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ABSTRACT. – We prove isoperimetric inequalities for general parametric variational double
integralsF , whose LagrangiansF depend on the position vectorX and on the surface normalN.
As an essential tool we introduce Sauvigny’sF -conformal parameters adapted to the parametric
integrand and use the notion of generalized mean and Gaussian curvature. The special cases
of minimal surfaces, surfaces of bounded mean curvature andF -minimizing surfaces are also
discussed.

RÉSUMÉ. – Nous démontrerons des inégalités isopérimétriques pour les intégrales doubles
variationnelles paramétriques généralesF dont la fonction de LagrangeF dépend du vecteur de
positionX et de la surface normalN . Comme outil essentiel, nous introduiserons des paramètres
F -conformes de Sauvigny adaptés l’intégrand paramétrique et nous employerons la notion de
la courbure moyenne généralisée et gaussienne généralisée. Nous discuterons également les cas
particuliers des surfaces minimales, des surfaces de courbure moyenne limitée et des surfaces
minimalisantF .

1. Introduction

We consider general parametric functionals of the form

F(X) :=
∫
B

F(X,Xu ∧Xv)dudv, (1)
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where B ⊂ R
2 is the open unit disk in the plane. The LagrangianF is of class

C0(R3 × R
3)∩C3,α(R3 × (R3−{0}) for someα ∈ (0,1), and satisfies the homogeneity

condition

F(y, tz)= tF (y, z) for all t > 0 and(y, z) ∈ R
3 × R

3. (H)

Moreover, we assume thatF is elliptic, i.e., that the mappingFzz(y, z) : z⊥ → z⊥ is
positive definite for all(y, z) ∈ R

3 × (R3−{0}), where1

z⊥ = {
ζ ∈ R

3 | 〈ζ, z〉 = 0
}
.

SinceFzz is homogeneous of degree−1 in its second argument by (H), this implies that
there exist constants 0<M1 �M2<∞ such that

M1|Pz⊥ξ |2 � |z|〈ξ,Fzz(y, z)ξ 〉 �M2|Pz⊥ξ |2 (E)

for all (y, z) ∈ B1(0)×(R3−{0}), ξ ∈ R
3, wherePz⊥ξ = ξ−〈ξ, z〉z/|z|2 is the projection

ontoz⊥ and whereB1(0) denotes the open unit ball inR3.

In addition, we suppose thatX is an immersed surface of classC2,α(B,R3) that maps
the boundary∂B topologically onto a given closed Jordan curve� ⊂ R

3 with length
L(�). The aim of the present paper is to prove an isoperimetric inequality for immersions
X that areF -critical, i.e., stationary for the parametric functional (1). To be more precise
we are going to estimate the area

A(X) :=
∫
X

dA=
∫
B

|Xu ∧Xv|dudv (2)

in terms of quantities depending only on� andF. The area functionalA itself is a
special parametric functional of the form (1) with the integrandF(y, z)= A(z) := |z|.
It is a well-known fact thatA-critical surfaces, i.e., minimal surfaces of the type of the
disk satisfy the classical isoperimetric inequality

A(X)� 1

4π
L2(�), (3)

see e.g. [6, Ch. 6.3]. Note that this is true for all surfaces with nonpositive Gauß curvature
K (cf. [2,1]). More generally, disk-type surfaces of prescribed bounded mean curvature
H , whose Gauß curvature may have varying sign, can be obtained as critical points of
the parametric functional with the integrand

F(y, z)=E(y, z) := |z| + 〈Q(y), z〉, (4)

whereQ is a weakly differentiable vector field onR3 with divQ=H on R
3, compare

with Hildebrandt [8]. Under the assumption that

‖X(.)‖∞,B := sup
w∈B

|X(w)| � 1 and h:= ‖H(.)‖∞,R3 < 2, (5)

1 Note that (H) impliesFzz(y, z)z= 0 for all (y, z) ∈ R
3 × (R3 − {0}).
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one can show that

A(X)� 1

8(1− (h/2))L
2(�) (6)

for such surfaces, which is a result of Heinz and Hildebrandt [7].2 In [4] we generalized
(3) to critical immersions of parametric functionals with an integrandF(y, z) = F(z)
depending only onz, which does not cover the case of surfaces of prescribed bounded
mean curvature, cf. (4). In the present work we are going to prove the following
isoperimetric inequality for critical immersions of general parametric double integrals
(1), which contains all the previous cases.

THEOREM 1. – Let X ∈ C2,α(B,R3), α ∈ (0,1), be anF -critical immersion with
surface areaA(X), which maps∂B topologically onto a closed Jordan curve�. Assume
that the parametric elliptic integrandF = F(y, z) is of classC0(R3 × R

3)∩C3,α(R3 ×
(R3 −{0})), and set‖Fyz‖ := ‖Fyizi (. , .)‖∞,B1(0)×S2. Then there is a constantC =C(F)
depending solely onF , such that if

‖X(.)‖∞,B � 1, (7)

hF := [
C(F)

(
1+ ‖Fyz‖2) + (‖Fyz‖/M1)

]
< 2, (8)

then

A(X)�
2C(F)M2

M1
[∫� k ds − 2π ]L(�)+

√
M2
M1
L2(�)

8(1− (hF /2)) . (9)

If F(y, z) = A(z) = |z|, or if F(y, z) = E(y, z) = |z| + 〈Q(y), z〉 for someQ ∈
W

1,∞
loc (R

3,R3), thenC(F)= 0 andM1 =M2 = 1.

Remarks. – 1. For the area integrandA(z) one hashF = 0, and (9) reduces to (3) for
minimal surfaces.3 In the case of immersed surfaces with bounded mean curvature as
critical points of the parametric functional with the integrandE(y, z), the inequality (9)
simplifies to the estimate (6), sincehF = h in this situation.

2. For a geometric interpretation of the term‖Fyz‖ in the definition ofhF in (8) we
recall the notion of theF -mean curvatureHF(X,N) = HF := − tr(AFS) and theF -
Gauß curvatureKF(X,N) = KF := det(AFS), as introduced in [4]. Here,S :TwB →
TwB is the shape operator defined byDX ◦ S := DN on the tangent spaceTwB, and
AF :TwB→ TwB is the symmetric endomorphism given by

V �→AF (V ) := (DX)−1(Fzz(X,N)DX(V )). (10)

For the special parametric integrandsA(z) = |z| and E(y, z) = |z| + 〈Q(y), z〉 the
curvature functionsHF andKF reduce to the classical mean curvatureH and Gauß

2 In contrast to [7] and [8] we adopt the convention that the mean curvatureH is the sum of the principal
curvatures, which accounts for the factor 1/2 in the denominator in (6).

3 The factor 4πinstead of 8 may be obtained using Wirtinger’s Inequality without any smallness condition
of the form (7), see e.g. [6, Ch. 6.3].
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curvatureK , respectively, since one hasAA = AE = IdTwB . The first author proved in
[3] that the Euler equation forF can be written as

HF =
3∑
i=1

Fyizi (X,N), (11)

which shows that (9) may be regarded as an isoperimetric inequality for immersedF -
critical surfaces with boundedF -mean curvature. In the proof of Theorem 1 we actually
work with ‖HF‖∞,B instead of‖Fyz‖. Consequently, (9)is also valid for immersions that
are not necessarilyF -critical but whoseF -mean curvatureHF is a prescribed bounded
function onB ⊂ R

2, we merely have to replace the term‖Fyz‖ in (8) by ‖HF‖∞,B .
Hence, the isoperimetric inequality in [7, Theorem 1′] is a special case of Theorem 1
above in the context of immersed surfaces.

Finally, for parametric integrandsF(y, z) = F(z) depending only on thez-variable,
F -critical immersions have vanishingF -mean curvatureHF . By a slight modification
of the proof of Theorem 1 in Section 3 below, one obtains the isoperimetric inequality
presented in [4].

3. The regularity assumption onX (which also implies� ∈ C2,α) is due to the use
of the Gauß–Bonnet Theorem. It is not clear whether one can relax the assumptions to
X ∈ C0(B,R3) ∩C2(B,R3) and to closed curves� that are merely rectifiable as in the
case of surfaces with bounded mean curvature. In addition, it is an open question how to
treatF -critical surfaces with branch points for general parametric functionals.

We are going to prove an isoperimetric inequality slightly stronger than (9) using the
radiusR�(X) of the smallest ball inR3 containing the curve�, which can be expressed
as

R�(X) := inf
q∈R3

‖X(.)− q‖∞,∂B . (12)

THEOREM 2. – Under the assumptions of Theorem1 the following isoperimetric
inequality holds true:

A(X)� R�(X) ·
2C(F)M2

M1
[∫� k ds − 2π ] +

√
M2
M1
L(�)

2−R�(X)hF . (13)

If the boundary curve� is long in comparison to the radiusR�(X), then the estimate (13)
is better than (9), since it depends at most linearly on the lengthL(�). Theorem 2 reduces
to the linear isoperimetric inequalityfor minimal surfaces presented in [6, p. 388],
becausehF = C(F)= 0 and M1 =M2 = 1 in that case. Notice that Theorem 1 follows
from Theorem 2 by (7) and a simple geometric observation that leads to

R�(X)� min
{

1,
L(�)

4

}
. (14)

If X minimizesthe functional (1) within the class of surfaces bounded by�, one
merely needs to assume that the continuous parametric integrandF satisfies the growth
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condition

m1|z| � F(y, z)�m2|z| (15)

for some constants 0< m1 � m2 <∞ without further regularity assumptions onF.
Moreover, the minimizerX does not have to be immersed, and it suffices to know that
X is in the Sobolev classW 1,2(B,R3), and that� is a rectifiable closed Jordan curve.

THEOREM 3. – LetX ∈W 1,2(B,R3) be a minimizer for the parametric functional
(1) within the class of mappingsZ ∈W 1,2(B,R3) such that the traceZ|∂B on ∂B is a
continuous, weakly monotonic mapping4 of ∂B onto a closed rectifiable Jordan curve
�. Assume that the LagrangianF of classC0(R3 × R

3) satisfies(15). Then

A(X)� m2

4πm1
L2(�). (16)

Remark. – In this context no ellipticity condition is needed. In order to prove the
existenceof a minimizer for (1), however, one has to assume convexity ofF in the
second argument, see [9,10].

To describe the strategy for proving Theorem 1 without getting involved with the
technical details which arise in the general case, let us give a short proof of the
isoperimetric inequality (6) for surfaces of bounded mean curvature. Such surfaces
satisfy the partial differential equations

2X =H(X)Xu ∧Xv, (17)

|Xu|2 = |Xv|2, 〈Xu,Xv〉 = 0 (18)

on the domainB, whereH is a given bounded function onR3.Using (18) and integrating
by parts we may write

A(X)=D(X) := 1

2

∫
B

|∇X(w)|2dw

� −1

2

∫
B

〈
2X(w),X(w)− q〉 + 1

2

∫
∂B

|Xr(w)| · |X(1, θ)− q|dθ (19)

for anyq ∈ R
3, where forw= (u, v)= reiθ ∈ B we have identifiedX(w) with X(r, θ).

We observe that there is a vectorq∗ ∈ R
3 with ‖X(.) − q∗‖∞,∂B = R�(X) � 1 by

assumption (5). Inserting Eq. (17) into (19) we infer forq = q∗

A(X)� 1

2

∫
B

|H(X(w))||X(w)− q∗||Xu ∧Xv|dw+ 1

2
‖X(.)− q∗‖∞,∂BL(�)

� 1

2
hR�(X)A(X)+ 1

2
R�(X)L(�),

4 See [6, Ch. 4.2] for the notion of weakly monotonic mappings on the boundary.
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where we have used that|Xθ | = |Xr | on ∂B by (18), and the fact that

‖X(.)− q∗‖∞,B � ‖X(.)− q∗‖∞,∂B (20)

by an application of the maximum principle for (17). In fact, one can show that the
function f (w) := |X(w) − q∗|2 is a subsolution for the Laplace operator under the
smallness assumption (5), see [7, Lemma 1]. With (14) we arrive at (6).

In Section 2 we introduce the tools necessary to take up the approach outlined above.
Proposition 2.2 gives the inclusion principle generalizing (20), the conformality relations
are suitably adapted to the general parametric integrandF in (29), (30). The partial
differential equation (17) will be replaced by a differential inequality in Proposition 2.4
containing first derivatives ofX and of its normalN on the right-hand side. Therefore
it is necessary to estimate the Dirichlet energyD(N) of the normal of anF -critical
immersion, which will be done using the Gauß–Bonnet Theorem, see Lemma 2.5.
Section 3 contains the proof for Theorem 2 along the lines of the arguments described
above, as well as a short proof of Theorem 3.

2. Inclusion theorem and F -conformal parameters

LetX :M ↪→ R
3 be an immersion of an orientable smooth manifoldM of dimension

2 into R
3, whereX ∈ C2(M,R3). We are going to work with the induced metric

g(V,W) := 〈
DX(V ),DX(W)

〉
for V,W ∈ TpM

and the globally well-defined normal mappingN :M → S2. Consider the parametric
variational integral

F(X) :=
∫
M

F(X,N)dA (21)

with an elliptic parametric LagrangianF = F(y, z) ∈ C0(R3 × R
3) ∩C3,α(R3 × (R3 −

{0})) satisfying the homogeneity condition (H).
As a starting point we give a generalization of the well-known identity2MX =HN,

where2M = divM gradM is the Laplace–Beltrami operator associated toM . To this end
we introduce the differential operator

θF [ϕ] := divM(AF gradM ϕ)− (divM AF )[ϕ] for ϕ ∈C2(M),

whereAF is defined in (10) of the introduction. In [3] the following result is proved:

THEOREM 2.1. – LetX ∈ C2(M,R3) be an immersion with normalN andF -mean
curvatureHF . Then we have

θFX =HFN. (22)

Let us point out that according to the ellipticity condition (E) the eigenvalues of
Fzz(y, z) : z⊥ → z⊥ are bounded byM1 andM2 for |y| � 1 in the case of elliptic
integrands as definied in (E). Obviously,θF is an elliptic operator, ifF is elliptic.
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This allows us to prove the following inclusion principle forF -critical immersions of a
smooth manifoldM with boundary∂M , where we setM :=M ∪ ∂M .

PROPOSITION 2.2. – LetF be an elliptic integrand andX be an immersion of class
C2(M,R3) ∩ C0(M,R3) such that

X(M)⊂ B1(0)⊂ R
3, and ‖HF‖∞,M < 2M1. (23)

ThenX(∂M) ⊂ Br(p) for somep ∈ R
3 and some radius0< r � 1, impliesX(M) ⊂

Br(p).

Proof. –We apply a continuity method as in [7]. Forσ ∈ [0,1] we consider the family
of surfacesXσ(w) :=X(w)− σp and note that by our assumptions (23) one has

‖Xσ(.)‖∞,∂M = ∥∥σ (X(.)− p)+ (1− σ )X(.)∥∥∞,∂M � 1. (24)

Using the chain rule we calculate onM

θFX
2
σ = 2

3∑
i=1

Xiσ divM
(
AF gradM(X

i)
)

+ 2
3∑
i=1

g
(
gradM(X

i
σ ),AF gradM(X

i)
) − 2

3∑
i=1

Xiσ (divM AF )(X
i)

= 2
3∑
i=1

Xiσ θFX
i + 2

3∑
i=1

g
(
gradM(X

i
σ ),AF gradM(X

i)
)

=
(22)

2HF
3∑
i=1

XiσN
i + 2

3∑
i=1

g
(
gradM(X

i),AF gradM(X
i)

)
� −2‖HF‖∞,M‖Xσ(.)‖∞,M + 4M1.

If the condition

‖HF‖∞,M‖Xσ (.)‖∞,M � 2M1 (25)

holds true for everyσ ∈ [0,1], thenX2
σ and in particularX2

1(w) = (X(w) − p)2 is a
subsolution for the elliptic operatorθF , which implies by the maximum principle the
statement of the proposition. The condition (25) is certainly valid for eachσ ∈ [0,1] if
‖HF‖∞,M = 0. Hence by virtue of (23) we may assume that 0< ‖HF‖∞,M < 2M1. Then
one has either

‖Xσ(.)‖∞,M >
2M1

‖HF‖∞,M
=: c1 >

(23)
1, (26)

or (25) is true, which implies according to (24) and the maximum principle

‖Xσ(.)‖∞,M � 1. (27)

Note that the functionσ �→ ‖Xσ(.)‖∞,M is continuous on[0,1], and that‖X0(.)‖∞,M �
1. If there were someσ1 ∈ (0,1] with (26), i.e., with ‖Xσ1(.)‖∞,M > c1 > 1, then
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by the intermediate value theorem there would be some parameterσ2 ∈ (0, σ1) with
‖Xσ2(.)‖∞,M = c1. But this would contradict our observation that for anyσ ∈ [0,1]
either (26) or (27) must hold. Consequently, (26) is not possible for anyσ ∈ [0,1],
which proves (25). ✷

From now on we focus on immersionsX :B → R
3 of B ⊂ R

2 into R
3 of class

C2(B,R3), whereB is the open unit disk inR2. In this case a special parametrization
simplifies the situation. We introduce so-calledF -conformal parametersdefined via the
metric

gF (V,W) := g(A−1
F V,W

)
for V,W ∈ TxB (28)

as follows. An immersionX(u, v) :B → R
3 is given inF -conformal parametersw =

(u, v), if gF is diagonalized, i.e.,

gF (w)

(
∂

∂u
,
∂

∂u

)
= gF (w)

(
∂

∂v
,
∂

∂v

)
=WF, (29)

gF (w)

(
∂

∂u
,
∂

∂v

)
= 0 for allw ∈ B. (30)

The following simple result from planar linear algebra proven in [4] turns out to be
useful for computing the conformal factorWF and for other calculations inF -conformal
parameters:

LEMMA 2.3. – Let V be a two-dimensional vector space with an inner product. If
ψ : V → V is a positive definite symmetric endomorphism andD90 : V → V a rotation
about an angle of90◦, thenD90 ◦ψ = (detψ)ψ−1 ◦D90.

Remark. – The lemma will be applied to the rotationD(w) :N(w)⊥ → N(w)⊥
defined byD(w)Z :=N(w)∧Z for Z ∈N(w)⊥.

Using the notation=(w) := Fzz(X(w),N(w)) :N(w)⊥ →N(w)⊥ theF -conformality
relations may be rewritten as

0<WF = 〈
Xu,=

−1Xu
〉 = 〈

Xv,=
−1Xv

〉
,

0= 〈
Xv,=

−1Xu
〉
.

Thus we can write with Lemma 2.3

Xu = µ2
(
(=−1Xv)∧N) =µ2=(det=)−1(Xv ∧N), (31)

Xv = µ1
(
N ∧ (=−1Xu)

) = µ1=(det=)−1(N ∧Xu) (32)

for some numbersµ1,µ2 ∈ R. Therefore one obtains for the conformal factorWF

0<WF = 〈
=−1Xv,Xv

〉 = µ2(det=)−1〈N ∧Xu,Xv〉 = µ2(det=)−1W,

whereW := |Xu ∧ Xv|. Furthermore we haveWN = Xu ∧Xv = µ1WFN = µ2WFN.

Consequently, we getµ1 =µ2 =W/WF , and then

WF =W/√det=, µ1 = µ2 = √
det=. (33)
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The following calculation will lead to an analytic interpretation of theF -mean
curvature of anF -conformally parametrized surfaceX :B → R

3. By the definition of
theF -mean curvature we have

HF = − tr(AFS)= −gαβg
(
∂

∂uα
,AFS

∂

∂uβ

)
= −gαβ〈Xuα ,Fzz(X,N)Nuβ〉.

The two identitiesN ∧Xu =Wg2αXuα , N ∧Xv = −Wg1αXuα are used to obtain

HF = (〈N ∧Xv,Fzz(X,N)Nu〉 − 〈N ∧Xu,Fzz(X,N)Nv〉)/W
= (〈=(N ∧Xv),Nu〉 − 〈=(N ∧Xu),Nv〉)/W
=

(32)(31)
−√

det=
(〈Xu,Nu〉 + 〈Xv,Nv〉)/W

=
(33)

〈2X,N〉/WF . (34)

Thus we have found that the normal component of2X is given byHFWFN, if X is an
immersion inF -conformal parameters.

For technical reasons we introduce the linear mapping

l(y, z) := Fzz(y, z)√
detFzz(y, z)|z⊥ + z

|z| ⊗ z

|z|, (35)

wherey ∈ R
3, z ∈ R

3 − {0}. Note that we can rewrite (31), (32) as

Xu = l(X,N)(Xv ∧N),
Xv = l(X,N)(N ∧Xu),

since the wedge products on the right-hand side are tangential vectors inN⊥.
Differentiating these equations we arrive at

2X= (
l(X,N)

)
u
(Xv ∧N)+ (

l(X,N)
)
v
(N ∧Xu)

+ l(X,N)(Xv ∧Nu +Nv ∧Xu). (36)

The tangential part of2X may be estimated by

∣∣(2X)tan∣∣ �
∣∣(l(X,N))

u
(Xv ∧N)+ (

l(X,N)
)
v
(N ∧Xu)

∣∣,
whereas the normal part, according to (34), is given by

∣∣(2X)nor∣∣ = |〈2X,N〉| = |HF |WF . (37)

A simple application of the chain rule leads to an a priori estimate of2X:

|2X| � 2‖ly‖|Xu||Xv| + ‖lz‖(|Xu||Nv| + |Xv||Nu|)+ |HF |WF . (38)

Remark. – Immersed surfaces of bounded mean curvatureH may be considered as
critical points of the parametric functional with the integrandE(y, z) defined in (4) in



626 U. CLARENZ, H. VON DER MOSEL / Ann. I. H. Poincaré – AN 19 (2002) 617–629

the introduction. Note that theF -conformality relations (29), (30) reduce to the classical
conformality relations (18) mentioned in the introduction, sinceAF = IdTwB in that case.
Moreover,(l(X,N))u = (l(X,N))v = 0 and (36) together with (34) reduce to the well-
known differential equation (17) given in the introduction.

Let us summarize (34) and (38) in

PROPOSITION 2.4. – LetX :B→ R
3 be anF -conformally parametrized immersion

of classC2(B,R3). Then
(i) 〈2X,N〉 =HFWF .
(ii) |2X| �Cy(F )|Xu||Xv|+Cz(F )(|Xu||Nv|+ |Xv||Nu|)+|HF |WF, whereCy,Cz

are constants depending only on the integrandF.

Note thatCy,Cz can be estimated from above in terms of‖F‖C3(B1(0)×S2) andM1, if
X(B)⊂ B1(0).

The theorem of Cayley–Hamilton applied to the endomorphismAFS :TwB → TwB

leads to the algebraic relation

SAFS +KFA−1
F +HFS = 0. (39)

This gives us a gradient estimate for the normalN :

|∇N |2 � 1

M1

[〈=Nu,Nu〉 + 〈=Nv,Nv〉]

= 1

M1

[
g

(
SAFS

(
∂

∂u

)
,
∂

∂u

)
+ g

(
SAFS

(
∂

∂v

)
,
∂

∂v

)]

=
(39)

−1

M1

[
HF

{〈
DX ◦ S

(
∂

∂u

)
,DX

(
∂

∂u

)〉
+

〈
DX ◦ S

(
∂

∂v

)
,DX

(
∂

∂v

)〉}

+KF
{
g

(
A−1
F

(
∂

∂u

)
,
∂

∂u

)
+ g

(
A−1
F

(
∂

∂v

)
,
∂

∂v

)}]

= − 1

M1

[
HF

{〈Nu,Xu〉 + 〈Nv,Xv〉} +KF
{
gF

(
∂

∂u
,
∂

∂u

)
+ gF

(
∂

∂v
,
∂

∂v

)}]

=
(29)

WF

M1

[
H 2
F − 2KF

]
, (40)

where we have used (i) of Proposition 2.4. Now we are in the position to deduce a
geometric estimate for the Dirichlet energy

D(N) := 1

2

∫
B

|∇N(w)|2dw

of the normalN of anF -conformal immersionX.

LEMMA 2.5. –The normalN of an F -conformal immersionX ∈ C2(B,R3) with
X(B)⊂ B1(0) satisfies

D(N)� M2

M1

[∫
�

κg ds − 2π
]

+ M2

2M3
1

∫
X

H 2
F dA. (41)
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Proof. –We may write

KF = det(AFS)= det=detS =K det=. (42)

From (33), (40), and the ellipticity condition (E) we infer

M1

M2
|∇N |2 �

(40)

WF

(det=)1/2
[
H 2
F − 2KF

]

=
(33),(42)

W

det=
H 2
F − 2KW

� W

M2
1
H 2
F − 2KW.

The estimate (41) follows now by integrating this inequality over the domainB and
applying the Gauß–Bonnet Theorem.✷

3. Proofs of the main results

Proof of Theorem 2. –Since (9) is a purely geometric estimate, we may assume
thatX is given inF -conformal parameters. If this is not the case one may apply the
uniformization theorem in a version proved by Sauvigny [11, Thm. 2] to theC1,α-metric
(28), or apply our argument in [4, p. 94] to find a positively oriented diffeomorphism
w :B → B of classC2,α(B,R2), such thatX ◦ w−1 ∈ C2,α(B,R3) is F -conformal.
Integrating by parts we may estimate the Dirichlet energy of anF -conformal immersion
for anyq ∈ R

3 as

D(X)= 1

2

∫
B

〈
DX(w),D(X(w)− q)〉dw

� 1

2

∫
B

|2X(w)||X(w)− q|dw+ 1

2

∫
∂B

|Xr(1, θ)||X(1, θ)− q|dθ,

where for w = (u, v) = reiθ ∈ B we have identifiedX(w) and X(r, θ). Using
Proposition 2.4(ii) and Lemma 2.5 we obtain

D(X) � 1

4
Cy(F )

∫
B

|∇X(w)|2|X(w)− q|dw

+ 1

2
Cz(F )

∫
B

[|Xu(w)||Nv(w)| + |Xv(w)||Nu(w)|] · |X(w)− q|dw

+ 1

2

∫
B

∣∣HF (
X(w),N(w)

)∣∣|X(w)− q|WF (w)dw
+ 1

2

∫
∂B

|Xr(1, θ)||X(1, θ)− q|dθ
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�
(33)

[
Cy(F )

2
+ Cz(F )

2
+ ‖HF‖∞,B

2M1

]
‖X− q‖∞,BD(X)

+ Cz(F )
2

‖X− q‖∞,BD(N)+ 1

2

∫
∂B

|Xr(1, θ)||X(1, θ)− q|dθ

�
(41)

[
Cy(F )

2
+ Cz(F )

2
+ ‖HF‖∞,B

2M1
+Cz(F ) M2

4M3
1

‖HF‖2
∞,B

]
‖X− q‖∞,BD(X)

+ Cz(F )
2

‖X− q‖∞,B
M2

M1

[∫
�

κg ds − 2π
]

+ 1

2

∫
∂B

|Xr(1, θ)||X(1, θ)− q|dθ.

Defining

C(F) := Cy(F )+Cz(F )
(

1+ M2

2M3
1

)
,

we insert the Euler equation (11) to arrive at

D(X)� 1

2

[
C(F)

(
1+ ‖Fyz‖2) + ‖Fyz‖

M1

]
‖X− q‖∞,BD(X)

+ ‖X− q‖∞,B C(F )
M2

M1

[∫
�

κg ds − 2π
]

+ 1

2
‖X− q‖∞,∂B

√
M2

M1
L(�), (43)

for any q ∈ R
3, where we have used the ellipticity condition (E) and the conformality

relations (29) and (30) in polar coordinates for the boundary integral, i.e. for|w| = r = 1:

|Xr |2 �M2
〈
Xr,=

−1Xr
〉 =M2

〈
Xθ,=

−1Xθ
〉
� M2

M1
|Xθ |2.

Note thatC(F) can be estimated from above in terms of‖F‖C3(B1(0)×S2) andM1. We
notice that by assumption (7) there is a vectorq∗ ∈ R

3, such that‖X(.) − q∗‖∞,∂B =
R�(X)� 1, whereR�(X) is defined in (12) in the introduction. By (7) and (8) we may
apply the inclusion principle Proposition 2.2 to conclude‖X(.) − q∗‖∞,B � R�(X).
These observations together with (43) forq = q∗ lead to the desired result, since then
we may write

D(X)� R�(X) ·
2C(F)M2

M1
[∫� κg ds − 2π ] +

√
M2
M1
L(�)

2−R�(X)[C(F)(1+ ‖Fyz‖2)+ ‖Fyz‖
M1

] . ✷

Proof of Theorem 3. –Let Y be a disk-type minimal surface bounded by the curve�.
Then the classical isoperimetric inequality (3) and the growth condition (15) imply that
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for the minimizerX we can concludem1A(X)�F(X)� F(Y )�m2A(Y )� m2
4π L

2(�),

which proves the result. ✷
Remark. – Using an isoperimetric inequality for harmonic vector functions due to

Morse and Tompkins, see e.g. [5, pp. 135–138], one may use a similar comparison
argument to prove a local version of (16) for minimizers:

AB(X) :=
∫
B

|Xu ∧Xv|dudv � m2

4m1
L2(X(∂B))

for all simply connected subdomainsB ⊂ B whose boundary is piecewise smooth. In
fact, one uses the comparison surface

Z :=
{
Y onB,
X onB −B,

whereY ∈ C0(B,R3)∩C2(B,R3) satisfies2Y = 0 on B,andX− Y ∈W 1,2
0 (B,R

3).
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