convex with ¢’(A) > 0 and ¢’(A) — oo as A — 1. Assume also that
¢(0) =0 =¢(0); then ¢* € C*(RY).

Recall that we have the two relations Ve (Vce*(z)) =z and z - Vc*(z) = ¢(Vc*(2)) + ¢*(2) and note that since c¢* is
radial, Vc*(z) = éw(|z|) which implies that z - Vc*(z) = |z||V ™ (2)].

Remark then that the discontinuity of ¢ — implying its infinite part — is strongly linked with the bound on Vc*(z).
Indeed, since c¢ is defined from c* by

c(z) = sup (z-w) —c*(w),
weRd

the fact that ¢ is not finite when |z| > 1 means that the supremum is not attained and then the relation z = Vc*(w)
cannot be matched by any w € R?. This means that |Vc¢*| < 1 (and reciprocally) so we recover that the discontinuity
of the cost function is equivalent to the relativistic aspect of the transport. It also implies — since |Vc*(z)| = w(|z])

is a non-decreasing function of |z| — that lim|;|—. | Vc*(z)| = 1.

As we said, we consider any strictly convex entropy functions satisfying F € C2(R) such that @ — oo when

A — oo and MY F(A~%) is convex, the last condition being necessary for displacement convexity of the entropy [35].
1.3. Notations and definitions

1.3.1. Optimal transport theory
We now recall two ways to link pairs of probability measures.

Definition 1.1. Let p; € P(§2) and S be a Borel map S: £2 — £2. We say that py is the push-forward of p; through S
if for any bounded Borel function ¢

f<P(S(x))dp1(X)=/¢(X)dpo(X)-

2 2

Definition 1.2. Given two probability measures py and pi, the set of transport plans between them refers to joint
probability measures on §2 x £2 with pg and p; as marginals:

I'(po, p1) = {J/(x,y) € P(£2 x 2)s.t. f <P(X)dy(x,y)=/<ﬂ(X)dpo(x) and
2x02 2

f w(y)dy(x,y)=/¢(y)dm(y)}
2

2x82

for all Borel test functions ¢ : 2 — R.
Finally, we need to define the c-superdifferential of a function
Definition 1.3. x € 0°p(y) if [x — y| < 1 and for all v € §2
p() <c(x —v) —cx = y) + o).

1.3.2. Definition of BV functions and of functions of BV functions

In this section, we recall definitions that can be found in the series of paper of Andreu, Caselles and Maz6n, that
we will use throughout the second part of this paper and that are fundamental for the understanding of the notion of
solution to Eq. (1) which we construct.
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Some functional spaces
Throughout this paper, we will deal with BV functions, the set of p € L!(£2) functions such that the gradient of p
defined as a distribution is a vector valued Radon measure whose total variation, i.e.

lelisy = IDpliTy =sup{/pdiV(E)dx where & € C§°(£2; RY) s.t. [£(x)| < 1}

is finite.
A sequence p; of BV functions is said to converge w*BV(£2) toward p if p; — p in L} (£2) and its gradient Dp;

loc
converges toward Dp, weak™ as measures, i.e. against any compactly supported continuous test function.

We also need to introduce the space L'([0, T1, BV2(£2)) where BV,(2) = BV(£2) N L2(§2) with the norm
lollBvy2) = llpllL2(@) + IDpliry contained in the space where the solution will live, L ([0, T1, BV(£2)). The dif-
ference between those two spaces comes from the fact that BV (£2) is not separable.

Definition 1.4. A function p belongs to L1 ([0, T'], BV(£2)) if it is a limit almost everywhere in time of a sequence of
simple functions, i.e. defined by ) 1, ;. ,10i Where p; € BV(§2), hence Bochner integrable.

»litl
In particular C ([0, T], BV(£2)) C L'([0, T], BV(2)).

Definition 1.5. A function p belongs to L!([0, T], BV»(£2)) if it is a limit almost everywhere in time of a sequence
of simple functions, i.e. defined by > 1, ,,,10; Where p; € BV(2).

Whereas:

Definition 1.6. Lllu([O, T1, BV(82)) is the space of weakly measurable functions p: [0, T] — BV (£2) (i.e,t:[0,T] —
{0(1); ¢) is measurable for every ¢ € BV(£2)'), such that fOT||,0(t)||BV(_Q) dt < oo.

Note that, since BV(§2) has a separable predual, it follows for p € L}U([O, T1,BV($2)), that ¢:[0,T] —
llo(®)llBv(s2) is measurable.
The first space is useful because we know its dual L' ([0, T], BV2(82)) equals (see Dunford and Schwartz [24])

L>®([0,T1,BV2(£2)') = {p weak™ measurable functions, p:[0, T]— BV(£2), such that

fi-~

and we define the duality bracket for p € L([0, T'], BV2(£2)) and 5 € L*®([0, T], BV2(£2)") by
T

(p; p) = /(p(t); p(1))dt.

0

€ss sup sup
[0.T] §llBv, 2y <1

As a matter of fact, the solution will live in L*° ([0, T] x £2) N LL)([O, T1,BV(S2)) and the equation will hold in
the sense of distributions, which leads to one of the principal difficulties of the third step of the proof, namely that the
solution cannot be taken as a test function to obtain (9).

Functions defined on BV

As we will see, Dp, the gradient of the BV function p can be decomposed as the sum of its absolute continuous
part D¢ p (with respect to the Lebesgue measure), also called the Radon—Nikodym derivative of Dp (which coincides
with the approximate derivative) of p, and its singular part D* p, divided into a jump part D/ p and a Cantor part D€ p.
So we write

Dp:Ducp-I—DS,O:DaC,O-i-Dj,O-l—DC,O.
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Moreover, we will need to define the composition of certain functions with BV functions and their derivatives. For
example, if f(x, A, &) is an integrand depending on the space variable x, on A € R and on the vector field &, we will
define the functional F(p, Dp) of a BV function p as in the paper of Dal Maso [22] by

Fp, Dp)—//f (x.p. D% )dde+/f°(x P, |2p|>|D"p|
2

P+ (x)

+f< / FO(x,s, vp(x))ds>d7-{d_l(x) (10)

Jp p—(x)

where f0 is the recession function equal to lim,_of (x, A, %), J), is the set of approximate jump points of p, v, =
Dp/|Dp| the Radon—-Nikodym derivative of Dp with respect to its total variation | Dp|. Indeed with those definition,
the jump part of the singular part of Dp can be written

To=(p" = p M !

where H¢~! is the d — 1 Hausdorff measure on R9.

For example, in the theorem cited below, there is in fact no ambiguity in the right-hand side term of Eq. (14) since
the corresponding recession function is zero.

We can also compute g° in the case where f = g(X, &) = A& - Vc*(€). We obtain easily using the properties of the
cost function that

1imtf<x,)»,§)=lim)\|§|‘Vc*(§>’=)»|é|. (11)
t—0 t t—0 t
Finally, we also need the result of De Cicco, Fusco and Verde about the L!-lower semi-continuity in BV.

Theorem 1.7 (L' -lower semi-continuity in BV). (See [23].) Let §2 be an open set ofRd and h: 2 x R x R4 — [0, 00)
a locally bounded Caratheodory function (that is, measurable with respect to x in §2 for every (A, €) € R x RY, and
continuous with respect to (7, £) for almost every x in §2) such that for every (1, &) € R x RY, the function h(-, A, §)
is of class C1(§2). Let us assume that:

(1) h(x, X, ) is convex in Rdfor every (x,)) € 2 x R;
(i1) h(x,-, &) is continuous in R for every (x,&) € £2 x R4,

Then the functional H defined by

P+ (x)

H(p. Dp) = // x,p, D%p )dtdx—i—/ho(x P, |Dp|>’DC:0|+/( / ho(x,s, v,o(x))ds> dH*(x)
I?)

Jp Cp-(x)

is lower semi-continuous with respect to L' (£2) convergence.

This extension of the functional F to BV functions allows us to extend the definition of

T
| [ore-ve e
0 2

to p € L'([0, T], BV(£2)) by decomposing £ - Vc*(&) = c(Vc*(§)) + ¢*(&) and by applying Theorem 1.7 to ¢*(&).

Definition of the measure (z, Dp)
There is another way of defining (D F'(p); Vc*(D(F'(p)))), for p € L®([0, T] x £2) and div(Vc*(D(F’(p)))) €
L([0, T x £2) which is inspired by [6]. But in this present work, this is not relevant since the last property is not
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satisfied even at the time discrete level. This make the notion of entropic solution more difficult to introduce in this
framework and this property and the uniqueness of solution coming from it is not addressed here.

However, we define (z; Dp) as a distribution when z € L*®°([0,T] x £2; Rd), p € L'([0, T1,BV2(£2)) N
L*°([0, T] x £2), when divz = B in the sense of distributions, B is the weak* limit of a bounded sequence B!
in the dual of Ll([O, T1, BV2(£2)) and z is the weak™ limit of a bounded sequence 7. Indeed, for any test function £,
we write

T T

(& DP)>=_/<B§P§)Ll([o,T],sz(Q))/;L'([o,T],BVZ(Q)) dt —//ZPVS didy.
0 02

But if z is the weak™* limit of a bounded sequence z”

T T
(£ (5 Dp)) = Jim (£ (Zh;Dp))=,}ig5(—ffdivzhpsdtdy—f/z"pVSdtdy)
0 2 0 2

For that to be true, we need that div z" = B” for h and ¢ fixed in L1(£2). Indeed, in this case, we can write

, we still have to prove that

T T
(& @ Dp)>=_/<B;pg)Ll([O,TJ,BVZ(.Q))’;LI([O,T],BVZ(.Q))dtdy_[/vaEdtdy
0 )
T T
=—1im//3hpsdtdy—f/zpvgdtdy
h—0
0 2 0 2
T T
=—1im//divzhpsdrdy—/fzpvgdrdy
h—0
0 2 0 2

T T
S lim(//divzhpédtdy+//z’1pV§dtdy).
h—0
0 2 0 2

Moreover, (z; Dp) is a Radon measure since by Theorem 1.5 in [6], we have

T T
(£: z: Dp)) = ]}igb{— [ [aipsaray- [ [ zhpvsdrdy}
0 2 0 2

T
< lzllizoe o, rixe) 1§ oo, 71 2) /f |Dpldydt.
0 2
We define the measure (z; D®p) as the subtraction
(z; D*p) = (z; Dp) — zD“pL = lim (z"; D*p)
h—0
where £ denotes the Lebesgue measure. It is proven in [31] that (z"; D* p) is a singular measure and that

|(Zh; D*p)| < ”Zh ||L°°(.Q)|DS'0|'

Then we also have when & > 0

T
le: (z: D°p)) < ||z||Locqo,mm//s}n‘p\dydr. (12)
0 2
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1.4. Statement of the result

Throughout this paper, we assume 2 € R? to be a bounded convex domain, and 0 < m < pg < M which implies
/. o F(po) < oo. The support spt u of a measure p on RY refers to the smallest closed set of full mass. Let us now state
our main result.

Theorem 1.8. Let 2 € R? be a bounded convex domain, and py € P(£2) satisfy 0 <m < po < M. Let c: R4 -
[0, 00] be a cost function on RY given by c(z) = &(|z|), where ¢ € CO([0, 11) N C2([0, 1[) with |Vc(z)| — oo as
Izl = 1, &0) =0=¢(0) and & (X) > 0 on [0, 1[. Let F € C*(R) be a convex function such that @ — 00 when
A — 00 and A1 F(L~9) is convex.

(i) Characterization of the support of the optimal measure: Finite speed of propagation. _
If yl-h is the optimal measure for the minimization problem (Pih) with second marginal ,olh, then p'" € BV(82) and

|x — ¥l
h

(ii) Euler-Lagrange equation: A discrete scheme.
There exists a one-to-one map Sl.h € L>°(82; 2) defined Lebesgue-a.e. by

SI(y) =y +hVet(D(F' (ol (1)) (13)

such that yl* = (S} x id)gp} and D*(F'(p]'(y))) = F" (p}(y)) D“ p}".

(iii) Convergence of the measure p".
Let p" be the piecewise constant function defined from pl.h by 3). As h — 0, a subsequence of p" converges
strongly in LY([0, T] x 2) towards pEL®(0, T x 2)N L}U([O, T1,BV(£2)) and D,oh — Dp in the sense of
measures.

(iv) Limiting equation.
Up to a subsequence, the limit of p", b belongs to L}U([O, T1,BV(£2)) N L*°([0, T] x £2) and satisfies in the
sense of distributions

8,5 = div(pVe* (D (F'(7)))). (14)

sptyih C {(x, y) | < l} U Zl.h with yih(Zfl) =0.

Let us now make some remarks about this theorem.

e The first point of the theorem gives the finite speed of propagation, indeed, since in a time interval of length 4, the
displacement is bounded by #, the speed of propagation is bounded by 1. This property characterizes a relativistic
transport.

e In (13), since F € C2(]0, 1[) and p” is bounded from below, F’(p") belongs to BV (§2) and the chain rule for BV
functions gives D“C(F’(p,.h(y))) = F”(pl.h(y))Danih.

e The second point of this theorem is the most important one. First, it claims the existence of an optimal map for
the minimization problem Pl-h and it gives the Euler-Lagrange equation. The existence of an optimal map for
a discontinuous cost function cannot be obtained by the same argument as for a smooth cost function. Indeed,
the proof of the existence of a map for a smooth test function by the Kantorovich duality (see Gangbo and
McCann [28], Villani [43]) is based on a uniform Lipschitz bound on the potential function given by the module
of continuity of the cost function. More precisely, let yop¢ be the optimal measure for the minimization problem,
the Kantorovich duality gives

/ hc(x;y)dyopt(x,w = [qs(x)dpi_l(x) +/w<y>dp,-<y),
22 22

2x82

where the potential functions v and ¢ are linked by the following relation

hc(x;y)—mm—w(y»o V(x.y) €2 x 2, (15)
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which becomes
hc(x%) — ¢ =Y () =0 V(x,y) €sptyop. (16)

When the cost function c¢ is smooth, the relations (15)—(16) imply that the potential function ¢ is Lipschitz —
and then differentiable — and then it implies also the equality between the gradients

VY () =Vc(x;y> a7

that gives directly the shape of the optimal map x = S(y) = y + hAVc* (Vi (y)) since Vc* = (Ve)~!. In this
present work, the potential function will not be Lipschitz anymore and then we have to find another argument to
prove its almost everywhere differentiability. Moreover, to write an equality like (17), we need that the support of
the optimal measure y is — up to a negligible set — included in {(x, y) such that Ixh;yl < 1} to be able to define
the gradient of c.

So we introduce a mollified problem and pass to the limit. The sequence p" will not be Lipschitz but will be in
BV(£2) which gives only the almost everywhere approximate differentiability. As Ambrosio, Gigli and Savaré
showed in Theorem 6.4.2 [3], this is sufficient to define an optimal map. The strategy of cost mollification has
often been used, for example in proof of the existence of a map for (non-strictly) convex cost via decomposition
on one-dimensional rays by Ambrosio and Pratelli [4] (see also [26]).

Note that the regularity results for the optimal map of Ma, Trudinger and Wang [34] and Loeper [33] do not apply
for this sign of cost function.

Note that the shape of the Euler-Lagrange equation involves Vc¢* and then we recover the finite speed of propa-
gation (the relativistic effect) since Vc¢* is bounded.

The proof is strongly based on a Fisher information-entropy inequality which thanks to the lower bound on the
density gives the L'([0, T1, BV(£2)) bound on the solution.

To pass to the limit when % goes to zero, we want to use a monotonicity argument (see Otto [38], Lions’s book [32]
or Evan’s book [25]) to identify the nonlinear term. The identification of the weak limit of the flux is based on (8)
and on the entropy equation (9) where in fact we would like to use the solution as a test function in the limiting
equation. Then we have to define all terms of those relations very carefully and find the most precise framework
in which the equation holds. For that purpose, we need the generalization of functionals to BV introduced in the
previous paragraph and the introduction of the distribution (z; Dp) because in one sense, it replaces the product
divzp when p € BV(£2) and z € L*°(£2).

Note that the correction terms in (6) prevent the divergence term from being L' which means that the time discrete
function is less regular than in Andreu, Caselles and Mazén [12] even if we recover the expected regularity in
the continuous time limit. To avoid this difficulty, we introduce a different approximation of the right-hand side
which will be in L! which is a crucial point in the definition of the distribution (z; Dp).

The notion of entropic solution and the uniqueness [12] of solution in the class of Lllv([O, T1,BV,(82)) is not
available here because of the approximation in the discrete in time equation and is not addressed in this paper.
Particular case: Dimension 1.

In dimension 1, this problem becomes radically simpler (see [18]). Let p € P(£2), we can extend it to R and
following Villani’s notations in [43], we introduce cumulative distribution functions

l(x):/d,o:dp[(—oo,x]].

The function / is right-continuous, non-decreasing, and has limits /(—oo) = 0 and /(4-o00) = 1. Then we define
the generalized inverse of / on [0, 1]

I7'(0) =inf{x e Rs.t. [(x) > t}.

In the particular case of dimension 1, the optimal transport plan and the optimal map does not depend on the
convex cost function as soon as c(x, y) = c(Jx — y|) (cf. [36]). The optimal transport plan is given by

vi= () x 1) ydm!



R.J. McCann, M. Puel / Ann. I. H. Poincaré — AN 26 (2009) 2539-2580 2549

where [; _; is the cumulative distribution function for p;_; and /; is the cumulative distribution function for p;.
The optimal map is given — when p;_; does not give mass to points — by

Pi—1= (lf_ll oli)ypi.

Then the Euler-Lagrange equation given by (5) gives directly
Ly oliy) —y=hVe* (V(F' (1))

or
) =1

- = Ve (V(F' (1 (17 )

= () =7 (O ()
Y Uo7 (x)) a7y (x)

which corresponds to an implicit Euler scheme for /=

In the following section, we prove the existence of the infimum for problem (P;(h)). In Section 3, we prove

some optimal transport theory (construction of an optimal map corresponding to the optimal measure and study of
its properties) and we derive the Euler—Lagrange equation of the minimization problem (5). Then, in Section 4, we

construct the piecewise constant function p” which satisfies a time discrete version of (1). Finally, in the last section,

we pass to the limit when the time step goes to zero, we use an argument of monotonicity to identify the limiting
equation with Eq. (1).

2. Existence of solution to the minimization problem

Let us first study the minimization problem (P) = (7311) for the first step when 2 = 1 (we drop the superscript &z =1

and subscript i = 1 in this case):

po € P(82) given, find p1 € P(82) such that
I(po, p1) = inf_I(po, p)
PEP(£2)

with

I(po,p)=/F’(p(y))dy+ inf f c(x —y)dy(x,y),
yel(po,p)
2 N2x2

I (po, p) denoting the set of measures that have po and p as marginals.

Notations. We will use the following notations: given y € I"(pg, p),

E(p) = / F(p(y)dy =: E(y), when seen as a function of y,
2

W(y) =fc<x —y)dy(x,y), and

We(po.p)= _inf  W(y).
vel(po,p)

Following Agueh [1], we can prove that

Proposition 2.1. Recall that we assume m < pg < M.

(i) There exists a unique minimum ,OIR satisfying
1(po, p{t) = inf I(po, p).
(po. pr') = inf 1 (o0, p)

(i1) There is a maximum principle that insures that m < ,olR < M when R is chosen such that 2M < R.
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Proof. Let us denote /g =inf,-r I (0o, p).
(1) To prove the existence of a minimizer, we use that Iz < I (pg, po) = E(pp) < oo and thanks to Jensen’s inequal-
ity, since fg p(y)dy =1, we can write that /g > inf, E(p) > |£2 |F(ﬁ). Thus I is finite. Let p™ be a minimizing

sequence. Since p™ < R, the sequence is bounded in L>°(£2) and since £2 is bounded, up to a subsequence, p™ con-
verges in L'(£2) towards ,olR € L°°(£2) satisfying ,olR < R. Because of the lower semi-continuity of /(p), we obtain

I(oo. o) < lim inf1(po. p) < Ix <1 (p0, pr)-
The uniqueness comes from the strict convexity of 7. Note that
E(pf{") < 1(po, p) < 1(po. po) = E(po).

(i1) To prove the maximum principle, we argue by contradiction to prove that m < ,olR < M. Note that it implies also
that pf does not depend on R. Let us do the argument for the upper bound, the same proof leads to the lower bound.
For that, assume that H = {x | such that ,olR > M} has a strictly positive Lebesgue measure; we can then construct
a new measure that would be a better measure, which gives us a contradiction. Starting from yopt, the optimal measure
associated to ,olR , let us construct a sequence of measures y" with second marginal p” depending on 7, that will make
the cost decrease proportionately to  while the entropy increases proportionately to 2. Then for 1 small enough, the
total 7 (pg, p") will be smaller than I (g, pK).

To be precise, we recall the construction of this sequence which follows the argument made by Martial Agueh
in [1].

Note that yop (H¢ x H) > 0 where H® = R4 \ H; otherwise

M|H| < /le(y) dy = Yop(R? x H) = yop(H x H) < yopi(H x RY) =/po(x)dx <MIH|.
H H

On H¢ x H, for a part of the measure depending on 7, we will leave x in place instead of sending x to y, i.e. we
define the action of the sequence y " against a test function £ by

/S(x,y)dy”(x,y)z / E(x, y)dyopi(x,y) +1 / (ECx, x) —&(x, ) dyopi(x, ¥).

R4 xRd R4 x R4 HexH
The corresponding marginal p” can also be defined as ,olR +1(vo—v1) where vy is the first marginal of v = yoptlgexn,
the restriction of yop¢ to the set H® x H (respectively, vy is the second marginal of v). Since v < Yopt, We have

e Oy Mae, and O0<vi<Rae,

e vypy=0 onH and vi=0 onH". (18)

Then 0 < p"< M +nM < Ron H  and M — nuv; < p7 < R on H, so we obtain 0 < p7 < R (7 is chosen such that
nR < M and 2M < R). Moreover,

/,o”(y)dy =1+ W(VOpt(HC X H) - VOPt(HC x H)) =1L
2

So we effectively have constructed a new measure y” belonging to I"(pg, p7) with p7 < R. We still have to prove
that 7 (pg, p") < I (po, p]R). For that, we will compute

We(po, p") — We(po, o) < / c(x —y)dy"(x,y) — / c(x = y)dyopt(x,y)
R4 xRd R4 xRd

=-7 / c(x — y)dyopt(x, y).
H¢xH
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This means that with the new measure, we have managed to lower the cost by a quantity of order n. But the entropy
has to increase: let us check how much by computing

JE@ ) = Flf o).
2
Using the convex property of F and (18), we decompose

/ (F(o"(») — F (o1 (»)))dy = / (F(p"(») — F (o1 (»))dy + f (F(o"(») — F (ot (»))) dy

2 H¢ H

< n[/F’(pf(y)+nvo(y))vo(y)dy —/F/(le(y) —WUI(Y))UI()’)dy}

H¢ H

<77[/F’(M+nvo(y))vo(y)dy—/F’(M—nvl(y))vl(y)dy]
H

He¢

since pR(y) <M if y € H and pR(y) > M if y € H, and F’ is non-decreasing. But also

/F/(M +nvo(y))vo(y) dy — / F'(M = nv1(y))v1(y) dy
He¢ H

= / (F'(M +nuo()) = F'(M = 1v1()) d¥op(x, ¥)
HxH
< nsuplF"| suplu — v1.
2

Since F is C2(R™), the entropy increases by a quantity of order 5%, which means that for 7 small enough, I (pg, p") <
I (po, le ). This contradiction establishes Proposition 2.1. O

3. Optimal transport theory: a time discrete equation

In this work we deal with a convex cost function which may be discontinuous and takes infinity as a value.
As we said in the Introduction, for this kind of cost function, we cannot apply the classical result of Gangbo and
McCann [28,29] or Caffarelli [17] to define an optimal map associated to the optimal measure involved in initial time
step 735. To construct a map in the present case, we will use the properties of the optimal map for a mollified case
using strongly the double minimization process (combining the cost minimization with respect to y for a fixed p with
the entropy minimization with respect to p). Indeed, note that for given py, it is easy to construct p; such that the
value of

We(po, p1) = inf /C(x—y)dy(x,y),
vyl (po,p1)

the double minimization always produces p; for which the infimum is finite.
3.1. Previous results

We recall in this section Propositions 2.6 and 2.7 of the paper of M. Agueh [1] (see also [35]) and a result due to
D. Cordero-Erausquin [21] and F. Otto [38] also quoted in [1] that we will use for the mollified approximation of P.
L. Ambrosio, Gigli, and G. Savaré’s Theorem 6.2.7 [3] could also be used.

Proposition 3.1. (See [21,38].) Let pg, p1 € P(£2) and assume that c: R4 — [0, oo is strictly convex and satisfies
¢, c* € C2(RY). Denote by S, the c-optimal map that pushes py forward to po, and define the interpolant map S;, and
the interpolant measure (11—, by

Si=A—=n0ld+1tS and pi—r = (S)#p1,
fort €10, 1]. Then
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(1) S; is injective for t < 1, and w1—; is absolutely continuous with respect to Lebesgue.

Moreover, there exists a subset B of $2, of full measure for ju1 = p1(y) dy, such that, for y € B and t € [0, 1],
(i) VS(y) is diagonalizable with positive eigenvalues.
(iii) The pointwise Jacobian detV S satisfies

0% p1(y) = p1—(Si(y)) det[ (1 = )Id + 1V S(y)], (19)
where p1—; is the density function of 1—;.

In addition, if p1 > 0 a.e., then:

(iv) The pointwise divergence div S is integrable on S2, and

/diV(S(y) —y)E(dy < —/(S(y) — y: V&)dy,
2 2
for & >0 in CZ[RY).

Proposition 3.2 (Optimal map for smooth cost function). (See [1].) Let pg € P(§2) be such that m < pg < M a.e.
Assume that F :[0, co[ — R is strictly convex, and satisfies F € C 2((0, 00)), and c: RY — [0, oo is strictly convex,
of class Cl such that 0 = ¢(0) < c(|z]) for |z| # 0 and c coercive, i.e. lim|;|_, o0 c(z) = 00. If p1 denotes the minimizer
for (776 ), then the following holds:

/ Vex —y)-E()dy(x, ) + / Pr(p1(y)) divé(y)dy =0,
2x82 2

for & € C°(£2; Rd); here Pp(A) = AF'(\) — F()) for A € (0,00), and y is the c-optimal measure in I'(pg, p1).
Moreover,
(i) Pr(p1) € W ().
(ii) If S is the c-optimal map that pushes py forward to py, then

S =y =V [V(F'(p())]: (20)

fora.e. y € 2, and for & € C*(82),

/(m(y) —po(y))E(y)dy+/p1(y)VC*[V(F’(p1(y)))]~Vé(y)dy
2 2

1
< L sup| D2 ()| / I — y[2dy (x. y).

2 —
xe OxQ

Proposition 3.3 (Displacement convexity of energy (above-tangent form)). (See [1].) Let pg, p1 € P(82) be density
functions of two Borel probability measures po and i1 on R?, respectively. Let ¢ : R — [0, oo[ be strictly convex,
such that ¢, c* € C*(R?). Let F : [0, 00) — R be differentiable on 10, oo[, such that F(0) =0, and » — A F(1™%) be
convex non-increasing on 10, oo[. Then, the internal energy inequality holds, i.e.

/F(po(y)) dy—/F(m(y))dy> —fPF(Pl(Y)) div(S(y) — y)dy.

2 2 2
In addition, if Pr(p1) € W-(2) and p1 > 0 a.e., then
/ F(po(y))dy — f F(p1(y))dy > / V[F'(e1())] - (SG) = y)p1(») dy. (21)

ko) 2 2
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3.2. Construction of an optimal map for (735): a mollification process

Definition of the mollified problem
Recall that the hemispherical cost

c(z) = 1—+/1—1z* where |z] <1,
+o00 where |z| > 1,
is the motivating example, whose Legendre transform (4) is given by the hyperboloid

@) =+/14+]z]2 - 1.

In a more general setting, we deal with radial cost functions c:R? — [0, oo] satisfying ¢(z) = &(|z|) where ¢ €
C2([0, 1)) n C°([0, 1)) satisfies ¢’ (1) > 0 on [0, 1[ and &(0) = 0 = &' (0) and |Ve(z)] = oo as |z| — 1. Let mollify
those general cost functions ¢ by the Yosida regularization [16]

. . lwl?
c(z)= inf [c(z—w)+ — ).
weRd 2e

Note that from w = 0 we obtain ¢®(z) < ¢(z). In fact, the Legendre transform ¢®* of this mollified cost is a strict
convexification of ¢*, namely

() =c") + %IZIZ-

Note that the mollified ¢ is finite and convex, hence continuous.
Here, we recall an argument of [1] to justify the regularity of ¢®. The function ¢®*(z) is a C*>(R?) function non-
negative and strictly convex and V¢f = (Vc#*)~! and then ¢® belongs to C!'(R?) and the function

. cof (D*c**[ Vet (2)])
det(D2c* [Vt (2)])
is well defined and is continuous on RY. Then ¢ € CZ(RY).

Consider the sequence of approximate minimization problems (P¢).
Find y* with first marginal py and second marginal p® such that

& e\ _ 78(., 8\ __ : I T .
I(po.p7) = 1°(yF) = _min (E()+Wer ()

= D*c%(2)

where Py(£2 x §2) = {y such that f.QxQ ox)dy(x,y)= fg @(x)dpo(x)} i.e. the probabilities with first marginal pg.
Here pg represents any p; and is assumed to satisfy m < pg < M.
The mollification allows us to apply the previous results quoted above to this sequence of problems since ¢f has
the regularity required.

Lemma 3.1 (The Kantorovich duality for the mollified problem). For ¢ > 0 fixed, we have

/ ¢ — ) dy*(x,y) = / ¢ () dpo ) + / W) dpt () 22)
2x82 2 2

where the potential ¢ = —F’'(p®) and ¢¢ is the corresponding c-transform given by

¢°(x) = inf (¢*(x — y) — ¥°(»)). (23)

yef2

Proof. First recall the Kantorovich duality theory for smooth cost described in Rachev and Riischendorf [39] which
gives that

inf / ¢ (x —y)dy(x,y)= sup / ¢ (x) dpo(x) + / ¥ () dp®(y)
yel(py:p%) o, Vel
2x82 2 2

= sup / () dpo(x) + / v ) dot (v)
T Q
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where ¢, ¥ € T, mean that ¢ (y)+¢(x) < c®(x —y) forall x, y € £2, and ¥ is given by (23). Moreover the supremum
is attained. In our study, since p? is the second marginal corresponding to the optimal measure of the complete
minimization problem P¢, the Euler—Lagrange equation (20) for this problem is (see [1])

S5 () =y = Ve (V(F'(p°()))

where S¢(y) is the optimal map associated to the potential ¢ by
SE(y) —y =—=Vc*(VYi ().

This means that up to a constant (that we can fix to be zero without loss of generality since f o P (y)dy = 1), we have
VO =—F(p°(). D

Lemma 3.2 (Existence of a limiting measure).

(1) Up to a subsequence, y* converges, as € — 0, towards the probability y*° in C 0(82).
(ii) The support of the limiting measure y° is included in A| = {(x, y) such that |x — y| < 1}.
(iii) Identification of the limiting measure:
The limiting measure is the optimal measure for the initial problem, i.e.
Y =vop or I(y>)= yePf)r(lianQ)(E(y) + We(y)).

Proof. (i) Since ¢ is a sequence of probability measures, it is relatively compact and converges up to a subsequence
in CY(£2).

(ii) Let us define Ns = {(x, y) € £2 x £2 such that [x — y| > 1 4 6}, we claim that y*(Ns) — 0 when ¢ — 0. Then
we obtain that °°(Ns) = 0 for any § > 0, hence spty > C Aj.

Note that,

C=>E(po) = I°(y) > fcg(x — V) dy®(x,y) = (14 8)y*(Ns).
Ns

Since ¢*(1 +8) — oo when ¢ — 0, the previous inequality implies that y*(Ns) — 0 when & — 0 and then (ii) holds.
(iii) First of all, we prove that I¢(y®) — I(y®°).
Let us first prove that

lim sup (1(y*°) — I*(y%)) <0. (24)

e—0

The lower semi-continuity of the entropy leads to the first part of the inequality
E(y®) < limi(t)nCE(ye).
E—>

For the part involving the cost function, we use the fact that ¢® > 0 and that the support of the limiting measure y > is
a subset of Aj. Indeed, it leads to

/c(x—y)dy"o(x,y)— / cf(x—y)dy®(x,y)

2x82 2x82
< /[C(x —»dy®x,y) = (x —y)dy*(x,y)]
Ay
=/(C(X —y) = (x —y)dy°(x,y) +/C(x —(dy™(x,y) —dy (x,y)).
A Ay

Up to the introduction of a C%(£2) extension of the restriction of ¢ to the unit ball, since the sequence y* — > in
the sense of measures (or in C°(§2)"), the second term goes to zero.
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To prove that the first term goes to zero, we will prove that
||C(Z) _CS(Z)||L°O({|Z|<1}) < M(S) (25)

where M (e) — 0 when ¢ — 0.
Indeed, forany r € [0, 1]and t > 6 >0

&) — &(t —0) <E(1) — (1 — 6)

since for 6 fixed, t — ¢(t) — ¢(t — 0) is a non-decreasing function. Note also that

e - lw|? - - lw|?
c@—c@= sup (c@—¢e(lz—wl)———])= sup (&(lzl) =&zl —wl) = —=— ).
weB(z.1) 2 weB(z.1) 2
Since for any w € B(z, 1),
@ — &(1zl — lwl) oz &1 — w) wF ey
c(z) —¢(|z w e <¢ ¢ w e <¢ &),

we finally obtain
c(z) —c®(z) <é(1) — e ().
By taking M (¢) =c(1) — ¢®(1), (25) holds.
Since y¢(A1) < 1, we have
/(C(x — ) =t (x =) dy*(x,y) < M(e)
Ap

and then (24) holds.
Let us now prove the other inequality

i(yoo) > lim sup f(ys).
e—0
Recall that we have the following inequalities,
Fy*)<If(y) <1(y)

for any y which has p° as first marginal, including y = y°.
Thus, we obtain the expected inequality since

lim sup /° (v®) < I[(y)

e—0

for any measure y which has pg as first marginal and in particular for y°°.
To conclude the proof of (iii), we use the last inequality to obtain that

E(y™)+ / C(x—y)dym(x,y)<ir)}f[ﬁ(y)+ / c(x—y)dy(x,y)}
2x82 2x82

and then y* is equal to yqp, the minimizer for the initial problem (P) and p> = p;. O
Lemma 3.3 (The Kantorovich duality for the limiting problem).

(1) There exist ¢°° € L°°(82) and ¥*>° € L°°(§2) N BV (82) such that, up to a subsequence, the potentials (V¢ ¢°)
from (26)—(27) satisfy
U = Y™ weak in BV(82), strong in L'(£2),
pf— pX =p = (F*)’(—Iﬂoo) weak in BV (82), strong in L'(£2),
¢° — ¢ weak* in L®(2) = L' (2)'.
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(ii) The Kantorovich duality holds for the limiting problem

/ c(x = y)dyop(x,y) = / ¢ (x) dpo(x) + / V() dp1(y). (26)
2x0 Q 2
Moreover,
c(x —y) = (x) —y¥>(y) =0 27)

almost everywhere on §2 x §2 and the equality holds yqp-almost everywhere.

Proof. (i) Since for all ¢, ¥¢(y) = —F'(p®(y)) with m < p® < M, up to a subsequence, ¢ converges weak™® in
L*°(£2) towards > € L°°(£2). Moreover, using (21) and (20), applied for ¢¢, we obtain

/V(F’(pg(y))) PEWVE(V(F (0°(0))) + 80" D[V (F'(0° )| dy < /(F(po(y)) — F(p°(y)))dy

which gives in particular

/ps(y)V(F’(pg(y))) Ve (V(F'(p° (1)) dy < /(F(po(y)) — F(p°(y)))dy (28)

2 2

and then, since m < p® < M (see [1]), Vp? is a bounded sequence in L' (£2). Indeed,

/|Vp£(y)|dy= / |Vof(»)|dy + / |Vof()|dy <|22]+ / |Vo® (y)|dy.
2 [Vpe|<l |Vpé|>1 |Vpe|>1

Since we can write [V (F' (%)) = |Ve¢||F"(p%)|, we have

[V(F'(p* ()

A\ dy =
Vot o]y / P (0" ()]

[Vp#|>1 [Vof|>1
1
<% [IFEEEo)ay
2

where K = infj, p F”.
lz-Ve* (2)]

Recall that we have the relation |z||Vc™(2)| = |z - V™ (2)| which implies |z] < ==/

[Vc*(2)] = w(|z]) is a non-decreasing function of |z|.
Moreover, when |V p?é| > 1, |[V(F'(p?))| > K and then

1 / & * 7 £
f Vot (»)|dy < m/pg(y)v(f7 (0°M)) - Ve (V(F' (o5 (1))
[Vpe|>1 2

when |z| > s since

<cC / [F(p0(y) — F (o ()] dy
2
and then

[Ve? ”Ll(:z) <C 29)
where the constant C does not depend on ¢.
Then, p; € BV(£2) and consequently, 1°°, the limit of 1/° belongs also to BV (£2) and the convergence is strong
in L1(£2) (cf. [27, Theorem 4, Section 5.2.3]).
Finally, since ¢° is defined from ¢ by (23), ¢° is a bounded sequence in L°°(£2). Indeed by (23)

PSP MR =N =" <—Y(x) = VxeR, —sup F/<¢p*(x)< —[inﬂfﬂ F'.
[, M] m,

Then, up to the extraction of a subsequence ¢ converges in weak™ in L°°(£2).
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(ii) In the previous lemma, we proved that

lim £(y*) + / ¢ (x = y)dy*(x,y) = E(vopr) + / c(x = ) dyopt(x, ). (30)
2x82 2x82
On the other hand, (22) says that

E(y®) + / Fx—y)dyt(x,y)=E(y) + / ¢° (x) dpo + / Y (y) dp®.
2 2

2x82

Since ¢¢ converges toward ¢> in weak™ in L (£2) = L' (£2)’, we have

lim / ¢ () dpo(x) = f (%) dpo(x).
2 2

Moreover p® — p strongly in L' (£2) and p® is bounded in L>°(£2), so the dominated convergence theorem yields

E(V€)+/x/f8(y)dp€(y) = /F(pe(y))dy—[ps(y)F’(ps(y))dy
22 2 2

—>fF(m(y))dy—/pl(y)F/(m(y))dy
2

2

= Bt + [ 4701100,
2

Combined with (30), this gives

B+ [ et =0 dvontr ) = B + [ 6™ @1t + [ 001 dpr(r)
2x8 2 2
which leads to (26).
Finally, since for all ¢,
Fx—y)—¢°(x) —y¥(y) =0
using the fact that ¢®(x — y) < c(x — y) we have
cx=y) =" (x) =¥ (») =0

which gives (27) at the limit.
Since (26) holds, the equality holds in the support of yope. O

Lemma 3.4 (Existence of an optimal map).

(i) The support of Yop is included, up to a negligible set, in the c-superdifferential of the potential function ¥*°, i.e.
if (x,y) €spt(yopt), x € 3“YX(y).
(ii) The set {y € $2; Ax1, % x2 with |x1 — y| < 1 and (x1, y) € spt(yopt) and (x2, y) € spt(yopt)} is a negligible set.
(iil) Let yopt be the optimal measure for the minimization problem (P),

Spt Yopt C {(x, y) with |x — y| < 1} UZy  with yop(Zo) = 0.

More precisely, for each § € 10, 1[, we obtain an estimate of the measure of the set Zs = {(x, y) € spt yopt with
lx —yl>1-=34},

E(po) — E(p1)

(1 =8)|Ve(l =8| (31)

Vopt(Z(S) <
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(iv) We define Lebesgue almost everywhere a one-to-one map by
S =y—=VH(VY®») =y + VH(V(F'(01(»))) satisfying yopi = (S X id)gp1 (32)

where, when p € BV (82), Vp € LY(£2) denotes the approximate derivative (or Radon—Nikodym derivative of Dp
with respect to the Lebesgue measure also called the absolute continuous part D¢ p).

Remark 3.1. As we said before in the setting of the result, there is no ambiguity in the formulation of Eq. (32) since
the recession function associated to Vc™* is zero and then, we could also write Vc*(Dpy).

Before proving this lemma, let us recall the following result.

Lemma 3.5. If both 1 (z) and y2(z) are approximately differentiable at z =y, if ¥1(y) = ¥2(y) and ¥1(2) = ¥2(2)
in a neighborhood of y, then

Vi (y) = Vin(y).

Proof. Step 1. Let us first consider the case where ¥ = 0. Assume ¥ (z) approximately differentiable at z = y,
¥ (y)=0and ¥ (z) <O nearz=y. Let us prove that Vi (y) =0.

For a contradiction, suppose Vi (y) = Ae, where ¢, is a given direction and A > 0.

For any a > 0, the definition of approximate differentiability [27] asserts that

[V (2) — A(zn — Yl }
<da
|z =yl

D= {z € R" such that

has full Lebesgue density at z = y.
In particular, it must intersect the cone

C= {z € R" such that z,, — y, > \/Izl —y1l2 4+ lzn—1 —)’n—1|2}
inside each ball B(y, ) = {z € R" such that |z — y| < {}.
\%
—Mzk = | < —a|" = y| < ¥ (F) = A (2} — yn)
which means that 1/}(zk) > Q which leads to a contradiction.
Step 2. Apply Step 1 to ¢ (z) = ¥2(z) — ¥1(z). O

|2 > |z — y|? and then we find

Fix a < and choose a sequence Fecn B(y, %) ND. Since ¥ € C, 2|Zﬁ — Yn

Proof of Lemma 3.4. (i) On the support of yop, we have almost everywhere
c(x —y) =) + ¥
and then, since
9> (x) = inf (c(x —v) = Y>(v)),
vesf2
we obtain for all (x, y) € spt(yopt) and for all v € £2
YPW) <elx —v) —clx =) + Y= () (33)

which means that the support of yqp is included in the c-superdifferential of the potential function y°.

(i1) The proof of this point is based on the approximate differentiability of 1°°. Indeed, since ¥ € BV(S2), by
Theorem 4 of Section 6.1.3 in [27], ¥ is approximately differentiable almost everywhere. Let us denote Vi its
approximate derivative which belongs to L' (£2). (As we said before, the absolute continuous part of D> coincides
with the approximate derivative of ¥ °° so in this section, we will keep this notation to insist on the fact that we talk
about L!(£2) functions.) We will prove that this avoids the two possible problem:s,

Case 1. 3(x!, x?) such that (x', y) € spt(yopt), (x2, ¥) € spt(yopt)s X! — y| < 1 and [x — y| < 1.

Case 2. El(xl, x2) such that (xl, y) € spt(Yopt), (xz, ¥) € spt(Yopt), lx! — y| <1 and |)c2 —yl=1



R.J. McCann, M. Puel / Ann. I. H. Poincaré — AN 26 (2009) 2539-2580 2559

To prove a contradiction in the first case, apply Lemma 3.5 to the functions 1/f1 W) =yv>*»)— c(x!— y)+ c(x!—v)
and 1//2(1)) =¥ (v) from (33) which leads to Viy*°(y) = —Vex! — y), and then apply Lemma 3.5 a second time
to ¥l (v) = ¥>®(y) — c(x? — y) + c(x2 — v) and Y2 (v) = ¥*°(v) which leads to Viy*®(y) = —Ve(x2 — y). Which
leads to a contradiction since Ve(x2 — y) = Ve(x! — y) implies that xl=x2.

In the second case, we assume that Ix! and x? such that [x' — y| < 1 and |x% — y| = 1 with
Y@ -y <c(x' —z) —c(x' —y) fori=1,2.

Note that the previous point says that if 1 is approximately differentiable at y, Vi*°(y) = —Ve(x! — y). The
problem is that Ve(x? — y) cannot be defined since [x2 — y| = 1.
To get a contradiction, denote B(y, r) = {|z — y| <r}, we will prove that exists a set S such that

SN B(y,r)
|B(y, )l
satisfying for any z € S, for any a > 0,
V@ =¥ - VYT () (2 —y) < —alz -y
which contradicts the fact that 1> is approximately differentiable at the point y.
Without loss of generality, we assume that x2= y + e, (or xi2 =y; +in)

Take S = {z such that z, — y, > /|21 — Y112+ -+ [zn—1 — Yu_11?}. SN B(y, r) satisfies (34).
For any z € S, we claim that:

= C where C is a constant (34)

(a) Since z € S, then |z — y| < /2|2y — Yal.
(b) |z —x?| < 1.

Indeed, we have
2 2
o= =la =P+ 2 =yt P [z — (L 30
=lz =y +1 =20 — )
< 1+20z0 = yal® =220 — y)-
Then, if 0 < z,, — y, < 1 — which can be ensured by taking r < 1 — we get |z — x2| < 1.
(c) The inequality
—alz =y = VY®) @ — ) <YP@) — ¥ () <c(x —z) —c(x’ — ) (35)
is not possible.
Indeed, we can write
—alz =y =VYTO)-z—y)=—alz—yl—r-(z—-Y)
> V2| ~a = nmax(1h)) |lzs = yal = Clzn = yul
and
c(x2 — z) — c(x2 — y) = c(x2 — z) —c(D)
<E(/1 =260 = y) + 12— yP) — &)
<VE(y1 =20 — y) + 12 = yP) (14 12 = ¥P = 220 — yu) — 1)

since ¢(1) — c(1 —0) > Ve(1 —0)0. And then since |z — y| < 2|z, — Yn|, we obtain

o(? = 2) = (¥ = ¥) < VE(,/1 = 200 — yu) + 2120 = yal?) (120 = a2 = 2 = 3) + 0120 = ya))-
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So if (35) for i =2 holds, we would have for § = (z,, — y,) >0
1
C ~
Vi1 =28 +262)

which is not possible for any C since passing to the limit 6 — 0, it would give 0 < —1.

(ii1) We will first prove (31) from where it is easy to deduce the first claim of (iii).

Define y1—,(x,y) = (x, nx + (1 — n)y)#Yopt and p1—, its second marginal (the use of this interpolation map has
been introduced in McCann’s paper [35]).

We will use the fact that

<—1+8+o0(1)

I (0o, p1) < I(po0, P1—p)
for any 7 to obtain an estimate on Yopt(Zs).
On the first hand, we use the convexity of the entropy. Indeed, the entropy satisfies
E(p1—n) <nE(po) + (1 —n)E(p1).

The convexity of t — E(p1—;) is classical (see Agueh [1] and McCann [35]) for 7 € [0, 1[ and ¢ € ]O, 1] then for
te[0,1].

On the other hand, we compute the difference of both terms involving the cost.

Let us compute

We(po, 1) — We(po, p1—y) = / c(x = y)dyopt(x,y) — / c(x —y)dyi—y(x,y)

2x$2 2x82
> /(c(x —y) — (=& =) dyopi(x. y)
Zs

since c((1 —n)(x —y)) < c(x — y) yields

/ (ctx —y) —c((T=mx —y))) dyopt(x, y) = 0.
2x02/78

And then, using the fundamental theorem of calculus, we obtain

We(po. p1) — Welpo, p1—p) = / nlx — yl|Ve(( = 60)(x — )| dyopi(x, y)
Zs
where 6 € [0, n]. Since |Vc(z)| = V(|z]) is increasing with respect to |z| and

[1—0flx—yl=[1—n| inf |x—y],
(x,y)ez®

it leads to
We0. 1) = We(po. pi—y) > nyopn(Zs) inf (I — 1) |VE((1 = myinflx = y1)
8

> nyopt(Zs)(1 = 8)VE((1 —m)(1 = 8)).
Finally, since
We(po, p1) + E(p1) < We(po, p1—y) + E(01-p)
we have
We(po, p1) = We(po, pr—n) < E(p1-y) — E(p1) < n(E(po) — E(p1))

and then, dividing by n and letting n — 0, we obtain

E(po) — E(p1)
(I=8)|ved -9

which goes to zero when § — 0.

Yopt(Zs) <
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(iv) Points (ii) and (iii) imply that almost everywhere in the support of yop, [x —y| < 1 and —=Ve(x —y) = V> (y)
which means that

x=S(y) =y—VcH (V™).

It means that since spty C Ay, it is in fact supported almost everywhere on the graph of a one-to-one function
which is the optimal map. O

Remark 3.2 (The optimal map in dimension 1). In dimension 1, the whole argument is much simpler since the map is
already known and does not depend on the cost function and then does not depend on 4 or ¢.

3.3. The optimal map for an arbitrary h

From now on, we deal with the complete minimization problem when . > 0 and for any problem Pih. We use the
notation ¢, (x — y) = c(52).

Proposition 3.4.

(i) Let )/l-h be the optimal measure for the minimization problem (Pih ),

lx — ¥l
h

sptyih € {(x, y) | < 1} U Zf’ with y(flpt(Zih) =0.

(i) More precisely, we obtain an estimate of the measure of the set Zﬁs ={(x,y) € spt )/ih | ‘x;—)l >1—46},

niny . Ei-D) = E(p})
v (Zi) < h(1—8) Ve — )|

(iii) We define Lebesgue almost everywhere a one-to-one map Sl.h (y) € L*®(£2, £2) by
SEy) =y — hVe* (V! () =y + Ve (V(F'(pl(y))))  satisfying y' = (S x id) o} (36)
where ,ol.h and 1//1.” belong to BV (£2).

N E(oh
Proof. To prove (i) to (iii), apply the previous result replacing x — y by *72 and E(pg) — E(p}") by w.

Note also that since £2 is a bounded domain, Slh (y) e L™®(£2,£). O
4. From the discrete equation to the continuous equation

In this section, we have to pass to the limit when the time step goes to zero.

For this purpose, we use a monotonicity argument quoted in Evans [25], Lions [32] or in Otto [38] and since we
deal with BV functions, we use also very delicate concepts defined in Andreu, Caselles and Mazon [8,12].

4.1. Construction, compactness and convergence of the measure p"

In the sequel, we will assume without loss of generality that / is chosen such that %

is an integer.

Notation. In the sequel, the gradient of p” will involve both its absolute continuous part and its singular part and then,
we will now use the notation D% p" instead of Vp’ for the absolute continuous part of Dp”. We shall also need the
following space of distributions u (¢, y) on [0, T'] x £2:

T
Ll([o’ T); (WZ,OO(Q))’) = {u ‘ //u&‘ didy < Cyl|§ |l 2.0 (g for any test function § € CCOO(Q)}.
0 2
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Proposition 4.1 (Compactness and convergence of p"). Let p" be the piecewise constant in time function defined
by (3). Then:

(1) The sequence ,oh is bounded in L}U([O, T1; BV(S2)) and its time derivative B,ph is a bounded sequence in
LY([0, TT; (W>>2(2))").

(ii) A subsequence of p" converges strongly in L'([0, T] x £2) and weakly* in LI]U([O, T1,BV(£2)) to a limit p €
L®(0,T]1 x £2)N L}U([O, T1,BV,(82)) as h — 0.

Proof. (i) Recall that for a fixed &, p/(y) is the L'(£2) strong and w*BV($2) limit of p£" solution of the mollified
problem Pf. Then we have

”D(ph)” ([0, T x £2) < lign_)igf” Vol ”Ll([o,T]xQ) = li;n_)i(r;th” Vpigh “LI(Q) <C
i

where the constant C depends neither on 4 nor on ¢ (cf. (29)) and then o" is a bounded sequence in L}U ([0, T],BV(£2)).
Concerning the time derivative, we have

h_ ph
h/(pihipll)é(x)dx'
2

T

/ ’ / dp"E(x)dx
2

0

M=~

dt| =

r
i=1

hf (?E(y);S(X)) dyih(x,y)‘dt
2

Il
'M»m

dt + Ch| D% Loo(82)

I
MR

N
’ M =N

/ (x— ) - VEO) dyl (x, y)
2

<

'Mxlﬂ

hfVc*(D“C(F/(pfl(y))))pf‘(y)-Vé(y)dydl+Ch||D25 | o)
I o
< CIIVEIL=(2) + Ch| D& | o )

(i1) The sequence o™ is bounded in Lllu ([0, T, BV(£2)), and BV(£2) is compactly imbedded in L' (£2). On the other
hand 9 p” is bounded in L' ([0, '], (W>*(£2))') and L' (£2) C (W>>°(£2))’. The Aubin Lemma (see [32,41,42]) then
implies that p” is relatively compact in L'([0, T] x £2). O

4.2. Properties of the sequence p"

We first recall a result proved by Agueh in [1] presented here for CZ(R?) cost functions but proved in fact for
a larger set of cost functions.

Proposition 4.2 (Displacement convexity of the L*° norm). (See [1].) Let po, p1 € P(82) be such that py, p1 < M
a.e., and assume that 0 < ¢ € C2(R%) strictly convex satisfies ¢(0) = 0 with Legendre transform c¢* € C 2(RY). Denote
by S the c-optimal map that pushes p| forward po, and define the interpolant map

Si=0—-1t)id+1tS, fortel0,T]

Then ||(S)#p1ll L2y < M, meaning for non-negative functions & € C.(R?) we have

/ E(S:()o1(dy < M f £(x) dx. 37)
2 2
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The proof of this proposition for regular cost function consists in introducing p1—; = (S;)#01 and prove that
p1—r <M.

The next proposition establishes local and global inequalities (38) and (40) relating the generalized Fisher infor-
mation integrated along the curve ¢ € [0, T] — p¢” to the net change in entropy. We hereafter refer to such bounds as
entropy-information inequalities.

Proposition 4.3 (Localized entropy-information inequality).

(i) At each instant in time, p&"* belongs to W' (§2) and lies in a ball in L (§2) N W11(§2) whose radius is
independent of t € [0, T and € > 0. Moreover the entropy-information inequality

T
/ / P&, NVE (01, 3)) - Ve (V(F (0™, 1)) dy
0 £

T
7
< [(F(.30) = o 3)) dy + Y oxt1) (38)
o 1
is satisfied where 0.(1) — 0 when ¢ — 0. This integration in time yields

r

[ Vol ||L1([0,T]><.Q) + \/E”Vpgh ||L2([O,T]><.Q) sC+ 208(1) (39
1

where the constant C is now independent of h > 0 as well as of ¢ > 0.
(ii) Space compactness: p" satisfies

r

h
b [ 168100 = A2 (57 0) [ dy = 0 + 301,
2 1

_MSH

(iii) Time compactness: pt" satisfies

T
3

Zhﬂpf”(y) —pl (| dydr =5, h)
1 2

with 0 = limy,_,o lim._,0 (g, h).
(iv) The sequence pt"(t, y) satisfies a localized entropy-information inequality for any test function (t, y) > 0

T
/ f £, )0 (1, )V (V(F (01 ) - V(F' (0 (1, ) dy dt

0 2

T
- / / VE®W y)p™ (t.y) - Ve (V(F (o™ (2. 1)) F' (0" (¢, y)) dt dy

T

— / / E(t, )3 (F(p" (t,y)))]dt dy +5(e, h) (40)

0

where 0 = limj,_o limg_. (e, h).
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Proof. (i) Each term p¢" < M and Eq. (21) implies that ||hV,ofh l1(s2) is bounded independently of ¢ and by sum-
ming

h / P MV F (0" () - Ve (V(F' (0" (1)) dy < / (F(pl_ ) = F(pf"(»))) dy

ko) 2

on each time interval, we obtain (38) since lim,_, ¢ f_Q (F(pfh ) — F(pl.h (»))dy =0.
Then (39) holds. Moreover, for ¢ fixed, we can use an argument of [1] to prove that V,o”"h € L>(£2). Indeed since

eh Seh(y) —
Vot F (o) = V(F/ (o () = 2 (y)vcs< ) y)

P (y) h
we obtain for any test function &

S§I1 _
/ pfh<y>Vc6<%)y>s<y>dy‘
2
/ ch(x%)ay)dyf”(x,y)‘
2x82

X

minfy, A F"

’ / fo’%y)s(y)dy’ <
2

1
T m infy, A F”

<— 1 ‘vg(x_yﬂ
XX ; 1 Sup C
minfp, pn F" 0 E (Q)x,ye.Qx.Q h

and since ¢? € C'(R?) we deduce that pfh e Whoe().
(ii) Since pfh e W°(£2) (it may be approximated by a sequence of C 1(£2) function), the fundamental theorem
of calculus (FTOC) yields

T
3
I, = Zh/}pffl(y) — M (87" () | dy

I o
% 1

=Zh/ /V(Pfﬂ)(ws(th(y)—y))~(th(y>—y)ds dy.
Lol

Since S (y) — y = hV*(V(F' (o (y)))) + he V(F'(pf" ())), it leads to

M =~

1
2f/W P (v +5(SE"(v) — y)) | ds dy
220

_
HM‘H

1
we [ [19G80) 6+ 5(50) = IV (F (ei2) )] v
20

and then

T

2

thfle, L +s(S7" ) = )| ef" () dy ds
L0

EIH
o _

1
2

+— sup |F”|/< / (0" ) (3 +(SE" ) = ¥)) 708 h(y)dy)

(Zh/’V Pty (y)|2dy> ds
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which becomes using (37) (by approaching Ifof ,| by C*°(£2) non-negative function) in both terms

1
0 2
1

T T
h " 2 "
+ ;uﬁg]w’w/(; / (o) )| dy) (;h/ (o) )| dy) ds

< (C a(l))

by the L1([0, T] x £2) bound on the sequence V,oSh and the LZ([O, T] x £2) bound on prSh written in (38)
(ii1) Once again, we adapt arguments involved in [1]. We will in fact prove that

/IVp () |dyds

~M‘I~]

§|w

1
2

_MM\,

— oMt —h,y))dydt

T
f / (F'(p" (. y)) = F'(p"(t = b, y))) (0 (2. )
2

h f (F'(of" () = F' (0!, (1)) (0" () = p!_1 () dy < Ch

I
-1

2
which means when & < & — 0 by denoting p™ the LY([0, T x £2) limit of p(z, y) and p~ the L' ([0, T] x £2) limit

of p"(t — h, y) that p* = p~ since at the limit
0< (F'(0™) = F'(p)(p" = p7) <0.

And then p* =p~ or

T
tim [ 160 = o0 =) dy i =
2

e<h—0

But by denoting @; (y) = F'(p{ h(yy) — F/(p 1 () we can rewrite

T
I
=Y h / (F/(05" () = F' (0", 0))) (o5 ) = o} () dy

-
M i~

+)h / (F' (o, ) = F' (0 ) (0" () = i1 () dy
2

r

/ (@i (y) — D (ST ) o () dy + 1Y 0c (D).
Q 1

[
_Mm i}

And then by the FTOC, we obtain
P ;
b= Y 0h [ (8700 =) VO (5700 =)oty ds + 5D on(1)
1 50 1

%
< (c + Zos(l))h
1
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using the same argument as above by applying (37) for both terms, the uniform L' ([0, T'] x £2) bound on the sequence
Ve and the L2([0, T'] x £2) bound of /e V p*".

(iv) We now want to prove the localized inequality (40) for the mollified problem. For a fixed test function
&(t,x) 2 0, take h small enough such that spt& C [h, T] x £2.

We want an estimate for the following quantity

T

/ / Et. WV (o™ (1. ) p™(t.y) - V* (V(F' (o™ (1. y)))) dy dt
0 2
% T
=Y h f £t YIVF (0" (0))of" () - VX (V(F'(pf" (1)) dy + Oh) + 1 ) 0e(1).
1 5 1

Indeed by inequality (21),

/atwv (01, ) - Ve (V(F (o (1, ) dy i

/ £, )V (F' (05" (1)) - Ve (V(F (of" (1)) d

—Mm

F

<laelim Y [ (F(0.) = F(p (7. ) dy)
I @

%
< (c + Zos(l))h.
1

Then by introducing Pr(A) = AF'(A) — F(}), we can write

h f £, MVF (0" 0))pf () - Ve (V(F (pf" (1)) dy

_M}H

r

Y / £, V(PE(p]" 1)) - Ver (V(F' (07" (1)) dy

Moreover since & > 0,

£, V(Pr(pf" (1)) - VX (V(F (0" (1)) dy

%
> h
1

_M}H '@'\

fmwvmwwmvwwmw%mmz

So we will consider the quantity

i
Iy=)h / £, V(Pr(pf" (1)) - Ve (V(F' (" (1)) dy
Lo
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~M~|~| ”M*H

h / VEG ) Pr(pE" (1) - Ve (V(F (08 (1)) dy

2

/ E(t, ) Pr(pf"(»)) div Ve (V(F/ (0" (1)) dy
2

=1+ 1.
But since S (y) — y = AV (V(F'(pf" (1)))) we obtain

r
n

/E(tl,y)Pp( () div(SE" (v) — y) dy.

We now use the intermediate result proved by Agueh in [1]

—Pr(pf" (1) div(S;" () = y) = = Pr(pf" (1) (V" (v) — 1d)

~ito[-i ) (G >_d>(tr(vsf"(y)) )]

i (o (y)1/d (P (y))1/d d(phoynld (ot (yy/d
VSE(y) \ "4\ [ wVS(y) 1 —d 1 —d

ol /(o) ) am) () N emem) ]

P (y)[ d(p(y)) 1/ d(pe (y) 1/ (o (y)) 174 (o (y))1/d

eh
Pi ) eh _ &h
F<detv5f”(y))detvsi 0) = F(o" ()

eh
since A4 F (»~?) (which derivative is —dA?~! Pp(2~%)) is convex and non-decreasing and det VS¢" (y) < (M)d
(see the displacement convexity in [35]).
Since &(¢;, y) > 0, we obtain

ch
Pi » ch _ eh )
12<;/s<n,y)( (d tVS‘”’(y))detVSi () = F(o{" ) ) dy

and then

=N

% eh

. Qeh Pi (y) ) eh _ . eh

I < E] Q/S(tuSi (y))F<4detVth(y) det VS (y) — £(ti, y) F (0" (y)) dy
%

" P (y) 0
+3° [y —e (s <y)))F(’—) detVSE () dy.
1

J det VS£h (y)
The two right-hand terms I>; + I2» can be treated as follows using the relation

ol (£ (y)) det VSE" () = pf" (v)
and we obtain
Pt (y)

I (1, " b (S () — — £, VF (o () d
’ = Z f £ 5O F (o (57 0) s = 8 F (o ) dy

=~I~1

/ £t (F ol ) — F(of" () dy



R.J. McCann, M. Puel / Ann. I. H. Poincaré — AN 26 (2009) 2539-2580

2568
% T
/ & (F ("1 () = F (0" ())) dy + ) 0e(1)
o 1
T T
— [ [areamec. y)dydr+zos(1)
0 £
and
T
h
In= Z
1

/ (i, y) — &1, SE"(9))) F (0!, (S (1)) det VSE" () dy
2
,I

/ VEG (S0 — ¥)F (ol (S7(1)) det VST () dy + O(h)

7
==y / hVEQ, y) - Ve (V(F' (o (1)) F (o (55" (1)) det VS () dy + O (h).
1

We will use that fact that
My e ) =t (ST ()
ol (S (1)) ol (S (1))

det VS (y) =

which yields

%
=3 [ BVEG. ) - Ve (V(F (0" (0))) F (0 () dy

=~\~!

#3150 O MG ) =P 0)

7 eh _ o Sfah
_Z/hvg(ti,y).vcf*(v(F/(pfh(y))))F(pfil(th(y)))p’ (y)h p’;h‘( i) + O0(h).
1 :0,'_1(5,' ()’))

Finally, we write that

eh h eh
(V) = (57 ()

hVE(W, y) - Ve (V(F (pf" Fol (557 (1)) 2 i—105
/ §(ti.y) - Ve (V(F (05" ) F (01 (S5 (1)) S0 |

2

_M}N

r

h
< ClIVElLeqo.m1x2) | Fll Lo (m, M1 Zh/|Pff1(th(y)) - Pfh(y)| dy
I 9

and

P (v) — Pl (SE"(y))
/ ehVE(;. y) - V(F (0" 0)) F (o (ST (1)) ———
J P (87" (»)
< CVellVENLo@p 1 F Nl oo m,mn |l oo m, m1) ||x/5VP6h ||Lz(_QT)

I
-
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; %
x (Z /Ip (7" () pfh(y)|dy> :
I g

Moreover, since
|F (o1 (S5 )) = F (o )| S INF oo .| 071 (57" (09) = pf

we have

i / hVE @, y) - Ve (V(F (of" ) (F (o ) = F (o1 (55" (1))

r
h

< ClIVE|L>qo,T1x02) ||F/||L°°([m,M]) /|P (S (y)) = pf" ()| dy

and

[ #eve - N F(pr* 9) = Flols (570)

2
< CVENVENL@m I L@ mp | e om, i [ VEV O | 122

i 3
x <Zh/|p (SR () —pfh(y)ldy>
Lo

where 27 = [0, T] x £2.
And then, since

T

" h

D h / ol (85" () = o ()] dy < Zh[ / ol (SE" () = o (SE" () | dy
L9 1 Q

+/w%<$ﬂw)xauwwy

/Ip () — l(y)|dy+/|p, L) — pf"(y)ldy}

_M:‘N

1~

T
"

<D o)+ Oh) +5(e, h)
1

we obtain (40) using (ii) and (iii). O
Proposition 4.4 (Approximate equation and entropy-information). The piecewise constant in time function p" satis-
fies:

(1) The approximate heat equation

T T
/ / 8,0 (NEG y)dydi = O(h) + / / Ve (D (F' (0" 0))))0" () - VEt. y) dydi @1)
0 2

for any test function &, where D (F'(p"(y))) = D% p"(y) F" (p"(y)) and D p" denotes the Radon—Nikodym
derivative of the measure Dp" with respect to the Lebesgue measure.
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(i) The entropy-information inequality

G(F'(p"); D(F'(p"))) < f [F(po(») = F(p" (T, )] dy (42)

2

where the left-hand side represents the integral (46) of a function generalizing g(z, &) = (F*)' o (F(2))§Vc*(§).
Remark 4.1. Note however that the same kind of localized inequality as (40) is also valid for p”.

Proof. (i) We will first prove the following discrete in time equation localized in time

hiy) — ph
/ Ms@w: / veH (D9(F' (0! (1)) o ) VEM) dy + O(h) 43)

2 2

holds for any test function & € C*°(£2). Multiplying (36) by ,ofVS , we obtain for any test function £ € C2°(£2)

Slh (y) -y h _ * ac 1( h h
—— " |VEM dy = [ Ve (D(F'(p!'(»)))) ol () VE(y) dy.
2 22

To obtain properly the discrete in time equation, we have to compute for any test function &

h(y) = pi_ 1
/Msmdﬁz / () =) dy' (e ).

ko) 2x82

By using the FTOC applied to the test function &, we have
’/ (ED) —&) — (x — Y VEW ] dy (x, y)‘ sup|Dzé(z)|/|x yPPdylx, y) <

and since

Sh(y) — -
/ (%)vaymﬁm: f —EVEG) ) ().
Q 2x82

we obtain the expected discrete in time equation

) — ol ()
\f PRy dy — [ e (0 (F (o 0N VEw by

2

—sup|D25<z>| / lx — yl*dy/'(x,y) (44)

and then we have (43). Let us write (43) on each interval ]i&, (i + 1)A] and sum it with respect to i. Since for any test
function & € C*°([0, T'] x £2)

h/ oM (G + Dh, y) = p"(ih, y)
h

_M}H

T
£(t, y)dydr — f / *(D(F'(p" (1)) p" () VE®W;, y) dy dt
0

ko) 2

T
I
1
<>y sup D3] [ 1= yP )
; [0.T]x$2 J

T
we obtain (41) because |x — y| < h and Zl” h=T and
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_MMN,

T
h / Ve (DU(F'(p" (1)) p" () VEW;, y) dy dt — / f (DU (F'(o"()))) 0" () VE(, y) dy dt
2 0 2

< C||3, VE|| Loh.

(ii) We want to prove that

/T / e (D(F(o") - D(F (p <hmmf/ [ e V(o) 9 (7 ()

2

< liminf / Floo() = F(p™(T. )] dy (45)

2

but since ,oh is in BV, we have to give a sense to the left-hand side.
Remark 4.2. In the above expression, we define 0" (z, y) the same way we defined o"(t, y) from pl.h (y) through (3).

Using the same notation as in Andreu, Caselles and Mazén [12], let us denote
g(F'(p), D(F'(p))) = (F*) o F'(p)D(F'(p)) - Vc* (D(F'(p))).

We can then define the generalized version of the Fisher information for BV functions by defining

T p+(x)
D
g(p,Dp)=//g(p,1)“p)dtdx+/g0<p,|D—Z|>|Dfp|+/< / gO(s,vp(x))ds> dH ' (x)  (46)
0 2 2 Jpy Tp—(x)

where g0 is the recession function equal to lim;_, o 7g(x, z, %) = |&]| cf. (11).
To get the entropy-information inequality, we want to prove a lower semi-continuity for G:

G(F'(s"). D(F'(6"))) < limint / / V(F'(p™)). 7
For this purpose, let us decompose this quantity in two parts, which will be semi-continuity. Indeed, we write when
pewhl(2)
2(F'(0), V(F'(p))) = (F*) o F'(p)V(F'(0))Ve* (Y F'(p))
= (F) o F(p)(c(Ve" (V(F' () + " (V(F ().

Using the result of De Cicco, Fusco and Verde on lower semi-continuity for BV functions [23], since c¢* is convex
and (F*)’ is continuous, we obtain

/T [ o (F e 0 (o ))><nmmf/ [ o (P () (9 (o),

0 2

In another hand, since Vc*(V(F’(pgh))) is bounded in L*°([0, T'] x £2), it converges in w*L>°([0, T] x £2). It
still remains to identify this limit. For any test function & € D(£2), we have, for a fixed ¢

/ EMVEV(F (0 (1, ) p" (1, y) dy

= / EMVEV(F (02, )0 (2, y)dy — ¢ / EW|V(F (0" t, ))|p" ¢, y)dy
2 2
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= f EG)(x = y)dy/"* (x, ) + 0(e) > / E(x —y)dy!(x, y)

2x82 2x82
= [T D (F (o @ 3)o @) dy
Q
and then the uniqueness of the limit says that Vc*(V(F'(p))) — Vc* (D (F'(p"))) w*L>([0, T] x §2) and then
[Ver (D (F' (p" 1, )| < lim inf| V™ (V(F' (o))
£—

Since c is non-decreasing on R™, we have
c(Ver(|pee(F'(p"))]) < e(|ve (V(F' (o))

and then
[ [ he(ver e o) < timint [ ot e(ver (v (F (o))

Moreover — using that p* converges strongly in L' ([0, T] x £2) towards p" — we have

e—0

T
tim [ [ (6" = o")e(ve" (V(F(57)))) =0.
0 £
Hence we recover the expected lower semi-continuity property (47). O

Remark 4.3. In our case g’(x, z, &) = |£| and then
p+(x)

([go(p,%>|Dcp|+/( f go(s,vp(x))ds) dH(x)

Jp Cp-(x)
=/\D°‘p| +/(p+<x> —p-@)dH" () =0
Q Jp

so the singular terms are positive and we can write the Fisher information for the absolute continuous part of
D(F'(p")), i.e.

/ f P" 0.V (D (F' (o 2. 1)) - D (F (" 1. 1)) < / [F(o0(») — F("(T. y))] dy.

Q
4.3. Limiting equation

The following proposition represents the keystone which enables us to apply the Minty—Browder technique to
complete the construction.

Proposition 4.5 (The continuous time limit).

(i) The time derivative 9;p belongs to LY([0,T1,BV(2)) and is the time derivative of pin LY([0,T], BV(2)),
i.e. for any test function p € L'([0, T1, BV2(82)) admitting a weak derivative © in L}U([O, T1,BV(£2)) U
L*>°([0, T] x £2) as defined in [10], meaning

t

p(t,y)=/@(s,y)ds

0
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we have

T T
ffatﬁ(r,y)pu,y)dzdy:—ffﬁ(ny)@(r,y)drdy.
0 £ 0 2

(ii) Let A € L®([0, T] x §2) be the weak* limit of A(p") = p"Ve* (D (F'(p™"))), for any test function & >

have then the corresponding localized inequality

- f 8, F (51, )G, y)di dy — / VE( ) F (5( ) Al y) di dy
2 2
T

</f%‘(t,y)(z(t,y);D”"(F/(ﬁ(t,y))))dydw(TS;E(t,y))
0 2

where T* is a purely singular measure. We shall use (49) in lieu of integration by parts.

2573

(48)

0, we

(49)

Remark 4.4. Note that we would originally expect instead of inequality (49) an equality obtained by integration by

part from the equation

3,p = div(A)

multiplied by & F’(p). The problem is that F/(p) is not regular enough — since it belongs to Lllu([O, T],BVy(82)) —

to be used as a test function.

Proof. Let us prove (i) which is fundamental to obtain (ii). We want to prove that d; p belongs to LY([0, T1, BV(£2))'.

Remark that

T T
/ f APt VEC, ¥)didy = lim / f 0,0" (1, Y)E(t, y) di dy
0 2

//(p, ) —pi 1(y))€(t’y)dtdy-

Il
w._.
MSH

—

i

Indeed

o h X
(o' () = 1 ()

Z// = hp e (£, y) — &, y))drdy

1

ti-1 2

Fod () — ph
=3 [ [ g k- vy | + o
1

ti—1 2
= 10:&ll L0, 71x2) lim 8(e, h) + o(h).
e—0

We therefore consider

r
n

i h h
i — P )
Zf/(p » hp 1(y)€(t’y)dtdy

ltl 1 2
eh
//5( (p, - pl l(y))
ll 1 2

1 M:H
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T

/ (pg" (y) ol () "
2

£, dy+ ) oe(l)

P (y) dy

/ Et,y)— £ ST
h
2

||
Mw
—

1
SEh(y) —
ffV toy+s(SE"(y) — ))'Wpfh(y)dyds.
2 0

Then since S (y) — y = hVe* (V(F (pf" (1)) + e V(F'(pf" (1)) we can write

T ( () i1 (")
Z// pi Ly 1y &, y)dtdy < hIIl/Z //IVE t y+s Ssh(y) ))|;0,h(Y)dde

L 2 i=1," 5
+e||vs||Looqo,T]xm|\Vp | oiorix
S CIVElLiqo,11x2)
where C does not depend on /. Moreover this integral may also be defined for any & € BV (£2) since for £ fixed, the
piecewise constant function 8y, p" = % on [(i — 1)h, ih] belongs to L°°([0, T'] x §2). Then,

sup /8;,/0 Edy<C V& eBV,y(£2),
te[O,T]

and the sequence 9, ph is bounded in Ll([O, T1, BV,(£2))’. This implies that d;p is the w* limit of dp ph and then
belong to the dual of L' ([0, T'], BV, (£2)).
In fact, let us define the distribution z” by

1

T
= f / / o(r,y +sth*(V(F’(,oh(t, M) Ve (VF (p"(t, y))),oh(t, y)dsdydt.
0

20

The previous computation proves that z"" is a bounded sequence in L*° ([0, T] x £2) and that, for & fixed, div =0, ,oh
in L1([0,T] x ).
In another hand, we have equality (48). Indeed,

T

//8zp(t Ve, y)dtdy = hm hm / fahp (t, y)p(t,y)dtdy

0
I 1 g
T h h
C (o] ) — ;i (¥))
= lim li i i
E‘L“(Z | [

ti—1 2

b o) — ()
—I—//%p(t,y)dldy
2

fz

/(p, ) - p, ) (t’y)dtdy>

T
1%
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-6
o (p(t —h, y) P y) 4
=—lim ]

tmm, f i
2

—6 t

f O (s, y)ds p (¢, y) di dy
t—h

= — lim lim

1
§—>0h—0 h

%\'\! oc\'\]
—

T

—//@(t,y)ﬁ(t,y)dtdy-

0 £

Indeed, p" converges strongly in L'([0, T] x £2) and % ff_h ©O(s, y)ds is bounded in L*°([0, T] x §2) — since O is
bounded in L*°([0, T'] x £2) — and converges toward ®.

(i) First of all, 7 is a bounded sequence in L°°([0, T'] x £2) and then, up to a subsequence, converges in the sense
of distributions toward a distribution z which is equal to Ain L®([0, T] x £2).

Passing to the limit in the discrete equation (41), we obtain the limiting equation in the sense of distributions.

This point is an adaptation of the argument of [10].

We define as in the introduction for any p € L ([0, T, BV2(£2)) and any test function ¢

T T
0 0

T

—f/divzp(t,y)g“(y)dydt.

0 2

As we noticed, F'(p) does not belong to L'([0, T1, BV2(£2)), so we need to introduce a regularization. In this step,
we follow the proposition of [10].

Let the test function £(¢, y) = n(¢)¢(y) > 0 and introduce F* (¢, y) = %ftt_r n(s)F'(p(s, y))ds. For T fixed, small
enough such that sptn C [z, T — 7], since F’(p) is integrated in time, F7 (¢, -) belongs to CY([0, T1, BV2(£2)) (see [7])
and then belong to L ([0, T], BV2(£2)).

Let us now precise the argument of [10] by the following computation. First of all, Eq. (48) implies

T T
/ / F(p, )ik, ) di dy = lim / / MDD ko, y)e oy dr
0 2
_}LOf/ F(p(t+f))—F(p( ) N () dydt
and then since F is a convex function
T
/f F(ﬁ(ﬂrfi)r— F(ﬁ(t))n(t)g'(y)dydt

T
—//F’(ﬁ(z,y>)p(’+” VPO g vy diedy
0 2

-7

T
=f/,5(t,y)§(y)F (ot =, )t —1) = F'(p(t, y)n (1) dydr.
0 £
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Since £ 2U-T. y))”(’_? Fl(p.yin® ¢ p1 L0, T1, BV2(£2)) N L>([0, T] x £2) is the time derivative of F* as defined
in [10], i.e.

t
F(t,y) 2/ F'(p(s — 7. y)nGs — 1) = F'(BGs, y)nts)

-7
0

and since FT € L1 ([0, T1, BV2(£2)) we obtain

T T
//ﬁ(t,y)f(y)azF’(t,y)dydt=—/(azﬁ,;“(y)F’(t,y))dt
0

T T
=/fFf<r,y)z-vc<y>dydt+/fc(y> 2 D(FT (1. y)))di dy
0 0 2

2

by definition of the distribution (z, DFT).
And then

St~—

/ F(p ), i dy < lim / / FE(t, y)2- Ve(y) dyd:

2

+ lim — ///;(y)n(s)z D (F'(p(s,y)))dtdyds

=0T
Qt—7

1
+ lim —//c(y)(z;
=0T
0 2 t

t

/ n(s)D*(F'(p(s, y)))) dtdyds.

-7
First by (12) we write

T

/n(s)Ds( "((s, y))))dtdyds<M f//;(y)n(t+s)|Ds( "(B(t+s5,y)))|dtdyds

! /m)(z,t |

_z -T0 &

and then we use that forany 0 < p € L! ([0, T]), lim;_,q % fEI p(t + s)ds = p(t) in the sense of measure.
This yields the result since z = A which gives

T T
//F(ﬁ(t,y))azé(t,y)dtdy<//n(t)F/(,a(t,y))Z-Vg(y)dyd;
0 2 0
T
+//§(y)n(t)Z-D““(F’(ﬁ(t,y)))dtdy
0 £

T
1 Alleqor) xn)f/ﬂ(l)i(y)|DS(F/(/')(t,y)))|dtdy.
0

We denote (T*; &) the singular term || A|| Loo(j0.7]x 2) fo Jo &, WID*(F'(p(t, y))|dtdy. O
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4.4. Identification of the limiting equation: a monotonicity argument
By a monotonicity argument, we achieve the proof of Theorem 1.8 by proving the proposition

Proposition 4.6. The limiting measure p of the discrete in time measure p" satisfying Eq. (41) is solution in the sense
of distributions to the following equation

& p =div(pVc*(D(F'(p))))- (50)

Proof. We want to prove that A= pVc*(D(F'(p))). For that purpose, we want to use the Minty-Browder’s argument
which means that we have to prove that for any z € R?,

(A— A, 2)(D*(F'(7) —2) >0
and in fact, we want to prove for any test function £(¢, x) > 0 and ¢ (¢, x) € C®(RY, RY)
/s(Z — A, O))(D“(F'(») — ) >0.
Indeed, this yields the expected equality since by taking ¢ = D*“(F'(p)) + Sw, we obtain
(A= A(p; D*“(F'(p)) + sw))dw >0

and then by passing successively to the limit 0 > 8§ — 0 and 0 < § — 0, we obtain the equality A = A(p, D (F'(p))).
To prove this inequality, we want to pass to the limit when ¢ and % go to zero in the following inequality that comes
from the convexity of ¢*

T
A = / / Pt (Ve (V(F (07 (2. 1)) = Ve (¢t ) - (V(F (0", y))) — ¢ (¢, y)) dydt > 0.
0 2

Let us develop this quantity as follows

T
AT = / / 5. )™ @, YV (F' (p™ 2, 1)) Ve (V(F' (0™ 21, ) dy dt
0 2
T
+ [ [eanpaeay e e )dyar
0 £
T
—//S(t,y)pah(t,y)Vc*(;“(t,y))~V(F’(p8”(t,y)))dydt
0 £
T
- / / £t )™ (t, )V (V(F (p (2. )))) - ¢ (2. y) dyadt.
0 2
Term 1. Proposition 4.3 gives us at the limit
T
timint [ [ 60,30 1.0)V(F/ (o 0.) Ve (V(F (6 1. ) dy
0 2
T T
<- [ [eamair@en)aray- [ [vee.or @en)a
0 2 0 2
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T
=//é(t,y)2(t,y)-V(F’(,a(t,y)))dydwr(Ts;g)
0 £

by (49).
Term 2. Since p¢” converges in w*L>(£2) towards p, we have
T

T
[ [eanstanian vecam)avar— [ [se.0p0 e ve @)y
0 2 0 2
when e <h — 0.
Term 3. Using Theorem 1.7 of De Cicco, Fusco and Verde [23] on the L semi-continuity of functionals J[p, Dp]
on BV which are convex with respect to the gradient variable and continuous with respect to p = F’ (pth), we obtain

T
timint [ [ 6(t.3)Ve" (€. ) - V(F (o 1. ) (F (01, )) dy
0 2
T
>timint [ [ 6.0V (c0.0) - D(F (o 0. 3))o 0. y)dy
0 2
T
> / / £t )V (2t ) - D(F' (5. 1)))5(t. y) dy .
0 2

In fact, since J[p, Dp] depends linearly on Dp in this case, we have that both liminfs can be replace by limits which
converge, and the inequality above becomes an equality.

Term 4.
T T
/ / £ 0™ (1 YV (01, ) - £t y) dydi — / / £ 0AGy) - ¢t y)dyd
0 2 0 2

whene <h — 0.
Then the inequality A*" > 0 becomes

(A(V(F'(®) —¢) = bV @) (D(F'(p) —¢) +T°:§) > 0.
By Corollary 1, p. 53 of [27], we know that A(V(F'(p)) — ¢) — pVc*(¢)(D“(F'(p)) — ¢) + T* is a Radon

measure and then by the Lebesgue decomposition of Radon measure, we can conclude that it’s absolute continuous
part is positive which means that

(A= A®G.O)D“(F'(B) —¢) >0

for all test function ¢ which concludes the proof. O
Acknowledgements

The first author acknowledges the support of United States National Science Foundation grant DMS 0354729,
Natural Sciences and Engineering Research Council of Canada grant 217006-03, and the hospitality of the Centro
Recerca Matematica de Catalunya and the Université Paul Sabatier de Toulouse, where parts of this work were pre-
formed. The second author would like to thank the Research Training Network “Fronts singularities” for its support,
and the Department of Mathematics of the Rutgers University where this work was completed. Both authors are grate-
ful to Xavier Cabre and Jose-Antonio Carrillo, who originally proposed this project and contributed energetically to
its solution, and to Luigi Ambrosio, Wilfrid Gangbo and Felix Otto for critical comments along the way. They are
especially grateful to Fuensanta Andreu, Vicent Caselles and José Mazén for several fruitful discussions that have
been crucial for the understanding of this problem. The authors would like to thank the referee for his careful reading
of the paper and his very helpful remarks.



R.J. McCann, M. Puel / Ann. I. H. Poincaré — AN 26 (2009) 2539-2580 2579

References

[1] Martial Agueh, Existence of solutions to degenerate parabolic equations via the Monge—Kantorovich theory, Adv. Differential Equations 10 (3)
(2005) 309-360.
[2] Luigi Ambrosio, Steepest descent flows and applications to spaces of probability measures, Lectures Notes, Santander, July 2004.
[3] Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré, Gradient Flows in Metric Spaces and in the Spaces of Probability Measures, Lectures Math.
ETH Zurich, Birkhéduser Verlag, Basel, 2005.
[4] Luigi Ambrosio, Aldo Pratelli, Existence and Stability Results in the L! Theory of Optimal Transportation, Lecture Notes in Math.
[5] Luigi Ambrosio, Paolo Tilli, Topics on Analysis in Metric Spaces, Oxford Lecture Ser. Math. Appl., vol. 25, Oxford University Press, Oxford,
2004.
[6] Gianni Anzellotti, Pairing between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4) 135 (1983)
293-318.
[7] Fuensanta Andreu, Vicent Caselles, José M. Mazon, Existence and uniqueness of solution for a parabolic quasilinear problem for linear growth
functionals with L! data, Math. Ann. 322 (2002) 139-206.
[8] Fuensanta Andreu, Vicent Caselles, José M. Mazén, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progr. Math.,
vol. 223, Birkhduser Verlag, 2004.
[9] Fuensanta Andreu, Vicent Caselles, José M. Mazon, A strongly degenerate quasilinear equation: The elliptic case, Ann. Sc. Norm. Super. Pisa
ClL. Sci. (5) 3 (3) (2004) 555-587.
[10] Fuensanta Andreu, Vicent Caselles, José M. Mazdn, A strong degenerate quasilinear equation: The parabolic case, Arch. Ration. Mech. Anal.
(2005).
[11] Fuensanta Andreu, Vicent Caselles, José M. Mazon, A strongly degenerate quasilinear elliptic equation, Nonlinear Anal. 61 (2005) 637-669.
[12] Fuensanta Andreu, Vicent Caselles, José M. Mazo6n, The Cauchy problem for a strong degenerate quasilinear equation, J. Eur. Math. Soc.
(JEMS) 7 (2005) 361-393.
[13] Fuensanta Andreu, Vicent Caselles, Jos¢ M. Mazén, Salvador Moll, The speed of propagation of the support of solutions of a tempered
diffusion equation, preprint.
[14] Yann Brenier, Extended Monge—Kantorovich theory, in: Optimal Transportation and Applications, Martina Franca, 2001, in: Lecture Notes
in Math., vol. 1813, Springer, Berlin, 2003, pp. 91-121.
[15] Haim Brezis, Analyse fonctionnelle et ses applications, Masson, 1983.
[16] Haim Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Math. Stud., vol. 5,
Notas Mat., vol. 50, North-Holland Publishing Co./American Elsevier Publishing Co., Inc., Amsterdam, London/New York, 1973 (in French).
[17] Luis A. Caffarelli, Boundary regularity of maps with convex potentials. II, Ann. of Math. (2) 144 (3) (1996) 453-496.
[18] Jose Antonio Carrillo, Giuseppe Toscani, Wasserstein metric and large-time asymptotics of nonlinear diffusion equations, in: New Trends in
Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2005, pp. 234-244 (in honor of the Salvatore Rionero 70th birthday).
[19] Vicent Caselles, Convergence of the “relativistic”” heat equation to the heat equation as ¢ — oo, Publ. Mat. 51 (1) (2007) 121-142.
[20] Alina Chertock, Alexander Kurganov, Philip Rosenau, Formation of discontinuities in flux-saturated degenerate parabolic equations, Nonlin-
earity 16 (2003) 1875-1898.
[21] Dario Cordero-Erausquin, Non-smooth differential properties of optimal transport, in: Recent Advances in the Theory and Applications of
Mass Transport, in: Contemp. Math., vol. 353, Amer. Math. Soc., Providence, RI, 2004, pp. 61-71.
[22] Gianni Dal Maso, Integral representation on BV (w) of I'-limits of variational integrals, Manuscripta Math. 30 (1980) 387—416.
[23] Virginia De Cicco, Nicola Fusco, Anna Verde, On L1 lower semicontinuity in BV, J. Convex Anal. 12 (1) (2005) 173-185.
[24] Nelson Dunford, Jaco Schwartz, Linear Operators, Interscience Publishers, New York, 1958.
[25] Lawrence C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, published for the Conference Board of the
Mathematical Sciences, Washington, DC, CBMS Reg. Conf. Ser. Math., vol. 74, Amer. Math. Soc., Providence, RI, 1990.
[26] Lawrence C. Evans, Wilfrid Gangbo, Differential equation methods for the Monge Kantorovich mass transfer, Mem. Amer. Math. Soc. 653
(1999).
[27] Lawrence C. Evans, Ronald F. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, 1992.
[28] Wilfrid Gangbo, Robert J. McCann, Optimal maps in Monge’s mass transport problem, C. R. Acad. Sci. Paris Sér. I Math. 321 (12) (1995)
1653-1658.
[29] Wilfrid Gangbo, Robert J. McCann, The geometry of optimal transportation, Acta Math. 177 (2) (1996) 113-161.
[30] Richard Jordan, David Kinderlehrer, Felix Otto, The variational formulation of the Fokker—Planck equation, SIAM J. Math. Anal. 29 (1)
(1998) 1-17.
[31] Kohn Robert, Temam Roger, Dual spaces of stresses and strains, with applications to Hencky plasticity, Appl. Math. Optim. 10 (1) (1983)
1-35.
[32] Jacques-Louis Lions, Quelques methodes de résolution des problemes aux limites non linéaires, Dunod, 1969.
[33] Grégoire Loeper, On the regularity of the polar factorization for time dependent maps, Calc. Var. Partial Differential Equations 22 (3) (2005)
343-374.
[34] Xi-Nan Ma, Neil S. Trudinger, Xu-Jia Wang, Regularity of potential functions of the optimal transportation problem, Arch. Ration. Mech.
Anal. 177 (2) (2005) 151-183.
[35] Robert J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997) 153-179.
[36] Robert J. McCann, Exact solutions to the transportation problem on the line, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 455 (1984)
(1999) 1341-1380.
[37] D. Mihalas, B. Mihalas, Foundations of Radiation Hydrodynamics, Oxford University Press, 1984.



2580 R.J. McCann, M. Puel / Ann. I. H. Poincaré — AN 26 (2009) 2539-2580

[38] Felix Otto, Doubly degenerate diffusion equations as steepest descent, preprint, 1996.

[39] Svetlozar T. Rachev, Ludger Riischendorf, Mass Transportation Problems, vols. 1. and II, Probab. Appl. (N. Y.), Springer-Verlag, New York,
1998.

[40] Philip Rosenau, Tempered diffusion: A transport process with propagating fronts and initial delay, Phys. Rev. A 46 (1992) 7371-7374.

[41] Jacques Simon, Compact sets in the space L” (0, T'; B) Ann. Mat. Pura Appl. 146 (1987) 65-96.

[42] Roger Temam, Navier—Stokes Equation. Theory and Numerical Analysis, third ed., Stud. Math. Appl., vol. 2, North-Holland Publishing Co.,
Amsterdam, 1984.

[43] Cedric Villani, Topics in Optimal Transportation, Grad. Stud. Math., vol. 58, Amer. Math. Soc., 2003.



	Constructing a relativistic heat flow by transport time steps
	Introduction
	Description of the "Optimal transportation strategy"
	Assumptions on the cost function and on the entropy function
	Notations and definitions
	Optimal transport theory
	Definition of BV functions and of functions of BV functions
	Some functional spaces
	Functions defined on BV
	Definition of the measure (z,Drho)

	Statement of the result

	Existence of solution to the minimization problem
	Optimal transport theory: a time discrete equation
	Previous results
	Construction of an optimal map for (P01): a mollification process
	Definition of the mollified problem

	The optimal map for an arbitrary h

	From the discrete equation to the continuous equation
	Construction, compactness and convergence of the measure rhoh
	Properties of the sequence rhoepsilonh
	Limiting equation
	Identification of the limiting equation: a monotonicity argument

	Acknowledgements
	References


