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ABSTRACT. - This paper is a study of the relations that must exist
between a multivalued dynamical system with memory and constraints
depending on the past, in order to have the existence of solutions of the
dynamical system satisfying the constraints.

Such solutions are called viable solutions.

RESUME. - Ce papier est une etude des relations devant exister entre
un systeme dynamique multivoque avec memoire et des contraintes d’etat
dependant du passe, afin d’assurer pour le systeme dynamique l’existence
de solutions vérifiant les contraintes.
De telles solutions sont appelees des solutions viables.

INTRODUCTION

The viability problem for differential inclusions with memory is for-
mulated as follows.
The past history up to time t will be described by the map T(t ) from

the set of continuous mappings ~( ] - a~, t ] ; L~n) into the set of continuous
mappings ~o = ~( ] - oo, 0 ] ; I~") defined by

A differential inclusion with memory is then defined through a set-

valued map F from R x ~o into f~n which associates to the past history
up to time t of a trajectory x, the subset F [t, T(t)x ] c of feasible velocities.
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180 G. HADDAD

We say that + A ] ; (F~n), A > 0, is a solution under the
initial condition (to, e (F~ x ~o of the differential inclusion with memory
defined by F if

where

We say that the solution is defined on [to, + oo [ if it verifies (*) for
any A > 0.
A simple viability problem associated to a differential inclusion with

memory is formulated as follows : a nonempty subset K c [Rn being given
is it possible to give conditions relating F and K for the existence of solu-
tions which verify x(t) E K for all under every initial condition

(to, such that K.

A solution which satisfies such properties is called viable since the set K
(called viability set) represents generally a family of constraints that the
solutions should verify from initial time to in order to be viable. An answer
to this viability problem has been given in a previous paper [6 ].

In the present paper, we consider the more specific case where the via-
bility condition depends at each time t on the past history of the trajectory.
We shall particularly consider the case where the solutions are asked

to verify

with 8(1), ..., given strictly negative real functions and D a given set-
valued map from R x (~n)p into ~n.

In this particular case the viability appears to be directly related to
decisions taking in account at each time t the knowledge of test values
considered at past times t + 8t 1 ~, ... , t + et p~. The fact that 8~ 1 ~, ..., 8~ p~
are time dependent, means that we take in consideration a possible varia-
tion of information delays because of technical factors.
We shall also consider the case where the solutions are asked to verify

for all t ~ to.
with 8~.~ a given strictly negative real function, pi , ... , pn given real func-
tions and E a set-valued map from (1~ x into 
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181FUNCTIONAL VIABILITY

In that case the viability appears to be related to decisions taking in
account the cumulated values

of the trajectory up to time t + 8t  t.

As before the fact that 8~.~ depends on time, means that we take in consi-
deration a possible variation of information delays because of technical
factors. These two problems appear as particular cases of the viability
problem asking solutions of the differential inclusion with memory to verify :

where the viability sets c= ~o are defined for each time ~e [RL
We shall denote by

~

such a viability problem. 
’ ’ ’ ’ ’

We give in this paper necessary and sufficient conditions relating the
dynamical system described by F and the viability constraints described
by for the existence of viable solutions under any initial condi-
tion (to, such that 
Such a viability problem (M) is a very general one. For example if the

viability constraints or if the differential inclusion with memory take in
account only a part of the history, it is always possible to set the problem
as (M).

Indeed such a case can for example be described by

where for any ~p ~pQ and ~pb respectively denote the restrictions of qJ
on [- a, 0] ] and [ - b, 0] ] with a and b strictly positive, and where G( )
is a set-valued map from R x ~( [ - a, 0 ] ; (~n) into (~n and ~b( ~ ) a set-
valued map from R into ~( [ - b, 0] ; 

It suffices then to define

and

Historically the viability problem has been introduced by Nagumo [11]
in the case of ordinary differential equations and when the set of constraints
is a nonempty compact of ~n.

Viability problems have then been studied in different situations. We
refer for example to Brezis [2], Crandall [4 ], Larrieu [9 ] and Yorke [13] .
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182 G. HADDAD

for differential equations, to Castaing [3 ], Gautier [5 ] and Methlouthi [1 1] ]
for differential inclusions and to Leela-Moauro [10 ], Seifert [12 j for diffe-
rential equations with memory.

General results on differential equations with memory can be found
in [7] and on differential inclusions in [l ].

I. ABSTRACT VIABILITY THEOREMS

In this part we consider the abstract viability problem

described at the end of the introduction.
We begin by some useful definitions for the following of the paper.

0. Definitions.

The norm on the finite dimensional vector space [Rn will be denoted by
~. !t.
The closed unit ball of is defined by

If ~ is a nonempty subset of ~~‘, then

For any interval I c the topology on the set of continuous mappings
~{I ; will always be the (metrizable) topology of uniform convergence
on compact subsets of I.
For any compact interval [a, b ] c  b, we define

The graph of a set-valued map F from X into Y is defined as

Let X and Y be two metric spaces, a set-valued map F from X into Y
is said to be upper-semicontinuous (u. s. c.) at xo e X if to any neighborhood
Q of F(xo) in Y, we can associate a neighborhood U of xo in X such that
F(x) c Q for all x E U.
We say that F is u. s. c. on a subset of X if F is u. s. c. at every point of

this subset.

Annales de l’Institut Henri Poincaré-Analyse non linéaire



183FUNCTIONAL VIABILITY

At least let F be a set-valued map from X into we say that F is bounded
on X if there exists a constant k > 0 such that:

We call k an upper-bound of F.

1. The autonomous viability case.

In this section we consider the autonomous case

where the differential inclusion with memory is autonomous and the

viability sets (~(t ))tE~ are invariant upon time.
For conveniency we only consider here initial time to = 0 and this

with no loss of generality.

DEFINITION 1.1. - For any cp e Jf, we define ~~(~p) c by v E 
if and only if, for any e > 0, there exist h E ]0, s] ] and xh E b(] - oo, h ] ; 
such that

Then we have the following result.

THEOREM I .1. - Let us suppose that ~’ is a closed subset ofo and that
all element of ~ is Lipschitz with a same constant.

Let F from ~o into be u. s. c. with nonempty convex compact values on ~.
Then condition

is necessary and sufficient for the existence under any initial value rpo E ~
of an associated viable solution of (Mo) defined on [0, + oo [.

Necessity of (Co).
Let us suppose that for the initial value ~ there exists a solution

x E ~( ] - 00, -f - 00 [ ; U~n) of(Mo).
Then since x is absolutely continuous on any compact interval [o, A ],

A > 0, we have

Vol. 1, n° 3-1984.



184 G. HADDAD

The set-valued map F being u. s. c. at for any 8 > 0 there exists a

neighborhood V of ~po in ~o such that

Furthermore from the topology defined on ~o and from the very defi-
nition of the map T{t ), we easily deduce the existence of 11 > 0 such that

This implies that

But since for almost all t ~ 0 we have

We deduce that

since + 2B is convex compact, and B being convex compact.
Let us denote by co the set of limit points of 

x(h) - 
as h ~ 0+.

From the remarks made above and since we are in a finite dimensional

space we deduce that cc~ is nonempty and verifies

This being satisfied for any e > 0 and since is compact we have
~ c= 

We claim that cc~ c 

Indeed let any v E co be given. By the very definition of a limit point
we know that for any e > 0 there exists h E ]0, E ] such that

Since T(0)x = 03C60 and T(h)x e ff for all h  0, we easily deduce that

Sufficiency of (Co).
Let us denote by ~, > 0, the common Lipschitz constant to all elements

of ~’.
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185FUNCTIONAL VIABILITY

Let ~po EX be given, we define for any a > 0 the set

This set is compact, which is a direct consequence of Ascoli’s compactness
theorem.
To prove the existence of a viable solution of (Mo) associated to the

initial value (po we shall build a family of approximated solutions. For
this we need the following lemma.

LEMMA 1.1. - For any ~ > 0, there exists a finite sequence hi , ..., h

such all 0  hi  t; for all i = 1, ...,p a , to which issuch all 0  hi  E for all i = 1, ... , p and hi > a 03BB + ~, to which is

associated (vi, yi ) E x b(]- oo, hi]; Rn), i = 1, ... , p such that for all i :

where ho = 0 and yo = 

Proof. From (Co), to any 03C6 E we can associate v03C6 E F( 03C6), h03C6 E ]0, E ]
and y~ E ~’( ] - ~o, h~ ] ; ~n) such that

We notice that y~ is ~,-Lipschitz on ] - oo, 
Let us define

Such a set is an open neighborhood of ~p in ~o. Since is compact,
there exists I finite such that

Then there exists i 1 E I such that We denote h 1 = 
vi = Then y 1 obviously verify (2). 

’" ’"
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Let us consider we have:

Thus if (À + B)h1 > a, we stop.
Otherwise T(hi)yi E then there exists such that T(hl)yl 

We then define = and y2 = and easily verify that
they satisfy (2). 

~’~ ’~ ’~

Moreover we have :

We stop if hi + h2 > a 03BB + ~.
Otherwise we continue. Since we have a finite number of hqJi’ i E I, all

strictly positive, we are sure that after a finite number of operations we

get a first hp such that

Q. E. D.
Construction of the approximated solutions.

p

We first define the mapping y~ from |-~,  hi into IRn such that

yo = ~ 
And for any k E ~ 0, ..., p - 1 }

if

p

To each y£ we associate x~ from - oo, hi into Rn such that
L=O

Annales de l’Institut Henri Poincaré-Analyse non linéaire
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And for any k e { 0, ..., p - 1 }

for any

Then Xe appears to be the piecewise linear mapping which interpolates

Furthermore it is obvious that yE and x~ are 03BB-Lipschitz since each yi,
i = 0, ... , p, is 03BB-Lipschitz. We have also ~ xE(t ) -  03BB. E for all

n

This is obvious if t ~ 0 since xit) = 

we easily verify that:

Moreover for any k E ~ 0, ..., p - 1 } we deduce from (2) that

with vk + 1 E F 1 ] .
At last we claim that for any k E ~ 0, ..., p - 1 ~

Vol. 1, n° 3-1984.
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Since [] xit) -  ~.E for any t, it suffices to prove that

This is done by induction on k E ~ 0, ..., p - 1 }.
For k = 0, if z e [ - hl,O] ] then

[T(hi)Yi ](z) = Yiz + hi) - + hi)
= YI(Z + hi) + Yo(0) - YI(Z + hi)

= Yo(0) - 
If z~ [- l/E, - h1] then 
But by (2) we know that I I T(o)yo - T(o)y l  h l ’ E. Thus is true that
II T(hl)Ye -  s.

Let us suppose that for k :

Then if ze [ - ~+i,0] ] we have

Then from (2) and the hypothesis for k we easily deduce that

Annales de l’lnstitut Henri Poincaré-Analyse non linéaire
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p

Thus we have built a /L-Lipschitz mapping from ]-~, hi] into Rn,

linear on each interval .7 ~~ / such that == ~o and for

t=0 f=0

each ~e{ 0, ...,jp 2014 1 }:

where {hi, yi, i = 0, ..., p } verifies all the properties of the preceding
lemma. P

Then for any s small enough we are sure that a 2 03BB  hi. Thus using
i= 1

Ascoli’s theorem there exists a sequence En ~ 0+, which converges

(uniformly on compact subsets) to a mapping x defined on - 2~
which is A-Lipschitz and verifies T(o)x = = 

We claim that x is a viable solution of (Mo). All the techniques of this
proof being exactly identical to those used in [6 ]. a
The result being true not only for initial time zero and since - 

does

not depend on it is obvious that the viable solution can be extended
on [0, + oo [. Q. E. D.

2. The non autonomous viability case.

In this section we consider the nonautonomous viability case

described at the end of the introduction.
Here F is a set-valued map from Ll~ x ~o into and f a set-valued

map from R into ~o which graph is supposed to be nonempty.

Vol. 1, n° 3-1984.



190 G. HADDAD

DEFINITION 1.2. - For any (t, ~p), we define ~~~t~(~p) ~ (~$n

by v E if and only if, for any E > 0, there exist h E ]O, E ] and
xh E b(] - ~, t + h ] ; such that

Then we have the following result.

THEOREM 1 . 2. - Let us suppose that ~{ ~ ) has a closed graph and that
all elements of are Lipschitz with a constant independent from t.

Let F be u. s. c. with nonempty convex compact values on the graph of ~( ~ ).
Then condition

is necessary and sufficient for the existence under any initial condition

(to, CPo) E Graph X of an associated viable solution of (M) defined on
[to, + oo [.

Proof - The proof of the necessity of (C) is similar to the one given in
the autonomous case.

Let us now suppose that (C) is verified.
We denote ~~ _ ~( ] - oo, 0 ] ; (l~ x (l~n) and define

~ _ ~ (z( ~ ), ~p) E ~~ ; ~p E z( - ) is 1-Lipschitz }.
as well as the set-valued map G from ~~ into !Rn+ 1 such that

There is no difficulty to verify that ~f is nonempty closed in ~~, that all
elements of ~f are Lipschitz with a same constant and that G is u. s. c. with
nonempty convex compact values on ~f.

Let now (z, be given. Then by (C) we know the existence of
v E F [z(0), ~p ] such that for any 8 > 0 there exi’st

which verify
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We can then define z~ on ] - 00, h] ] by

zh( ~ ) is obviously 1-Lipschitz since z( ~ ) is 1-Lipschitz.
Let us then consider (zh, yh) E ~( ] - oo, h ] ; ~ x ~n) such that

Then

and

since

Moreover,

and

Thus the autonomous system defined by G and L verifies all the hypo-
thesis of Theorem I .1. Then for any initial value (zo, and any
initial time to there exists an associated viable solution defined on [to, +00 [.

Let now f(to) be given. We define zto to be the constant function to
on ] - oo, 0 ].
Then ~ and there exists under the initial condition to, (zto, ~po)

a viable solution (u, x) which verifies :

It is then obvious that u(t ) = t for all t a to and that T (t )(u, x) e dl implies

Thus x is a viable solution of (M) under the initial condition (to, Q.E.D.

II. APPLICATIONS

In this part we show that we can deduce from the preceding theorems,
the specific viability problems presented in the introduction.
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1 Viability depending on test values.

Let F be a given set-valued map from R x ~o into and D a given
set-valued map from R x into f~n whose graph is supposed to be
nonempty.
At last 8~ 1 ~, ... , 8~ p~ be given strictly negative continuous functions

from R into ] - oo, 0 [, we suppose   ...  for all t E .
We can now define for each t E R :

We easily verify that the set-valued map ff D has a nonempty graph
in R x b0 since Graph D is nonempty and since we can always build a
continuous mapping qJ knowing ..., ~p(8tp~) and ~p(o). Moreover
we easily verify that the viability condition is equivalent
to the relation x(t)ED(t,x(t + etl~), ..., x(t + 8tp~)).

Thus the problem of the existence of solutions for the system

is equivalent to the existence of viable solutions for

Thus we have the following result.

THEOREM II .1. - Let us suppose that F is bounded, u. s. c. with nonempty
convex compact values on Graph ~D( ~ ) and that D has a closed graph.

Then condition

is equivalent to the existence under any initial condition (to, E Graph ~D
of an associated viable solution of(MD) or (MD) defined on [to, + ao [.

Remark. This result is not only a direct consequence of Theorem I - 2
since elements of ~D( - ) are only continuous and no more Lipschitz.
The necessity of is deduced identically as in Theorem I l.
To prove the existence of solutions under condition we shall need

the following preliminary lemma.

LEMMA II . l. - To any 03C6 E b0 and to E we can associate a sequence

of Lipschitz functions E N E which converges to ~p in ~o as N -~ 
and such that

for all N (large enough).
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Proof: - The proof is easy considering that ~p is uniformly continuous
on every compact subset of ] - oo, 0 ]. Indeed let be large enough
so that - N  There exists then r~N > 0 such that:

We can then define a partition of [ - N, 0 ] ;

such that -  1JN for any i = 0, ... , m -1 and E ~ 
for all j = 1, ..., p. 
Thus we can build the piecewise linear mapping on [ - N, 0 ] which

interpolates 1 ), on each interval [Si+ 1, Si].
We then extend this mapping on ] - oo, - N [ by setting

Then CPN is obviously Lipschitz and we easily verify that

Furthermore by construction we have ~pN(o) _ ~p(o) and _ 

for all i = 1, ..., p. Q. E. D.
Let now be given, then from the preceding lemma there

exists a sequence ( all Lipschitz such that ~pN converges to in ~o
as N -~ + oo, and ~p°(~) _ _ 

... ~ 
_ 

for all N~N.
Thus ~pN E for all N E ~I, by definition of 
We shall now prove the existence of a viable solution of (MD) under

each initial condition (to, ~pN), N E And then by now standard tech-
niques we shall deduce the existence of a viable solution under the initial
condition (to, 

Proof 2014 Let us fix ~pN E as defined above. By construction it

is 03BBN-Lipschitz. Since F is bounded on Graph let us denote by k > 0
an upper-bound of F on Graph JfD-
We define ,uN > 0 such that for example ~cN > Max { + 1 ~. Let

us then define the set-valued map hDN from R into b0 such that for all t E R :

Then ~pN E Furthermore since Graph D is closed and since each
8i, i = 1, ..., p is continuous, we easily verify using the uniform conver-
gence on compact subsets defining the topology on that Graph ~D
and Graph are closed in R x b0.
Vol. 1, n° 3-1984.
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Furthermore condition (CD) implies that for c 

there exists v E F(t, such that for any 8 > 0 there exist he ]o, E ] and
xh E ~( ] - + h ] ; (~n) which verify

From T(t + h)xh E + h) we have

But using the continuity at point t, since  0, choosing a such that
 a  0 we are sure that there exists 11 > 0 such that l ~ implies
 a. Thus taking e  Min { - a, ~ ~ we have h +  0 since

0  h  e  ri. Since   ...  e~ 1 ~ we also have  0
for all i = 1, ..., p.
Thus for all i= 1, ..., p.
Thus xh(t + h) e D(t + h, + et + h), ..., + 
Let us now define oo, t + h ] ; !Rn) such that = i/r, yh is

the linear mapping which interpolates _ ~r(o) and + h) on [t, t + h ].
Thus obviously y~ verifies T(t+h)YhE + h) and if E  1 then

yh( ~ ) is ,uN-Lipschitz on ] - oo, t + h ] since ~ is ,uN-Lipschitz and

Thus T(t + h)yh E + h).
So for any there exists v E F(t, such that for any e > 0

there exist ] and yh E ~( ] - oo, t -+ h ] ; fl~n) which verify

Thus all the hypothesis of Theorem 1. 2 being satisfied by the viability system

there exists a viable solution xN E ~((J~ ; of under the initial condi-
tion (to, 
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Such a viable solution by definition verifies

In fact since F is bounded by k on Graph ~D(~ ), it is obvious that xN is
k-Lipschitz on [to, + oo [.
Thus this being done for any since converges to ~po as

N -> + oo and since each xN, Ne I~, is k-Lipschitz on [to, [ with k
independent from N, using Ascoli’s theorem there exists a subsequence
(again denoted which converges (uniformly on compact subsets) to
x E ~n).

. Furthermore x is k-Lipschitz on [to, + co [ and verifies T(to)x = ~po
as well as T(t )x E for all t > to since Graph ~D( ~ ) is closed and

converges to T(t )x in ~o as N --~ + oo .

At last x’(t ) E F(t, T(t )x) for almost all t > to, which is proved by the
same standard arguments given in [6 ]. The existence of a viable solution
under the initial condition (to, is then proved. Q. E. D.
To finish this section we give an equivalent definition of ~~D(t)(~p) in

that example of viability problem.

PROPOSITION 11.1. - For any

(p E ~D(t ) _ ~ t’/ E ~Pp ~ ~ (~) E D [t, ..., 1~l(8tp)~ ] ~ v E ~~D(t )(~P)
if and only if

Remark. We recall that t being given, since ..., 
are continuous

and verify  ...  8t1~  0, for h small enough we have

which is necessary since ~p is only defined on ] - ~o, 0 ].

Proof If v E ~~D~t~( ~p), then by definition, for any s > 0 there exist
h E ]o, E ] and xh E ~( ] - + h ] ; [Rn) such that
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But we have already seen that if s is chosen small enough, then

means that + h) e D(t + h, + et + h), ..., + et + h)) .
Thus since

and since = ~p(0) we deduce that

Thus (i ) is verified.
Conversely if (i ) is verified, then for any E > 0 there exists h E ]0, e] ] such

that

This implies that there exists

Thus taking E small enough, it suffices now to build xh E ~( ] - + h] ; (1~")
such that T(t )xh = ~p and xn is linear interpolating ~p(o) and w on [t, t + h ].

Indeed from this construction we have

and T(t + ffD(t + h) since

and since for all = 1, ..., p we have

Thus v E Q. E. D.

2) Viability depending on cumulated values.

Let F be a given set-valued mapping from R x ~o into and E a given
set-valued mapping from fl~ + into whose graph is supposed to
be nonempty.
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Let 0o be a continuous function from int ]2014oo,0[ which we sup-
pose is bounded from below.

Let p1, ...,pn be a finite sequence of locally integrable functions from [R
into [R, all of which supposed not to be almost everywhere null on ] - ]
where a = Inf ~.

Moreover for any x = (Xi, ..., (xj e tR" = 
..., e [R" we

define a [] 03B2 = 03B1203B22, ...,03B1n03B2n)~ Rn.

At last we denote by p = (7?i, ...,pn) the mapping from R into Rn such that

Thus we can define for each t  0

In the definition of we implicitely assume that the mapping
z --~ ~p(z) 0 p(z + t) belongs to L 1 ( J - oo, 8t ] ; ~n) and thus equivalently
to L~(] ] - ~o, 0 ] ; since qJ is continuous on ] - oo, 0 ] and p locally inte-
grable on f~.

PROPOSITION II . 2 .1. 2014 The set-valued map has a nonempty graph
in x ~o.

Proof - Since E has a nonempty graph in (Il~+ x (l~n) x then there

exist t e and a = (a 1, ..., an) e (~n such that E(t, a) 5~ 0.
Moreover since t  0, from a and the assumptions made on

p 1, ... , pn, we are sure that the functions

cannot be almost everywhere null on ] - oo, e~ ], thus there exists u 1, ..., un
continuous with compact support in ]2014oo,~] ] such that

Thus considering the mapping ..., from ] - into ~n
we have

Vol. 1, n° 3-1984.
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Then choosing w = ..., wn) E E(t,oc), it is possible to extend conti-
nuously on ]2014oo,0] such that = w.

At last we easily verify that for any x = (x 1, ..., xn) E ~(fl~ ; the via-

bility condition T(t)xe ~E(t ), t > 0, is equivalent to

Thus the problem of the existence of solutions for the system

is equivalent to the existence of viable solutions for

Then we have the following result.

THEOREM II . 2. Let us suppose that F is bounded, u. s. c. with nonempty
convex compact values on Graph ~E( ~ ) and that E has a closed graph.

Then condition

is equivalent to the existence under any initial condition (to, E Graph ~E
of an associated viable solution of(M) or defined on [to, + oo [.

Remark. Initial time to is necessarily positive since E and are

only defined for t > o.
The necessity of is proved identically as in Theorem I . l. To prove

the existence of solutions under condition we shall need the following
preliminary lemma.

LEMMA II.2. - Let q from (I~ into (F~ be locally integrable, not almost
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everyvhere null on ] - ~, ot ], 8t  0, and f E b( ] - oo, 0 ] ; R) be such that
q ’.f E L1( ] w~ ~t ] ~ ~)~
Then there exists a sequence N E ofLipschitz functions from ] - ~, 0 ]

into R, with compact support, converging to f (uni,f’ormly on compact subsets)
as N -~ + oo and verifying

for all N large enough. 
" " °

Proo, f. - Let N E ~J be large enough such that - N  g. Using the
uniform continuity of f on [ - N, 0 ] we know that for any 8 > 0 we can
build as in Lemma II. 1, a piecewise linear function gN on [ - N, 0 ] such
that gN(o) = f {o), gN{ - N) _, f ( - N) and [ ~ gN -, f I I [ - N, 0]  E for all N.

Since q is locally integrable there exists 0 such that

We then extend gN on [ - - N ] by the linear function which
interpolates 0 and gN( - N). At last gN is extended by zero on ] - oo, - N - 
Thus gN is Lipschitz since piecewise linear, with compact support.

Let us take for example

Then

with

Moreover

Thus obviously

But since q is not almost everywhere null on ]2014oo,~] there necessarily
Vol. I, n° 3-1984.
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exists a COO function u from ] - ] into with compact support, such that

We extend u on ] by interpolating linearily and 0 = t(0).
Thus consideringfN for any N, we see that each fN is Lipschitz,

with compact support, that = = = f (o) and that

’ 

At last since u has a compact support, since aN --~ 0 and gN converges
to f in ~( ] - oo, 0 ] ; tR) as N ~ + oo, it is easy to verify that ~’N converges
to f in ~( ] - oo, 0 ] ; Q. E. D.

Let now CPo E be given. By the assumptions made on p 1, ..., pn,
we know that for each i = 1, ..., n the mapping z --~ pi(z + to) is locally
integrable and not almost everywhere null ] since to > 0
and a. Thus using the preceding lemma for each component of ~po,
we can build a sequence of Lipschitz with compact support mappings
~pN E N E (~, which converges to ~po in ~o as N -~ + oo and verifies
for all 

Thus obviously ~pN e for all N 
We shall, as in the preceding section, prove the existence of a viable

solution of (ME) under each initial condition (to, ~pN), N E ~. And then
deduce the existence of a viable solution for (to, 

Proof - Let us fix 03C60N E as defined above. We suppose that

Supp (~pN) c [ - AN - to, 0] with AN > 0.
By construction 03C60N is 03BBN-Lipschitz. Since F is bounded on Graph hE(.),

we denote by k > 0 an upper-bound of F on Graph ~E( ’ ).
We define,uN > 0 such that for example ~cN > ~,N, k -~- 1 ~ .
Let us then define the set-valued map ~N( ’ ) from (J~ + into ~o such that

for all 

Then ~pN E 
Furthermore condition (CE) implies that for any 03C8 E c X E(t)

there exists v E F(t, such that for any 8 > 0 there exist he ]o, E ] and
xn E ~( ] - + h ] ; [Rn) which verify .
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We then define ~ E ~( ] - oo, t + such that = ~/r and yh
linear interpolates and xh(t + h) on [t, t + h].

Since 0 is continuous and 8t  0 we have already seen that if 8 is small
enough then h + 8t + ~  0. Thus for all z E we have

Then

For the same reasons

Thus

This implies that

But since [T(t + we easily deduce from
the definition of and since

T t + h)xh E + h) that T (t + E + h) .

Furthermore since Supp (~r) c [- AN - t, 0] ] it is obvious that

Supp ~T (t + ] ~ ~ - AN - t - 

At last yh is N-Lipschitz since 
-

when E  1. Thus T(t + + h).
To show that all the hypothesis of T heorem 1. 2 are satisfied by the via-

bility system : , _.. _. _.. _

it remains to show that ~N( ~ ) has a closed graph. For this let

converges to (t, z/r) E I~ + x ~o as m - + oo .
Then since e implies that is N-Lipschitz and

we easily deduce that 03C8 is N-Lipschitz and that Supp (03C8) c [ - AN - t, 0 ].
/ et B

It remains to show that -~ 03C8(z) a p(z -t- For this,
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since E E 10 - o p(z + tm)dz )for all m E N and since Graph E
is closed, it suffices to prove that

We easily deduce from the definition of the law a that

By the very properties of § and is immediate that they are
null outside a same compact interval of ] - oo, 0 ] and that converges

uniformly to 03C8 on this compact interval. Now since tm and 
are uniformly bounded and since p is locally integrable, it becomes obvious
that

We also verify that

is continuous, as tm -~ t and p is locally integrable.
At last 03C8 being continuous with compact support and p locally inte-

grable it is easy (using convolution type results on each components of

is continuous at any s E I~.

Thus it is then true that

as m -~ + co. Then 
Now since all the hypothesis of Theorem 1 . 2 are satisfied by the via-

bility system (M~), there exists a viable solution xN E under the
initial condition (to, such a solution verifies :

In fact since F is bounded by k on Graph is obvious that xN
is k-Lipschitz on [to, +oo[. Thus this being done for any N E N,
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we get a sequence xN, N E Fl, which for the same reasons as in the pre-
ceding section will admits a subsequence (again denoted converging
(uniformly on compact subsets) to 

Obviously x is k-Lipschitz on [ and verifies T(to)x = ~po,
x’(t ) E F(t, T(t )x) for almost all t > to. To end the proof of the viability
of x it suffices now to verify that for all t > to, T (t )x e which is equi-

Let t > to be given. We know that for all N 

As E(’) has a closed graph, it is then sufficient to show that

Since T(to)x = ~po and since for all N 

we have

Then since xN converges uniformly to x on the compact interval

[to + + ] and since p is integrable on [to + + 8t ) ] we have

This proves that
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Thus x is actually viable. Q. E. D.
To finish we give now an equivalent definition of ~P) in that example

of viability problem.

PROPOSITION II.2.2. - For any

if and only if

Remark. We recall that t being given, since 8 is continuous and 8t  0,

for h small enough h + 8t+ h ~ 0, which gives a sense to a p(z + t )dz
since ~p is only defined on ] - oo, 0 ]. - ro

The proof presents no difficulty and is a pure adaptation of the proof
of Proposition II. l.
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