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ABSTRACT. — We prove isoperimetric inequalities for general parametric variational double
integrals¥, whose Lagrangiang depend on the position vect&rand on the surface normall.
As an essential tool we introduce Sauvign¥'ssonformal parameters adapted to the parametric
integrand and use the notion of generalized mean and Gaussian curvature. The special cas
of minimal surfaces, surfaces of bounded mean curvaturefamdnimizing surfaces are also

discussed.
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RESUME. — Nous démontrerons des inégalités isopérimétriques pour les intégrales double
variationnelles paramétriques génératedont la fonction de Lagrangeé dépend du vecteur de
positionX et de la surface normal. Comme outil essentiel, nous introduiserons des parametres
F-conformes de Sauvigny adaptés I'intégrand paramétrique et nous employerons la notion d
la courbure moyenne généralisée et gaussienne généralisée. Nous discuterons également les
particuliers des surfaces minimales, des surfaces de courbure moyenne limitée et des surfac

minimalisantF.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

We consider general parametric functionals of the form

F(X) ::/F(X, X, A X,)dudv, (1)
B
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where B C R? is the open unit disk in the plane. The Lagrangifinis of class
COR® x R% N C3*(R3 x (R3—{0}) for somex € (0, 1), and satisfies the homogeneity
condition

F(y,tz)=tF(y,z) forallt>0and(y,z) e R3x R3. (H)

Moreover, we assume thdt is elliptic, i.e., that the mapping..(y,z):z+ — z*is
positive definite for ally, z) € R® x (R®—{0}), wheret

t={ceR3|(¢,z) =0}.

SinceF,, is homogeneous of degre€l in its second argument by (H), this implies that
there exist constants9 M1 < M, < oo such that

M| PLE? < |z|(E, Fro(y, 2)&) < Ma| P,LE| (E)

forall (v, z) € B1(0) x (R3—{0}), &€ € R3, whereP,. & = &£ — (£, z)z/|z|?is the projection
ontoz* and whereB;(0) denotes the open unit ball .

In addition, we suppose that is an immersed surface of cla€$* (B, R?) that maps
the boundaryd B topologically onto a given closed Jordan cuie- R* with length
L(T"). The aim of the present paper is to prove an isoperimetric inequality forimmersions
X that areF-critical, i.e., stationary for the parametric functional (1). To be more precise
we are going to estimate the area

AX):= [ dA= [ |X, AX,|dudv )
Je=]

in terms of quantities depending only dhand F. The area functionald itself is a
special parametric functional of the form (1) with the integrdn@, z) = A(z) := |z|.

It is a well-known fact that4-critical surfaces, i.e., minimal surfaces of the type of the
disk satisfy the classical isoperimetric inequality

AX) < iLZ(F>, ®3)
4

see e.g. [6, Ch. 6.3]. Note that this is true for all surfaces with nonpositive Gaul3 curvature
K (cf. [2,1]). More generally, disk-type surfaces of prescribed bounded mean curvature
H, whose Gaul3 curvature may have varying sign, can be obtained as critical points c
the parametric functional with the integrand

F(y,2) = E(y,2) = |z| +(Q(¥). 2), “4)

where Q is a weakly differentiable vector field dR® with div Q = H onR3, compare
with Hildebrandt [8]. Under the assumption that

IXOllogz :=suplX(w)| <1 and h=[H()lxrs <2, ®)

weB

1 Note that (H) implies, (y, z)z = 0 for all (y, z) € R3 x (R3 — {0}).
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one can show that

1
< - 2

AX) < 81— (h/2))L ) (6)
for such surfaces, which is a result of Heinz and Hildebrand£[.[4] we generalized
(3) to critical immersions of parametric functionals with an integrd@, z) = F(z)
depending only orz, which does not cover the case of surfaces of prescribed bounded
mean curvature, cf. (4). In the present work we are going to prove the following
isoperimetric inequality for critical immersions of general parametric double integrals
(1), which contains all the previous cases.

THEOREM 1. — Let X € C?%(B,R?®), « € (0, 1), be anF-critical immersion with
surface aread(X), which map$ B topologically onto a closed Jordan cur¥e Assume
that the parametric elliptic integrand = F(y, z) is of classC°(R3 x R3) N C3*(R3 x
(R®—{0})), and set| Fy |l := | Fyizi (-, oo Brioyxs2- 1heN there is a constadt = C(F)
depending solely o, such that if

X Olloo,s <1, (7)

hp = [C(F)(1+1Fy: %) + (1 Fyzll/M)] <2, (8)
then
2C(F) 571 frkds — 20 ]L(T) + / §LA(T) ©
81— (hr/2))

If F(y,z) = A(z) = |z|, or if F(y,z) = E(y,z) = |z| + (Q(y),z) for some Q €
W (R, R3), thenC (F) = 0and My = My = 1.

AX) <

Remarks. — 1. For the area integrafit) one hasi = 0, and (9) reduces to (3) for
minimal surfaces’ In the case of immersed surfaces with bounded mean curvature as
critical points of the parametric functional with the integrai¢ly, z), the inequality (9)
simplifies to the estimate (6), sinég = A in this situation.

2. For a geometric interpretation of the tefif, .|| in the definition ofar in (8) we
recall the notion of theF-mean curvatureHr (X, N) = Hr := —tr(ArS) and theF-
Gaul’ curvatureK (X, N) = Ky := det(ArS), as introduced in [4]. Here§:T,B —

T, B is the shape operator defined ByX o S := DN on the tangent spacg, B, and
Ar:.T,B — T, B is the symmetric endomorphism given by

Vs Ap(V) = (DX) Y (F..(X, NDX(V)). (10)

For the special parametric integrandsz) = |z| and E(y,z) = |z| + (Q(y), z) the
curvature functionsr and Ky reduce to the classical mean curvatfeand Gaul}

2In contrast to [7] and [8] we adopt the convention that the mean curvatisethe sum of the principal
curvatures, which accounts for the facto2lyi the denominator in (6).

3 The factor 4rinstead of 8 may be obtained using Wirtinger’s Inequality without any smallness condition
of the form (7), see e.g. [6, Ch. 6.3].
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curvaturek , respectively, since one has, = Ag = Idr, 5. The first author proved in
[3] that the Euler equation foF can be written as

3
Hp=> Fi(X,N), (11)
i=1

which shows that (9) may be regarded as an isoperimetric inequality for immérsed
critical surfaces with boundeH-mean curvature. In the proof of Theorem 1 we actually
work with || Hr ||, g instead of| F ||. Consequently, (95 also valid for immersions that
are not necessarilyF-critical but whoseF-mean curvaturdd; is a prescribed bounded
function onB C R?, we merely have to replace the terp,. || in (8) by | Hr|lx.5-
Hence, the isoperimetric inequality in [7, Theorefhi& a special case of Theorem 1
above in the context of immersed surfaces.

Finally, for parametric integrandB(y, z) = F(z) depending only on the-variable,
JF-critical immersions have vanishing-mean curvaturéd. By a slight modification
of the proof of Theorem 1 in Section 3 below, one obtains the isoperimetric inequality
presented in [4].

3. The regularity assumption axi (which also impliesI” € C2%) is due to the use
of the GauR—Bonnet Theorem. It is not clear whether one can relax the assumptions 1
X € C°(B,R3 N C?(B,R% and to closed curveE that are merely rectifiable as in the
case of surfaces with bounded mean curvature. In addition, it is an open question how t
treat.F-critical surfaces with branch points for general parametric functionals.

We are going to prove an isoperimetric inequality slightly stronger than (9) using the
radiusR(X) of the smallest ball ifR® containing the curvé&, which can be expressed
as

Rr(X) := inf IX(.) = glloo,08- (12)
geR3

THEOREM 2. — Under the assumptions of Theorelrthe following isoperimetric
inequality holds true

2C(F) 571 rkds — 2] 4 /{2 L(T)

A(X) < Rr(X) - 2— Rr(X)hy

(13)

If the boundary curve is long in comparison to the radiw-(X), then the estimate (13)
is better than (9), since it depends at most linearly on the lebgih. Theorem 2 reduces
to the linear isoperimetric inequalityfor minimal surfaces presented in [6, p. 388],
becauséir = C(F) =0 and M = M, =1 in that case. Notice that Theorem 1 follows
from Theorem 2 by (7) and a simple geometric observation that leads to

(14)

. L)
Rr(X) < mln{l, —}

4

If X minimizesthe functional (1) within the class of surfaces boundedIhyone
merely needs to assume that the continuous parametric integraatisfies the growth
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condition
m1lz| < F(y,z) < molz| (15)

for some constants @ m; < my < oo without further regularity assumptions an
Moreover, the minimizeX does not have to be immersed, and it suffices to know that
X is in the Sobolev clas®&2(B, R®), and thatl" is a rectifiable closed Jordan curve.

THEOREM 3. — Let X € W12(B,R®) be a minimizer for the parametric functional
(1) within the class of mappingg € W'2(B, R®) such that the trac&|,z on 9B is a
continuous, weakly monotonic mappthgf 8 B onto a closed rectifiable Jordan curve
I'. Assume that the Lagrangiaf of classC?(R3 x R3) satisfieg15). Then

ma

47'[m;|_

AX) < L3(). (16)

Remark— In this context no ellipticity condition is needed. In order to prove the
existenceof a minimizer for (1), however, one has to assume convexity dh the
second argument, see [9,10].

To describe the strategy for proving Theorem 1 without getting involved with the
technical details which arise in the general case, let us give a short proof of the
isoperimetric inequality (6) for surfaces of bounded mean curvature. Such surface:
satisfy the partial differential equations

AX = HX)X, A Xy, (17)

X 2=1X,1%  (X., X,)=0 (18)

on the domairB, whereH is a given bounded function d&®. Using (18) and integrating
by parts we may write

AX)=D(X) := %/lVX(w)lzdw
B
1 1
<=3 [(ax@) xw) - q) +5 [ X 1X0.6)~glds  (19)
B

B

for anyg € R3, where forw = (u, v) = ré’ € B we have identified( (w) with X (r, 9).
We observe that there is a vectgt € R® with | X(.) — ¢*[lcc.08 = Rr(X) < 1 by
assumption (5). Inserting Eq. (17) into (19) we infer fo& g*

1 * 1 *
AX) < E/IH(X(w))IIX(w)—q 1 Xy A Xoldw + FIX () = ¢ lloc,pp L)
B

< %th(X)A(X) + %RF(X)L(F)»

4See [6, Ch. 4.2] for the notion of weakly monotonic mappings on the boundary.
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where we have used thgt,| = | X,| ond B by (18), and the fact that

I1X() —q" loos < I1X () —q"lloc,98 (20)

by an application of the maximum principle for (17). In fact, one can show that the
function f(w) := |X(w) — ¢*|? is a subsolution for the Laplace operator under the
smallness assumption (5), see [7, Lemma 1]. With (14) we arrive at (6).

In Section 2 we introduce the tools necessary to take up the approach outlined abowv:
Proposition 2.2 gives the inclusion principle generalizing (20), the conformality relations
are suitably adapted to the general parametric integand (29), (30). The partial
differential equation (17) will be replaced by a differential inequality in Proposition 2.4
containing first derivatives ok and of its normalV on the right-hand side. Therefore
it is necessary to estimate the Dirichlet ene@yN) of the normal of anF-critical
immersion, which will be done using the Gauf3-Bonnet Theorem, see Lemma 2.5
Section 3 contains the proof for Theorem 2 along the lines of the arguments describe
above, as well as a short proof of Theorem 3.

2. Inclusion theorem and F-conformal parameters

Let X : M — R3 be an immersion of an orientable smooth maniftdcbf dimension
2 intoR3, whereX € C?(M, R3%). We are going to work with the induced metric

g(V,W):=(DX(V),DX(W)) forV,WeT,M

and the globally well-defined normal mappitg: M — S2. Consider the parametric
variational integral

F(X) = / F(X,N)dA (21)
M

with an elliptic parametric Lagrangiafi = F(y, z) € CO(R® x R N C3*(R3 x (R —
{0})) satisfying the homogeneity condition (H).

As a starting point we give a generalization of the well-known idemtifyX = H N,
whereA , = divy, grad,, is the Laplace—Beltrami operator associated#toro this end
we introduce the differential operator

0@l :=divy (Argrady, ¢) — (divy Ap)lp]l for g € C3(M),

whereApr is defined in (10) of the introduction. In [3] the following result is proved:

THEOREM 2.1. — Let X € C%(M, R®) be an immersion with normaV and F-mean
curvature Hr-. Then we have

09X = HrN. (22)

Let us point out that according to the ellipticity condition (E) the eigenvalues of
F..(yv,7):zt — z*+ are bounded byM; and M, for |y| < 1 in the case of elliptic
integrands as definied in (E). Obviousl; is an elliptic operator, ifF is elliptic.
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This allows us to prove the following inclusion principle fércritical immersions of a
smooth manifoldV with boundaryd M, where we seM := M U M.
PROPOSITION 2.2. — Let F be an elliptic integrand and be an immersion of class
C?(M,R3) N C°(M, R3) such that
X(M)C B1(0)cR3, and | Hplleom < 2Mi. (23)

ThenX (3M) C B,(p) for somep € R® and some radiu® < r < 1, implies X (M) C
B.(p).

Proof. —We apply a continuity method as in [7]. Fere [0, 1] we consider the family
of surfacesX, (w) := X (w) — o p and note that by our assumptions (23) one has

X6 Vllos,am = [0 (X () = p) + X =0)X |y g0 < L. (24)

Using the chain rule we calculate a#

3
0rX2 = 23 X! divy (A grady, (X))
i=1

3 3
+2) g(grad, (X)), Argrad, (X)) — 2> X, (divy Ap)(X")

i=1 i=1

3 3
= 2> X.0pX'+2> g(grad,(X.), Argrad, (X))

i=1 i=1
(Z)ZHFZX;NI +23 " g(grad, (X), Argrad, (X))
i=1 i=1
2 _2”HF||OO,M”XJ(-)”00,M + 4M1
If the condition

I HF oo, m 1 Xo (oo, m < 2M1 (25)

holds true for every € [0, 1], then X2 and in particularX?(w) = (X (w) — p)? is a
subsolution for the elliptic operat@-, which implies by the maximum principle the
statement of the proposition. The condition (25) is certainly valid for eaehO, 1] if
|Hrl|ls.ps = 0. Hence by virtue of (23) we may assume that Q0 Hr || 0.y < 2M;. Then
one has either

2M,
Xo()lloo — = 1, 26
X Ollon > T =ter 5, (26)
or (25) is true, which implies according to (24) and the maximum principle

”XU(-)”oo,M < 1. (27)

Note that the functiom — || X, (.)|lc.a IS continuous o0, 1], and that]| Xo(.) [leo.m <
1. If there were somer; € (0, 1] with (26), i.e., with | X, ()llco,y > c1 > 1, then
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by the intermediate value theorem there would be some paramigter(0, o) with
| Xs,() I, = c1. But this would contradict our observation that for amye [0, 1]
either (26) or (27) must hold. Consequently, (26) is not possible forcamy[O, 1],
which proves (25). O

From now on we focus on immersions: B — R3 of B c R? into R? of class
C?%(B,R®), whereB is the open unit disk iiR?. In this case a special parametrization
simplifies the situation. We introduce so-callBeconformal parameterdefined via the
metric

gr(V,W):=g(Az*'V,W) forV,WeT,B (28)

as follows. An immersiorX (u, v) : B — R3 is given in F-conformal parametersy =
(u, v), if gr is diagonalized, i.e.,

d 0 Jd 0
gr(w) <£, £> = gr(w) <%, £> = Wr, (29)
d 0
gF(w)<—, —) =0 forallwe B. (30)
ou ov

The following simple result from planar linear algebra proven in [4] turns out to be
useful for computing the conformal fact®fz and for other calculations iR-conformal
parameters:

LEMMA 2.3.— Let V be a two-dimensional vector space with an inner product. If
¥ : V — V is a positive definite symmetric endomorphism &¥: vV — V a rotation
about an angle 098¢, thenD% o vy = (dety)y 1 o D%,

Remark— The lemma will be applied to the rotatioP(w):N(w)* — N(w)*
defined byD(w)Z := N(w) A Z for Z € N(w)* .

Using the notatiord (w) := F..(X (w), N(w)): N(w)* — N(w)* the F-conformality
relations may be rewritten as

0< Wr=(X,, ®7'X,) = (X,, 7'X,),
0=(X,, ®7'X,).
Thus we can write with Lemma 2.3

X, = p2((®71X,) AN) = pa®(detd) (X, A N), (31)
X, = p1(N A (@71X,)) = 1@ (detd) (N A X,) (32)
for some numberg1, 1, € R. Therefore one obtains for the conformal factgg
0< Wr= (07X, X,) = na(detd) 1N A X, X,) = ua(detd) " w,

whereW = | X, A X,|. Furthermore we havW N = X, A X, = u1WrN = u,WeN.
Consequently, we get; = u, = W/ Wg, and then

Wp =W/« detd, 1= o = vdetd. (33)
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The following calculation will lead to an analytic interpretation of tfiemean
curvature of anF-conformally parametrized surfacé: B — R3. By the definition of
the F-mean curvature we have

a

ad
Hp =—tr(ApS)=—g"g <— AFSW

ot ) = —g""(X,o, Fe(X, N)Nys).

The two identitiesN A X, = Wg%*X,«, N A X, = —Wg'X,« are used to obtain

He = ((NAXy, Fo(X, NN = (N A Xy F (X, NIN)) /W
= (PN AX,),N)— (DN AKX, N,))/W

sy~ VISR (X, No) + (X, Ny)) /W

5, (AX.N)/Wp. (34)

Thus we have found that the normal componenidf is given byHW:N, if X is an
immersion inF-conformal parameters.

For technical reasons we introduce the linear mapping

F.
I(y,2):= (9. 2) + i(X)i, (35)

detF,.(y,2).« |zl |zl

wherey € R3, 7z € R3 — {0}. Note that we can rewrite (31), (32) as

X, =1(X,N)(X, AN),
Xy =1(X, N)(N A X,),

since the wedge products on the right-hand side are tangential vectohs"in
Differentiating these equations we arrive at

AX = (I(X,N)),(Xy AN)+ (I(X, N)) (N A X,,)
+1(X,N)(X, AN, + N, A X,). (36)
The tangential part oA X may be estimated by

(AX)® < [(L(X, N)), (X, AN) + (I(X,N)) (N A X,)

’

whereas the normal part, according to (34), is given by
[(AX)™| = |[(AX, N)| = |Hp|Wp. (37)
A simple application of the chain rule leads to an a priori estimat Xf
[AX] <20 11 Xul1Xo] + 1 NAXu Ny |+ [ Xl ING]) + [Hp | WE. (38)

Remark— Immersed surfaces of bounded mean curvatilirmay be considered as
critical points of the parametric functional with the integrafidy, z) defined in (4) in
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the introduction. Note that thB-conformality relations (29), (30) reduce to the classical
conformality relations (18) mentioned in the introduction, sidge= Idy, 5 in that case.
Moreover,(I(X, N)), = (I(X, N)), = 0 and (36) together with (34) reduce to the well-
known differential equation (17) given in the introduction.

Let us summarize (34) and (38) in

PROPOSITION 2.4. — Let X : B — RR® be anF-conformally parametrized immersion
of classC?(B, R3). Then

() (AX,N)=HpWg.

(i) 1AX] < Cy(P)IXullXol + Co(F) (Xl INy| + | X0 INu ) + | Hp|WE, whereCy, C,

are constants depending only on the integrand

Note thatC,, C, can be estimated from above in termstlng(mx 52) and My, if
X (B) C B1(0).

The theorem of Cayley—Hamilton applied to the endomorphisn$ : 7,,B — T,,B
leads to the algebraic relation

SApS+ KrAzt + HpS =0. (39)
This gives us a gradient estimate for the noriNal

1
VN < E[@NM,NMH@NU,NU)]

- ons(2)-2) relos(2)- )]
s (o) or(2))+(or
e (8)-2)+e(02(2) )

—_—i[H {{Nu> Xu) + (N X)}+K{ (i i)Jr (i i)”
M1 F us Ay vy Ay F\8F 8u’ u 8F 8v’ 9

— Wr 2 _

R [HF — 2Kr], (40)

where we have used (i) of Proposition 2.4. Now we are in the position to deduce a
geometric estimate for the Dirichlet energy

D(N) := %/WN(w)lzdw
B

of the normalN of an F-conformal immersiorX.

LEMMA 2.5.-The normalN of an F-conformal immersionX € C?(B, R®) with
X (B) C B1(0) satisfies

M, M, 2
X
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Proof. —We may write
Kr =det(ArS) = detd detS = K detd. (42)

From (33), (40), and the ellipticity condition (E) we infer

M, 114
VNP < ———[H? - 2Ky]
M> @0y (detd)V
w
= —_H2_2KW
(33),(42) detd
w
< —HE—-2KW.

M3

The estimate (41) follows now by integrating this inequality over the donBaiand
applying the GauR—Bonnet Theorenm

3. Proofs of the main results

Proof of Theorem 2. Since (9) is a purely geometric estimate, we may assume
that X is given in F-conformal parameters. If this is not the case one may apply the
uniformization theorem in a version proved by Sauvigny [11, Thm. 2] tacth&-metric
(28), or apply our argument in [4, p. 94] to find a positively oriented diffeomorphism
w:B — B of classC?%*(B,R?), such thatX o w™! e C>%(B,R®) is F-conformal.
Integrating by parts we may estimate the Dirichlet energy af asonformal immersion
for anyg € R% as

1
D)= /<DX(w), D(X(w) — q)) dw
B

1 1
Sé/IAX(w)IIX(w)—qldw+E/IXr(l,Q)IIX(l,G)—q|d9,
B dB

where for w = (u,v) = ré’ € B we have identifiedX (w) and X (r,6). Using
Proposition 2.4(ii) and Lemma 2.5 we obtain

1 2
D(X) < ZCy(F)/IVX(w)I | X (w) —qldw
B

1

+ECZ(F)/[IXu(w)IINU(w)I+IXu(w)||Nu(w)|] X (w) —gldw
B

1

+§/|HF(X(w)vN(w))||X(w)_Q|WF(w)dw
B

1
+§/|X,<1,9>||X<1,9>—q|d9
0B
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C,(F C.(F Hrlloo
53)[ J(F) | C(F) | |1Hyl ,B}”X_qHOO’BD(X)

2 2 2M,
F
C( ) e
Cy(F) C,(F) |Hrlloo,n ]
< Y < C F H X — o DX
<41)[ 2 Tt T oM, + Co( ) || FlIZ 511X = qlloo 3 D(X)
C.(F) M,
+ = ||X—q||oo,BE[/Kgds—2n}
r

1
+§/|X,(1,9>||X(1,9>—q|de.

Defining
C(F):=C,(F)+ C,(F) (1+ i)
2M3
we insert the Euler equation (11) to arrive at

1 F,,
D(X) < [C(F>(1+|| ||2)+%]||X—q||m,BD(X)

M
+1X = qlloos C(F) 22 {/Kgds _24
Mq J

1 | M,
+ 21X — qlloo,pp |~ L(T 43
SIX = dlloc.os M, (), (43)

for any g € R3, where we have used the ellipticity condition (E) and the conformality
relations (29) and (30) in polar coordinates for the boundary integral, i.pvfes r = 1:

M
1X, 2 < Mo(X,, @72X, ) = Ma(Xq, @71Xy) < ij?

Note thatC(F) can be estimated from above in terms||df|| -; 5, 52, @and M1. We
notice that by assumption (7) there is a veajdre R3, such that| X (.) — ¢*|lec.08 =
Rr(X) <1, whereRr(X) is defined in (12) in the introduction. By (7) and (8) we may
apply the inclusion principle Proposition 2.2 to concluflg(.) — ¢*[l,, 3 < Rr(X).
These observations together with (43) foe= ¢* lead to the desired result, since then
we may write

2C(F) 571 frrgds — 2] + /5 L(T)
D(X) < Rr(X) - IFyzl
2= Re(OIC(F)A+ | Fye|?) + 521

Proof of Theorem 3. Let Y be a disk-type minimal surface bounded by the curve
Then the classical isoperimetric inequality (3) and the growth condition (15) imply that
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for the minimizerX we can concluder; A(X) < F(X) < F(Y) <mpA(Y) < ’;’—HZLZ(F),
which proves the result. O

Remark— Using an isoperimetric inequality for harmonic vector functions due to
Morse and Tompkins, see e.g. [5, pp. 135-138], one may use a similar comparisol
argument to prove a local version of (16) for minimizers:

Ag(X) == / X, A Xy dudv < —2L2(X(09))
4m1

Q
for all simply connected subdomaiss C B whose boundary is piecewise smooth. In
fact, one uses the comparison surface

Y ong,
Z'_{X onB — Q,

whereY e CO(Q2, R%) N C%(Q, R®) satisfiesAY =0 on Q,andX — ¥ € Wy %(Q2, R3).
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