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ABSTRACT. – We prove the existence of a first nontrivial eigenvalue for an asymmetric
elliptic problem with weights involving the laplacian (cf. (1.2) below) or more generally the
p-laplacian (cf. (1.3) below). A first application is given to the description of the beginning of
the Fǔcik spectrum with weights for these operators. Another application concerns the study of
nonresonance for the problems (1.1) and (1.5) below. One feature of our nonresonance conditions
is that they involve eigenvalues with weights instead of pointwise restrictions.

RÉSUMÉ. – Nous démontrons l’existence d’une première valeur propre non triviale pour
un problème asymétrique avec poids faisant intervenir le laplacien (cf. (1.2) ci-dessous) ou
plus généralement lep-laplacien (cf. (1.3) ci-dessous). Une première application consiste
en la description du début du spectre de Fučik avec poids pour ces opérateurs. Une autre
application concerne l’étude de la nonrésonance pour les problèmes (1.1) et (1.5) ci-dessous. Une
caractéristique de nos conditions de nonrésonance est qu’elles font intervenir des valeurs propres
avec poids, plutôt que des restrictions ponctuelles.

1. Introduction

This paper is partly motivated by the study of the semilinear elliptic problem

−�u= f (x,u) in 	, u= 0 on∂	 (1.1)

where	 is a bounded domain inRN . It is well known that the asymptotic behaviour
of the quotientsf (x, s)/s and 2F(x, s)/s2 (whereF(x, s)= ∫ s

0 f (x, t)dt) ass → +∞
and s → −∞ plays an important role in the study of the solvability of (1.1). Usually
pointwise conditions are imposed on the limits of these quotients (for instance they
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are required to lie for a.e.x ∈ 	 between two consecutive eigenvalues of−�). When
looking at the linear case−�u = a(x)u + b(x), it seems however more natural to
impose conditions which would involve the limits of the above quotients as weights of
eigenvalues. This is the approach that we wish to follow here. This approach of course
requires the preliminary study of weighted asymmetric eigenvalue problems of the form

−�u= λ
[
m(x)u+ − n(x)u−]

in 	, u= 0 on∂	, (1.2)

whereu± := max(±u,0).
The study of (1.2) is classical whenm(x) ≡ n(x) and corresponds to the theory of

linear eigenvalue problems with weight. Several works have been devoted in the last
20 years to the study of (1.2) (and of its relations with (1.1)) in the case wherem(x) and
n(x) are constant and different; this has lead in particular to the notion of Fučik spectrum
and to the so-called problems of Ambrosetti–Prodi type. The situation wherem(x) and
n(x) are non constant and different was investigated recently in the ODE caseN = 1 in
[23,7,37,36] (form(x) andn(x) > 0) and [2] (form(x) andn(x) indefinite).

It is our purpose in this paper to initiate the study of (1.2) and of its relations with the
solvability of (1.1) in the general case:N � 1, m(x) andn(x) possibly non constant,
different and indefinite. More generally we will consider the quasilinear eigenvalue
problem

−�pu= λ
[
m(x)(u+)p−1 − n(x)(u−)p−1] in 	, u= 0 on∂	, (1.3)

as well as the�p analogue of (1.1) (cf. (1.5) below). Here 1< p < ∞ and�pu :=
div (|∇u|p−2∇u) is thep-laplacian. We wish however to point out that all our results are
new even in the semilinear casep = 2 (with only one exception, Theorem 45, as we will
see later).

Solutionsu of (1.3) which do not change sign clearly arise if (and only if)λ is one of
the first eigenvaluesλ1(m),λ1(n), λ−1(m),λ−1(n) of thep-laplacian with weight (cf. the
end of this introduction for definitions). Section 2 is devoted to the proof of the existence
of a solutionu of (1.3) which changes sign. Our construction is based on the mountain
pass theorem, more precisely on a version of that theorem on aC1 manifold. In Section 3
we show that the eigenvalueλ constructed in Section 2 is in fact the first eigenvalue of
(1.3) with a sign-changing eigenfunction. This is probably one of the main results of
our paper and the technique introduced in its proof (which in particular involves the
consideration of 3 different manifolds) will be used repeatedly later. This distinguished
eigenvalue, denoted byc(m,n), plays in our asymmetric problems a role analogous
to that of the usual “second eigenvalue”. Several properties ofc(m,n) as a function
of the weightsm,n are investigated in Section 4: continuity, (strict) monotonicity,
homogeneity.

As a first application, in Section 5, we study the Fučik spectrum with weights. This is
defined as the set� of those(α,β) ∈ R

2 such that

−�pu= αm(x)(u+)p−1 − βn(x)(u−)p−1 in 	, u= 0 on∂	 (1.4)
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has a nontrivial solution. We show in particular that ifm andn both change sign in	,
then each of the four quadrants in the(α,β) plane contains a first (nontrivial) curve of
�, which is hyperbolic like and has a variational characterization. We also study the
asymptotic behaviour of these first curves. It turns out for instance that the first curve
in R

+ × R
+ is asymptotic to the vertical lineλ1(m)× R if p �N , or if p > N and the

support ofn+ intersects∂	, but it is not asymptotic to that line ifp >N and the support
of n+ is compact in	. A similar result of course holds with respect to the horizontal
line R × λ1(n), which involves the support ofm+, and in the other quadrants.

The last two Sections 6 and 7 are mainly concerned with the study of nonresonance
for the problem

−�pu= f (x,u) in 	, u= 0 on∂	. (1.5)

As mentionned earlier, we replace the usual pointwise conditions on the limits of
f (x, s)/|s|p−2s and pF(x, s)/|s|p by conditions involving some eigenvalues having
these limits as weights. This approach based on “weights” allows us to improve several
results concerning (1.5), as will be indicated in details later. Section 6 is devoted to
problems of the type “between the first two eigenvalues”. We exploit here our results of
Sections 2–4 relative to the distinguished eigenvaluec(m,n) of (1.3). Section 7, which is
independent from the previous sections, deals briefly with problems of the type “below
the first eigenvalue”. It contains an extension of the classical result of Hammerstein
where we also impose conditions on eigenvalues with weights. Examples of non unicity
are also investigated in Sections 6 and in 7, where nonconstant weights play a central
role.

To conclude this introduction, let us briefly recall some properties of the spectrum of
−�p with weight to be used later. References are [3,34] (for a bounded weight), [39,1,
13] (for an unbounded weight). Let	 be a bounded domain inRN and letm ∈ Lr(	)

wherer > N/p if p �N andr = 1 if p >N . We also assumem+ 
≡ 0. The eigenvalue
problem under consideration here is

−�pu= λm(x)|u|p−2u in 	, u= 0 on∂	. (1.6)

The first positive eigenvalueλ1(m) of (1.6) is defined as

λ1(m)= λ1(m,	) := min
{∫
	

|∇u|p: u ∈W
1,p
0 (	) and

∫
	

m|u|p = 1
}
.

It is known thatλ1(m) is > 0, simple, and admits an eigenfunctionϕm = ϕm,	 ∈
W

1.p
0 (	) ∩ L∞(	) ∩ C(	), with ϕm satisfyingϕm(x) > 0 in 	 and

∫
	m(ϕm)

p = 1.
Moreoverλ1(m) is isolated in the spectrum, which allows to define the second positive
eigenvalueλ2(m) as

λ2(m) := min
{
λ ∈ R: λ eigenvalue andλ > λ1(m)

}
.

It is also known that any eigenfunction associated to a positive eigenvalue different from
λ1(m) changes sign and thatλ1(m) is strictly monotone decreasing with respect tom
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(i.e.m�

≡
m̂ impliesλ1(m) > λ1(m̂)). In the casem− 
≡ 0, the first and second negative

eigenvalues are obtained by reversing the sign of the weight:λ−1(m) = −λ1(−m) and
λ−2(m)= −λ2(−m).

The main results of this paper were announced in [9].
The authors wish to express their gratitude for the referee’s careful and detailed

comments.

2. Construction of a nontrivial eigenvalue

In this section and in the following two we consider the eigenvalue problem (1.3) on
a bounded domain	 ⊂ R

N . It will always be assumed thatm,n ∈ Lr(	) with r as in
the introduction, i.e.r > N/p if p � N and r = 1 if p > N . We also assume, unless
otherwise stated,

m+ and n+ 
≡ 0 in	. (2.1)

We look for eigenvaluesλ of (1.3) withλ > 0.
Clearly (1.3) withλ > 0 has a nontrivial solutionu which does not change sign if and

only if λ = λ1(m) or λ = λ1(n). Moreover, multiplying byu+ or u−, one easily sees
that if (1.3) withλ > 0 has a solution which changes sign, thenλ > max{λ1(m),λ1(n)}.
Proving the existence of such a solution which changes sign is our purpose in this section.

Remark1. – It is easily seen that (2.1) is a necessary condition for (1.3) withλ > 0 to
have a solution which changes sign. Observe also that if, instead of (2.1), we havem−
andn− 
≡ 0, then, by reversing the sign of the weights, our approach will lead to negative
eigenvalues of (1.3). So, ifm andn both change sign, we will obtain positive as well as
negative eigenvalues of (1.3).

We will use a variational approach and consider the functionals

A(u) :=
∫
	

|∇u|p,

Bm,n(u) :=
∫
	

(
m(u+)p + n(u−)p

)
,

which areC1 functionals onW 1,p
0 (	). We are interested in the critical points of the

restrictionÃ of A to the manifold

Mm,n := {
u ∈W

1,p
0 (	): Bm,n(u)= 1

}
.

Note that 1 is a regular value ofBm,n. Note also thatϕm and −ϕn ∈ Mm,n, and
that Mm,n contains functions which change sign. In fact, a standard argument of
regularization shows that, under (2.1), there existsu ∈ C∞

c (	) such that
∫
	m(u

+)p > 0
and

∫
	 n(u

−)p > 0, and consequentlyu/(Bm,n(u))
1/p belongs toMm,n.
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By Lagrange’s multiplier rule,u ∈ Mm,n is a critical point ofÃ if and only if there
existsλ ∈ R such thatA′(u)= λB ′

m,n(u), i.e.

∫
	

|∇u|p−2∇u∇v = λ

∫
	

(
m(u+)p−1 − n(u−)p−1)v (2.2)

for all v ∈ W
1,p
0 (	). This means that (1.3) holds in the weak sense. Moreover, taking

v = u in (2.2), one sees that the Lagrange multiplierλ is equal to the critical valuẽA(u).
Our eigenvalue problem (1.3) is thus transformed into the problem of looking for critical
points and critical values of̃A.

A first critical point ofÃ comes from global minimization. Indeed

Ã(u)� λ1(m)

[∫
	

m(u+)p
]+

+ λ1(n)

[∫
	

n(u−)p
]+

� min
{
λ1(m),λ1(n)

}

for all u ∈Mm,n, and one has̃A(u)= min{λ1(m),λ1(n)} for eitheru= ϕm or u= −ϕn.
Consequently eitherϕm or −ϕn is a global minimum ofÃ and so a critical point of̃A.
The other one is also a critical point as follows from

PROPOSITION 2. – ϕm and −ϕn are strict local minima ofÃ, with corresponding
critical valuesλ1(m) andλ1(n).

Proof. –Let us considerϕm (similar argument for−ϕn). Assume by contradiction
the existence of a sequenceuk ∈ Mm,n with uk 
= ϕm, uk → ϕm in W

1,p
0 (	) and

Ã(uk) � λ1(m). We first observe thatuk changes sign fork sufficiently large. Indeed,
sinceuk → ϕm, uk must be> 0 somewhere. Ifuk � 0 in 	, then

Ã(uk)=
∫
	

|∇uk|p > λ1(m)

∫
	

m|uk|p = λ1(m)

since uk 
= ±ϕm, but this contradictsÃ(uk) � λ1(m). So uk changes sign fork
sufficiently large. Now we have

λ1(m)

∫
	

(
m(u+

k )
p + n(u−

k )
p
) = λ1(m)�

∫
	

|∇uk|p

=
∫
	

(∣∣∇u+
k

∣∣p + ∣∣∇u−
k

∣∣p)

� λ1(m)

∫
	

m(u+
k )

p +
∫
	

∣∣∇u−
k

∣∣p

and consequently

λ1(m)

∫
	

n
(
u−
k

)p �
∫
	

∣∣∇u−
k

∣∣p.
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Sinceuk → ϕm, |u−
k > 0| → 0, where|u−

k > 0| denotes the measure of the set whereu−
k

is> 0. The desired contradiction then follows from Lemma 2.3 below.✷
LEMMA 3. – Let vk ∈W

1,p
0 (	) with vk �


≡
0 and |vk > 0| → 0. Letnk → n in Lr(	).

Then ∫
	

nk(vk)
p

/∫
	

|∇vk|p → 0.

Proof. –It is easily adapted from [15] which deals with the casenk ≡ 1. Write
zk := vk/(

∫
	 |∇vk|p)1/p. Clearly, for a subsequence,zk ⇀ z in W

1,p
0 (	) and zk → z

in Lr ′p(	), with z� 0. If z≡ 0, then

∫
	

nk(vk)
p

/∫
	

|∇vk|p =
∫
	

nkz
p
k → 0

and the lemma is proved. Ifz 
≡ 0, then, for someε > 0, η := |z > ε| > 0. We deduce
that |zk > ε/2| > η/2 for k sufficiently large, which contradicts the assumption that
|vk > 0| → 0. ✷

To get a third critical point, we will use a version of the mountain pass theorem on a
C1 manifold, which we now recall.

LetE be a real Banach space and let

M := {
u ∈E: g(u)= 1

}
, (2.3)

whereg ∈ C1(E,R) and 1 is a regular value ofg. Let f ∈ C1(E,R) and consider the
restrictionf̃ of f toM . The differential off̃ atu ∈M has a norm which will be denoted
by ‖f̃ ′(u)‖∗ and which is given by the norm of the restriction off ′(u) to the tangent
space

Tu(M) := {
v ∈E: 〈g′(u), v〉 = 0

};
here〈 , 〉 denotes the duality pairing betweenE∗ andE. We recall thatf̃ is said to satisfy
the (PS) condition onM if, for any sequenceuk ∈ M such thatf̃ (uk) is bounded and
‖f̃ ′(uk)‖∗ → 0, one has thatuk admits a converging subsequence.

PROPOSITION 4. – Letu, v ∈M with u 
= v and suppose that

H := {
h ∈ C

([−1,+1],M); h(−1)= u andh(1)= v
}

(2.4)

is nonempty. Assume also that

c := inf
h∈H max

w∈h[−1,+1]f (w) > max
{
f (u), f (v)

}
(2.5)

and thatf̃ satisfies the(PS) condition onM . Thenc is a critical value off̃ .

Proposition 4 follows by applying Theorem 3.2 of [28] to a component ofM . Note
that the proof of Theorem 3.2 in [28] involves a deformation lemma on aC1 Finsler
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manifold (cf. Lemma 3.7 in [28]). A direct proof of Proposition 4, which uses only
Ekeland’s variational principle, can be found in [14] in the case whereE is uniformly
convex. Note that the geometric assumption in [14] is weaker than (2.5): it reads

max
w∈h[−1,+1]f (w) > max

{
f (u), f (v)

}
(2.6)

for anyh ∈H .
We will apply Proposition 4 withE = W

1,p
0 (	), f = A and g = Bm,n. First two

preliminary results. The first one concerns the(PS) condition while the second one
describes the geometry of̃A near the strict local minimaϕm and−ϕn.

LEMMA 5. – Ã satisfies the(PS) condition onMm,n.

Proof. –Let uk ∈Mm,n be a(PS) sequence for̃A. So
∫
	 |∇uk|p remains bounded and,

for someεk → 0, ∣∣∣∣
∫
	

|∇uk|p−2∇uk∇v
∣∣∣∣ � εk‖v‖1,p (2.7)

for all v ∈ Tuk(Mm,n), where

Tu(Mm,n)=
{
v ∈W

1,p
0 (	):

∫
	

(
m(u+)p−1 − n(u−)p−1)v = 0

}

and‖ ‖1,p denotes theW 1,p
0 (	) norm. Clearly, for a subsequence,uk → u weakly in

W
1,p
0 (	) and strongly inLr ′p(	), wherer ′ denotes the Hölder conjugate ofr . Now,

givenw ∈ W
1,p
0 (	), one hasw − ak(w)uk ∈ Tuk(Mm,n) for ak(w) := ∫

	(m(u
+
k )

p−1 −
n(u−

k )
p−1)w. Puttingv = (uk − u)− ak(uk − u)uk in (2.7) and observing thatak(uk −

u)→ 0, one deduces that
∫
	

|∇uk|p−2∇uk∇(uk − u)→ 0

and consequently

∫
	

(|∇uk|p−2∇uk − |∇u|p−2∇u)
(∇uk − ∇u)→ 0.

Using then the inequality

|ξ − η|p � c
[(|ξ |p−2ξ − |η|p−2η

)
(ξ − η)

]s/2[|ξ |p + |η|p]1−s/2

whereξ, η ∈ R
N , c = c(p) > 0 and s= 2 if p � 2, s = p if 1 < p < 2 (cf. e.g. [34]),

one easily obtains thatuk → u in W
1,p
0 (	). ✷

The second lemma can be stated in the more general framework of the manifold (2.3).
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LEMMA 6. – LetE,g,M,f and f̃ be as considered previously(cf. (2.3)). Letu0 be
a strict local minimum off̃ , i.e., for someε0 > 0,

f̃ (u0) < f̃ (u) (2.8)

for all u ∈M withu 
= u0 and‖u−u0‖E < ε0. Assume that̃f satisfies the(PS) condition
onM (in fact the(PS) condition at levelf̃ (u0) suffices). Then, for any0< ε < ε0,

f̃ (u0) < inf
{
f̃ (u): u ∈M and‖u− u0‖E = ε

}
. (2.9)

Proof. –It is partly adapted from [17] where a similar situation without constraint
is considered. Assume by contradiction the existence for someε with 0< ε < ε0 of a
sequenceuk ∈M with ‖uk − u0‖E = ε and, say,f̃ (uk)� f̃ (u0)+ 1/2k2. Call

C := {
u ∈M: ε − δ � ‖u− u0‖E � ε+ δ

}

whereδ > 0 is chosen so that 0< ε − δ andε + δ < ε0. Clearly inf{f̃ (u): u ∈ C} =
f̃ (u0).

We apply for eachk Ekeland’s variational principle (cf. e.g. [17]) to the functionalf̃

onC to get the existence ofvk ∈C such that

f̃ (vk)� f̃ (uk), (2.10)

‖vk − uk‖E � 1/k, (2.11)

f̃ (vk)� f̃ (u)+ 1

k
‖u− vk‖E ∀u ∈C. (2.12)

Our purpose is to show thatvk is a (PS) sequence for̃f , i.e. that f̃ (vk) is bounded
(which is clear by (2.10)) and that‖f̃ ′(vk)‖∗ → 0. Once this is proved, we get that, for a
subsequence,vk → v in E. Clearlyv ∈C and satisfies‖v−u0‖E = ε andf̃ (v)= f̃ (u0),
which contradicts (2.8).

To prove that‖f̃ ′(vk)‖∗ → 0, we fix k with 1/k < δ, takew ∈ Tvk (M) and consider
aC1 pathγ : ]−η,+η[ → M such thatγ (0) = vk andγ ′(0) = w (cf. e.g. [40], vol. 3,
Th. 43 C). For|t| sufficiently small,γ (t) ∈C. Indeed

lim
t→0

∥∥γ (t)− u0
∥∥
E

= ‖vk − u0‖E (2.13)

and it is easily seen, using (2.11), 1/k < δ and‖uk − u0‖ = ε, that the right-hand side of
(2.13) is< ε+ δ and> ε − δ. So we can takeu= γ (t) in (2.12). This gives, fort > 0,

f̃ (vk)− f̃ (γ (t))

t
� 1

k

∥∥∥∥γ (t)− vk

t

∥∥∥∥
E

and so, going to the limit ast → 0, we get

−〈
f ′(vk),w

〉
� 1

k
‖w‖E.
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Consequently, sincew is arbitrary inTvk (M), ‖f̃ ′(vk)‖∗ � 1/k. ✷
We are now in a position to apply the mountain pass theorem of Proposition 4.

THEOREM 7. – Consider

3 := {
γ ∈ C([−1,+1],Mm,n): γ (−1)= ϕm andγ (+1)= −ϕn}.

Then

c(m,n) := inf
γ∈3 max

u∈γ [−1,+1] Ã(u) (2.14)

is a critical value ofÃ, with c(m,n) > max{λ1(m),λ1(n)}.
Proof. –The (PS) condition and the geometric assumption (2.5) are satisfied by the

previous two lemmas. It remains to verify that3 is nonempty. Clearly it suffices to
construct a pathγ in W

1,p
0 (	) from ϕm to −ϕn such thatBm,n(γ (t)) > 0 for all t .

We start with a functionu ∈ W
1,p
0 (	) such that

∫
	m(u

+)p > 0 and
∫
	 n(u

−)p > 0. As
already observed the existence of such a function follows from (2.1). We first go fromu

to u+ by convex combination:tu+ (1− t)u+, t ∈ [0,1]. Then we go on fromu+ to ϕm
through the path

[
t (u+)p + (1− t)(ϕm)

p
]1/p

, t ∈ [0,1]. (2.15)

(It is an interesting exercise to verify that ifv,w ∈ W
1,p
0 (	) with v,w � 0, then

(vp + wp)1/p ∈ W
1,p
0 (	)). Using the fact that

∫
	m(ϕm)

p > 0, one easily verifies that
the pathγ from u to ϕm constructed in the above way satisfiesBm,n(γ (t)) > 0 for all t .
One goes in a similar way fromu to −ϕn, and the conclusion follows.✷

Remark8. – When the weightsm andn are� 0 in	, one can use in the above proof
the standard convex combinationtu+ + (1− t)ϕm instead of (2.15).

Remark9. – Lemma 6 is in fact not needed to deduce thatc(m,n) is a critical value
of Ã (by using the version of Proposition 4 given in [14], which requires only (2.6)).
Lemma 6 is however needed to deduce thatc(m,n) is> max{λ1(m),λ1(n)}.

Remark10. – It may happen that (1.3) does not admit any other positive eigenvalue
besideλ1(m),λ1(n) andc(m,n). In fact, whenN = 1 andp = 2, given an odd integer
k, there exist continuous weights satisfying (2.1) such that (1.3) admits exactlyk

eigenvalues> max{λ1(m),λ1(n)} (cf. [2]). On the other hand, again forN = 1 and
p = 2, if m andn are continuous weights with the productm+n+ 
≡ 0, then the positive
eigenvalues of (1.3) constitue a sequence going to+∞ (cf. [2]). We observe that for
N � 2, the existence of further positive eigenvalues for (1.3) besideλ1(m),λ1(n) and
c(m,n) is an open question, even whenp = 2 and the weights are constant but different.

3. First nontrivial eigenvalue

We have seen at the beginning of Section 2 that min{λ1(m),λ1(n)} and max{λ1(m),

λ1(n)} are the first two positive eigenvalues of (1.3). The present section is devoted to
the proof that the eigenvaluec(m,n) constructed in (2.14) is the next eigenvalue of (1.3).
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THEOREM 11. – Problem(1.3) does not admit any eigenvalue in the open interval
]max{λ1(m),λ1(n)}, c(m,n)[.

In particular, form = n, we obtain the following variational characterization of the
second eigenvalueλ2(m) of thep-laplacian with weight:

COROLLARY 12. – One has

λ2(m)= inf
γ∈30

max
u∈γ [−1,+1]

∫
	

|∇u|p, (3.1)

where30 is the family of all paths inMm,m = {u ∈W
1,p
0 (	):

∫
	m|u|p = 1} going from

ϕm to −ϕm.

Remark13. – Slightly different variational characterizations ofλ2(m) have been
obtained recently: [6] (bounded weight) considers a minimax procedure (P1) over all
compact symmetric sets of genus� 2 in Mm,m, [4] (bounded weight) and [27,24] (no
weight) consider a minimax procedure (P2) over all images of odd mappings from
S1 into Mm,m. These minimax procedures clearly involve more sets than (3.1). In fact
c(m,m) is � the minimax value in (P2), which itself is� the minimax value in (P1).
Since the latter is> λ1(m) (by the Ljusternik–Schnirelman multiplicity theorem and
the simplicity ofλ1(m)), we see that Theorem 3.1 implies the equality of the minimax
values in (P1) and (P2) withc(m,m). The mountain pass characterization (3.1) ofλ2(m)

was first derived in [15] form≡ 1.

The following lemma will be used in the proof of Theorem 3.1. It guarantees the
existence of a critical point in any component of any sublevel set. As for Lemma 2.6, it
can be stated in the general framework of the manifold (2.3).

LEMMA 14. – LetE,g,M,f and f̃ be as considered previously(cf. (2.3)). Assume
that f̃ is bounded from below onM and satisfies the(PS) condition onM . Let r ∈ R

and consider

O := {
u ∈M: f̃ (u) < r

}
.

Then any(nonempty) componentO1 of O contains a critical point off̃ .

Proof. –It is partly adapted from [15]. Considerd := inf{f̃ (u): u ∈ Ō1}, whereŌ1

denotes the closure ofO1. We will show that this infimum is achieved at someu0 ∈ Ō1.
Let us accept this for a moment. Clearlỹf (u0) = d < r and sou0 ∈ O. Moreover
u0 ∈ O1 becauseO is locally arcwise connected. Consequentlyu0 is a critical point
of f̃ .

To show that the infimumd above is achieved, letuk ∈O1 be a minimizing sequence
with, say,f̃ (uk) � d + 1/2k2. For eachk, we apply Ekeland’s variational principle to
the functionalf̃ on Ō1 to getvk ∈ Ō1 such that

f̃ (vk)� f̃ (uk), (3.2)

‖vk − uk‖ � 1/k, (3.3)
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f̃ (vk)� f̃ (u)+ 1

k
‖u− vk‖E ∀u ∈ Ō1. (3.4)

Our purpose is to show thatvk is a (PS) sequence for̃f in S, i.e. thatf̃ (vk) is bounded
(which follows from (3.2)) and that‖f̃ ′(vk)‖∗ → 0. Once this is proved, we deduce
from (3.3) thatuk admits a convergent subsequence, and consequently the infimumd is
achieved.

To prove that‖f̃ ′(vk)‖∗ → 0, we fix k, takew ∈ Tvk (M) and consider aC1 path
γ : ]−η,+η[ → M such thatγ (0) = vk and γ ′(0) = w as in the proof of Lemma 6.
We first observe thatvk ∈ O1 for k sufficiently large. Indeed, otherwise,vk ∈ ∂O1 and
consequently, sinceO is locally arcwise connected,vk 
∈ O, which impliesf̃ (vk) = r ;
but this is impossible since, by (3.2),

f̃ (vk)� f̃ (uk)� d + 1

2k2
< r

for k sufficiently large. Soγ (t) ∈ O1 for t sufficiently small and we can takeu = γ (t)

in (3.4). The argument now is identical to the one at the end of the proof of Lemma 6. It
yields‖f̃ ′(vk)‖∗ � 1/k. ✷

We are now ready to start the

Proof of Theorem 3.1. –Assume by contradiction the existence of an eigenvalueλ of
(1.3) with max{λ1(m),λ1(n)}< λ< c(m,n). We will construct a path in3 on whichÃ
remains� λ, which yields a contradiction with the definition (2.14) ofc(m,n).

Let u ∈Mm,n be a critical point ofÃ at levelλ. Sou satisfies

−�pu= λ
[
m(u+)p−1 − n(u−)p−1] in 	, u= 0 on∂	, (3.5)

and we know thatu changes sign. This implies

0<
∫
	

|∇u+|p = λ

∫
	

m(u+)p and 0<
∫
	

|∇u−|p = λ

∫
	

n(u−)p. (3.6)

The desired path will be constructed in several steps, usingu as starting point.
First we go fromu to v := u+/Bm,n(u

+)1/p by some sort of convex combination:

γ1(t) := tu+ (1− t)u+

Bm,n(tu+ (1− t)u+)1/p
, t ∈ [0,1]. (3.7)

An easy calculation based on (3.6) shows thatγ1(t) is well-defined, belongs toMm,n and
satisfiesÃ(γ1(t))= λ ∀t ∈ [0,1]. In a similar way we go fromu to −u−/Bm,n(−u−)1/p
in Mm,n by staying at levelλ. We will now describe the construction of a path inMm,n

from v to ϕm which stays at levels� λ. A similar construction would yield a path in
Mm,n from −u−/Bm,n(−u−)1/p to −ϕn which stays at levels� λ. Putting everything
together, we get the desired path fromϕm to −ϕn.

To construct the path fromv to ϕm, we first consider another manifold:Mm,m. Clearly
v ∈ Mm,m. The critical points of the restriction ofA to Mm,m are the normalized
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eigenfunctions of−�p for the weightm. Sincev does not change sign and vanishes
on a set of positive measure,v is not a critical point of this restriction ofA to
Mm,m. Consequently there exists aC1 path ν : ]−ε,+ε[ → Mm,m with ν(0) = v and
d
dt A(ν(t))|t=0 
= 0. Following a little portion of this pathν in the positive or negative
direction (callν1 that portion), we move fromv to a pointw by a path inMm,m which,
with the exception of its starting pointv whereA(v) = λ, lies at levels< λ. The path
γ2(t) := |ν1(t)| then lies inMm,n (because it lies inMm,m and is made of nonnegative
functions), goes fromv to v1 := |w| and remains, with the exception of its starting point
v whereA(v)= λ, at levels< λ (sinceA(|ν1(t)|)=A(ν1(t))).

To go on fromv1 to ϕm, we first use Lemma 15 below to construct a weightn̂ ∈Lr(	)

such that(n̂)+ 
≡ 0, λ1(n̂) > λ and n̂ � m in 	. It suffices to takên = m wherem � 0
andn̂ = εm wherem> 0, with ε > 0 sufficiently small. We then consider the manifold
Mm,n̂ and the sublevel set

O := {
u ∈Mm,n̂: A(u) < λ

}
.

Clearlyv1 andϕm ∈O (because they belong toMm,m, are� 0 and have the right levels).
Moreover the only critical point inO of the restrictionÂ of A to Mm,n̂ is ϕm (because
the first two critical levelsλ1(m) andλ1(n̂) of Â verify λ1(m) < λ< λ1(n̂) by the choice
of n̂). Applying Lemma 14 to the component ofO which containsv1 and using the fact
that any open connected subset of a manifold is arcwise connected, we get a pathγ3 in
O from v1 to ϕm. We then consider the path

γ4(t) := |γ3(t)|
(
∫
	m|γ3(t)|p)1/p .

By the choice of̂n, one has

1 =
∫
	

(
m

(
γ3(t)

+)p + n̂
(
γ3(t)

−)p)
�

∫
	

(
m

(
γ3(t)

+)p +m
(
γ3(t)

−)p) =
∫
	

m
∣∣γ3(t)

∣∣p,
(3.8)

and consequentlyγ4(t) is well-defined. Moreoverγ4 goes fromv1 to ϕm and belongs to
our original manifoldMm,n. Finally

A
(
γ4(t)

) =
∫
	

∣∣∇γ4(t)
∣∣p =

∫
	 |∇γ3(t)|p∫
	m|γ3(t)|p < λ

sinceγ3(t) ∈O and, by (3.8),
∫
	m|γ3(t)|p � 1. The pathγ4 thus allows us to move from

v1 to ϕm in Mm,n by staying at levels< λ. ✷
LEMMA 15. – If mk ∈ Lr(	) withm+

k 
≡ 0 and ifm+
k → 0 in Lr(	), thenλ1(mk)→

+∞.
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Proof. –A consequence of the following calculation where we use the Sobolev
inequality (and have dropped the indexk):

1

λ1(m)
=

∫
	m|ϕm|p∫
	 |∇ϕm|p �

∫
	m

+|ϕm|p∫
	 |∇ϕm|p � C

(∫
	

(m+)r
)1/r

whereC = C(	,N,p, r). ✷
Remark16. – If we reproduce the proof of Theorem 11 starting fromc(m,n) instead

of λ, we conclude that the infimum in the minimax formula (2.14) is a minimum.

Remark17. – Let us observe for later reference that the last step in the proof of
Theorem 11 shows the following: givenu ∈ Mm,n with u � 0 andA(u) < µ for some
µ, there exists a path inMm,n from u to ϕm, which is made of nonnegative functions
and which remains at levels< µ. Note that it is the introduction of the manifoldsMm,m

andMm,n̂ in the proof of Theorem 11 which allows us to keep control of the sign of the
functions constituing the paths.

Remark18. – Let us also observe for later reference that the proof of Theorem 11
shows the following: givenu ∈ W

1,p
0 (	) with

∫
	m(u

+)p > 0,
∫
	 n(u

−)p > 0, and such
that

A
(
u+/Bm,n(u

+)1/p
)
� µ and A

(−u−/Bm,n(−u−)1/p
)
� µ

for someµ, then there exists a path inMm,n which goes fromϕm to −ϕn, contains
u
/
Bm,n(u)

1/p and remains at levels� µ. In particularc(m,n)� µ.

COROLLARY 19. – c(m,n) is the minimum of the positive eigenvalues of(1.3)
associated to eigenfunctions which change sign.

COROLLARY 20. – The eigenvaluesmin{λ1(m),λ1(n)} and max{λ1(m),λ1(n)} are
isolated in the spectrum of(1.3).

4. Some properties of the first nontrivial eigenvalue

In this section we study the dependence of the first nontrivial eigenvaluec(m,n) of
(1.3) with respect to the weightsm,n. Continuity and monotonicity will be considered,
as well as some homogeneity properties. The weights in this section will always be
assumed to belong toLr(	) and to satisfy (2.1).

We start by modifying a little bit the variational characterization (2.14) ofc(m,n) in
order to allow a larger family of paths, which in addition depends a little less on the
weights.

PROPOSITION 21. – One has

c(m,n)= inf
γ∈31

max
u∈γ [−1,+1]A(u) (4.1)

where

31 := {
γ ∈ C([−1,+1],Mm,n): γ (−1)� 0 andγ (1)� 0

}
.
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Proof. –Let us calld the right-hand side of (4.1). Clearlyd � c(m,n). Assume by
contradictiond < c(m,n). Takeµ with d < µ < c(m,n) and choose a pathγ ∈ 31

which remains at levels< µ. We will construct a path in3 which also remains at levels
<µ. This will contradict the definition (2.14) ofc(m,n). To construct this path we first
go fromϕm to γ (−1) by using Remark 17, then we followγ from γ (−1) to γ (+1), and
finally we go fromγ (+1) to −ϕn by a construction analogous to that of Remark 17.✷

The continuous and monotone dependence ofc(m,n) are easy consequences of this
proposition.

PROPOSITION 22. – If (mk, nk) → (m0, n0) in Lr(	) × Lr(	), thenc(mk, nk) →
c(m0, n0).

Proof. –We first prove the upper semicontinuity. Letε > 0 and takeγ ∈ 3 such that

max
t
A

(
γ (t)

)
< c(m0, n0)+ ε.

SinceBm,n(γ (t)) is continuous in its 3 arguments(m,n, t), we deduce that, fork
sufficiently large,

max
t
A

(
γ (t)/Bmk,nk

(
γ (t)

)1/p)
< c(m0, n0)+ ε. (4.2)

By Proposition 21,c(mk, nk) is � than the left-hand side of (4.2) and consequently

lim supc(mk, nk)� c(m0, n0)+ ε.

Sinceε is arbitrary, the upper semicontinuity follows.
To prove the lower semicontinuity, suppose by contradiction that, for a subsequence,

c(mk, nk) → c0 with c0 < c(m0, n0). Let uk ∈ Mmk,nk be a solution of (1.3) forλ =
c(mk, nk) and for the weightsmk,nk. For a further subsequence,uk → u0 weakly in
W

1,p
0 (	) and strongly inLr ′p(	); moreoveru0 ∈ Mm0,n0 andu0 is a solution of (1.3)

for λ = c0 and for the weightsm0, n0. Sincec0 < c(m0, n0), Theorem 11 implies that
eitherc0 = λ1(m0) andu0 = ϕm0, or c0 = λ1(n0) andu0 = −ϕn0. Consider the first case
(similar argument in the other case). In that case|u−

k | → 0 and Lemma 3 applies to give

∫
	

nk
(
u−
k

)p/∫
	

∣∣∇u−
k

∣∣p → 0. (4.3)

But multiplying byu−
k the equation satisfied byuk , one gets that the expression in (4.3)

is equal to 1/c(mk, nk), which goes to 1/c0 
= 0, a contradiction. ✷
PROPOSITION 23. – If m� m̂ andn� n̂, thenc(m,n)� c(m̂, n̂).

Proof. –If γ is a path admissible in formula (2.14) forc(m,n), then
∫
	(m̂(γ (t)

+)p +
n̂(γ (t)−)p)� 1 and consequently

γ̂ (t) := γ (t)/Bm̂,n̂

(
γ (t)

)1/p
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is well-defined and is a path admissible in formula (4.1) forc(m̂, n̂). Moreover
A(γ̂ (t))�A(γ (t)), and the conclusions follows.✷

The monotonicity provided by Proposition 23 is generally not strict as is seen from
the following

Example24. – We start with two weightŝm, n̂ satisfying (2.1) and letu be an
eigenfunction associated toc(m̂, n̂). We then constructm,n with

m≡ m̂ in {u > 0}, n≡ n̂ in {u< 0}, m�

≡
m̂ in 	 and n�


≡
n̂ in 	.

Note thatm,n still satisfy (2.1). By Proposition 23,c(m,n)� c(m̂, n̂). But

−�pu= c(m̂, n̂)
[
m̂(u+)p−1 − n̂(u−)p−1] = c(m̂, n̂)

[
m(u+)p−1 − n(u−)p−1]

which implies, by Theorem 3.1,c(m,n)� c(m̂, n̂). Consequentlyc(m,n)= c(m̂, n̂).

PROPOSITION 25. – If m� m̂, n� n̂ and if

∫
	

(m̂−m)(u+)p +
∫
	

(n̂− n)(u−)p > 0 (4.4)

for at least one eigenfunctionu associated toc(m,n), thenc(m,n) > c(m̂, n̂).

Proof. –Let us consider the case where the first integral in (4.4) is> 0 (similar
argument if the second integral is> 0). So

∫
	

m(u+)p <
∫
	

m̂(u+)p and
∫
	

n(u−)p �
∫
	

n̂(u−)p. (4.5)

We start by considering the pathγ ∈ 3 constructed from the eigenfunctionu of
assumption (4.4) as in the proof of Theorem 11. With the notations of that proof,γ

is made of a first part fromu to ϕm consisting ofγ1 followed byγ2 followed byγ4, and a
similar second part fromu to −ϕn. Note thatγ1 lies at levelc(m,n) while γ2 andγ4 lie
at levels< c(m,n) with the exception of the starting point ofγ2 whose level isc(m,n).
We then take the normalization ofγ for the weightsm̂, n̂:

γ̂ (t) := γ (t)/Bm̂,n̂

(
γ (t)

)1/p
.

SinceBm̂,n̂(γ (t)) � 1, γ̂ (t) is well defined and clearlŷγ (t) ∈ Mm̂,n̂. To estimate the
levels ofA alongγ̂ (t), we distinguish two cases in relation with the second inequality in
(4.5): either

∫
	 n(u

−)p <
∫
	 n̂(u

−)p, or
∫
	 n(u

−)p = ∫
	 n̂(u

−)p. In the first case a direct
calculation shows thatA(γ̂ (t)) < c(m,n) for all t . This clearly implies the conclusion
c(m̂, n̂) < c(m,n). In the second case the same calculation shows thatA(γ̂ (t)) < c(m,n)

for all t except at the pointv := −u−/Bm̂,n̂(−u−)1/p whereA(v) = c(m,n). The path
γ̂ goes fromϕm/Bm̂,n̂(ϕm)

1/p to −ϕn/Bm̂,n̂(−ϕn)1/p, which both lie at levels< c(m,n).
We then apply Remark 17 to extend̂γ into a path ˆ̂γ which goes fromϕm̂ to −ϕn̂ and
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which remains at levels< c(m,n) with the exception ofv where the level isc(m,n).
Assume now by contradiction thatc(m̂, n̂) = c(m,n). Then we can apply Lemma 26
below to the restrictionÂ of A to the manifoldMm̂,n̂ to conclude that̂γ̂ contains a
critical point ofÂ at levelc(m̂, n̂). Consequentlyv must be this critical point. But this is
impossible sincev does not change sign.✷

The lemma below guarantees that in a mountain pass situation, any minimizing path
contains a critical point at the mountain pass level. It is stated in the general setting of
the manifold (2.3).

LEMMA 26. – LetE,g,M,f, f̃ be as in(2.3). Letu, v ∈M with u 
= v and assume
thatH defined in(2.4) is nonempty and that(2.5)holds. Suppose thath ∈H is such that

max
u∈h[−1,+1] f̃ (u)= c,

wherec is defined in(2.5). Then there existsu ∈ h[−1,+1] with f̃ (u)= c and which is
a critical point of f̃ .

Proof. –Assume by contradiction thatC := {h(t): t ∈ [−1,+1] and f̃ (h(t)) = c}
does not contain any critical point of̃f . We apply the deformation lemma of [28]
(Lemma 3.7) to our functionalf̃ on the component ofM which containsu, v. This
yields another pathl ∈H such thatf̃ (l(t))� f̃ (h(t)), with strict inequality onC. Thus
f̃ (l(t)) < c for all t , which contradicts the definition (2.5) ofc. ✷

Remark27. – A direct proof of a version of Lemma 26 can be found in [14], which
uses only Ekeland’s variational principle. In this versionE is uniformly convex and
assumption (2.5) is weakened into (2.6). Note also that Lemma 26 is not needed in the
above proof of Proposition 25 if the two integrals in assumption (4.4) are> 0.

Remark28. – A different proof of Proposition 25 can be given, which does not use
Lemma 26. It goes roughly as follows. Assuming (4.5), one picks a positive nodal do-
main	+ of u and a negative nodal domain	− of u such that

∫
	+ m(u+)p <

∫
	+ m̂(u+)p

and
∫
	− n(u−)p �

∫
	− n̂(u−)p. Takingu|	+ andu|	− as testing functions in the equation

satisfied byu, one then deduces thatλ1(m̂,	
+) < c(m,n) and λ1(n̂,	

−) � c(m,n).
The idea now is to argue as in [15] to increase	+ and to decrease	− so as to
get two new disjoint open sets in	, 	1 and	2, such thatλ1(m̂,	1) < c(m,n) and
λ1(n̂,	2) < c(m,n). Puttingv := ϕm̂,	1 − ϕn̂,	2 andw := v/Bm̂,n̂(v)

1/p, one then uses
Remark 18 to construct fromw a path inMm̂,n̂ which goes fromϕm̂ to −ϕn̂ and which
remains at levels< c(m,n). This implies the conclusionc(m̂, n̂) < c(m,n).

COROLLARY 29. – If m� m̂ andn� n̂ with eitherm< m̂ on {m> 0} or n < n̂ on
{n > 0}, thenc(m,n) > c(m̂, n̂).

Proof. –Let u be an eigenfunction associated toc(m,n). Then
∫
	m(u

+)p > 0 and∫
	 n(u

−)p > 0, and consequently{m > 0} ∩ {u > 0} has positive measure, as well as
{n > 0} ∩ {u < 0}. It then follows easily that the assumptions of Corollary 29 imply
(4.4). ✷

For m ≡ n (andm bounded), the result of Corollary 29, which then readsλ2(m) >

λ2(m̂), was obtained in [6].
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Remark30. – Let us agree to say that the unique continuation property (UCP) holds
for −�p if, for any a ∈ Lr(	), any nontrivial solutionu ∈W

1,p
loc (	) of an equation like

−�pu= a(x)|u|p−2u in 	 does not vanish on a set of positive measure. If (UCP) holds
thenm� m̂, n� n̂ together with the local condition

∣∣{x ∈	: m(x) < m̂(x) andn(x) < n̂(x)
}∣∣> 0

imply (4.4) and consequentlyc(m,n) > c(m̂, n̂). (UCP) holds whenp = 2 (cf. [33,18,
30]) orN = 1 (cf. e.g. [36]), but it is an open question whether it holds whenp 
= 2 and
N � 2, even fora(x) constant.

To conclude this section, let us observe that definition (2.14) clearly implies that
c(m,n) is homogeneous of degree−1:

c(sm, sn)= 1

s
c(m,n) for s > 0, (4.6)

Some sort of separate sub-homogeneity also holds, which will be useful later:

PROPOSITION 31. – If 0< s < ŝ, then

c(sm,n) > c(ŝm,n) and c(m, sn) > c(m, ŝn). (4.7)

Proof. –We will deal with the first inequality in (4.7) (similar argument for the second
one). Letu be an eigenfunction inMsm,n associated toc(sm,n) and letγ be the path
in Msm,n from ϕsm to −ϕn constructed fromu as in the proof of Theorem 11. The path
γ̂ (t) = ( s

ŝ
)1/pγ (t)+ − γ (t)− is then admissible in definition (2.14) ofc(ŝm,n) and we

have

A
(
γ̂ (t)

) = s

ŝ

∫
	

∣∣∇γ (t)+∣∣p +
∫
	

∣∣∇γ (t)−∣∣p �A
(
γ (t)

)
,

with strict inequality ifγ (t)+ 
≡ 0. So the patĥγ goes inMŝm,n from ϕŝm to −ϕn and
remains at levels< c(sm,n) except at the pointv := −u−/Bsm,n(−u−)1/p where the
level is c(sm,n). It follows that c(ŝm,n) � c(sm,n). Assume now by contradiction
that c(ŝm,n) = c(sm,n). We can then apply Lemma 26 (or its version referred to in
Remark 27) to the patĥγ in the manifoldMŝm,n to conclude thatv must be a critical
point of the restriction ofA to Mŝm,n at levelc(ŝm,n). But this is impossible sincev
does not change sign.✷

Remark32. – Ifm � 0 in 	, then, the first inequality in (4.7) follows directly from
Corollary 4.9. In general however this inequality should not be looked at as a property
of monotonicity since, whenm changes sign in	, sm and ŝm are not comparable.
This last observation can also be made for the classical formulasλ1(sm) > λ1(ŝm) and
λ2(sm) > λ2(ŝm) where 0< s < ŝ.
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5. Fučik spectrum with weights

Let m,n ∈ Lr(	) with r as before. Unless otherwise stated, we also assume (2.1).
The Fǔcik spectrum is thus defined as the set� = �(m,n) of those(α,β) ∈ R

2 such
that (1.4) has a nontrivial solution.
� clearly contains the linesλ1(m) × R and R × λ1(n), and also, ifm− 
≡ 0 (resp.

n− 
≡ 0), λ−1(m)× R (resp.R × λ−1(n)). These lines are in fact exactly made of those
(α,β) ∈ � for which (1.4) admits a solution which does not change sign. It will be
convenient to denote by�∗ = �∗(m,n) the set� without these 2,3 or 4 trivial lines.
From the properties of the first eigenvalue recalled in the introduction also follows that
if (α,β) ∈�∗ with α � 0 and β� 0 (resp.α � 0 and β� 0,α � 0 andβ � 0,α � 0 and
β � 0), thenα > λ1(m) andβ > λ1(n) (resp.α < λ−1(m) andβ < λ−1(n), α > λ1(m)

andβ < λ−1(n), α < λ−1(m) andβ > λ1(n)).
We will start by looking at the part of�∗ which lies inR

+ ×R
+. The case of the other

quadrants will be considered briefly at the end of the section.

THEOREM 33. – For any s > 0, the line β = sα in the (α,β) plane intersects
�∗ ∩ (R+×R

+). Moreover the first point in this intersection is given byα(s)= c(m, sn),
β(s)= sα(s), wherec(·, ·) is defined by(2.14).

Proof. –The results of Sections 2 and 3 clearly imply that if(α,β) ∈ R
+ × R

+,
then (α,β) belongs to�∗ and is such that no element of�∗ belongs to the segment
[(0,0), (α,β)[ if and only if c(αm,βn)= 1. Since, by (4.6),c(αm,αsn)= c(m, sn)/α

for α > 0, the conclusion follows. ✷
Letting s > 0 vary, we get in this way a first curveC := {(α(s), β(s)): s > 0} in

�∗ ∩ (R+ × R
+). Here are some properties of this curve.

PROPOSITION 34. – The functionsα(s) and β(s) in Theorem33 are continuous.
Moreoverα(s) is strictly decreasing andβ(s) is strictly increasing. One also has that
α(s)→ +∞ if s → 0 andβ(s) → +∞ if s → +∞.

Proof. –Continuity follows from Proposition 22. The monotonicity ofα(s) follows
from Proposition 31. The monotonicity ofβ(s) also follows from Proposition 4.11 since
β(s) = c(m/s, n). Finally let us assume by contradiction thatα(s) remains bounded as
s → 0. Thenβ(s) = sα(s) → 0, which is impossible sinceβ(s) > λ1(n) for all s > 0.
Similar argument for the behaviour ofβ(s) ass → +∞. ✷

The curveC is thus an hyperbolic like curve inR+ ×R
+, with asymptotesα∞ ×R and

R × β∞, whereα∞ := lims→∞α(s) andβ∞ := lims→o β(s). Note that Proposition 34
implies that the linesλ1(m) × R and R × λ1(n) are isolated in� ∩ (R+ × R

+), in
the sense that there does not exists(αk, βk) ∈ �∗ ∩ (R+ × R

+) such thatαk → α0 and
βk → β0 with (α0, β0) in one of these two lines. Note also that Proposition 34 implies
that the curveC above coincides with the curve constructed in [19] whenp = 2 and
m≡ n≡ 1 and in [15] whenm≡ n≡ 1.
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We now investigate the asymptotic behaviour of this first curve, i.e. the values ofα∞
andβ∞. Let us define

ᾱ := inf
{∫
	

|∇u+|p: u ∈W
1,p
0 (	),

∫
	

m(u+)p = 1 and
∫
	

n(u−)p > 0
}
, (5.1)

β̄ := inf
{∫
	

|∇u−|p: u ∈W
1,p
0 (	),

∫
	

n(u−)p = 1 and
∫
	

m(u+)p > 0
}
. (5.2)

Clearly ᾱ � λ1(m) and β̄ � λ1(n). Let us also recall that the support of a measurable
functionu(x) in 	 is defined as suppu := 	̄ \O, whereO is the largest open set in	
such thatu= 0 a.e. inO.

PROPOSITION 35. – The asymptotic valuesα∞ and β∞ are equal to ᾱ and β̄

respectively. Moreover ifp � N , then ᾱ = λ1(m) and β̄ = λ1(n). If p > N , then
(i) ᾱ = λ1(m) if supp n+ intersects∂	 but ᾱ > λ1(m) if supp n+ is compact in	,
(ii) β̄ = λ1(n) if suppm+ intersects∂	 but β̄ > λ1(n) if suppm+ is compact in	.

So, whenp � N , whatever the weights (satisfying (2.1)), the first curveC is
asymptotic to the trivial linesλ1(m)× R andR × λ1(n). On the contrary, whenp > N ,
the asymptotic behaviour ofC depends on the supports ofm+ andn+. Note that the
influence of the supports of the weights in the asymptotic behaviour of the first curve
was already observed in the semilinear ODE caseN = 1, p = 2, in [2] by using the
shooting method. Note also that the present distinction between the casesp � N and
p > N is of the same nature as that observed in [10] in the study of the antimaximum
principle and of the Fǔcik spectrum for the Neumannp-laplacian without weight.

Proof of Proposition 35. –We first show thatα∞ = ᾱ (similar proof for β∞). Let
(α,β) ∈ C and letu be a corresponding nontrivial solution of (1.4). Then

α

∫
	

m(u+)p =
∫
	

|∇u+|p > 0, β

∫
	

n(u−)p =
∫
	

|∇u−|p > 0.

Consequentlyα � ᾱ, which implies α∞ � ᾱ. Assume now by contradiction that
α∞ > ᾱ. Then there existsu ∈ W

1,p
0 (	) with

∫
	m(u

+)p = 1,
∫
	 n(u

−)p > 0 and
ᾱ �

∫
	 |∇u+|p < α∞. Sinceα∞ � α(s)= c(m, sn) ∀s > 0, we have, for thisu,

∫
	

|∇u+|p < c(m, sn) ∀s > 0. (5.3)

We then chooses > 0 such that
∫
	

|∇u−|p
/∫

	

sn(u−)p =
∫
	

|∇u+|p

and apply Remark 18 for the weightsm and sn and forµ = ∫
	 |∇u+|p. This yields

c(m, sn)�µ, which contradicts (5.3).
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We now consider the casep �N and show that̄α = λ1(m). This will clearly follow
if we prove the existence of functions which are admissible in (5.1) and converge to
ϕm. The construction of such functions is inspired from [19,10,29]. It consists in starting
from ϕm and “digging a little hole” in order to have room to introduce a suitable negative
part. To do so we first consider the following functions onR

N : for p <N

ak(x)=




1 if |x| � 1/k,

2k|x| − 1 if 1/2k < |x|< 1/k,

0 if |x| � 1/2k,

while for p =N ,

ak(x)=




1− 2/k if |x| � 1/k,

|x|δk − 1/k if (1/k)1/δk < |x|< 1/k,

0 if |x| � (1/k)1/δk ,

where δk ∈ ]0,1[ is chosen so that(1/k)δk = 1 − 1/k. A simple calculation shows
that ak converges to the constant function 1 inW 1,p

loc (R
N) as k → ∞; it is here that

the assumptionp � N enters. It follows that for any givenu ∈ W
1,p
0 (	) ∩ L∞(	)

and x0 ∈ 	, the functionu(x)ak(x − x0) converges tou in W
1,p
0 (	) as k → ∞ and

vanishes in a neighborhood ofx0. We apply this construction toϕm, taking forx0 a point
in (suppn+) ∩ 	. This yields a functionvk(x) := ϕm(x)ak(x − x0) which is � 0 and
vanishes on, say, the ballB(x0, εk)⊂	, εk > 0. Regularizing the characteristic function
of (suppn+) ∩ B(x0, εk/2), one gets a functionwk ∈ C∞

c (B(x0, εk)) with wk � 0 and∫
	 n(wk)

p > 0. It follows that the function

uk := vk −wk/k‖wk‖1,p

converges toϕm in W
1,p
0 (	) and, after normalization, is admissible in definition (5.1) of

ᾱ. We conclude in this way that̄α � λ1(m) and consequentlȳα = λ1(m).
We now consider the case wherep >N and the support ofn+ intersects∂	. We will

show that here again̄α = λ1(m). The idea is as before to start withϕm and to introduce
a suitable negative part which however will now be located near∂	. Let us define

	ε := {
x ∈	: dist

(
x,	c

)
> ε

}

and consider the corresponding first eigenvalueλ1(m,	ε) as well as its associated
positive normalized eigenfunctionϕm(	ε). Note that these are well defined forε > 0
sufficiently small sincem+ 
≡ 0 in 	 (cf. (2.1)). Moreover the argument of Lemma 5
in [19] immediately extends to the present situation to show that asε → 0,λ1(m,	ε)→
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λ1(m,	) andϕm(	ε)→ ϕm(	) in W
1,p
0 (	) (hereϕm(	ε) is as usual extended by zero

outside	ε). We now use the assumption on the support ofn+ to deduce that for any
ε > 0, n+ 
≡ 0 on 	\ 	̄ε. This allows us by a regularization procedure as before to
constructwε ∈ C∞

c (	 \ 	̄ε) with wε � 0 and
∫
	 n(wε)

p > 0. It follows that the function

uk := ϕm(	ε)− εwε/‖wε‖1,p

converges toϕm(	) in W
1,p
0 (	) and is admissible in definition (5.1) ofᾱ. We conclude

in this way thatᾱ � λ1(m) and consequentlȳα = λ1(m). Note thatp >N has not been
used in the preceding argument.

We finally consider the case wherep > N and the support ofn+ is compact in	.
We will show thatᾱ > λ1(m). Assume by contradiction̄α = λ1(m) and letuk be a
minimizing sequence in definition (5.1) ofᾱ. For a subsequence,u+

k converges weakly
in W

1,p
0 (	) and strongly inC(	̄) to a functionv ∈ W

1,p
0 (	) which is� 0 and satisfies∫

	 |∇v|p � λ1(m) and
∫
	mv

p = 1. Consequentlyv = ϕm. Sinceϕm � someε > 0
on the compact set suppn+, we deduce thatu+

k � ε/2 on suppn+ for k sufficiently
large. Consequently, for thosek, u−

k = 0 on suppn+, which implies
∫
	 n(u

−
k )

p � 0, a
contradiction with the fact thatuk is admissible in definition (5.1) of̄α.

The properties of̄β are of course proved in a similar way.✷
We now briefly indicate another variational characterization ofᾱ in the casep > N .

A similar result of course holds for̄β. Recall thatW 1,p
0 (	) ⊂ C(	̄) in the case under

consideration.

PROPOSITION 36. – Supposep >N . Then

ᾱ= inf
{∫
	

|∇u|p: u ∈W
1,p
0 (	),

∫
	

m|u|p = 1 andu vanishes

somewhere onsuppn+
}
. (5.4)

The infimum in(5.4) is achieved. Moreover ifu is a minimizer in(5.4), thenu does not
change sign in	 andu vanishes in at most one point in(suppn+)∩	.

Proof. –Let us call ¯̄α the right-hand side of (5.4). We distinguish two cases:
(i) suppn+ intersects∂	, (ii) suppn+ is compact in	. In case (i), anyu ∈ W

1,p
0 (	)

vanishes somewhere on suppn+ and consequentlȳ̄α = λ1(m). The conclusions of
Proposition 36 then follow easily, using Proposition 35. So from now on in the proof
of Proposition 36, we suppose that we are in case (ii).

We first show that̄α � ¯̄α. Clearly one can restrict oneself to nonnegative functions in
the definition of ¯̄α. Let u � 0 be admissible in the definition of̄̄α. Sinceu(x0) = 0 for
somex0 ∈ suppn+ ⊂	, (u− 1

k
)+, which converges tou in W 1,p

0 (	) ask → ∞, vanishes
on a neighbourhood ofx0. We can then construct in this neighbourhood a small negative
part so as to satisfy the last constraint in definition (5.1) ofᾱ. The construction here goes
by regularization and is identical to that in the proof of Proposition 35. Arguing in this
way one gets̄α � ¯̄α. We now show that̄̄α � ᾱ. Let u be admissible in definition (5.1)
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of ᾱ. Thenu is � 0 somewhere on suppn+ and consequentlyu+ vanishes somewhere
on suppn+. The conclusion¯̄α � ᾱ then follows by consideringu+ in the definition
of ¯̄α.

The infimum in (5.4) is clearly achieved. Letu be a minimizer and assume by
contradiction thatu vanishes in at least two pointsx1 andx2 in (suppn+) ∩ 	. Then
v = |u| is also a minimizer which vanishes atx1 and x2. Arguing as in the proof of
Lemma 3.1 in [10], one first observes that, for eachi = 1,2, v is a minimizer for

ᾱ = inf
{∫
	

|∇w|p: w ∈ Fi and
∫
	

m|w|p = 1
}
,

whereFi is the subspace ofW 1,p
0 (	) made of the functions vanishing atxi . Applying

Lagrange’s multiplier rule in eachFi and using the fact that any function inW 1,p
0 (	) can

be written as the sum of a function inF1 and a function inF2, one gets thatv satisfies

∫
	

|∇v|p−2∇v∇w = ᾱ

∫
	

m|v|p−2v w ∀w ∈W
1,p
0 (	),

i.e. thatv is an eigenfunction associated toᾱ. Since we are in case (ii),̄α > λ1(m) by
Proposition 35, and consequentlyv must change sign, which is impossible sincev = |u|.

It remains to see that every minimizeru in (5.4) does not change sign in	. One
starts by verifying, as in the proof of Lemma 3.1 in [10], that ifu+ 
≡ 0 in 	, then∫
	m(u

+)p > 0 andu+/(
∫
	m(u

+)p)1/p is again a minimizer in (5.4). So, by what has
already been proved,u+ vanishes at at most one point in(suppn+) ∩ 	 = suppn+,
and consequentlyu � 0 on suppn+. Now, if we also haveu− 
≡ 0 in 	, then the same
argument applies tov = −u and yieldsu � 0 on suppn+. But thenu ≡ 0 on supp
n+, which contradicts the fact thatu vanishes in at most one point of(suppn+) ∩	 =
suppn+. ✷

To conclude this section we consider the distribution of�∗ in the other quadrants of
R × R. From now on we do not assume anymore below thatm,n satisfy (2.1).

PROPOSITION 37. – �∗(m,n) intersectsR
+ × R

+ (resp. R
− × R

−, R
+ × R

−,
R

− × R
+) if and only ifm+ andn+ 
≡ 0, (resp.m− andn− 
≡ 0, m+ and n− 
≡ 0, m−

andn+ 
≡ 0).

Proof. –The necessary conditions follow from the fact that, if(α,β) ∈ �∗, then, for
u a corresponding solution of (1.4),

0<
∫
	

|∇u+|p = α

∫
	

m(u+)p and 0<
∫
	

|∇u−|p = β

∫
	

n(u−)p.

To prove the sufficient conditions, let us consider for instanceR
+ × R

− (similar
arguments in the other quadrants). We have that(α,β) ∈ �∗(m,n) ∩ (R+ × R

−) if
and only if (α,−β) ∈ �∗(m,−n) ∩ (R+ × R

+). The assumptionm+ and n− 
≡ 0
means that the two weightsm,−n satisfym+ and(−n)+ 
≡ 0, i.e. (2.1). Consequently
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Theorem 5.1 implies that�∗(m,−n) ∩ (R+ × R
+) is nonempty, and consequently

�∗(m,n)∩ R
+ × R

− is nonempty. ✷
COROLLARY 38. – If m andn both change sign in	, then each of the four quadrants

in the(α,β) plane contains a first curve of�∗.

In the semilinear ODE caseN = 1, p = 2, the results of Proposition 37 and
Corollary 38 were derived recently in [2] by using the shooting method.

The result of Proposition 35 on the asymptotic behaviour of the first curve inR
+ ×R

+
of course extends to the other quadrants. For instance we have

COROLLARY 39. – Supposem+ and n− 
≡ 0, and let C+,− be the first curve of
�∗(m,n) in R

+ × R
−. If p � N , thenC+,− is asymptotic to the linesλ1(m) × R and

R × λ−1(n). If p > N , then (i) C+,− is asymptotic to the lineλ1(m) × R if suppn−
intersects∂	 but is not asymptotic to that line ifsuppn− is compact in	, (ii) C+,− is
asymptotic to the lineR × λ−1(n) if suppm+ intersects∂	 but is not asymptotic to that
line if suppm+ is compact in	.

Proof. –Observe, as in the proof of Proposition 37, that the first curve to�∗(m,n)
in R

+ × R
− is symmetric to the first curve of�∗(m,−n) in R

+ × R
+. Applying

Proposition 35 to the latter then yields the conclusion.✷
6. Nonresonance of the type “between the first two eigenvalues”

In this section, we study the solvability of the Dirichlet problem (1.5) under assump-
tions on the asymptotic behaviour of the quotientsf (x, s)/|s|p−2s andpF(x, s)/|s|p
which generalize the classical condition that for a.e.x ∈	, the limits at infinity of these
quotients lie between the first two eigenvalues. Existence, unicity, as well as examples
of nonunicity will be considered.

Let f :	× R → R be a Carathéodory function satisfying the growth condition
∣∣f (x, s)∣∣ � a(x) |s|p−1 + b(x) (6.1)

for a.e.x ∈	 and alls ∈ R. Herea ∈ Lr(	) andb ∈ Lp′
(	), wherer is as before (i.e.

r > N/p if p �N andr = 1 if p >N ) andp′ is the Hölder conjugate. We assume that
theLr functionsγ± and3± defined by

γ±(x) := lim inf
s→±∞

f (x, s)

|s|p−2s
� lim sup

s→±∞
f (x, s)

|s|p−2s
:= 3±(x) (6.2)

have nontrivial positive parts and satisfy

λ1(γ+)� 1, λ1(γ−)� 1, c(3+,3−)� 1. (f )

Herec(3+,3−) is the eigenvalue of (1.3) considered in Sections 2–4. We also assume
that theLr functionsδ± and�± defined by

δ±(x) := lim inf
s→±∞

pF(x, s)

|s|p � lim sup
s→±∞

pF(x, s)

|s|p :=�±(x) (6.3)
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have nontrivial positive parts and satisfy

λ1(δ+) < 1, λ1(δ−) < 1, c(�+,�−) > 1. (F1)

Some uniformity with respect tox is also required in (6.3), which is made precise in
(6.13) below. Note that one clearly has

γ±(x)� δ±(x)��±(x)� 3±(x) a.e. in	. (6.4)

THEOREM 40. – Assume(6.1), (f ) and(F1). Then problem(1.5)admits at least one
solutionu in W

1,p
0 (	).

The result of Theorem 40 is in the line of those in [12] (p = 2 and usual spectrum),
[16] (p = 2, N = 1 and Fǔcik spectrum), [19] (p = 2 and Fǔcik spectrum), [15]
(1 < p < ∞ and Fǔcik spectrum). The main difference comes from the fact that in
all these works, the hypothesis takes the form of pointwise inequalities on the functions
γ±,3±, δ±,�±. For instance in [19] it is assumed that for one point(α,β) in the first
curve of the Fǔcik spectrum of−�p (without weight), one has




λ1 � γ+(x)� 3+(x)� α, λ1 � γ−(x)� 3−(x)� β a.e. in	,

δ+(x) > λ1 andδ−(x) > λ1 on subsets of positive measure,

either�+(x) < α a.e. in	 or�−(x) < β a.e. in	.

(6.5)

Since (α,β) above belongs to the first curve,c(α,β) = 1, and it follows from
Propositions 23 and 25 that (6.5) implies (f) and (F1). On the other hand using the
continuity ofλ1(.) andc(·, ·) (cf. Proposition 22), one easily constructs examples where
(f) and (F1) hold while the pointwise conditions (6.5) do not. Note in particular that
the functionsγ±,3±, δ±,�± in Theorem 40 may change sign and be unbounded.
Nonresonance conditions bearing as in Theorem 40 on eigenvalues with weight were
already considered in [26,20,21]. In particular the result of Theorem 40 forp = 2 and
under the stronger hypothesis

λ1
(
min{γ+, γ−}) � 1, λ2

(
max{3+,3−}) � 1,

λ1
(
min{δ+, δ−})< 1, λ2

(
max{�+,�−})> 1

was obtained in [21].

Proof of Theorem 40. –We consider the functional

;(u) := 1

p

∫
	

|∇u|p −
∫
	

F(x,u). (6.6)

Assumption (6.1) implies that; in aC1 functional onW 1,p
0 (	). Its critical points are

exactly the solutions of (1.5).
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Claim 1. –; satisfies the(PS) condition onW 1,p
0 (	).

Proof. –Let uk be a (PS) sequence, i.e.

∣∣;(uk)∣∣ � c, (6.7)

∣∣〈;′(uk),w〉∣∣ � εk‖w‖1,p ∀w ∈W
1,p
0 (	), (6.8)

wherec is a constant andεk → 0. As usual, it suffices to prove thatuk remains bounded
in W

1,p
0 (	). Assume by contradiction that, for a subsequence,‖uk‖1,p → +∞. Write

vk := uk/‖uk‖1,p. For a further subsequence,vk ⇀ v0 inW 1,p
0 (	) and a.e. in	, and also,

using (6.1) (and the Dunford–Pettis theorem whenp > N ), f (x,uk)/‖uk‖p−1
1,p ⇀ f0(x)

in Lq(	) for someq with q > (p∗)′ if p �N andq = 1 if p > N (herep∗ denotes the
critical Sobolev exponent). We first takew = v0 − vk in (6.8) and divide by‖uk‖p−1

1,p to
deduce from (6.1) that

∫
	

|∇vk|p−2∇vk ∇(vk − v0)→ 0;

arguing as at the end of the proof of Lemma 2.5, one obtains thatvk → v0 in W
1,p
0 (	).

In particular‖v0‖1,p = 1. One also deduces in a similar manner from (6.8) that

∫
	

|∇v0|p−2∇v0∇w =
∫
	

f0w ∀w ∈W
1,p
0 (	). (6.9)

Now, by standard arguments based on (6.2) (cf. e.g. [31]), the functionf0(x) can be
written asα(x)(v+

0 )
p−1 − β(x)(v−

0 )
p−1 for someLr functionsα,β satisfying

γ+(x)� α(x)� 3+(x), γ−(x)� β(x)� 3−(x) a.e. in	. (6.10)

Since the values ofα(x) (resp.β(x)) on {v0 � 0} (resp.{v0 � 0}) are irrelevant in the
above expression off0(x) asα(x)(v+

0 )
p−1 − β(x)(v−

0 )
p−1, we can assume that

α(x)=�+(x) on {v0 � 0}, β(x)=�−(x) on {v0 � 0}. (6.11)

We now distinguish three cases: (i)v0 � 0 a.e. in	, (ii) v0 � 0 a.e. in	, (iii) v0 changes
sign in	. We will see that each case leads to a contradiction.

In case (i), Eq. (6.9) impliesλ1(α) = 1 andv0(x) > 0 in 	. It then follows from
(6.10) and (f) thatλ1(γ+) = 1 and also, by the strict monotonicity ofλ1 with respect to
the weight, thatα = γ+, a.e. in	. Dividing (6.7) by‖uk‖p1,p and going to the limit, using
(6.3) and Fatou’s lemma, one gets

∫
	

αv
p
0 =

∫
	

|∇v0|p = lim
∫
	

pF(x,uk)

‖uk‖p1,p
�

∫
	

δ+v
p
0 .
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Since α = γ+ � δ+ and v0 > 0, we deduceα = δ+. Consequentlyλ1(δ+) = 1,
which contradicts (F1). Case (ii) can be treated similarly. In case (iii), (6.9) shows
that v0 is a solution of−�pu = α(u+)p−1 − β(u−)p−1 which changes sign, and
consequentlyc(α,β) � 1. Proposition 23 together with (6.10) and (f) then yield
c(α,β) = c(3+,3−) = 1. Dividing (6.7) by‖uk‖p1,p and going to the limit, using (6.3)
and Fatou’s lemma, one gets∫

	

(
α

(
v+

0

)p + β
(
v−

0

)p) =
∫
	

|∇v0|p = lim
∫
	

pF(x,uk)

‖uk‖p1,p
�

∫
	

(
�+

(
v+

0

)p +�−
(
v−

0

)p)

�
∫
	

(
3+

(
v+

0

)p + 3−
(
v−

0

)p)
. (6.12)

In fact the first integral and the last integral in (6.12) are equal because otherwise,
Proposition 25 yieldsc(α,β) > c(3+,3−), in contradiction with what we have just
proved. So all the terms are equal in (6.12) and we deduce, using (6.4), that�+ = 3+
on {v0 > 0}, �− = 3− on {v0 < 0}, and using (6.10), thatα = 3+ on {v0 > 0}, β = 3−
on {v0 < 0}. Combining with (6.11), we finally getα = �+ and β = �− a.e. in	.
Consequentlyc(�+,�−) = 1, which contradicts (F1). This concludes the proof of
Claim 1. ✷

We now turn to the study of the geometry of; and first look for directions along
which; goes to−∞.

Claim 2. – Letw+ (resp.w−) be the positive eigenfunction associated toλ1(δ+) (resp.
λ1(δ−)) and normalized by

∫
	 δ+w

p
+ = 1 (resp.

∫
	 δ−w

p
− = 1). Then;(Rw+) → −∞

and;(−Rw−)→ −∞ asR → +∞.

Proof. –We will prove the assertion relative to;(Rw+), the other one is proved
similarly. Let us first recall the precise meaning of the fact that the limits (6.3) are
uniform with respect tox: for anyε > 0 there existsaε ∈L1(	) such that

1

p
δ+(x)(s+)p + 1

p
δ−(x)(s−)p − ε

p
|s|p − aε(x)

� F(x, s)� 1

p
�+(x)(s+)p + 1

p
�−(x)(s−)p + ε

p
|s|p + aε(x)

(6.13)

for a.e.x ∈	 and alls ∈ R. This implies, forR > 0,

;(Rw+)� Rp

p

∫
	

(|∇w+|p − δ+w
p
+ + εw

p
+
) +

∫
	

aε

� Rp

p

(
1− 1

λ1(δ+)
+ ε

λ1

)∫
	

|∇w+|p +
∫
	

aε,

whereλ1 = λ1 (constant weight 1). Choosingε > 0 such that 1− 1
λ1(δ+) + ε

λ1
< 0, which

is possible by Assumption (F1), we get that;(Rw+)→ −∞ asR → +∞. ✷
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Claim 3. – There existsR0 such that for allR � R0 and for all h ∈ HR := {h ∈
C([−1,+1],W 1,p

0 (	)): h(−1)=Rw+ andh(1)= −Rw−}, one has

max
u∈h[−1,+1];(u) > max

{
;(Rw+),;(−Rw−)

}
. (6.14)

Once this last claim is proved, we can pickR �R0 and apply a version of the mountain
pass theorem in a Banach space as given for instance in [17] to conclude that

inf
h∈HR

max
u∈h[−1,+1];(u) (6.15)

is a critical value of;. Theorem 40 will then be proved.

Proof of Claim 3. –Since by assumption (F1), c(�+,�−) > 1, we can pickε > 0
with ε < (1− 1/c(�+,�−))λ1. We then takeaε according to (6.13) and use Claim 2 to
chooseR0 > 0 such that

−
∫
	

aε > max
{
;(Rw+),;(−Rw−)

}
(6.16)

for all R �R0. Take such a valueR and leth ∈HR . To prove (6.14), we distinguish two
cases: either (i)B�+,�−(h(t0))� 0 for somet0 ∈ [−1,+1], or (ii) B�+,�−(h(t)) > 0 for
all t ∈ [−1,+1]. We recall here thatB�+,�− is the function which defines the manifold
M�+,�− (cf. Section 2). We also recall that by Proposition 21,

c(�+,�−)= inf
γ∈31

max
u∈γ [−1,+1]

∫
	

|∇u|p (6.17)

where31 := {γ ∈ C([−1,+1],M�+,�−): γ (−1)� 0 andγ (+1)� 0}.
Case (i). We first use (6.13) to obtain

;(u)� 1

p

∫
	

|∇u|p − 1

p

∫
	

(
�+(u+)p +�−(u−)p

) − ε

p

∫
	

|u|p −
∫
	

aε.

This implies, since we are in case (i),

max
u∈h[−1,+1];(u)�;

(
h(t0)

)
� 1

p

∫
	

∣∣∇h(t0)∣∣p − ε

p

∫
	

∣∣h(t0)∣∣p −
∫
	

aε

� 1

p
(λ1 − ε)

∫
	

∣∣h(t0)∣∣p −
∫
	

aε.

Now, by the choice ofε, one hasε < λ1, and consequently, by (6.16),

max
u∈h[−1,+1];(u)� −

∫
	

aε > max
{
;(Rw+),;(−Rw−)

}
,
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which implies the inequality (6.14) of Claim 3.
Case (ii). In this case we can normalize the pathh(t) to get a path

h̃(t) := h(t)/B�+,�−
(
h(t)

)1/p

on the manifoldM�+,�− which satisfies, by (6.17),

max
u∈h̃[−1,+1]

∫
	

|∇u|p � c(�+,�−). (6.18)

We now use (6.13) to get

;(u)� 1

p

(
1− ε

λ1

)∫
	

|∇u|p − 1

p

∫
	

(
�+(u+)p +�−(u−)p

) −
∫
	

aε

which implies, by (6.18),

max
u∈h[−1,+1]

(
p;(u)+B�+,�−(u)+ p

∫
	

aε

)/
B�+,�−(u)�

(
1− ε

λ1

)
c(�+,�−).

Hence there existsu0 ∈ h[−1,+1] such that

p;(u0)�
((

1− ε

λ1

)
c(�+,�−)− 1

)
B�+,�−(u0)− p

∫
	

aε.

This yields, by the choice ofε,

max
u∈h[−1,+1];(u)�;(u0)� −

∫
	

aε,

and the inequality (6.14) follows by using (6.16). This concludes the proof of Claim 3
and also of Theorem 40.✷

Remark41. – For later reference, let us observe that among the critical points of
; at level (6.15), there is at least one, sayu1, which is such that there exists a
sequencehk of paths inHR with the property that maxu∈hk[−1,+1];(u) → ;(u1) and
dist(u1, hk[−1,+1])→ 0. This follows from the proof of the mountain pass theorem as
given for instance in [11].

Theorem 6.1 yields in particular a solution to the semilinear problem

−�u=m(x)u+ − n(x)u− + h in 	, u= 0 on∂	, (6.19)

wherem,n ∈ Lr(	) with (2.1),h ∈L2(	), if we assume

λ1(m) < 1, λ1(n) < 1, c(m,n) > 1. (6.20)
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In the rest of this section, we will be interested in the unicity of the solution to (6.19)
when (6.20) holds.

PROPOSITION 42. – If min{m,n} has a nontrivial positive part and if we assume

λ1
(
min{m,n})< 1, λ2

(
max{m,n})> 1, (6.21)

then(6.19)has an unique solution.

Proof. –Existence follows from Theorem 40 sinceλ2(max{m,n}) = c(max{m,n},
max{m,n}) and so, by monotonicity, (6.21) implies (6.20). Assume now thatu1 andu2

are two solutions of (6.19) and putv := u1 − u2. Thenv solves

−�v = d(x)v in 	, v = 0 on∂	, (6.22)

where

d(x) :=




m(x)(u+
1 (x)− u+

2 (x))− n(x)(u−
1 (x)− u−

2 (x))

u1(x)− u2(x)
if v(x) 
= 0,

min{m(x), n(x)} if v(x)= 0.

Sinced(x) verifies min{m,n} � d � max{m,n}, we have

λ1(d)� λ1
(
min{m,n})< 1< λ2

(
max{m,n}) � λ2(d).

This implies that 1 is not an eigenvalue of−� for the weightd and consequently, by
(6.22),v ≡ 0. ✷

The following two propositions describe two situations where unicity fails in (6.19)
although (6.20) holds. In Proposition 43 it is the first part of (6.21) which is violated,
while in Proposition 44 it is the second part of (6.21) which is violated. Note that the
example in Proposition 43 requires nonconstant weights.

PROPOSITION 43. – Suppose∂	 of classC2. Then there existm,n ∈ C∞(	̄) with
m,n > 0 on 	̄,

λ1(m) < 1, λ1(n) < 1, λ1
(
min{m,n})> 1, λ2

(
max{m,n})> 1 (6.23)

such that, for someh ∈ L2(	), (6.19)has at least two solutions.

Proof. –We start with the following

Claim 1. – There existm,n ∈ C∞(	̄) with m,n > 0 on 	̄ and satisfying(6.23), and
u0 ∈H 1

0 (	)∩H 2(	)∩C(	̄) such that|u0 = 0| = 0, m� n on {u0 > 0} andn �m on
{u0 < 0}.

Let us admit this claim for a moment. Withm,n,u0 as in Claim 1, we define
h := −�u0 − mu+

0 + nu−
0 ∈ L2(	) and consider (6.19) for these particularm,n,h.

Clearly, by construction,u0 is a solution of (6.19). In fact one can say more:
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Claim 2. –u0 is a strict local minimum of the associated functional

>(u) := 1

2

∫
	

(|∇u|2 −m(u+)2 − n(u−)2
) −

∫
	

hu

onH 1
0 (	).

Let us also admit this claim for a moment. We will use it to see thatu0 is different
from the solutionu1 of (6.19) provided by the mountain pass argument of the proof of
Theorem 40, more precisely provided by Remark 41. We thus have

>(u1)= inf
h∈HR

max
u∈h[−1,+1]>(u)

(cf. (6.15)), with in addition the existence of a sequence of pathshk ∈ HR such that
maxu∈hk[−1,+1]>(u)→>(u1) and dist(u1, hk[−1,+1]) → 0 (cf. Remark 6.2). So for
ε > 0 with ε < max{‖u1−Rw+‖1,2, ‖u1−(−Rw−)‖1,2}, whereRw+ and−Rw− are the
functions involved in the definition ofHR in (6.15), each pathhk with k sufficiently large
intersects{u: ‖u− u1‖1,2 = ε}. On the other hand, since> satisfies the (PS) condition
onH 1

0 (	), Claim 2 and Theorem 5.10 in [17] imply that for anyε > 0 sufficiently small,

inf
{
>(u): ‖u− u0‖1,2 = ε

}
>>(u0). (6.24)

Fix now ε > 0 so that the two properties above hold simultaneously and assume by
contradiction thatu0 = u1. Then, by (6.24),

max
u∈hk[−1,+1]>(u)� inf

{
>(u): ‖u− u0‖1,2 = ε

}
>>(u0).

This contradicts the fact that maxu∈hk[−1,+1]>(u) → >(u1) = >(u0). Consequently
u1 
= u0 and the conclusion of Proposition 43 follows.

Proof of Claim 2. –The proof uses the following easily verified Taylor type identities:
for x, y ∈ R, one has

y2 − x2 = 2x(y − x)+ (y − x)2,

(y+)2 − (x+)2 = 2x+(y − x)+ S(x+)(y − x)2 +R+(x, y),

(y−)2 − (x−)2 = −2x−(y − x)+ S(x−)(y − x)2 +R−(x, y),

whereS(t) denotes the sign function(S(t)= 1 if t > 0, 0 if t = 0,−1 if t < 0) and where
R+ andR− satisfyR+(x, y) = 0 if xy > 0, |R+(x, y)| � y2 if xy � 0, R−(x, y) = 0 if
xy > 0, |R−(x, y)| � y2 if xy � 0.

Assume by contradiction thatu0 is not a strict local minimum of>. Thus there exists
a sequenceuk converging tou0 in H 1

0 (	) with uk 
= u0 and>(uk)�>(u0) for all k. For
a subsequence,uk → u0 a.e. in	. Using the above identities and the fact thatu0 solves
(6.19), we get
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>(uk)−>(u0)= 1

2

∫
	

(|∇uk|2 − |∇u0|2) − 1

2

∫
	

m
((
u+
k

)2 − (
u+

0

)2)

− 1

2

∫
	

n
((
u−
k

)2 − (
u−

0

)2) −
∫
	

h(uk − u0)

= 1

2

∫
	

(∣∣∇uk − ∇u0
∣∣2) − 1

2

∫
	

(
mS

(
u+

0

) + nS
(
u−

0

))
(uk − u0)

2

− 1

2

∫
	

(
mR+(u0, uk)+ nR−(u0, uk)

)
. (6.25)

By the properties ofm,n,u0 in Claim 1, we have

∫
	

(
mS

(
u+

0

) + nS
(
u−

0

))
(uk − u0)

2 =
∫
	

min{m,n}(uk − u0)
2,

where the integral over{u0 = 0} has been neglected since|u0 = 0| = 0. We also have
∣∣∣∣
∫
	

mR+(u0, uk)

∣∣∣∣ �
∫

u0uk�0

mu2
k �

∫
u0uk�0

m(uk − u0)
2

� ck‖uk − u0‖2
L2q(	)

whereq is chosen with 2< 2q < 2∗ andck = ‖m‖∞|u0uk � 0|1/q ′
; since|u0 = 0| = 0

anduk → u0 a.e.,|u0uk � 0| → 0 and consequentlyck → 0. A similar estimate of course
holds for

∫
	 nR−(u0, uk). It now follows from (6.25) that

>(uk)−>(u0)�
[

1

2

(
1− 1

λ1(min{m,n})
)

− c̃k

]∫
	

|∇uk − ∇u0|2

where c̃k → 0. Sinceλ1(min{m,n}) > 1 anduk 
= u0, we deduce>(uk) > >(u0) for
k sufficiently large, which contradicts the fact that>(uk) � >(u0). This completes the
proof of Claim 2.

Proof of Claim 1. –Take foru0 an eigenfunction of−� on H 1
0 (	) which changes

sign. It is well known thatu0 ∈ H 2(	) ∩ C(	̄) and that|u0 = 0| = 0 (the regularity
of ∂	 is used here). Take ballsB+,B− with B+ ⊂ {u0 > 0} andB− ⊂ {u0 < 0}. We
start with the constant weightλ1. Increasing it a little bit onB− (resp.B+), we can
get aC∞(	̄) weight m̂ (resp.n̂) with λ1(m̂) < 1 (resp.λ1(n̂) < 1), and we can also
imposem̂ andn̂ < λ2. At this stage, min{m̂, n̂} ≡ λ1 and soλ1(min{m̂, n̂})= 1. We then
definem = m̂− δ andn = n̂ − δ with δ > 0 so small that we still haveλ1(m) < 1 and
λ1(n) < 1. Now min{m,n} ≡ λ1 − δ and consequentlyλ1(min{m,n}) > 1. We also have
λ2(max{m,n})� λ2(l) > 1, wherel denotes the constant weightλ2−δ. Finally it is clear
from the construction thatm � n on {u0 > 0} andn � m on {u0 < 0}. This concludes
the proof of Claim 1 and of Proposition 43.✷
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The following proposition is proved in [8], where many more precise results on the
number of solutions can be found.

PROPOSITION 44. – Let	= ]0,1[. For any constant positive weightsm,n with

λ1
(
min{m,n})< 1, λ2

(
max{m,n})< 1, c(m,n) > 1,

(6.19)with h(x)≡ 1 has at least two solutions.

Note that with respect to the Fučik spectrum (without weight) of−� onH 1
0 (	), the

point (m,n) in Proposition 6.5 lies strictly between the trivial horizontal-vertical lines
through(λ1, λ1) and the first curve through(λ2, λ2), but lies outside the closed square
having[(λ1, λ1), (λ2, λ2)] as diagonal.

7. Nonresonance of the type “below the first eigenvalue”

In this section, which is independant from the previous ones, we go on with the study
of the Dirichlet problem (1.5) but now under assumptions on the asymptotic behaviour of
the quotientpF(x, s)/|s|p which generalize the classical conditions that for a.e.x ∈	,
the limits at infinity of this quotient lie below the first eigenvalue. Existence, unicity, as
well as an example of nonunicity will be considered.

Let f :	× R → R be a Carathéodory function satisfying the growth condition (6.1).
Denoting as before byF(x, s) a primitive off (x, s), we assume that theLr functions
�± defined by

lim sup
s→±∞

p
F(x, s)

|s|p :=�±(x) (7.1)

have nontrivial positive parts and satisfy

λ1(�+) > 1, λ1(�−) > 1. (F2)

Some uniformity with respect tox is also required in (7.1), which here corresponds to
the second inequality in (6.13).

THEOREM 45. – Assume(6.1)and(F2). Then(1.5)has at least one solutionu1 which
minimizes

;(u) := 1

p

∫
	

|∇u|p −
∫
	

F(x,u)

onW 1,p
0 (	).

The result of Theorem 45 goes in the line of those in [32,35,5]. In the latter work for
instance, it is assumed that�+(x)� λ1 and�−(x)� λ1 a.e. in	, with strict inequality
on subsets of positive measure. This clearly imply (F2). As already mentioned in
Section 6, nonresonance conditions bearing on eigenvalues with weight were considered
in [26,20,21]. In particular the result of Theorem 45 forp = 2 was obtained in [20].
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Remark46. – Consider the problem

−�pu= λm(x)|u|p−2u+ h in 	, u= 0 on∂	 (7.2)

whereλ ∈ R, m ∈ Lr(	) andh ∈ Lp′
(	), and assume thatm changes sign in	. It is

then easily verified that Theorem 45 applies if and only ifλ−1(m) < λ < λ1(m). So in
fact we are dealing in this section with nonresonnance of the type “between the first
negative eigenvalue and the first positive eigenvalue”.

Proof of Theorem 7.1. –We recall that the uniformity in (7.1) precisely means that for
anyε > 0 there existsaε ∈ L1(	) such that

pF(x, s)��+(x)(s+)p +�−(x)(s−)p + ε|s|p + aε(x) (7.3)

for a.e.x ∈	 and alls ∈ R. One easily deduces from (7.3) that

;(u)� 1

p

(
1− 1

min{λ1(�+), λ1(�−)} − ε

λ1

)∫
	

|∇u|p −
∫
	

aε.

Taking ε > 0 sufficiently small and using (F2), we get that; is bounded below and
coercive onW 1,p

0 (	). On the other hand standard arguments based on (7.3) and Fatou’s
lemma imply that; is weakly lower semicontinuous onW 1,p

0 (	). Consequently;
achieves its minimum onW 1,p

0 (	) at someu1. Since (6.1) implies that; is C1 on
W

1,p
0 (	), u1 solves (1.5). ✷
Theorem 45 yields in particular a solution to the semilinear problem

−�u=m(x)u+ − n(x)u− + h in 	, u= 0 on∂	 (7.4)

wherem,n ∈ Lr(	) with (2.1),h ∈L2(	), if we assume

λ1(m) > 1, λ1(n) > 1. (7.5)

In the rest of this section we will be interested in the unicity of the solution of (7.4)
when (7.5) holds.

PROPOSITION 47. – Assume

λ1
(
max{m,n})> 1. (7.6)

Then(7.4)admits an unique solution.

Proof. –Existence follows from Theorem 45 since (7.6) clearly implies (7.5). Assume
now thatu1 andu2 are two solutions of (7.4) and putv = u1 − u2. Thenv solves

−�v = d(x)v in 	, v = 0 on∂	, (7.7)
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whered(x) is defined as in the proof of Proposition 42. Ifd � 0, then (7.7) clearly im-
pliesv ≡ 0. If d+ 
≡ 0, then, sinced � max{m,n}, we haveλ1(d)� λ1(max{m,n}) > 1.
Consequently 1 is not an eigenvalue of−� for the weightd and thus (7.7) implies
v ≡ 0. ✷

Remark48. – A result analogous to that of Proposition 47 does not hold for thep-
laplacian, even whenm≡ n≡ constant andN = 1 (cf. [22] and [25]).

The following proposition shows that unicity may fail in (7.4) under (7.5). Note that
as in Proposition 43, the example in Proposition 49 below requires nonconstant weights.

PROPOSITION 49. – Suppose∂	 of classC2. Then there existm,n ∈ C∞(	̄) with
m,n > 0 in 	̄,

λ1(m) > 1, λ1(n) > 1, λ1
(
max{m,n})< 1, (7.8)

such that, for someh ∈ L2(	), (7.4)has at least two solutions.

Proof. –We start with the following

Claim 1. – There existm,n ∈ C∞(	̄) with m,n > 0 in 	̄, (7.8), andu0 ∈ H 1
0 (	) ∩

H 2(	)∩C(	) such that|u0 = 0| = 0, m� n on {u0 > 0} andn�m on {u0 < 0}.
Let us admit this claim for a moment. Withm,n,u0 as in Claim 1, we define

h := −�u0 −mu+
0 + nu−

0 and consider (7.4) for thesem,n,h. Clearly, by construction,
u0 is a solution of (7.4). We will show thatu0 is not a global minimum for the associated
functional

>(u) := 1

2

∫
	

(|∇u|2 −m(u+)2 − n(u−)2
) −

∫
	

hu,

which implies thatu0 is different from the solution of (7.4) provided by Theorem 45.
To prove thatu0 is not a global minimum of>, we take an eigenfunctionv associated

to λ1 (max{m,n}) and letg(t) :=>(u0 + tv). Clearlyg ∈C1(R) and

g′(t)=
∫
	

(∇(u0 + tv)∇v −m(u0 + tv)+v + n(u0 + tv)−v
) −

∫
	

hv.

We haveg′(0) = 0 sinceu0 is a solution of (7.4). Moreover, since|u0 = 0| = 0, we
can use Proposition 2.2 from [38] to get thatg′′(0) exists and thatg′′(0) = ∫

	 |∇v|2 −∫
u0>0mv

2 − ∫
u0<0nv

2. Consequently, by the properties ofm,n,u0 in Claim 1,

g′′(0)=
∫
	

|∇v|2 −
∫
	

max{m,n}v2 = [
λ1(max{m,n})− 1

] ∫
	

max{m,n}v2 < 0.

This impliesg(t) < g(0) for |t| > 0 small, and it follows thatu0 is not a local and a
fortiori global minimum of>.

Proof of Claim 1. –It is rather similar to that of Claim 1 from the proof of
Proposition 43. Takeu0 an eigenfunction of−� on H 1

0 (	) which changes sign. So
u0 ∈ H 2(	) ∩ C(	) and |u0 = 0| = 0. Take ballsB+,B− with B̄+ ⊂ {u0 > 0} and
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B̄− ⊂ {u0 < 0}. Starting with the constant weightλ1 and decreasing it a little bit on
B− (resp.B+), we can get a positiveC∞(	̄) weight m̂ (resp. n̂) with λ1(m̂) > 1
(resp.λ1(n̂) > 1). Clearly max{m̂, n̂} ≡ λ1 and soλ1(max{m̂, n̂}) = 1. Now, for δ > 0
sufficiently small, we get thatm = m̂ + δ andn = n̂ + δ satisfyλ1(m) > 1, λ1(n) > 1
andλ1(max{m,n}) < 1. Moreover, from the construction,m� n on {u0 > 0} andn�m

on {u0 < 0}. This concludes the proof of Claim 1 and of Proposition 49.✷
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