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ABSTRACT. — We prove the existence of a first nontrivial eigenvalue for an asymmetric
elliptic problem with weights involving the laplacian (cf. (1.2) below) or more generally the
p-laplacian (cf. (1.3) below). A first application is given to the description of the beginning of
the FEik spectrum with weights for these operators. Another application concerns the study of
nonresonance for the problems (1.1) and (1.5) below. One feature of our nonresonance conditio
is that they involve eigenvalues with weights instead of pointwise restrictions.
© 2002 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous démontrons I'existence d’'une premiére valeur propre non triviale pour
un probléme asymétrique avec poids faisant intervenir le laplacien (cf. (1.2) ci-dessous) ol
plus généralement Ig-laplacien (cf. (1.3) ci-dessous). Une premiére application consiste
en la description du début du spectre deikuavec poids pour ces opérateurs. Une autre
application concerne I'étude de la nonrésonance pour les problémes (1.1) et (1.5) ci-dessous. U
caractéristique de nos conditions de nonrésonance est qu’elles font intervenir des valeurs propt
avec poids, plutdt que des restrictions ponctuelles.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction
This paper is partly motivated by the study of the semilinear elliptic problem
—Au= f(x,u) Iing, u=0 o0noQ 1.1

whereQ is a bounded domain iRR". It is well known that the asymptotic behaviour

of the quotientsf (x, s)/s and 2F (x, s)/§ (whereF (x, s) = Jo f(x,1)dr) ass — +oo

ands — —oo plays an important role in the study of the solvability of (1.1). Usually
pointwise conditions are imposed on the limits of these quotients (for instance they
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are required to lie for a.ex €  between two consecutive eigenvalues-ok). When
looking at the linear case-Au = a(x)u + b(x), it seems however more natural to
impose conditions which would involve the limits of the above quotients as weights of
eigenvalues. This is the approach that we wish to follow here. This approach of cours
requires the preliminary study of weighted asymmetric eigenvalue problems of the form

—Au=Am@Xu" —n(x)u"] inQ, u=0 0noQ, 1.2)

whereu® := max(tu, 0).

The study of (1.2) is classical whem(x) = n(x) and corresponds to the theory of
linear eigenvalue problems with weight. Several works have been devoted in the las
20 years to the study of (1.2) (and of its relations with (1.1)) in the case whereand
n(x) are constant and different; this has lead in particular to the notion@k Bpectrum
and to the so-called problems of Ambrosetti—Prodi type. The situation wherneand
n(x) are non constant and different was investigated recently in the ODE\casg in
[23,7,37,36] (form(x) andn(x) > 0) and [2] (form (x) andn(x) indefinite).

It is our purpose in this paper to initiate the study of (1.2) and of its relations with the
solvability of (1.1) in the general cas& > 1, m(x) andn(x) possibly non constant,
different and indefinite. More generally we will consider the quasilinear eigenvalue
problem

—Au=Am@) @)t —n(x) @)’ inQ, u=0 onos, (1.3)

as well as theA, analogue of (1.1) (cf. (1.5) below). Here<lp < oo and A ju :=
div (|Vu|P~2Vu) is the p-laplacian. We wish however to point out that all our results are
new even in the semilinear cape= 2 (with only one exception, Theorem 45, as we will
see later).

Solutionsu of (1.3) which do not change sign clearly arise if (and only.ifs one of
the first eigenvalues,; (m), A1(n), A_1(m), »_1(n) of the p-laplacian with weight (cf. the
end of this introduction for definitions). Section 2 is devoted to the proof of the existence
of a solutionu of (1.3) which changes sign. Our construction is based on the mountain
pass theorem, more precisely on a version of that theorenCdmaanifold. In Section 3
we show that the eigenvalueconstructed in Section 2 is in fact the first eigenvalue of
(1.3) with a sign-changing eigenfunction. This is probably one of the main results of
our paper and the technique introduced in its proof (which in particular involves the
consideration of 3 different manifolds) will be used repeatedly later. This distinguished
eigenvalue, denoted by(m, n), plays in our asymmetric problems a role analogous
to that of the usual “second eigenvalue”. Several properties(:afn) as a function
of the weightsm,n are investigated in Section 4. continuity, (strict) monotonicity,
homogeneity.

As a first application, in Section 5, we study theCkuspectrum with weights. This is
defined as the sét of those(«, 8) € R? such that

—Apu=am@) @)t = pn(x)@ )Pt inQ, u=0 0njQ (1.4)
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has a nontrivial solution. We show in particular thatifand» both change sign iz,
then each of the four quadrants in tieg 8) plane contains a first (nontrivial) curve of
%, which is hyperbolic like and has a variational characterization. We also study the
asymptotic behaviour of these first curves. It turns out for instance that the first curve
in Rt x R* is asymptotic to the vertical ling;(m) x R if p < N, orif p > N and the
support ofn* intersect9 €2, but it is not asymptotic to that line j > N and the support
of n* is compact inQ2. A similar result of course holds with respect to the horizontal
line R x A1(n), which involves the support e, and in the other quadrants.

The last two Sections 6 and 7 are mainly concerned with the study of nonresonanc
for the problem

—Apu=f(x,u) InQ, u=0 o0nog. (1.5)

As mentionned earlier, we replace the usual pointwise conditions on the limits of
f(x,s)/|s|P~2s and pF(x,s)/|s|? by conditions involving some eigenvalues having
these limits as weights. This approach based on “weights” allows us to improve severs
results concerning (1.5), as will be indicated in details later. Section 6 is devoted to
problems of the type “between the first two eigenvalues”. We exploit here our results of
Sections 2—4 relative to the distinguished eigenvalue n) of (1.3). Section 7, which is
independent from the previous sections, deals briefly with problems of the type “below
the first eigenvalue”. It contains an extension of the classical result of Hammersteir
where we also impose conditions on eigenvalues with weights. Examples of non unicity
are also investigated in Sections 6 and in 7, where nonconstant weights play a centr:
role.

To conclude this introduction, let us briefly recall some properties of the spectrum of
—A, with weight to be used later. References are [3,34] (for a bounded weight), [39,1,
13] (for an unbounded weight). L& be a bounded domain iR" and letm € L"(Q)
wherer > N/pif p< N andr=1if p > N. We also assume* # 0. The eigenvalue
problem under consideration here is

—Apu=rmx)|ulP?u inQ, u=0 ondx. (1.6)

The first positive eigenvalug; (m) of (1.6) is defined as
A(m) = A(m, Q) = min{/ [Vul?: u e W&’p(Q) and/m|u|1’ = 1}.
Q Q

It is known thatix,(m) is > 0, simple, and admits an eigenfuncti@n), = ¢, €
W&"’(Q) N L>®() N C(K2), with ¢, satisfying g, (x) > 0 in Q and [, m(¢,)?" = 1.
Moreoveri,(m) is isolated in the spectrum, which allows to define the second positive
eigenvaluer,(m) as

X2(m) :=min{1 € R: A eigenvalue and > x,(m)}.

Itis also known that any eigenfunction associated to a positive eigenvalue different from
A1(m) changes sign and that (m) is strictly monotone decreasing with respectiio
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(i.e.m <m impliesA1(m) > A1(m)). In the casen™ = 0, the first and second negative

eigenvalues are obtained by reversing the sign of the welghtm) = —A;(—m) and
A_2(m) = —Aa(—m).

The main results of this paper were announced in [9].

The authors wish to express their gratitude for the referee’s careful and detailec
comments.

2. Construction of a nontrivial eigenvalue

In this section and in the following two we consider the eigenvalue problem (1.3) on
a bounded domai® c R". It will always be assumed that,n € L"(Q) with r as in
the introduction, i.er > N/p if p < N andr =1 if p > N. We also assume, unless
otherwise stated,

mt and nT#£0 inQ. (2.1)

We look for eigenvalues of (1.3) withA > O.

Clearly (1.3) witha > 0 has a nontrivial solution which does not change sign if and
only if . = A1(m) or A = A;(n). Moreover, multiplying byu™ or u~, one easily sees
that if (1.3) withA > 0 has a solution which changes sign, thea maxi1(m), A1(n)}.
Proving the existence of such a solution which changes sign is our purpose in this sectior

Remark1. — It is easily seen that (2.1) is a necessary condition for (1.3)witl0 to
have a solution which changes sign. Observe also that if, instead of (2.1), we:have
andn~ #£ 0, then, by reversing the sign of the weights, our approach will lead to negative
eigenvalues of (1.3). So, # andn both change sign, we will obtain positive as well as
negative eigenvalues of (1.3).

We will use a variational approach and consider the functionals

A() = [ |Vu|?,
/
By (1) = / (M@ +n@H?),
Q

which areC? functionals onwol”’ (22). We are interested in the critical points of the
restrictionA of A to the manifold

Mm,n = {I/t € W(}’p(Q): Bm,n(u) = 1}

Note that 1 is a regular value a8, ,. Note also thaty, and —¢, € M,,,, and

that M, , contains functions which change sign. In fact, a standard argument of
regularization shows that, under (2.1), there existsC2°(€2) such thatf, mu™)? > 0
and [, n(u~)? > 0, and consequently/(B,, , (u))Y/? belongs taM,, ,,.
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By Lagrange’s multiplier ruley € M,, , is a critical point ofA if and only if there
existsi € R such thatA'(u) = AB,, , (u), i.e.

/ [VulP"2VuVov = A /(m(bfr)”_l —n )" (2.2)
Q Q

forall v e Wol”’(Q). This means that (1.3) holds in the weak sense. Moreover, taking
v =u in (2.2), one sees that the Lagrange multipliés equal to the critical valug ().
Our eigenvalue problem (1.3) is thus transformed into the problem of looking for critical
points and critical values of .

A first critical point of A comes from global minimization. Indeed

. + +
A(u>>xl(m>{/ m(u*)f’} +A1<n>[/ n(u‘)f’} > min{aa(m). 2a(m)}
Q Q

for all u € M, ,, and one hagi («) = min{i1(m), A1(n)} for eitheru = ¢, oru = —g,.
Consequently eithep,, or —g, is a global minimum ofA and so a critical point of.
The other one is also a critical point as follows from

PROPOSITION 2. — ¢,, and —g, are strict local minima ofA, with corresponding
critical valuesi,(m) and i, (n).

Proof. —Let us considery,, (similar argument for—¢,). Assume by contradiction
the existence of a sequeneg € M,,, With u; # @, upx — @, in W&”’(Q) and
A(uy) < A(m). We first observe that; changes sign fok sufficiently large. Indeed,
sinceu, — ¢.,, u;y must be> 0 somewhere. Ifi, > 0 in 2, then

Alu) = / Vi l? > As(m) /mmv’ — Aa(m)
Q Q

since u; # +¢,, but this contradictsA(u;) < A1(m). So u;, changes sign fork
sufficiently large. Now we have

ha(m) / (M) + nWD)?) = Aa(m) > / Vit |
Q Q
= [(vut |+ |Vur ")
Q
> aa(m) [ muhH? + [ [Vug|”
[ |

and consequently

Kl(m)/n(uk_)p 2/’Vuk_’p.
Q

Q
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Sinceuy — ¢, lu;, > 0| — 0, where|u, > 0| denotes the measure of the set where
is > 0. The desired contradiction then follows from Lemma 2.3 below.

LEMMA 3.— Lety, € Wy'”(R) with v, >0and v, > 0| — 0. Letn, — n in L™(R).

#

/nk(vk>”//|wk|uo.
Q Q

Proof. —It is easily adapted from [15] which deals with the cagse= 1. Write
2 = v/ (fo [V |?)Y/7. Clearly, for a subsequence, — z in Wy”(R) andz; — z
in L"'?(Q), with z > 0. If z=0, then

/nk(vk>1’//|wk|f’=/nkz5—>o
Q

Q Q

Then

and the lemma is proved. = 0, then, for some > 0, n := |z > ¢| > 0. We deduce
that |z, > ¢/2| > n/2 for k sufficiently large, which contradicts the assumption that
lvy >0— 0. O

To get a third critical point, we will use a version of the mountain pass theorem on a
C* manifold, which we now recall.
Let E be a real Banach space and let

M:={uckE: gu) =1}, (2.3)

whereg € C*(E,R) and 1 is a regular value @f. Let f € C*(E,R) and consider the
restriction f of f to M. The differential off atu € M has a norm which will be denoted
by || f'(w)]l+ and which is given by the norm of the restriction pf(x) to the tangent

space

T,(M):={veE: (g'(u),v)=0};

here(, ) denotes the duality pairing betweéri andE. We recall 'Ehatf is said to satisfy
the (PS) condition o/ if, for any sequence; € M such thatf (u;) is bounded and
Il ' (u)ll« — O, one has that, admits a converging subsequence.

PROPOSITION 4. — Letu, v € M with u # v and suppose that
H:={heC([-1,+1], M); h(-1) =u andh(1) = v} (2.4)
is nonempty. Assume also that

€ Ty ) 7 M0 S 0) o

and thatf satisfies th&PS condition onM. Thenc is a critical value off.

Proposition 4 follows by applying Theorem 3.2 of [28] to a componentofNote
that the proof of Theorem 3.2 in [28] involves a deformation lemma @n' &insler
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manifold (cf. Lemma 3.7 in [28]). A direct proof of Proposition 4, which uses only
Ekeland’s variational principle, can be found in [14] in the case wl&is uniformly
convex. Note that the geometric assumption in [14] is weaker than (2.5): it reads

pemax | f (w) >max{f (). f(v)} (2.6)
foranyh € H.
We will apply Proposition 4 withE = Wol”’(Q), f=Aandg = B,,,. First two
preliminary results. The first one concerns S condition while the second one
describes the geometry df near the strict local minima,, and—¢,.

LEMMA 5.— A satisfies th&PS condition onM,, .

Proof. —Letu, € M,, , be a(PS sequence fon. So [, | Vug|? remains bounded and,
for someg;, — 0,

] / |Vur P72V V| < g llvllz (2.7)
Q

forall ve T, (M,.,), where

T,(M,, ) = {v € WyP(Q): /(m(u+)f’-1 —n ) Hu= o}
Q

and|| |1, denotes the)Vol”’(Q) norm. Clearly, for a subsequenag, — u weakly in
W&”’(Q) and strongly inL""7(2), wherer’ denotes the Hoélder conjugate of Now,
givenw € Wy'¥ (), one hasw — ay(w)uy € T, (M,,.,) for ap(w) := [o,(m )Pt —
n(u)P"Hw. Puttingv = (uy — u) — a; (ux — u)uy in (2.7) and observing that, (1, —
u) — 0, one deduces that

/quk|”_2VukV(uk —u)—0
Q

and consequently

/(quklp_ZVuk — |Vu|"~2Vu) (Vu; — Vu) — 0.
Q

Using then the inequality

1§ =l < c[(151772% — n1P~2n) 6 = m]"* (517 + Inl?]

whereé, neRY, c=c(p)>0ands=2if p>2,s=pif 1l < p <2 (cf. e.g. [34]),
one easily obtains that, — u in W(}”’(Q). O

The second lemma can be stated in the more general framework of the manifold (2.3
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LEMMA 6.— LetE, g, M, f and f be as considered previous{gf. (2.3)). Letug be
a strict local minimum off, i.e., for somey > 0,

fuo) < fu) (2.8)

forallu € M withu # ug and|lu —uol|g < e0. ASSume thaf satisfies th&PS condition
on M (in fact the(PS condition at levelf (ug) suffices. Then, for any0 < ¢ < &g,

flug) <inf{ f(u): ue M and|lu —uolz = e}. (2.9)

Proof. —It is partly adapted from [17] where a similar situation without constraint
is considered. Assume by contradiction the existence for somith 0 < ¢ < ¢ of a
sequence, € M with ||ux — ugllz = ¢ and, say,f (ux) < f(uo) + 1/2k?. Call

C:={ueM:e—8<|lu—uolp<e+6}

wheres > 0 is chosen so that @ ¢ — § ande + § < &o. Clearly inf{ f (u): ueC}=
S (uo). y

We apply for eaclt Ekeland’s variational principle (cf. e.g. [17]) to the functiorjal
on C to get the existence af, € C such that

Fo) < fu), (2.10)
vk — uklle < 1/k, (2.11)

- - 1
f o) < fu)+ %Ilu —wllg YueC. (2.12)

Our purpose is to show thaj, is a (PS) sequence fof, i.e. that f(v;) is bounded
(which is clear by (2.10)) and thatf’ (vi)|l. — 0. Once this is proved, we get that, for a
subsequencey — v in E. Clearlyv € C and satisfiegv —ug| z = ¢ and f (v) = f (uo),
which contradicts (2.8).

To prove that| /(v — 0, we fixk with 1/k < 8, takew € T,.(M) and consider
aC? pathy :1-n, +n[ — M such thaty (0) = v, andy’(0) = w (cf. e.g. [40], vol. 3,
Th. 43 C). Forjz| sufficiently small,y (¢) € C. Indeed

erQJHJ/(t)—uoHE = [lve — uollg (2.13)

and it is easily seen, using (2.11),A< § and|ju; — ug| = ¢, that the right-hand side of
(2.13) is< e+ § and> ¢ — §. SO we can taka = y () in (2.12). This gives, for > 0,

f) = fr@) _ }H y (1) — v
t Tk t

E

and so, going to the limit as— 0, we get

1
—(f'(w), w) < %IlwllE.
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Consequently, since is arbitrary inT,, (M), I ol <1/k. O
We are now in a position to apply the mountain pass theorem of Proposition 4.
THEOREM 7. — Consider

= {]/ € C([—l, +1], Mm,n): )/(—1) = Om andy(+l) = _(/)n}~

Then

= inf A 2.14
c(m, n) 1121" ueyr[n—al?g-l] (Lt) ( )

is a critical value ofA, with c(m, n) > max{A1(m), A1(n)}.

Proof. —The (PS) condition and the geometric assumption (2.5) are satisfied by the
previous two lemmas. It remains to verify thAtis nonempty. Clearly it suffices to
construct a pathy in Wé”’(Q) from ¢, to —¢, such thatB,, ,(y(t)) > O for all 7.

We start with a function: € W,? () such that/, m(u*)? > 0 and [on(u~)? > 0. As
already observed the existence of such a function follows from (2.1). We first gaifrom
to u™ by convex combinationcu + (1 —r)u™, t € [0, 1]. Then we go on fronx™ to ¢,
through the path

[r@h? + A=)’ 1e[0.1]. (2.15)

(It is an interesting exercise to verify that if, w € W&”’(Q) with v, w > 0, then
(WP + wP)Vr e Wol”’(Q)). Using the fact that/, m(¢,)” > 0, one easily verifies that
the pathy from u to ¢,, constructed in the above way satisfs , (y (t)) > O for all .
One goes in a similar way fromto —g,,, and the conclusion follows. O

Remark8. — When the weights andn are> 0 in €2, one can use in the above proof
the standard convex combinatiom™ + (1 — 1)¢,, instead of (2.15).

Remark9. — Lemma 6 is in fact not needed to deduce tfiat, n) is a critical value
of A (by using the version of Proposition 4 given in [14], which requires only (2.6)).
Lemma 6 is however needed to deduce that, n) is > max{i,(m), A1(n)}.

Remark10. — It may happen that (1.3) does not admit any other positive eigenvalue

besider,(m), A1(n) andc(m, n). In fact, whenN =1 andp = 2, given an odd integer

k, there exist continuous weights satisfying (2.1) such that (1.3) admits exactly
eigenvalues> max{i,(m), A1(n)} (cf. [2]). On the other hand, again fav = 1 and

p =2, if m andn are continuous weights with the produgt »* s 0, then the positive
eigenvalues of (1.3) constitue a sequence goingdo (cf. [2]). We observe that for

N > 2, the existence of further positive eigenvalues for (1.3) besid&), A1(rn) and

c(m, n) is an open question, even whgn= 2 and the weights are constant but different.

3. First nontrivial eigenvalue

We have seen at the beginning of Section 2 that{mi@), A1(n)} and maxi.(m),
A1(n)} are the first two positive eigenvalues of (1.3). The present section is devoted tc
the proof that the eigenvalugm, n) constructed in (2.14) is the next eigenvalue of (1.3).
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THEOREM 11. — Problem(1.3) does not admit any eigenvalue in the open interval
ImaxX{r1(m), 21(n)}, c(m, n)l.

In particular, form = n, we obtain the following variational characterization of the
second eigenvaluk,(m) of the p-laplacian with weight:

COROLLARY 12.—-0One has

ao(m) = inf max /|Vu|1’, 3.1)

yelg uey[—1,+1]
Q

wherely is the family of all paths i, ,, = {u € Wol”’(Q): Jom|ul? =1} going from
Pm to —@Pm-

Remark13. — Slightly different variational characterizations xof(m) have been
obtained recently: [6] (bounded weight) considers a minimax procedure (P1) over all
compact symmetric sets of genxs2 in M,, ,,, [4] (bounded weight) and [27,24] (no
weight) consider a minimax procedure (P2) over all images of odd mappings from
St into M,, .. These minimax procedures clearly involve more sets than (3.1). In fact
c(m,m) is > the minimax value in (P2), which itself i the minimax value in (P1).
Since the latter is> A,(m) (by the Ljusternik—Schnirelman multiplicity theorem and
the simplicity ofA1(m)), we see that Theorem 3.1 implies the equality of the minimax
values in (P1) and (P2) witt(m, m). The mountain pass characterization (3.1) gin)
was first derived in [15] fom = 1.

The following lemma will be used in the proof of Theorem 3.1. It guarantees the
existence of a critical point in any component of any sublevel set. As for Lemma 2.6, it
can be stated in the general framework of the manifold (2.3).

LEMMA 14. - LetE, g, M, f and f be as considered previous(yf. (2.3)). Assume
that f is bounded from below o and satisfies th¢PS condition onM. Letr € R
and consider

O:={ueM: f(u)<r}.
Then any(nonempty component?; of @ contains a critical point off .

Proof. —It is partly adapted from [15]. Consider:= inf{ f(x): u € O}, whereO;
denotes the closure @9;. We will show that this infimum is achieved at somge O;.
Let us accept this for a moment. Clearf(ug) = d < r and soug € ©. Moreover
uo € Oy becauseO is locally arcwise connected. Consequentlyis a critical point
of f.

To show that the infimurd above is achieved, let, € O; be a minimizing sequence
with, say, f (u;) < d + 1/2k?. For eachk, we apply Ekeland's variational principle to
the functionalf on O, to getv, € Oy such that

S ) < f (up), (3.2)

e — well < 1/k, (3.3)
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1 _
) < f(u)+ %Hu —%llg YueOi. (3.4)

Our purpose is to show that is a (PS) sequence fgf in S, i.e. that f (v;) is bounded
(which follows from (3.2)) and thaf f'(v¢)|l. — 0. Once this is proved, we deduce
from (3.3) thatu;, admits a convergent subsequence, and consequently the infinsim
achieved.

To prove that| f'(ve) |l — 0, we fix k, take w € T,.(M) and consider &?! path
y :1—n,+n[ — M such thaty (0) = v, andy’(0) = w as in the proof of Lemma 6.
We first observe that, € O, for k sufficiently large. Indeed, otherwise, € 30, and
consequently, sinc® is locally arcwise connectedy ¢ @, which implies f(v) = r;
but this is impossible since, by (3.2),

F 7 1
Fwo < fa)<d+g55<r

for k sufficiently large. Sa/(¢) € O, for ¢ sufficiently small and we can take= y (¢)
in (3.4). The argument now is identical to the one at the end of the proof of Lemma 6. It
yields| f'(vi)ll. < 1/k. O

We are now ready to start the

Proof of Theorem 3.1. Assume by contradiction the existence of an eigenvaloé
(1.3) with max1(m), 21(n)} < A < ¢(m, n). We will construct a path iii" on which A
remains< A, which yields a contradiction with the definition (2.14)«dfn, n).

Letu € M,, ,, be a critical point ofA at leveli. Sou satisfies

—Apu=Am@H?t—n@ )’ InQ, u=0 ondQ, (3.5)
and we know that changes sign. This implies
0< / |[Vut|? =)\/m(u+)’7 and O< /qu_lf7 =A/n(u_)p. (3.6)
Q Q Q Q
The desired path will be constructed in several steps, usagstarting point.

First we go fromu to v :=u*/B,, ,(u*)Y/? by some sort of convex combination:

tu+ 1 —1tut

Bm,n(tu + (1 - t)u+)l/ﬁ ’ re [0’ 1] (37)

yi(t) =

An easy calculation based on (3.6) shows that) is well-defined, belongs t7,, , and
satisfiesﬁ(yl(t)) =Vt €[0, 1]. In a similar way we go fronx to —u~ /B, ,(—u~)Y?
in M,, , by staying at levek. We will now describe the construction of a pathif;, ,
from v to ¢,, which stays at levels 1. A similar construction would yield a path in
M, , from —u=/B,, ,(—u")¥? to —¢, which stays at levels< 1. Putting everything
together, we get the desired path frgmto —g,.

To construct the path fromto ¢,,, we first consider another manifolg,, ,,,. Clearly
v € M, ,,. The critical points of the restriction oA to M,,, are the normalized
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eigenfunctions of-A, for the weightm. Sincev does not change sign and vanishes
on a set of positive measure, is not a critical point of this restriction oA to
M,, .. Consequently there exists@ pathv:]—e, +¢[ — M, ,, with v(0) = v and
%A(v(z))h:o # 0. Following a little portion of this patlv in the positive or negative
direction (callv; that portion), we move from to a pointw by a path inM,, ,, which,
with the exception of its starting pointwhere A(v) = 4, lies at levels< 1. The path
y2(t) := |v1(2)| then lies inM,, , (because it lies i, ,, and is made of nonnegative
functions), goes from to v; := |w| and remains, with the exception of its starting point
v whereA(v) = A, at levels< A (sinceA(|v1(?)]) = A(v1(2))).

To go on fromwv, to ¢,,,, we first use Lemma 15 below to construct a weiglat L" ()
such that(n)* # 0, A1(n) > A andn < m in Q. It suffices to taker = m wherem <0
andn = em wherem > 0, with ¢ > 0 sufficiently small. We then consider the manifold
M,, ; and the sublevel set

O:={ueM,; Alu) <r}.

Clearlyv, andg,, € O (because they belong 14, ,,, are> 0 and have the right levels).
Moreover the only critical point it© of the restrictionA of A to M,, ; IS ¢, (because
the first two critical levels.; (m) and(7) of A verify A1(m) < A < A1(n) by the choice
of ). Applying Lemma 14 to the component 6fwhich contains; and using the fact
that any open connected subset of a manifold is arcwise connected, we getya ath
O from v; to ¢,,. We then consider the path

lys(@)l
(Jomlys@)|P)Yr

va(t) ==
By the choice ofi, one has

1= / (v + 7 (y3(0)") / (vs ) +m(ys()")

Q

(3.8)
and consequently,(¢) is well-defined. Moreovey, goes fromv; to ¢,, and belongs to
our original manifoldd,, ,,. Finally

A _ v P fQ|V)/3(t)|p A
(a(0) Q/| ol = £ <

sinceys(t) € O and, by (3.8),/, m|y3(t)|” > 1. The pathy, thus allows us to move from
v1 to ¢, IN M, ,, Dy sStaying at levelsc A. O

LEMMA 15. — If my € L™ () withm;" £ 0and ifm" — 0in L"(Q), theniy(m;) —
+00.
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Proof. —A consequence of the following calculation where we use the Sobolev
inequality (and have dropped the indiex

1 m P + m p l/r
_ Jomlom| < Jam™|gnl gc(/(nﬁ)’)
A1(m) fQ VP fQ IVou|? o

whereC =C(2, N, p,r). O

Remark 16. — If we reproduce the proof of Theorem 11 starting fegm, n) instead
of A, we conclude that the infimum in the minimax formula (2.14) is a minimum.

Remark17. — Let us observe for later reference that the last step in the proof of
Theorem 11 shows the following: givene M,, , with u > 0 andA(#) < n for some
u, there exists a path i, , from u to ¢,, which is made of nonnegative functions
and which remains at levels 1. Note that it is the introduction of the manifoldg,, ,,
andM,, ; in the proof of Theorem 11 which allows us to keep control of the sign of the
functions constituing the paths.

Remark18. — Let us also observe for later reference that the proof of Theorem 11
shows the following: givem e Wol”’(Q) with [, mu™)? >0, [on(u~)? > 0, and such
that

At /B, @HYPY < and A(—u /By, (—u)YP) <

for somepu, then there exists a path i, , which goes fromg,, to —¢,, contains
u/Bm,n(u)l/f’ and remains at levels u. In particularc(m, n) < u.

COROLLARY 19. — ¢(m,n) is the minimum of the positive eigenvalues (df3)
associated to eigenfunctions which change sign.

COROLLARY 20. — The eigenvaluemin{i,(m), A1(n)} and max{i,(m), A1(n)} are
isolated in the spectrum ¢1.3).

4. Some properties of thefirst nontrivial eigenvalue

In this section we study the dependence of the first nontrivial eigenvéhugen) of
(1.3) with respect to the weights, n. Continuity and monotonicity will be considered,
as well as some homogeneity properties. The weights in this section will always be
assumed to belong " (£2) and to satisfy (2.1).

We start by modifying a little bit the variational characterization (2.149(@f, n) in
order to allow a larger family of paths, which in addition depends a little less on the
weights.

PROPOSITION 21. — One has

cim,n)=Iinf  max A(u) 4.1)

el uey[-1,+1]

where
Iy :={y eC(-1+1], M,,): y(—1) > 0andy (1) <0}.
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Proof. —Let us calld the right-hand side of (4.1). Clearly < c(m, n). Assume by
contradictiond < c(m,n). Take u with d < u < c¢(m,n) and choose a path € I'y
which remains at levels: . We will construct a path i" which also remains at levels
< w. This will contradict the definition (2.14) af(m, n). To construct this path we first
go fromg,, to y (—1) by using Remark 17, then we followfrom y (—1) to y (+1), and
finally we go fromy (+1) to —¢, by a construction analogous to that of Remark 1.

The continuous and monotone dependence(af, n) are easy consequences of this
proposition.

PROPOSITION 22. — If (my, ny) — (mo, ng) in L"(2) x L"(), thenc(my, ny) —
c(mo, no).

Proof. —We first prove the upper semicontinuity. Let- 0 and takey € " such that
mtaXA(y (1)) < c(mo, ng) + &.

Since B,,,(y(t)) is continuous in its 3 argumenten,n,t), we deduce that, fok
sufficiently large,

MaXA ( (t)/ By (v (1)) < c(mo, no) +&. (4.2)
By Proposition 21¢(my, ny) is < than the left-hand side of (4.2) and consequently
limsupc(my, n;) < c(mg, ng) + &.

Sincee is arbitrary, the upper semicontinuity follows.

To prove the lower semicontinuity, suppose by contradiction that, for a subsequence
c(my,ng) — co With ¢ < c(mo, no). Let u, € M, ,, be a solution of (1.3) foi =
c(my, n,) and for the weightsn,, n;. For a further subsequence, — ug weakly in
W&”’(Q) and strongly inL’'?(2); moreoverug € M, », andug is a solution of (1.3)
for A = ¢o and for the weightsng, ng. Sincecg < c(mog, ng), Theorem 11 implies that
eitherco = A1(mg) andug = @y, OF cog = A1(no) andug = —¢,,. Consider the first case
(similar argument in the other case). In that cagg — 0 and Lemma 3 applies to give

/nk(uk_)p//]Vuﬂp—)O. (4.3)
Q Q

But multiplying byu; the equation satisfied hy,, one gets that the expression in (4.3)
is equal to Yc(my, ny), which goes to 1cq #£ 0, a contradiction. O

PROPOSITION 23. — If m <m andn < n, thenc(m, n) > c(m, n).

Proof. —If y is a path admissible in formula (2.14) fofm, n), then [ (m (y (1)) +
n(y()7)?) > 1 and consequently

P =y (1)) Bas(y )"
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is well-defined and is a path admissible in formula (4.1) &z, 7). Moreover
A(y () < A(y (1)), and the conclusions follows.O

The monotonicity provided by Proposition 23 is generally not strict as is seen from
the following

Example24. — We start with two weightg:, 7 satisfying (2.1) and letz be an
eigenfunction associated t@m, 71). We then construotz, n with

m=min{u>0}, n=nin{u<0}, m<minQ and n<ainQ.

# #
Note thatm, n still satisfy (2.1). By Proposition 23,(m, n) > c(m, nn). But
—Apu = (i, i) [Pt — AP = cm, A) [m@h)P ™t — n@ )P
which implies, by Theorem 3.X(m, n) < c(m, n). Consequently (m, n) = c(m, n).

PROPOSITION 25. — If m <m,n <n and if

/(nﬁ —m)wh)? + /(fl —n)u )’ >0 (4.4)
Q Q

for at least one eigenfunctiom associated t@(m, n), thenc(m, n) > c(m, n).

Proof. —Let us consider the case where the first integral in (4.4} i8 (similar
argument if the second integralis0). So

Q/m(uJ’)” <Q/nA1(u+)1’ and !n(u_)’7 g!ﬁ(u_)”. (4.5)

We start by considering the path € T' constructed from the eigenfunctiom of
assumption (4.4) as in the proof of Theorem 11. With the notations of that proof,
is made of a first part from to ¢,, consisting ofy, followed by, followed byy,, and a
similar second part from to —¢,. Note thaty, lies at levelc(m, n) while y, andy, lie

at levels< c(m, n) with the exception of the starting point @ whose level is:(m, n).
We then take the normalization gffor the weightsz, n:

P =y (1)) Baaly )"

Since B; i (y (1)) = 1, p(¢) is well defined and clearly (t) € Mj; ;. To estimate the
levels of A alongy (¢), we distinguish two cases in relation with the second inequality in
(4.5): either[,n(u™)? < [qAa@™)P, or [onu™)? = [n(u™)?. Inthe first case a direct
calculation shows thad (y (¢)) < c(m, n) for all ¢. This clearly implies the conclusion
c(m,n) < c(m,n). Inthe second case the same calculation showsittyatr)) < c(m, n)

for all + except at the point := —u~/B; ;(—u~)Y? where A(v) = c¢(m, n). The path

7 goes fromy,, / By i (0m)Y? t0 —¢@, / Bs.7 (—,)Y?, which both lie at levels< ¢(m, n).

We then apply Remark 17 to exteridinto a pathja which goes fromp,;; to —¢; and
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which remains at levels: c¢(m, n) with the exception ob where the level is:(m, n).
Assume now by contradiction thatsm, 1) = c(m,n). Then we can apply Lemma 26
below to the restrictiord of A to the manifoldM,;, ; to conclude that)A? contains a
critical point of A at levelc(i, i). Consequently must be this critical point. But this is
impossible since does not change sign.O

The lemma below guarantees that in a mountain pass situation, any minimizing patl
contains a critical point at the mountain pass level. It is stated in the general setting o
the manifold (2.3).

LEMMA 26.— LetE, g, M, f, f be asin(2.3). Letu, v € M with u # v and assume
that H defined in(2.4)is nonempty and thg®2.5)holds. Suppose thate H is such that

max f(u)=c,
ueh[—l,+l]f( )

wherec is defined in2.5). Then there exists € 2[—1, +1] with f(u) = ¢ and which is
a critical point of f.

Proof. —Assume by contradiction that := {h(r): 1 € [-1, +1] and f(h(r)) = ¢}
does not contain any critical point of. We apply the deformation lemma of [28]
(Lemma 3.7) to our functionaf on the component oM which containsu, v. This
yields another pathe H such thatf (1(1)) < f(h(t)), with strict inequality onC. Thus
(1)) < ¢ for all ¢, which contradicts the definition (2.5) of O

Remark27. — A direct proof of a version of Lemma 26 can be found in [14], which
uses only Ekeland’s variational principle. In this versignis uniformly convex and
assumption (2.5) is weakened into (2.6). Note also that Lemma 26 is not needed in th
above proof of Proposition 25 if the two integrals in assumption (4.4)abe

Remark28. — A different proof of Proposition 25 can be given, which does not use
Lemma 26. It goes roughly as follows. Assuming (4.5), one picks a positive nodal do-
mainQ™ of u and a negative nodal domair of u such that/,. m(u™*)? < [ m(u*)?
and[,-n(u™)? < [o-n(u™)P. Takingu|o+ andu|q- as testing functions in the equation
satisfied byu, one then deduces thati(m, Q") < c(m,n) andr,1(n, 27) < c(m, n).

The idea now is to argue as in [15] to increa@& and to decreas&®~ so as to
get two new disjoint open sets R, 2, and Q,, such thati,(m, Q1) < c(m, n) and
A7, Q2) < c(m,n). Puttingv := @ o, — ¢i.0, andw = v/ By (v)Y?, one then uses
Remark 18 to construct fromy a path inM,;, ; which goes fromp,; to —¢; and which
remains at levels c(m, n). This implies the conclusioa(ii, i) < c(m, n).

COROLLARY 29. - If m <m andn < n with eitherm <m on{m >0} orn <z on
{n > 0}, thenc(m, n) > c(m, n).

Proof. —Let u be an eigenfunction associateddon, n). Then [, m(u*)? > 0 and
Jon(u™)? >0, and consequentlym > O} N {u > O} has positive measure, as well as
{n > 0} N {u < 0O}. It then follows easily that the assumptions of Corollary 29 imply
4.4). o

Form = n (andm bounded), the result of Corollary 29, which then readén) >
A2(m), was obtained in [6].
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Remark 30. — Let us agree to say that the unique continuation property (UCP) holds
for —A, if, for any a € L"(€2), any nontrivial solution: e W,E’C”(Q) of an equation like
—Aju= a(x)|u|?~?u in Q does not vanish on a set of positive measure. If (UCP) holds
thenm < m, n < n together with the local condition

[{x € Q2 m(x) <m(x)andn(x) <ni(x)}|>0

imply (4.4) and consequently(m, n) > c(m, n). (UCP) holds wherp = 2 (cf. [33,18,
30]) or N =1 (cf. e.g. [36]), but it is an open question whether it holds wheA2 and
N > 2, even fora(x) constant.

To conclude this section, let us observe that definition (2.14) clearly implies that
c¢(m, n) is homogeneous of degreel.:

1
c(sm,sn)=—c(m,n) fors >0, (4.6)
S

Some sort of separate sub-homogeneity also holds, which will be useful later:

ProPoOSITION 31. - If 0 < 5 < §, then
c(sm,n) >c(sm,n) and c(m,sn) > c@m,sn). 4.7)

Proof. —We will deal with the first inequality in (4.7) (similar argument for the second
one). Letu be an eigenfunction in/,,, , associated te(sm,n) and lety be the path
in My, , from ¢y, to —¢, constructed from« as in the proof of Theorem 11. The path
y(t) = (%)l/l’y(t)Jr — y (1)~ is then admissible in definition (2.14) ofsm, n) and we
have

AGO) =3 [y "+ [[vr o < alyo),
Q Q

with strict inequality ify (1)* # 0. So the patty goes inM;,, , from ¢;,, to —¢, and
remains at levels< c(sm, n) except at the point := —u~ /B, ,(—u~)Y? where the
level is c(sm, n). It follows that c¢(§m, n) < c(sm,n). Assume now by contradiction
thatc(§m, n) = c(sm,n). We can then apply Lemma 26 (or its version referred to in
Remark 27) to the patf in the manifoldM;, , to conclude thab must be a critical
point of the restriction ofA to M;,, , at levelc(sm, n). But this is impossible since
does not change sign.O

Remark32. — Ifm > 0 in , then, the first inequality in (4.7) follows directly from
Corollary 4.9. In general however this inequality should not be looked at as a property
of monotonicity since, whem changes sign 2, sm and sm are not comparable.
This last observation can also be made for the classical formuylas:) > A1(sm) and
Ao(sm) > Apx(Sm) where O< s < §.
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5. FucCik spectrum with weights

Let m,n € L"(2) with r as before. Unless otherwise stated, we also assume (2.1).
The Fik spectrum is thus defined as the 3et= X (m, n) of those(a, 8) € R? such
that (1.4) has a nontrivial solution.

% clearly contains the lines;(m) x R andR x Aq(n), and also, ifm~ £ 0 (resp.
n- #£0),A_1(m) x R (resp.R x A_1(n)). These lines are in fact exactly made of those
(a, B) € = for which (1.4) admits a solution which does not change sign. It will be
convenient to denote b¥* = X*(m, n) the setx without these 23 or 4 trivial lines.
From the properties of the first eigenvalue recalled in the introduction also follows that
if (¢, B) e T*witha >0and =0 (respa <0and <0, >0andB <0,a¢ <0and
B = 0), thena > A1 (m) andB > r1(n) (resp.a < A_1(m) andB < A_1(n), a > A1(m)
andg < A_1(n),a < A_1(m) andp > r1(n)).

We will start by looking at the part a£* which lies inR* x R*. The case of the other
quadrants will be considered briefly at the end of the section.

THEOREM 33.— For any s > 0, the line 8 = sa in the (¢, ) plane intersects
*N(R* x R*). Moreover the first point in this intersection is givendoy) = c(m, sn),
B(s) = sa(s), wherec(-, -) is defined by2.14)

Proof. —The results of Sections 2 and 3 clearly imply that(df, 8) € Rt x R*,
then (a, 8) belongs tox* and is such that no element &f* belongs to the segment
[(0,0), («, B)[ if and only if c(am, Bn) = 1. Since, by (4.6)¢(am, asn) = c(m, sn)/a
for o > 0, the conclusion follows. O

Letting s > O vary, we get in this way a first curvé := {(x(s), 8(s)): s > 0} in
¥*N (R x R"). Here are some properties of this curve.

ProPOSITION 34. — The functionsx(s) and B(s) in Theorem33 are continuous.
Moreovera(s) is strictly decreasing an@(s) is strictly increasing. One also has that
a(s) > +ooif s > 0andB(s) — +oo if s — +00.

Proof. —Continuity follows from Proposition 22. The monotonicity @fs) follows
from Proposition 31. The monotonicity @f(s) also follows from Proposition 4.11 since
B(s) =c(m/s,n). Finally let us assume by contradiction theat) remains bounded as
s — 0. Theng(s) = sa(s) — 0, which is impossible sincg(s) > A1(n) for all s > 0.
Similar argument for the behaviour 8is) ass — +oco. O

The curveC is thus an hyperbolic like curve R+ x R*, with asymptotes,, x R and
R x Boo, Wherea, := lim,_, o a(s) and B, := lim,_,, B(s). Note that Proposition 34
implies that the lines.;(m) x R andR x A;(n) are isolated inz N (Rt x R*), in
the sense that there does not exigts B;) € ¥* N (RT x R™) such thaiy;, — «¢ and
Br — Bo With (ag, Bo) in one of these two lines. Note also that Proposition 34 implies
that the curveC above coincides with the curve constructed in [19] whega 2 and
m=n=1andin [15] whemmn =n =1.
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We now investigate the asymptotic behaviour of this first curve, i.e. the valueg of
andpf.. Let us define

o= inf{ IVu™|P: ue Wol’p(Q), muH?=1and [ n(u")? > 0}, (5.1)
/ / /

B = inf{ IVu=|P: u e Wol’p(Q), nw ) =1and [ mut)’ > 0}. (5.2)
/ / /

Clearly@ > A1(m) and B > A1(n). Let us also recall that the support of a measurable
functionu(x) in Q is defined as supp := 2 \ O, whereQ is the largest open set
such that: =0 a.e. inO.

PROPOSITION 35. — The asymptotic values,, and B, are equal toa and S
respectively. Moreover ip < N, thena = A1(m) and 8 = r1(n). If p > N, then
() @ = A1(m) if suppn™ intersectsd2 but @ > A1(m) if suppn™ is compact ing,
(ii) B =r(n) if suppm™ intersectsd2 but B > r1(n) if suppm™ is compact inQ.

So, whenp < N, whatever the weights (satisfying (2.1)), the first cueis
asymptotic to the trivial lineg1(m) x R andR x A1(n). On the contrary, whep > N,
the asymptotic behaviour @ depends on the supports aft andn*. Note that the
influence of the supports of the weights in the asymptotic behaviour of the first curve
was already observed in the semilinear ODE clse 1, p = 2, in [2] by using the
shooting method. Note also that the present distinction between the gaseé and
p > N is of the same nature as that observed in [10] in the study of the antimaximum
principle and of the Feik spectrum for the Neumarnwlaplacian without weight.

Proof of Proposition 35. We first show that,, = & (similar proof for 8,,). Let
(o, B) € C and letu be a corresponding nontrivial solution of (1.4). Then

a!m(uJ”)p:!quﬂp >0, ,Bg/n(u_)p:SZIVu_lp > 0.

Consequentlye > @, which implies a,, > @. Assume now by contradiction that
0o > . Then there exists: € Wol”’(Q) with [om@u™)? =1, [onu™)’ > 0 and
@ < [o|Vut|? < ag. SinCeas, < a(s) =c(m, sn) Vs > 0, we have, for this,

/lVLtJrlf7 <c(m,sn) Vs=>0. (5.3)
Q

We then choose > 0 such that

!quT”/San(u_)p:Q/Wuﬂp

and apply Remark 18 for the weights and sn and for u = [, |[Vu™|?. This yields
c(m, sn) < u, which contradicts (5.3).
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We now consider the cage< N and show tha& = A1(m). This will clearly follow
if we prove the existence of functions which are admissible in (5.1) and converge to
@m- The construction of such functions is inspired from [19,10,29]. It consists in starting
from ¢,, and “digging a little hole” in order to have room to introduce a suitable negative
part. To do so we first consider the following functions®#: for p < N

1 if x| > 1/k,
ar(x) =4 2k|x| —1 ifl/2k < |x| <1/k,
0 if x| < 1/2k,
while for p = N,
1-2/k if |x| > 1/k,
ar(x) =13 |x|* —1/k if (/Y% <|x| <1/k,
0 if x| < (1/k)M%,

where §; € 10, 1[ is chosen so thatl/k)* =1 — 1/k. A simple calculation shows
that a; converges to the constant function lmé’c” (RY) ask — oo; it is here that
the assumptiorp < N enters. It follows that for any given € W&”’(Q) N L*™(2)
and xg € 2, the functionu(x)a;(x — xg) converges ta: in W&”’(Q) ask — oo and
vanishes in a neighborhood &f. We apply this construction i@,,, taking forxg a point

in (suppn™) N Q. This yields a function (x) := ¢,,(x)ay (x — xg) which is > 0 and
vanishes on, say, the bal(xo, &) C 2, &; > 0. Regularizing the characteristic function
of (suppn™) N B(xo, &x/2), one gets a functiow, € C2°(B(xo, &)) with w;, > 0 and
Jon(wr)? > 0. It follows that the function

ug = v — wi/kllwella,p

converges t@,, in W&”’(Q) and, after normalization, is admissible in definition (5.1) of
a. We conclude in this way that < A1(m) and consequently = i1 (m).

We now consider the case whese- N and the support of * intersectsy 2. We will
show that here agaila = A,(m). The idea is as before to start wigh, and to introduce
a suitable negative part which however will now be located a€arLet us define

Q, ;= {x € Q: dist(x, Q) > ¢}

and consider the corresponding first eigenvalyén, 2,) as well as its associated
positive normalized eigenfunctiop,, (2.). Note that these are well defined for- O
sufficiently small sincen™ # 0 in Q (cf. (2.1)). Moreover the argument of Lemma 5
in [19] immediately extends to the present situation to show thata, A, (m, Q,) —
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A(m, ) ande,, (2,) = ¢, () in W&”’(Q) (hereg,,(2,) is as usual extended by zero
outside2,). We now use the assumption on the support©fto deduce that for any
e>0,nt£0o0n Q\ Q.. This allows us by a regularization procedure as before to
constructw, € C2°(22\ Q) with w, >0 and [, n(w,)? > 0. It follows that the function

up = @ (£2,) — 8w6/||w8”l,p

converges tw,,(2) in W&”’(Q) and is admissible in definition (5.1) af. We conclude
in this way thatr < A;(m) and consequentlg§ = A,(m). Note thatp > N has not been
used in the preceding argument.

We finally consider the case whepe> N and the support o&* is compact in<.
We will show thata > A,(m). Assume by contradictio@ = A;(m) and letu, be a
minimizing sequence in definition (5.1) af For a subsequence;” converges weakly
in Wy” () and strongly inC(€) to a functionv € Wy'”(2) which is > 0 and satisfies
Jo IVu|? < A1(m) and [, mv? = 1. Consequently = ¢,,. Sinceg,, > somee > 0
on the compact set supp", we deduce thak; > /2 on suppn™ for k sufficiently
large. Consequently, for thoge u;,, = 0 on suppn™, which implies [, n(u; )? <0, a
contradiction with the fact that; is admissible in definition (5.1) @f.

The properties of are of course proved in a similar way

We now briefly indicate another variational characterizatiow @ the casep > N.
A similar result of course holds fo8. Recall thatw,” () C C(S) in the case under
consideration.

PROPOSITION 36. — Supposey > N. Then

a =inf{/|Vu|1’: ue W&”’(Q), /m|u|1’ = 1 andu vanishes
Q Q

somewhere oeuppﬁ}. (5.4)

The infimum in5.4) is achieved. Moreover if is a minimizer in(5.4), thenu does not
change sign i2 andu vanishes in at most one point {suppz ™) N €.

Proof. —Let us call @ the right-hand side of (5.4). We distinguish two cases:
(i) suppn™ intersectsa<2, (ii) suppn™ is compact inQ2. In case (i), any € W&”’(Q)
vanishes somewhere on supp and consequentlyr = A;(m). The conclusions of
Proposition 36 then follow easily, using Proposition 35. So from now on in the proof
of Proposition 36, we suppose that we are in case (ii).

We first show thair < «. Clearly one can restrict oneself to nonnegative functions in
the definition ofa. Let u > 0 be admissible in the definition &f. Sinceu(xg) = 0 for
somexg € suppn™ C @, (u— %)*, which converges ta in Wol”’(Q) ask — oo, vanishes
on a neighbourhood ofy. We can then construct in this neighbourhood a small negative
part so as to satisfy the last constraint in definition (5.1 .0Fhe construction here goes
by regularization and is identical to that in the proof of Proposition 35. Arguing in this
way one getsy < @. We now show thaé < @. Let u be admissible in definition (5.1)
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of @. Thenu is < 0 somewhere on supg and consequently™ vanishes somewhere
on suppn™. The conclusionx < @ then follows by considering:™ in the definition
of a.

The infimum in (5.4) is clearly achieved. Let be a minimizer and assume by
contradiction that: vanishes in at least two poinig and x, in (suppz*) N Q. Then
v = |u| is also a minimizer which vanishes & and x,. Arguing as in the proof of
Lemma 3.1 in [10], one first observes that, for eaehl, 2, v is a minimizer for

&:inf{/|Vw|”: w e F; and/m|w|”:1},
Q Q

where F; is the subspace daV&”’ (2) made of the functions vanishing &t Applying

Lagrange’s multiplier rule in each; and using the fact that any functionWﬁ”’(Q) can
be written as the sum of a function iy and a function inF,, one gets that satisfies

/lel”_ZVva:&/mlvlp_sz Yw € Wol’p(Q),
Q Q

i.e. thatv is an eigenfunction associateddo Since we are in case (ii% > A1(m) by
Proposition 35, and consequentlynust change sign, which is impossible since |u|.

It remains to see that every minimizerin (5.4) does not change sign fa. One
starts by verifying, as in the proof of Lemma 3.1 in [10], thatif 0 in 2, then
Jom@™)P >0 andu™/(f,m@™)P)Y? is again a minimizer in (5.4). So, by what has
already been proved,™ vanishes at at most one point {suppz™) N Q2 = suppn™,
and consequently > 0 on supp™. Now, if we also have:~ # 0 in , then the same
argument applies to = —u and yieldsu < 0 on suppn™. But thenu = 0 on supp
n*, which contradicts the fact that vanishes in at most one point (uppn*) N Q =
supm™. O

To conclude this section we consider the distributiorEdfin the other quadrants of
R x R. From now on we do not assume anymore below #hat satisfy (2.1).

PROPOSITION 37. — X*(m, n) intersectsR* x R™ (resp. R~ x R™, Rt x R™,
R~ x R*) if and only ifm* andn™* # 0, (resp.m™ andn~ # 0, m* andn™ # 0, m~
andn™ #0).

Proof. —The necessary conditions follow from the fact thatdf 8) € ~*, then, for
u a corresponding solution of (1.4),

0<!|Vu+|p:a9/m(u+)p and 0<!|Vu_|p:,39/n(u_)p.

To prove the sufficient conditions, let us consider for instafice x R~ (similar
arguments in the other quadrants). We have thap) € Z*(m,n) N (R* x R7) if
and only if (o, —B) € X*(m, —n) N (Rt x R*). The assumptionn™ andn~ # 0
means that the two weights, —n satisfym™ and (—n)* £ 0, i.e. (2.1). Consequently
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Theorem 5.1 implies thaE*(m, —n) N (RT x R*) is nonempty, and consequently
X*(m,n) NRT x R~ is nonempty. O

CoROLLARY 38. — If m andn both change sign if, then each of the four quadrants
in the («, B) plane contains a first curve &*.

In the semilinear ODE cas& = 1, p = 2, the results of Proposition 37 and
Corollary 38 were derived recently in [2] by using the shooting method.

The result of Proposition 35 on the asymptotic behaviour of the first curie in R
of course extends to the other quadrants. For instance we have

COROLLARY 39.— Supposen™ and n~ # 0, and letC*™~ be the first curve of
Y*(m,n) in RT x R™. If p < N, thenC*~ is asymptotic to the lines;(m) x R and
R x A_1(n). If p > N, then(i) C*™~ is asymptotic to the line.;(m) x R if suppn~
intersectsd2 but is not asymptotic to that line #upp:~ is compact in®, (i) C*~ is
asymptotic to the lin® x A_;(n) if suppn™ intersectsd2 but is not asymptotic to that
line if suppm™ is compact in.

Proof. —Observe, as in the proof of Proposition 37, that the first curvEton, n)
in R x R~ is symmetric to the first curve oE*(m, —n) in Rt x R*. Applying
Proposition 35 to the latter then yields the conclusiom

6. Nonresonance of the type “ between thefirst two eigenvalues’

In this section, we study the solvability of the Dirichlet problem (1.5) under assump-
tions on the asymptotic behaviour of the quotieffits:, s)/|s|?~%s and pF(x, s)/|s|?
which generalize the classical condition that for a.e.2, the limits at infinity of these
quotients lie between the first two eigenvalues. Existence, unicity, as well as example
of nonunicity will be considered.

Let f:Q x R — R be a Carathéodory function satisfying the growth condition

| f(x,9)| <ax)]s|P™t + b(x) (6.1)

for a.e.x € Q and alls € R. Herea € L"(2) andb € L?' (), wherer is as before (i.e.
r>N/pif p<Nandr=1if p> N)andp’ is the Holder conjugate. We assume that
the L" functionsy.. andT'.. defined by

L fxs) Sf(x,s)
= liminf <limsup—————:=T 6.2
y+(x) S 1572 s—>ioop|S|p_25 +(x) (6.2)
have nontrivial positive parts and satisfy
M) <1, (o) <1, @, To) 21 (f)

Herec(I'y, I'_) is the eigenvalue of (1.3) considered in Sections 2—4. We also assume
that theL” functionsé. and A, defined by

84+ (x) :=Iliminf M <lim supw = A4(x) (6.3)

s—>too  |g|P s—>=400 s|
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have nontrivial positive parts and satisfy
)\'1(8+) < 17 )\'1(8—) < 17 C(A+7 A—) > 1. (Fl)

Some uniformity with respect t® is also required in (6.3), which is made precise in
(6.13) below. Note that one clearly has

ye(x) <81 (x) < AL(x) <Ti(x) a.e. inQ. (6.4)

THEOREM 40. — Assum€6.1), (f) and (Fy). Then problen{l.5)admits at least one
solutionu in Wy ().

The result of Theorem 40 is in the line of those in [12]=€ 2 and usual spectrum),
[16] (p = 2, N =1 and F@&ik spectrum), [19] p = 2 and F@éik spectrum), [15]
(1 < p < 00 and F&ik spectrum). The main difference comes from the fact that in
all these works, the hypothesis takes the form of pointwise inequalities on the functions
v+, T4, 84, AL, For instance in [19] it is assumed that for one pdiatg) in the first
curve of the Faik spectrum of-A , (without weight), one has

A<y KTy <a, M <y-(x) <T'_(x) <Bae.inQ,
§4+(x) > A1 andsé_(x) > A1 on subsets of positive measure (6.5)

eitherA, (x) <a a.e.inQor A_(x) < g a.e. inQ.

Since («, B) above belongs to the first curve(«, 8) = 1, and it follows from
Propositions 23 and 25 that (6.5) implies (f) ank,); On the other hand using the
continuity of A1(.) andc(-, -) (cf. Proposition 22), one easily constructs examples where
(H and (F1) hold while the pointwise conditions (6.5) do not. Note in particular that
the functionsyy, 'y, 84, AL in Theorem 40 may change sign and be unbounded.
Nonresonance conditions bearing as in Theorem 40 on eigenvalues with weight wer
already considered in [26,20,21]. In particular the result of Theorem 49 fer2 and
under the stronger hypothesis

a(min{yy,y}) <1, Ap(maxry, T })>1,

Ai(min{sy,8-}) <1, ro(maxAy, A_}) >1
was obtained in [21].

Proof of Theorem 40. We consider the functional

D (u) ::1/|Vu|p—/F(x,u). (6.6)
Pa Q

Assumption (6.1) implies thab in a C* functional onWol”’(Q). Its critical points are
exactly the solutions of (1.5).



M. ARIAS ET AL. / Ann. |. H. Poincaré — AN 19 (2002) 581-616 605
Claim 1. —® satisfies théPS condition onW&”’(Q).
Proof. —Let u; be a (PS) sequence, i.e.

[P ()| <, (6.7)

(D (), w)| < exllwlls, Ywe WyP(R), (6.8)

wherec is a constant and, — 0. As usual, it suffices to prove that remains bounded
in Wol”’(Q). Assume by contradiction that, for a subsequerieg||1,, — +oo. Write
v i=uy/||luklly, ,- For afurther subsequenag,— vg in W(}”’(Q) and a.e. irn2, and also,
using (6.1) (and the Dunford—Pettis theorem wipes N), f(x, uk)/llukll’f,;l — fo(x)
in L1(2) for someg with g > (p*) if p < N andg =1 if p > N (herep* denotes the
critical Sobolev exponent). We first take= vy — vy in (6.8) and divide by[|uk||i;l to
deduce from (6.1) that

/ IV 0 lP 2V V(0 — vg) = O;

arguing as at the end of the proof of Lemma 2.5, one obtainsuthat v in Wol”’(Q).
In particular||vgl|1,, = 1. One also deduces in a similar manner from (6.8) that

/|Vv0|”_2Vv0Vw =/fow Yw e Wol’p(Q). (6.9)

Now, by standard arguments based on (6.2) (cf. e.g. [31]), the fungiion can be
written asa (x)(vg)? 1 — B(x)(vg )P~ for someL’ functionsa, g satisfying

yix) <ax) <Ti(x), py-(x) <) <TI_(x) ae.inQ. (6.10)

Since the values af (x) (resp.B(x)) on {vg < 0} (resp.{vo > 0}) are irrelevant in the
above expression ofy(x) asa(x)(vg)? "t — B(x)(vy)P~L, we can assume that

a(x) =A4(x) onfu <0}, p(x)=A_(x) on{v =0} (6.11)

We now distinguish three cases: i) > 0 a.e. in, (ii) vo < 0 a.e. ing, (iii) vg changes
sign in 2. We will see that each case leads to a contradiction.

In case (i), Eq. (6.9) implieg;(«¢) =1 andvg(x) > 0 in Q. It then follows from
(6.10) and (f) that;(y,) = 1 and also, by the strict monotonicity #f with respect to
the weight, thatr = y.,, a.e. in2. Dividing (6.7) by||uk||§’,p and going to the limit, using
(6.3) and Fatou’s lemma, one gets

F
/ozvo _/|Vvo|p—llm/p Or, i) /8+vg.
luclly,
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Sincea = y, < 8, and vy > 0, we deducex = §,. Consequentlyr,(6,) = 1,
which contradicts £;). Case (ii) can be treated similarly. In case (iii), (6.9) shows
that vo is a solution of —A,u = a(ut)?~! — B~)?~1 which changes sign, and
consequentlyc(a, B) < 1. Proposmon 23 together with (6.10) and (f) then vyield
c(a, B) =c(I,,I'_) =1. Dividing (6.7) by||uk||1,p and going to the limit, using (6.3)
and Fatou’s lemma, one gets

/(Ol(var)”—i-ﬁ(vg) )= /WUolp:IIm/pF(x uy)

J lull?,

\/<A+<vo> +2-(%5)")

Q

< [ ()" +T-(5)"): (6.12)
Q

In fact the first integral and the last integral in (6.12) are equal because otherwise
Proposition 25 yields:(«, 8) > ¢(I';, I'_), in contradiction with what we have just
proved. So all the terms are equal in (6.12) and we deduce, using (6.4 thatl",.
on{vg >0}, A_=T_ on{vg < 0}, and using (6.10), that =T, on{vy >0}, B =T_
on {vg < 0}. Combining with (6.11), we finally get = A, and 8 = A_ a.e. inQ.
Consequentlyc(A,, A_) = 1, which contradicts K1). This concludes the proof of
Claim1. o

We now turn to the study of the geometry &f and first look for directions along
which ® goes to—oo.

Claim 2. — Letw,. (resp.w_) be the positive eigenfunction associated 165, ) (resp.
11(8-)) and normalized by, 8, w” =1 (resp. [, 5_w” =1). Then®(Rw,) - —oc0
and®(—Rw_) - —oo asR — +oo.

Proof. ~We will prove the assertion relative td(Rw_), the other one is proved
similarly. Let us first recall the precise meaning of the fact that the limits (6.3) are
uniform with respect ta: for anys > 0 there exists, € L1(Q) such that

1<3+(JC)(S+)” + 15_()6)(&_)” ~Zs1 — (o)
p p p

1 1 (6.13)
4 _ I

S Fx,s) < ;A+(x)(s )7+ ;A_(X)(s )"+ ;ISI” +a.(x)
fora.e.x € Q and alls € R. This implies, forR > 0,

RP

®(Rw,) < — /(IVw+|” — 5wl +ewl) + /as
p Q
R? 1 I3
< — 1- +—>/Vw p+/asa

P ( r1(84) A IVew|

wherei; = A1 (constant weight 1). Choosing> 0 such that - —— M(5 st < 0, which

is possible by Assumptionfy), we get thatb(Rw,) — —oo asR — +oo O
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Claim 3. — There exist®y such that for allR > Ry and for all h € Hy :={h €
C([—1, +1], W&”’(Q)): h(—1) = Rw, andh(1) = —Rw_}, one has

uehrpallxﬂ]d)(u) > max{ ®(Rwy), P(—Rw_)}. (6.14)

Once this last claim is proved, we can piRk> Ro and apply a version of the mountain
pass theorem in a Banach space as given for instance in [17] to conclude that

hlenljR uehr[n%)g-l] ©w) (6.15)

is a critical value ofp. Theorem 40 will then be proved.

Proof of Claim 3. -Since by assumptionft), ¢(A., A_) > 1, we can picke > 0
with e < (1 — 1/c(AL, A_))r1. We then taker, according to (6.13) and use Claim 2 to
chooseRy > 0 such that

—/as > max{®(Rwy), P(—Rw_)} (6.16)
Q

for all R > Ry. Take such a valug and leth € H. To prove (6.14), we distinguish two
cases: either (iBa, a_(h(tg)) <0 for somerg € [—1, 4+1], or (i) Ba, a_(h(t)) > O for
all r € [-1, +1]. We recall here thaB,, a_ is the function which defines the manifold
M, a_ (cf. Section 2). We also recall that by Proposition 21,

c(Ay,A)=inf  max /|Vu|” (6.17)
yel'r uey[-1,+1]

wherel'y :={y € C([—1, +1], Ma, o_): y(=1) > 0 andy (+1) < 0}.
Case (i). We first use (6.13) to obtain

1 1 £
— p_ _ +\p P\ _ _ P _
d>(u)>p!|Vu| p!(mm )P 4+ A_(u7)P) pQ/|u| !ag.

This implies, since we are in case (i),

max _®(u) > ®(h(t)) > /Wh(zo)|”——/yh(zo)|” /as

ueh[—1,+1]
Q
1 )4
>—(xl—s>/|h(zo>| —/ag
p Q

Q
Now, by the choice of, one hag < A1, and consequently, by (6.16),

uehr[na}xﬂ d(u) > /as > max{®(Rw,), P(—Rw_)},
Q



608 M. ARIAS ET AL./ Ann. I. H. Poincaré — AN 19 (2002) 581-616

which implies the inequality (6.14) of Claim 3.
Case (ii). In this case we can normalize the pait) to get a path

h(t) :=h(t)/Ba,.a_(h(1)""

on the manifoldM, »_ which satisfies, by (6.17),

max /|Vu|p > (A, AD). (6.18)

ueh[—1,4+1]
Q

We now use (6.13) to get

1 & 1 N -
‘I’(u)>;(1—Z>J|Vu|p—;!(A+(u Y+ A_(u )p)_zag

which implies, by (6.18),

ueh[—1,+1] 1

max (pd>(u> +Baa @ +p [ a8> / Ba,a () > (1— f)e(% AL).
Q
Hence there existgg € #1[—1, +1] such that
&
poio) > ((1- Z>C(A+’ A= 1)Ba,s ) = p [ a
Q

This yields, by the choice cf,

max () > ®(ug) > —/ag,
ueh[—1,+1]
Q

and the inequality (6.14) follows by using (6.16). This concludes the proof of Claim 3
and also of Theorem 40.0

Remark41. — For later reference, let us observe that among the critical points of
® at level (6.15), there is at least one, say, which is such that there exists a
sequenceéy,, of paths inHg with the property that max,(-1.+1 ¢ () — ®(u1) and
dist(uq, hi[—1, +1]) — 0. This follows from the proof of the mountain pass theorem as
given for instance in [11].

Theorem 6.1 yields in particular a solution to the semilinear problem
—Au=mx)ut —n(x)u"+h inQ, u=0 onoL, (6.19)
wherem, n € L™ () with (2.1),h € L%(R), if we assume

rMm) <1, A(n) <1, c@m,n)>1. (6.20)
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In the rest of this section, we will be interested in the unicity of the solution to (6.19)
when (6.20) holds.

PROPOSITION 42. — If min{m, n} has a nontrivial positive part and if we assume
r(min{m,n}) <1, rx(max{m,n}) > 1, (6.21)

then(6.19)has an unique solution.

Proof. —Existence follows from Theorem 40 sinée(max{m, n}) = c(max{m, n},
maxm, n}) and so, by monotonicity, (6.21) implies (6.20). Assume now ihandu,
are two solutions of (6.19) and put=u; — u,. Thenv solves

—Av=d(x)v Iin<Q, v=0 o0nJ, (6.22)
where
m(x) (uf (x) —uz (x)) — n(x)(ug (x) — uz (x)) if v(x) £0,
d(x) = uy(x) — uz(x)
min{m(x), n(x)} if v(x)=0.

Sinced (x) verifies mifm, n} <d < max{m, n}, we have

M(d) < kl(min{m, n}) <1< kg(ma)<{m, n}) < Aa(d).
This implies that 1 is not an eigenvalue -6fA for the weightd and consequently, by
(6.22),v=0. O

The following two propositions describe two situations where unicity fails in (6.19)
although (6.20) holds. In Proposition 43 it is the first part of (6.21) which is violated,
while in Proposition 44 it is the second part of (6.21) which is violated. Note that the
example in Proposition 43 requires nonconstant weights.

PROPOSITION 43. — Suppose)<2 of classC?. Then there existi, n € C*(2) with
m,n > 0o0n§2,

r@m) <1, rm) <1, r(min{m,n}) >1, *iy(maxm,n})>1 (6.23)

such that, for somé e L?(R), (6.19)has at least two solutions.
Proof. —We start with the following
Claim 1. — There exisii, n € C*(2) with m,n > 0 on € and satisfying(6.23) and

uo € H}(Q) N H3(Q) N C(RQ) such thatjug =0 =0, m < n on{up > 0} andn < m on
{uo < O}

Let us admit this claim for a moment. Withe, n, ug as in Claim 1, we define
h = —Aug — mug + nug € L?(Q) and consider (6.19) for these particulac n, &.
Clearly, by constructionyg is a solution of (6.19). In fact one can say more:
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Claim 2. —ug is a strict local minimum of the associated functional

W) = %/(sz —muh)? —nw)?) — /hu
Q Q

on H}(RQ).

Let us also admit this claim for a moment. We will use it to see thas different
from the solutioru; of (6.19) provided by the mountain pass argument of the proof of
Theorem 40, more precisely provided by Remark 41. We thus have

qj(ul) - hlenIIR uehrgla]..,)fi-l] \IJ(M)

(cf. (6.15)), with in addition the existence of a sequence of paths Hr such that
maX,cn,(-1.+11 ¥ (@) = Y (up) and distui, hy[—1, +1]) — O (cf. Remark 6.2). So for
e > 0withe < maxX{||us— Rw |12, [[us —(—Rw_)||12}, whereRw, and—Rw_ are the
functions involved in the definition aff in (6.15), each path, with k sufficiently large
intersectu: ||u — u1|l1.2 =¢}. On the other hand, sincé satisfies the (PS) condition
on H}(R), Claim 2 and Theorem 5.10 in [17] imply that for any O sufficiently small,

inf{\IJ(u): ||l — I/£0||1,2 = 8} > W(ug). (624)

Fix now ¢ > 0 so that the two properties above hold simultaneously and assume by
contradiction thatio = u;. Then, by (6.24),

max W(u) > inf{W): ||u— — (0.
uehi[—1,+1] () { (u): |lu — uoll1,2 8}> (ug)

This contradicts the fact that max,—1.+1 V() — ¥(u1) = W(up). Consequently
u1 # ug and the conclusion of Proposition 43 follows.

Proof of Claim 2. -The proof uses the following easily verified Taylor type identities:
for x, y € R, one has

Y2 —x2=2x(y —x) + (y — x)?%,
2= (M2 =2F(y —x) + STy — x)* + Ry (x, ),

)P = (7)== (y —x) + Sy — x)° + R_(x, y),

whereS(¢) denotes the sign functiogs () = 1ifr > 0,0ift =0, —1if r < 0) and where
R, andR_ satisfy R, (x,y) =0if xy > 0, |Ry(x, y)| < y?if xy <0, R_(x,y) =0 if
xy >0, |R_(x,y)| <y?if xy 0.

Assume by contradiction thag, is not a strict local minimum of. Thus there exists
a sequence, converging tasg in Hol(Q) with u; # ug andW(uy) < W (up) for all k. For
a subsequencey — ug a.e. inQ2. Using the above identities and the fact thaisolves
(6.19), we get
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1 1
W) = Vo) =5 [ (Yl = 1Vuol?) = 5 [ m((uf)? - ()
Q

=5 () = @)% - [ b -

1 1
=L 150 [5) 1) 7
§2 Q

1
-5 (mR .y (uo, ux) + nR_(uo, uy)). (6.25)
Q

By the properties ofiz, n, ug in Claim 1, we have

/(mS(ug) +nS(ug)) (U — ug)® = /min{m, n}(ug — ug)?,
Q

Q
where the integral oveio = 0} has been neglected singg = 0] = 0. We also have

< / mu? < / m(ug — uo)?

ugur <0 uour <0

‘/mR+(Mo, uy)
Q

2
< cpllug — u0||L24(Q)

whereg is chosen with 2< 2¢ < 2* andc; = ||m || |uour < 0|Y4; sincelug =0/ =0
andu; — ug a.e. |Juouy < 0] — 0 and consequently, — 0. A similar estimate of course
holds for |, n R_ (uo, ux). It now follows from (6.25) that

1 1 - 2
W (uy) — W(ug) > [E (1— m) — Ck} Q/|Vuk — Vug|

wherec;, — 0. Sinceir;(min{m, n}) > 1 anduy # ug, we deduceV (u;) > ¥ (ug) for
k sufficiently large, which contradicts the fact thlitu,) < ¥ (ug). This completes the
proof of Claim 2.

Proof of Claim 1. -Take forug an eigenfunction of-A on Hol(Q) which changes
sign. It is well known thatug € H?(Q) N C(22) and that|ug = 0] = 0 (the regularity
of 9Q is used here). Take ballB,., B_ with B, C {ug > 0} and B_ C {ug < 0}. We
start with the constant weighit;. Increasing it a little bit onB_ (resp. B,), we can
get aC>®(Q) weightm (resp.n) with A1(m) < 1 (resp.r1(72) < 1), and we can also
imposem andn < A,. At this stage, mifm, n} = A, and sak,(min{m, n}) = 1. We then
definem =m — § andn = n — § with § > 0 so small that we still have,(m) < 1 and
A1(n) < 1. Now min{m, n} = A, — 8 and consequently; (min{m, n}) > 1. We also have
ra(maxX{m, n}) > Ax(1) > 1, wherd denotes the constant weight—§. Finally itis clear
from the construction that: < n on {ug > 0} andn < m on {ug < 0}. This concludes
the proof of Claim 1 and of Proposition 430
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The following proposition is proved in [8], where many more precise results on the
number of solutions can be found.

PROPOSITION 44. — LetQ =10, 1[. For any constant positive weights, n with
r(min{m,n}) <1, Ax(max{m,n}) <1, c(m,n)>1,

(6.19)with 4 (x) = 1 has at least two solutions.

Note that with respect to the Eik spectrum (without weight) of A on H(R), the
point (m, n) in Proposition 6.5 lies strictly between the trivial horizontal-vertical lines
through (A1, A1) and the first curve througtio, A2), but lies outside the closed square
having[ (X1, A1), (A2, A2)] as diagonal.

7. Nonresonance of the type “below the first eigenvalue’

In this section, which is independant from the previous ones, we go on with the study
of the Dirichlet problem (1.5) but now under assumptions on the asymptotic behaviour of
the quotientp F (x, s)/|s|” which generalize the classical conditions that for a.e.€2,
the limits at infinity of this quotient lie below the first eigenvalue. Existence, unicity, as
well as an example of nonunicity will be considered.

Let f: Q2 x R — R be a Carathéodory function satisfying the growth condition (6.1).
Denoting as before by '(x, s) a primitive of f(x, s), we assume that the" functions
A defined by

F(x,s)

limsupp = Ai(x) (7.1)
s—>to00 |S|p

have nontrivial positive parts and satisfy
rM(AD) >1, A(AD) > 1 (F2)

Some uniformity with respect to is also required in (7.1), which here corresponds to
the second inequality in (6.13).

THEOREM 45. — Assumé6.1)and(F>). Then(1.5)has at least one solutiag which
minimizes

1
. p
D)= !IVuI Q/F(x,u)

on Wy 7 ().

The result of Theorem 45 goes in the line of those in [32,35,5]. In the latter work for
instance, it is assumed that, (x) < A; andA_(x) < A7 a.e. inf2, with strict inequality
on subsets of positive measure. This clearly imphg)( As already mentioned in
Section 6, nonresonance conditions bearing on eigenvalues with weight were considere
in [26,20,21]. In particular the result of Theorem 45 jo&= 2 was obtained in [20].



M. ARIAS ET AL./ Ann. I. H. Poincaré — AN 19 (2002) 581-616 613
Remark46. — Consider the problem
—Apu=m)|ulP2u+h inQ, u=0 onaQ (7.2)

wherer e R, m € L"(Q2) andh € LP’(Q), and assume that changes sign if. It is

then easily verified that Theorem 45 applies if and only_if (m) < A < A1(m). So in

fact we are dealing in this section with nonresonnance of the type “between the firs:
negative eigenvalue and the first positive eigenvalue”.

Proof of Theorem 7.1. We recall that the uniformity in (7.1) precisely means that for
anye > 0 there exists, € L1(Q) such that

PF(x,8) <AL ) ()P 4+ A_(x) ()" +elsl? + ac(x) (7.3)

fora.e.x € Q and alls € R. One easily deduces from (7.3) that

1 1 °
®w) > ; (1_ min{A1(A4), A1(A)} - )\_l> !lvulp ) Q/aS.

Taking ¢ > 0 sufficiently small and usingF,), we get thatd is bounded below and
coercive onWé”’ (£2). On the other hand standard arguments based on (7.3) and Fatou
lemma imply that® is weakly lower semicontinuous oW(}”’(Q). Consequentlyd
achieves its minimum orW&”’(Q) at someu;. Since (6.1) implies that is C* on

Wy? (), uy solves (1.5). O

Theorem 45 yields in particular a solution to the semilinear problem
—Au=mx)ut —nx)u"+h inQ, u=0 0onoQ (7.4)
wherem, n € L™ () with (2.1),h € L%(R), if we assume
Am)>1, Ai(n)>1 (7.5)

In the rest of this section we will be interested in the unicity of the solution of (7.4)
when (7.5) holds.

PROPOSITION 47. — Assume
r(max{m, n}) > 1. (7.6)

Then(7.4) admits an unique solution.

Proof. —Existence follows from Theorem 45 since (7.6) clearly implies (7.5). Assume
now thatu; andu, are two solutions of (7.4) and put=u; — u,. Thenv solves

—Av=dx)v inQ, v=0 o0noag, (7.7)
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whered(x) is defined as in the proof of Proposition 424I&K 0, then (7.7) clearly im-
pliesv =0. If d* #£ 0, then, sincel < max{m, n}, we haver,(d) > A;(maxm, n}) > 1.
Consequently 1 is not an eigenvalue -eA for the weightd and thus (7.7) implies
v=0. O

Remark48. — A result analogous to that of Proposition 47 does not hold fopthe
laplacian, even whem = n = constant andv = 1 (cf. [22] and [25]).

The following proposition shows that unicity may fail in (7.4) under (7.5). Note that
as in Proposition 43, the example in Proposition 49 below requires nonconstant weights

PROPOSITION 49. — Suppose<2 of classC?. Then there existi, n € C*®() with
m,n>0in Q,

t(m)>1, r@m)>1 i (maxm,n}) <1, (7.8)
such that, for somé e L?(R2), (7.4) has at least two solutions.
Proof. —We start with the following

Claim 1. — There exist;,n € C*(2) with m,n > 01in Q, (7.8), andug € H}(2) N
H?(Q) N C() such thatiug=0] =0, m > n on{ug > 0} andn > m on {ug < 0}.

Let us admit this claim for a moment. Witl, n, ug as in Claim 1, we define
h := —Aug — mug + nug and consider (7.4) for these, n, h. Clearly, by construction,
up is a solution of (7.4). We will show tha# is not a global minimum for the associated
functional

U(u) = %/(sz —mut)? —nw)?) — /hu,
Q Q

which implies thatug is different from the solution of (7.4) provided by Theorem 45.
To prove thatg is not a global minimum ofr, we take an eigenfunctiomassociated
to A1 (max{m, n}) and letg(¢) := ¥ (ug + tv). Clearlyg € C*(R) and

g0 = /(V(uo+tv)vv —m(uo + 1) v+ n(uo + 1v) v) — /hv'
Q Q

We haveg’(0) = 0 sinceug is a solution of (7.4). Moreover, sindag = 0] = 0, we
can use Proposition 2.2 from [38] to get thg(0) exists and thag”(0) = [, |Vv|? —
Jug=0mv® — [, _onv?. Consequently, by the properties:f n, uo in Claim 1,

g”(0)=/|Vv|2—/max{m,n}v2: [Aa(max{m, n}) — 1] /max{m,n}v2<0.
Q Q Q

This impliesg(¢) < g(0) for |z| > 0 small, and it follows that,g is not a local and a

fortiori global minimum ofw.

Proof of Claim 1.4t is rather similar to that of Claim 1 from the proof of
Proposition 43. Takery an eigenfunction of-A on H}(Q) which changes sign. So
ug € H3(Q) N C(Q) and |ug = 0| = 0. Take ballsB,., B_ with B, C {uo > 0} and
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B_ C {ug < 0}. Starting with the constant weight; and decreasing it a little bit on
B_ (resp. B,), we can get a positive&e>®(Q) weight /i (resp.n) with A,(7) > 1
(resp.A1(n) > 1). Clearly maxm, n} = A, and sori(max{m, n}) = 1. Now, foré > 0
sufficiently small, we get thah =m + 8§ andn =n + § satisfyr,(m) > 1, A.i(n) > 1
andii(maxXm, n}) < 1. Moreover, from the constructiom > n on{ug > 0} andn > m
on {ug < 0}. This concludes the proof of Claim 1 and of Proposition 48
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