Ann. I. H. Poincaré — ANL9, 5 (2002) 631-682
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
S0294-1449(02)00097-5/FLA

MONOTONICITY AND SEPARATION FOR THE
MUMFORD-SHAH PROBLEM

MONOTONIE ET SEPARATION DANS
LE PROBLEME DE MUMFORD-SHAH

Guy DAVID, Jean-Christophe LEGER
Mathématiques, Batiment 425, Université de Paris-Sud, 91405 Orsay Cedex, France

Received 9 April 2001

ABSTRACT. — We prove some monotonicity properties of the global Mumford—Shah minimiz-
ers as defined by Bonnet in [4]. The main consequence is that the only solutions for which the
complement in the plane of the singular set is not connected correspond to lines and propeller
We also get a boundary version of the Mumford—Shah conjecture.
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RESUME. — Nous prouvons des propriétés de monotonie des solutions du probléme de
Mumford—Shah global défini par Bonnet dans [4]. La conséquence principale en est que le
seules solutions dont le complémentaire de I'ensemble singulier n’est pas connexe corresponde
a des droites et des propulseurs. Nous obtenons aussi une version a la frontiére de la conjectt
de Mumford—Shah.
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1. Introduction

The main concern in this paper is the study of minimizers for the global Mumford—
Shah problem in the plane. The precise notion, introduced by A. Bonnet in [4], is as
follows.

Let K C R? be a closed subset of the plane, ané W 2(R?\K) a real-valued
function defined on the open sBf\K and whose distributional derivative there lies
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in L2 (R?\K). We say thatu, K) is anadmissible paiif in addition

HY(K N B(O, R)) + / [Vul? < 400 (1.1)

B(O,R\K

for all R > 0. Here H* denotes the 1-dimensional Hausdorff measure (which is the
appropriate generalization of arclength measure); see for instance [12,13,18]. Alsc
our convention in this paper is th#(0, R) denotes the open disk with center 0 and
radiusR.

Let (u, K) be an admissible pair. Bompetitorfor (1, K) is an admissible paifv, L)
such that, forR large enough,

L\B(0, R) = K\B(O, R), (1.2)

v(x) =u(x) forxeR? (K UB(O,R)), (1.3)
and

{ if x, y e R?\(K U B(0, R)) lie in different connected components of (1.4)

R?\ K, then they lie in different connected component®éf L as well.

Thus(v, L) coincides with(z, K) out of some bounded set, and als@eparates points
near infinity at least as well & does.

DEFINITION 1.5. —A global Mumford—Shah minimizer in the plane is an admissible
pair (1, K) such that if(v, L) is any competitor fofu, K), then

HY(K N B(O, R)) + / |Vul> < HY(LN B(O, R)) + / [Vvl|? (1.6)

B(0,R)\K B(O,R)\L

for R large enough.

There is a minor issue that needs to be addresséd, K) is an admissible pair, we
say that it iseducedif there is no competito(v, L) for (4, K) suchthat. ¢ K, L # K,
andv(x) = u(x) for x € R?\K. It is not hard to check that for each admissible pair
(u, K) there is a reduced admissible pait L) such thatl. C K, v is an extension of
(as above), and (1.4) holds for atl. Because of this, we shall restrict our attention to
reduced global minimizers, without loss of generality. The point of this reduction is that
we may now have cleaner statementskb(otherwise, we could make it ugly artificially
by adding a set of vanishing Hausdorff measure to it).

Notation 1.7. — To save some space we shall denote by RGM the set of reduced globe
Mumford—Shah minimizers in the plane.

The main reason for introducing RGM is that limits under blow-up procedures of
(usual) reduced Mumford—Shah minimizers in planar domains lie in RGM. Incidentally,
this is the reason for the topological constraint (1.4) on competitors, which comes
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indirectly from normalizing out additive constants in the blow-up procedure. See [4]
for details about this.

Of course understanding RGM well would help in the study of usual Mumford—Shah
minimizers. This is not the main topic of this paper, but we shall rapidly discuss an
instance of this in Section 13.

Here is a short list of known pail®, K) € RGM:

K =0 and uis constant ofiR?; (1.8)
K is aline andu is constant on each connected componeRfK ; (2.9)

K is a propeller (i.e., the union of 3 closed half-lines with a common extremity
and that make 120angles at that point) andis a constant on each of the 3(1.10)
components oR?\K;

there is a set of Euclidean coordinate®RhwhereK = Rt = {(x, 0); x > 0}

1.11
andu(r cosd, r sing) = C + /2/mrY/?cos(6/2) for r > 0 and 0< 6 < 2. (1-11)

Of course the values of the constafitand the constant sigg: in (1.11) do not
matter. The fact that the pairs in (1.8)—(1.10) are global minimizers is rather easy tc
check directly. For (1.11), this is the main result in [5].

Itis reasonable to conjecture that the short list (1.8)—(1.11) is complete, i.e., that thert
is no other reduced global minimizer. This would imply the Mumford—Shah conjecture
from [19] that says that for reduced minimizers of the Mumford—Shah functional on
simple planar domains (see the definition at the begining of Section 13), the singula
setK is a finite union ofC* curves. The argument for the implication is similar to the
one in [4] for isolated connected componentskdf but does not seem to be written
explicitely anywhere yet.

Let us rapidly remind the reader of some of the known facts about RGM. From now
on, we shall always assume that K) € RGM.

First, it is easy to see that is harmonic onR? \ K. It also satisfies the Neumann
boundary conditiori’d% =0 on K (which happens to make sense). This is just because
minimizes the energy;., , [Vu|* locally.

Also, u is essentially uniquely determined & (that is, modulo adding a constant
to u and multiplying it by+1 in each component @2\ K). There is even a formula
that allows us to compute the square of the complex derivaéjlgyez in terms of K.

See [15].

Next, if K is not empty, it is Ahlfors-regular and uniformly rectifiable. This comes
essentially from [6] and [9]. We even know from a minor modification of [7] or [3]
that

for H-almost every poink € K, there is a disk3(x, r) such that

_ (1.12)
K N B(x,r) is aC* curve thoughB(x, r).

We shall call such a point a “regular point” ofK .
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The words “essentially” and “a minor modification of” in the previous two sentences
come from the fact that in [6,9,7,3], the topological condition (1.4) was not considered.
But this is not a serious issue.

In the special case whek is connected, it was proved by A. Bonnet thiat K) is
one of the pairs described in (1.8)—(1.11). See [4].

One of the main goals of this paper is to show thakf K is not connected, then
(u, K) is as in our examples (1.9) or (1.10). Thus we shall be left with the problem of
finding the global minimizersu, K) for which K is not connected (because of Bonnet)
andR?\ K is connected.

Note that wherR?\ K is connected, the topological condition (1.4) is automatically
satisfied; thus we shall be left with the same minimizing problem as mentioned by De
Giorgi [10].

Our proof will be based on a monotonicity argument a little like the one in [4], but we
shall use a mixture 2 + ¢ of energy and length, instead of the enefglone.

We shall also obtain some information whB8\K is connected. For instance, the
case wherk has a central symmetry is easy to deal with. See Section 9 for this and &
few similar results.

Our argument will give new information ok, when Ky is a connected component
of K which is not reduced to one point. We shall see in Section 10Ras a “chord-
arc tree” composed af! curves that can only meet by sets of 3 and with°120gles.

But we do not know at this point if there can be infinitely many such curves; they may
possibly accumulate at the endsigf, as suggested by Fig. 1. A more precise description
of Ko, and also estimates on the size of the jump @ft points ofKg, will be given in
Section 10.

As a simple application, we shall see in Section 11 that th&k$et K of points of
high energy is stable when we take limits of reduced global minimizers.

Consider the conic secta@t, = {(p cosd, psingd) e R?; p >0 and 0< 6 < «} in the
plane. We can define global minimizersdy as we did in the plane, and it turns out that
when O< «a < 37 /2 we can give a simple description of all (reduced) global minimizers
in C,. See Section 12.

This include the case of half-planes (wher= ), which we can use to give a good
description of the boundary behaviour of the (usual) reduced Mumford—Shah minimizers
in bounded smooth domains in the plane. See Section 13 for a rapid description of how |
works. A similar result has been shown independently and simultaneously by Maddalen
and Solimini in [17].

Fig. 1.
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2. Notations and the monotonicity statements

Let a reduced global minimiz&r, K) € RGM be given. We consider the functions

E(r)= / |Vul? (2.1)
B(0,r)\K
and
¢(ry=H*(K N B(O,r)), (2.2)

where we recall thaB(0, r) is the open disk centered at 0 and with radiusSince
everything is invariant under translations, the choice of origin does not matter. The mair
point of the argument that will follow is to show that in many circumstances,

F(y = {020 2.3)

is an increasing function of. Note thatF (r) is normalized to be scale-invariant. It is
also bounded, because

E(r)+£40)<2nr forr>D0. (2.4)
This is a very easy and classical estimate obtained by compasing) with the
competitor(v, L), whereL = K U3 B(0,r) \ B(O,r), v(x) =u(x) out of B(O,r) UL,
andv(x) =0o0n BQO, r).
Ouir first proposition says that there is an operf@eff full Lebesgue measure where
F is differentiable, andr increases at least as fast as its derivativeRosuggests.
Let R denote the set of > 0 such that there is a neighborhoo®@ (0, r) in which K

is composed of finitely mang? curves that all meetB(0, r) transversally only. (Thus
K NaB(0,r) is finite whenr € R.)

PROPOSITION 2.5. —The setR is open, H((0, +00) \ R) =0, F is continuously
differentiable orR, and

F(b)— F(a) > / F'(r)ydr forO<a<b < +o0. (2.6)
RN(a.b)

This will be proved later in this section, and at the same tifie) will be computed.
For the moment we want to give a few statements with lower bounds'on, r € R,
which will be proved in later sections. We shall distinguish between cases, depending o
the numbeV () of points inK N aB(0, r).

PROPOSITION 2.7. —If K NdB(0, r) is empty,

FE(r) > / V2. 2.8)
9B(0,r)

Unfortunately we shall not prove any good monotonicity estimate when = 1.
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PROPOSITION 2.9. —Let r € R be such thatN(r) > 2. If N(r) = 2, suppose in
addition that

the two points oK N dB(0, r) lie in the same connected componenkof (2.10)

Then

rF'(r)y>10"1° / |Vul?. (2.11)
9B(0,r)\K

PROPOSITION 2.12. —If r e R and N(r) > 4, thenr F'(r) > 1073,

PROPOSITION 2.13. —Let r € R be such that all the connected components of
9B(0, r)\ K have lengths at mostwr for somew < 3/2. Then

rF'(r) > min(1, 3 — 2w} / Vul?. (2.14)
IBO,r\K

All these estimates will be proved in the next three sections, but let us already checl
Proposition 2.5. and computd’ (r) here.

It is clear from its definition thaRR is open. Denote bX* the set of regular points
of K, i.e., points that satisfy the property in (1.12). TH$(K \ K*) =0, by (1.12).
Then

dBO, )N (K\K*) =0 (2.15)

for H!-almost every- > 0, because the set where this fails is the imagk qfk* under
the Lipschitz mapping — |x|. Next, the set of radit such that

dB(0, r) meetsK * tangentially at least once (2.16)

is composed of critical values of the functidkn| on a countable union of* curves,
hence it has vanishing/ *-measure by Sard’s theorem.

When r satisfies (2.15) but not (2.16)X can only meetdB(0,r) on K* and
nontangentially. In particulark N 9 B(0, r) is finite; then it is easy to see thate R.
This proves thaf/*((0, +00) \ R) = 0.

Next we want to study’. Let us start with the functio. If we write the integral in
(2.1) in polar coordinates and then use Fubini, we see that

E'(r)= / |Vul?dH* (2.17)
dB(0,r)\K

not only almost-everywhere, but also in the sense of distributions. Tha{#3,in the
indefinite integral of its almost-everywhere derivativ&r). Then we easily get that

(E(r)>:} / w2 — £ (2.18)
;

r r2

3B(O,r\K
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almost-everywhere and in the sense of distributions.

This will be enough for our purposes, but since we announcedrtigtontinuously
differentiable oriR, let us rapidly say why this is the case () (and henceE%). The
point is thatu is harmonic onR?\ K, but alsoVu has continuous extensions up to the
boundary on both sides & near a regular point oK. This is not worth insisting too
much, though.

Next, we want to computé’(r). Note thaté(r) is a nondecreasing function of
so it is differentiable almost-everywhere and its distributional derivative is the sum of
?'(r) (the absolutely continuous part), plus perhaps a positive singular measure that w
do not need to know precisely. Then the distributional derivativé(r—’éfon (0, 400) is

20 10 plus perhaps a positive measure. In particular,

r

b

£b)  La) /(Z’(r) £(r)
2 - 7

b a

> )dr forO<a <b < +o0. (2.19)
r r

The derivative?’(r) is easy to compute whene R. Forr e R andx € K N aB(0, r),
call «(x) € [0, 7/2) the (non oriented) angle between the radiisc] and the tangent
line to K atx. Then

forr e R. (2.20)

‘=3

xeKNoB(0,r) COSO[()C)
Thus’z(r—” is continuously differentiable oR. To complete our proof of Proposition 2.5
we just need to check (2.6), which follows directly from (2.19) and its analogu&%br
Our computation also says that foe R,

2E(r) n 2(r) )

Fﬁg:g / |Vul? —
r r? r r?

3B(0,)\K
1 2E(r) +£(r)

1
Vul+= > _ ’
v r - cosw (x) 2
dB(0,r)\K xeKNaB(0,r)

SN

(2.21)

r

by (2.18) and (2.20).
In the next section we derive simpler expressionsHtr), r € R, which will then be
used in later sections to prove Propositions 2.7-2.13.

3. How to go from normal to tangential derivatives

The integral in (2.21) contains normal and tangential derivatives. We shall see late
that tangential derivatives are much easier to use than normal ones when we wal
estimates orE (r) + £(r). In this section we prove a formula that will allow us to trade
normal derivatives for tangential ones.
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We need more notation. Let us use polar coordinatg® and write

du\? du\?
Vul?=( — — 3.1
valr= (52 ) +(57) (3.1)
where 24 = 124 s the tangential derivative ani = 2 is the radial derivative of:.
Then
\Vul?>=J, + J,, (3.2)
3BO,M\K
where we set
9 2
J. = / —”) dH, (3.3)
ot
3BO0,M\K
u\?
Jy= / —) dH. (3.4)
av
3BO,MH\K

PropPOSITION 3.5. —We have that

L=l ——=+4+ >  cosa(x) (3.6)

x€dB(0,r)NK

forr € R, wherel(r), R, anda(x) are as in(2.2), Proposition2.5, and neat(2.20)
Before we prove the proposition let us see how to use it to compite. From (2.21)

we deduce that

1 2E(r) + £(r)

rF'(ry)=2J;+21,+ > p—— -

xeKNaB(0,r)

_ 1 E@) +40)
=3L+,+ Y {COSa(x)+c05a(x)}—2< p ).(3.7)

xeKNaB(0,r)

Recall thatN (r) is the number of points ik N3B(0, r). Sincewl(x) + cosx(x) > 2
for all x, we get that

%F’(r) 30t LN~ EDFEO)

St (3.8)

This is the estimate that will be used most of the time, but in some cases we may
choose to replace onk with J, in the first line of (3.7) and get that

} _2E(r)

rF'(r)=J+3L+ > {

xeKN3B(O,r)

2F
> . +37, - £ (3.9)
r
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Now we start to prove Proposition 3.5. Our original proof was a variant of an argument
from [15]. The idea was to identifR? with C and use the formula

0x dy W) =—5-

271K (z —w)?

2 1
(a” 'a“> L [4H Q) frwec\k (3.10)

on the complex derivative of.

The proposition can be derived by computiﬂg(o’,w(g—‘z‘(w))2 w?dHY(w) in two
different ways, and in particular using (3.10) and residues.

The proof that we shall give here is a little longer, but more direct. It has the
advantage of working as soon @s K) is a local minimizer in some neighborhood of
B(0, r). That is, we shall only need to know that (1.6) holds for competitors.) that
coincide with(x, K) out of some (fixed) neighborhood &(0, r). We shall also use in
Section 12 the fact that the proof still works when the plane is replaced with some cone
C, = {(pcosy, psind); p > 0 and 0< 6 < «} for somea < 27 (that is, whenk c C,
andu is defined orC,, \ K).

We wish to thank F. Maddalena and S. Solimini, who found out about Proposition 3.5
independently, for telling us that there is a direct variational proof.

Note that it is enough to prove (3.6) when= 1. This follows from a standard
homogeneity argument, that we shall use a few times in this paper. The point is tha
if we setK;, = AK andu, (x) = AY2u($) for x € R?\ K;, then(u,, K;) € RGMfor all
choices ofd. > 0. It is easy to see that both sides of (3.6) are preserved when we replac
(u, K) with (u;, K;) (and modifyr accordingly).

So we taker = 1, which we assume to lie ifR. Later in the proof the letter
will appear again, but it will denote other variables; hopefully this will not create any
confusion.

We want to construct a one-parameter family of competitorsk;) for (u, K), but
first we want to construct homeomorphisgsLetrg € (0, 1) be a parameter, which we
intend to send to 1 at the end of the argument. SineeRl, we know that forr close
enough to 1 (which we shall assume), the intersectiok @fith A = B(0, 1) \ B(0, ro)
is composed of finitely mang?! arcs, none of which is ever tangent to a cirei(0, r),
ro <r < 1. First set

r forO<r <ro,
f)=q 95D forro<r <1, (3.11)
0 forr > 1.

Note thatf is continuous or0, +o0). Next defineg = g, for t € R by
g(r)y=r+1tf(r) forr=0. (3.12)

We shall only be interested in small valuestpfind for theses; is a piecewise affine
bijection of [0, +00), with

e <2 (3.13)

NI
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Now define a piecewis€! diffeomorphismg = ¢, of R? by
@ (r cost, r sinf) = (g (r) cosd, g, (r) sing). (3.14)

Finally set
K, =¢(K) and u,(x)=u(p (x)) forx e R?\ K,. (3.15)

Itis easy to see that farsmall enoughu,, K,) is a competitor folu, K). In particular,
(u;, K;) coincides with(u, K) out of B(0, 1) becausef (r) =0 forr > 1. Set

a(t) = H*(K, N B(0,1)) (3.16)
and
e(t) = / |Vu,|?. (3.17)
B(O,1)\K;
Then
a(0) +e0) <a@) +e(@) (3.18)

for + small, becauséug, Kg) = (1, K) and (u, K) is a global minimizer (see Defini-
tion 1.5).

Next we want to check that(r) ande(z) have derivatives at= 0, and compute’(0)
ande’(0). SetB = B(0, rp). Note that

o:(x)=A+1t)x forxe B, by(3.11),(312), and(3.14). (3.19)

Then
HY(¢,(K N B)) = (1+1t) HY(K N B). (3.20)

Next considerK N A = K N [B(0,1) \ B], and use polar coordinates. Notice that
preserves the radial and tangential directions; the size of its derivatives in these directior
is
0¢rad _ g/(r) and 0¢ran _ @
av ot r
Let us still denote by (x) € [0, /2] the angle betweefD, x] and the tangent line to
K atx. Itis well defined forx € K N A, because we restricted kg close to 1. Then

(3.21)

H (¢, (K N A)) = /h,(x)dHl(x), (3.22)
KNA
with
2\’ b2
h,(x):{g,’(r)zcosza(x)—i—( ’r ) Sinzoz(x)} . (3.23)

Note thatg(r)and g,(r)/r stay reasonably close to 1, by (3.13). Thus we can
differentiate (3.22) under the integral sign. Here
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8 8 t t
D ) = i) 1{ (4,(")g.(r) coLa(x) + - (gi”)g(”snz ()}

ot
(3.24)
and since
g(r)=1+1f'(r), gtir) = 1+tf,(f) (3.25)
by (3.12), we get that
%(h,(x))lt _o=f'(r)cos a(x) + A )Slnzoz(x), (3.26)
because;(x) = x for r = 0. Finally
a0 =HYKNB)+ 3 (Hl(ga,(l( N A)))
t=0
=HYKNB)+ / (h,(x))| dH'(x)
=0

KNA

=HYKNB)+ /{f(r)coszoz(x)—i—f( )Slnzoz(x)}dH (x) (3.27)
KNA

by (3.20), (3.22), and (3.26).
Now we want to compute’(0). Note that

2 (3.28)

= [ VuP= [ |[Vwog™

B(O.D\K; @ (B(O.D\K)

by the definitions (3.15) and (3.17). We spiii(u o ¢, 1) into its radial and tangential
components and use (3.21). This yields

0 1 _du
o wee ) (e) = ( ) ,() (3.29)
0 1 du, T
S e e ) (e(0)) = ar( )g(r) (3.30)
Also, the Jacobian determinantfat x is the product”&”)  Altogether,
2 2 ,
e(t): / {(%i) +<8_u r ) }g,(r)gt(r) dx
ar g,(r) ot g(r) r
BO.D\K
2 2 ,
= / {<a_u> s (8—”> rgf(r)}dx. (3.31)
ar ) rg/(r) at g(r)
BO.D\K
Note that
i)
g(r)  r+tf(r) 1414 (3:32)

rgi(r)  r(+1f'(r)  141f'(r)
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by (3.12). Recall from (3.13) that this is bounded and bounded from below, and its
derivative with respect toat: =0 is @ — f’(r). Hence

(6 G2 S

B(O,)\K

Next we use the specific formula (3.11) fgi. As we could expect, we get no
contribution from B = B(0, rg) because@ = f’(r) there (and our mapping; is
conformal onB). On the remaining annulus,

f) o rd=r) ro _ TIo
—_f(r)_r(l—ro) 1—ro r(l—rp)’

O ZA\/K {@_DZ - <§_Z>2}r(1r—0 o)’ #59

Now we know that’(0) + ¢'(0) exists, and (3.18) tells us that

(3.34)

and hence

a'(0) +¢'(0) =0. (3.36)
We want to use (3.27) and (3.35), anddgtend to I . Note that

im €0 =J, —J, (3.37)

ro—>1-

(compare with (3.3) and (3.4), and recall for instance #atis continuous om \ K,
and even bounded there, beca#se smooth omd). As for a’(0) and (3.27), notice that

f() ro(1—

= aﬁau) (3.38)

f'(r) cog a(x) + —=sir? a(x )_ cos2 (x) + 1

for x € A, by (3.11). The second part stays bounded wihetiends to 1, so it will not
contribute in the limit. Hence (3.27) yields

lim a'(0) = HYK N B(0, 1)) — lim o / coLa(x)dH(x)
r0—> ro— — rOKnA
=0 - >  cosx(x). (3.39)

xeKNIB(0,1)
When we add up (3.37) and (3.39) and compare with (3.36), we get (3.6)with.

Proposition 3.5 follows.
4. Simple energy boundson harmonic extensions

In this section we prove energy bounds on some harmonic extensions of function:
defined on subarcs of the unit circle. These bounds will be used later when we construc
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competitors for our minimizefu, K). We start with the most basic case of harmonic
extension.

LEMMA 4.1.—-Let B = B(0, 1) denote the unit disk, and latbe a(real-valued C*
function ond B. Denote by the harmonic extension afto B. Then

B/IVvl2 < /(3—2)2%% (4.2)

aB
This is an easy computation with Fourier series. Let us idefiffyvith C and write
= Zakeike, (43)
keZ

The harmonic extension afto B is given by

v(ré?) Zakr'k'e'ke (4.4)
keZ
Then
o™ —Zlkla ri=1gh? (4.5)
keZ
ov 10v ;
— =" =N ika, r¥-1gk? 4.6
9t r o6 Z; awr (4.6)
and, by Parseval,
v\ 2 iz
Y ant=r [ (Z(re?) d9—27r Kla P28t (4.7)
ar ar
aB(0,r) 0 kezZ
Similarly,
v\ 1 2, 12..2/k—1
/ ) aHt=2n Y Raftrh 4.8)
3B(0,r) keZ

Since|Vv|? = (22)? 4 (2)2, we get that

1
/IVvl / / |Vv[?dH'dr = 4 Zk2|ak|2/l’2lk|_ldr
0 8B(0,r) keZ 5

=21 |kllax? <2m > kPlag)? _/<a_v> dH*. (4.9)

keZ keZ

LEMMA 4.10. —Let0 <« < 2 be given, and set

C)={rd’;0<r <land0<6 <ra}. (4.11)
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(a conic sector of apertura«) and I (o) = {€”;0 < 8 < ma} (the circular part of its
boundary. Then for everyC* functionu on I («) such thatf, , (34)?dH* < +oo we
can find a continuous function on C(«) U I (o) which is harmonic inC(«x) and such

that
2 u\? 1
V| <o — | dH". (4.12)
ot

C(a) I (o)

We start with the special case whenr= 1 andC («) is the upper half disk. Extendto
the whole circle by symmetry (that is, seie'?) = u(€?) for 0 < 6 < ) and continuity
(at 1 and—1). Callv the harmonic extension tB of the (extended) function on 9 B.
Note thatv is also symmetric with respect to the first axis, and so

1 1 [/0u\? ou\ 2
\Y 2:—/v 2<—/<—) le/(—) HY, 4.1
/| vl 23| vl 233 0T d ot d (4.13)

c( 1(1)

by (the proof of) Lemma 4.1.

Whena # 1 we use the conformal mapping: C(1) — C(«) defined bygp(ré?) =
r*@®? Letu € C1(I(«)) be as in the statement, and s&te’) = u o p(€?) = u(e*?) for
0 <6 < . Then extend:* to C(1) as in the special case above. This gives a harmonic
functionsv* on C(1). Finally setv = v* o ¢~ on C(«). Then

2 %12 dur\? 1 du\? 1
/|Vv| = / [Vu*| </ a7 dH :a/ p dH (4.14)
(D I

C(a) (€] I()

by conformal invariance of energy integral (or direct computation as in Section 3) and a
linear change of variables on the circle. This proves the lemma.

We want to extend the result of Lemma 4.10 a little further, and for this the following
definition will be convenient. Lef. ¢ R? be closed, and le¥ denote a connected
component ofB \ L. We shall say thaV is controlled byC (@) if there exist®9 (V) e R
such thatV c €°)C(a) anddV \ L is a single arc ob B contained in €] (). (see
Fig. 2 for a typical example (where we could takg’) = 0)).

COROLLARY 4.15. -Let L ¢ R? be closed, and suppose that for some [0, 2]
every connected component®f, L is controlled byC (). Letu € C1(3B \ L) be such
that

J= / (a—u)del<—|—oo. (4.16)

0T
3B\L

Then there is a continuous functieron B \ L which is harmonic orB \ L , equal tou
onaB \ L, and such that

/ VR <al, 4.17)
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I

Fig. 2.

We want to construct the extensiencomponent ofB \ L by component. So leV
denote a connected component®f L, and letd(V) € R be such tha¥ is contained
in €’V C(a). SetI(V)=0aV \ L; by assumption/ (V) is an arc of circle contained
in €V [ (), whereI(a) = {€%;0 <6 < ma}. Let uy be an extension of|;y, to
€Y1 (o) such thatfyow) ;o (5)2dH = [}, (34)?dH'. Then use Lemma 4.10 to

find an extensiony, of uy, on V) [C(x) U I («)]. Then

duy \? du\?
/|Vvv|2< / Voy 2 < a / (ﬂ> dH'=« / (—“) dH'. (4.18)
J 0T s T

g9 C(ar) &' [ ()

Now definev on B \ L simply by takingv = vy on V for each component. There
is no ambiguity because the components are disjoilig, harmonic onB \ L because
eachvy is harmonic onV, andv is continuous also at points @fB \ L because if
x € 3B\ L, the connected component.oin 9B \ L is an open interval that contains
and is contained in a singlg V). Finally (4.17) follows from (4.18) because the intervals
I1(V) are disjoint.

5. Proof of our monotonicity estimates

We are now ready to start the proof of the various lower bound#'ér), » € R,
announced in Section 2.

Let us simplify the notation first. For the same homogeneity reasons as for Propositior
3.5, it is enough to prove all these estimates whenl. So let us assume thatelR
and try to prove lower bounds fdt'(1). SetB = B(0,1), E=E(1) = fB\K |Vul?, ¢ =
¢(1) = HY(K N B), and callN = N(1) the number of points itk N d B. Recall from
(3.8) and (3.9) that

w3t aN—E—r (5.1)
2 = 2 T 2 v 9 .
F'() > J, +3J, — 2E, (5.2)

whereJ, andJ, are still as in (3.3) and (3.4).
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Most of our estimates will come from upper boundsmr- ¢, which will be obtained
by comparing our minimizetu, K) with various competitorgv, L). Maybe we should
say now that all our competitor®, L) will coincide with (u, K) outside ofB, so that
the results of Section 2 only use the minimality of the gairK) in a neighborhood of
B. See Section 6 for relevant definitions.

Another common feature of our paifs, L) will be that in all cases,

KNdBCLNJB, (5.3)

and
{ if 1, I are different connected componentsiaéf \ L,

then they lie in different components Bf\ L.

In fact, B \ L will always be a finite union of open arcs 8B, and (5.4) says that
L separates them from each otherBnLet us already check now that (5.3) and (5.4)
automatically imply the topological condition (1.4).

Let us even check that if, y € R? \ (B U K) lie in different components dk?\ K,
then they lie in different components Bf \ L as well. Let us proceed by contradiction
and assume instead that there is a simple/arcR? \ L that goes fronx to y. This arc
meetsK becausex, y lie in different components dR? \ K. SinceK and L coincide
out of B, y meetsB.

Call x; the first point ofy N 8 B that we meet when we start fromand run along.
Thenx; € 9B\ L, becauser does not meek. Hencex; € 9B \ K, by (5.3). Moreover,
x1 € U(x), the component aof in R?\ K, because the arc of betweenx anfx, lies in
R?\ (LU B) =R?\ (K UB).

Similary call y; the first point ofy N d B that we meet when we start fromand run
alongy backwards. Thery € 3B N U(y) (the component of in R?\ K) for similar
reasons. In particulay; does not lie inU (x).

Next call y, the first point ofd B \ U (x) that we meet when we start from and run
alongy in the direction ofy; andy. Such a point exists becau&s \ U (x) is closed and
containsy.

Note thaty, e 9B\ L C 3B \ K, becauseyr C R?\ L and by (5.3). Let us now start
from y, and run alongy backwards (in the direction of;). We start inR? \ K, and
in a component (y,) # U (x) (becausey,; ¢ U (x)). We do not meed B immediately,
because otherwisg would not be the first point of € 9B \ U (x) afterx;. So there is
a first pointx, in y N d B (when we start fromy, and run alongs backwards).

This point is betweernx; and y,, and it lies inU (x) by definition of y,. The open
subarcy, of y betweenx, and y, does not meed B, hence it lies inR?\ B or in B.
The first option is impossible, becaugedoes not meekK \ B = L \ B andxy, y; lie
in different components dk? \ K. The second option also is impossible, because (5.3)
tells us thatx,, y, lie in different components aiB \ L (they lie inaB \ L because/
does not meetk), and then (5.4) forceg, to meetL.

This contradiction completes our verification of (1.4) when (5.3) and (5.4) hold.

(5.4)

Proof of Proposition 2.7. -All we need to check here is that

Fi(l) > / \Vul?=J, + J, whenK N 9B = 0. (5.5)
JIB
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For this we set. = K \ B, keepv =« out of B U K, and letv|z be the harmonic
extension oful,p. It is easy to see that, L) is a competitor for(u, K). Then (1.6)
holds and we get that

9 2
E+¢=HYKNB)+ / |Vu|2</|w|2</<a—”> dH'=J,, (5.6)
B\K B 9B t

by Lemma 4.1 and the definition (3.3). Now (5.5) follows from (5.1).

Proof of Proposition 2.13. H# will be convenient, here and in the rest of this section,

to denote byrw, 0 < w < 2, the length of the largest componentad \ K. We want
to check that

F'(1) > min(1, 3 — 2w) / Vul?. (5.7)
IB\K

We do not need to assume that 3/2 as we did in Proposition 2.13, but in the other
cases (5.7) will be hard to use anyway.

SetL = X U (K \ B), whereX denotes the union of th¥ radial segmentf0, x], x €
K N dB. Note thatL satisfies our conditions (5.3) and (5.4), so there will be no trouble
with (1.4). We keep = u out of BUK and, to define on B\ L, we apply Corollary 4.15
(or directly Lemma 4.10 to each componentBf L). We can do this witle = w. This
gives a functiorv such that

9 2
/|W|2<w / (%) dH'= wJ,. (5.8)

B\L dB\K
It is easy to check tha, L) is a competitor for(u, K), so (1.6) holds and
E+¢<HYNLNB)+ / VU2 < HYX) + wJ; = N + o J,. (5.9)
B\L
Then (5.1) says that

1 3 1 1

and (5.7) follows becausg s, x [Vul* = J; + J,.
Proof of Proposition 2.12. We start with the case when
N>4 and ow>14 (5.11)
Denote by/ the longest component éfB \ K. Thus H'(I) = nrw and HX(dB \ I) <

% < 1.9. LetI’ denote an arc o§ B that containsk N 3B and such that(I') = 1.9
(see Fig. 3).
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Fig. 3.

Call a, b the extremities of’, and set
L=(K\B)UI'U[0,a]UIO0,b]. (5.12)

ThusH(L N B) = 3.9 and once agaii satisfies (5.3) and (5.4).

The setB \ L has two connected components, a smaller Bneavhich is entirely
surrounded by. and a larger on&,. We keepv = u out of BU L, setv =0 on V4, and
to definev on V., we apply Corollary 4.15 or Lemma 4.10 with=2— H(I') /7 < 1.4.
We get an extension of;z,; to V, such thatfv2 [Vv|? < 1.4J,.

This defines a competitqw, L) for (u, K), and (1.6) (applied to a ball slightly larger
thanB) yields

E+¢<HYLNB)+ / [Vv|? < 3.9+ 1.4,. (5.13)
B\L

Then (5.1) says that

1 3 1 1
- FF)>2=J,+=J,+N—-39-14J, > — 5.14
2 @D 2J +2 + 10 ( )

becauseV > 4. This proves the desired estimate when (5.11) holds. The other case i
when

N>4 and w<14 (5.15)

We may as well assume that

/ |Vu|? <1072, (5.16)

dB\K

because otherwise we can apply (5.7) and get fiet) > 15 [,z x [Vul® > 107 as
needed.

We want to replac&k N B with something shorter thaN, and for this and similar
estimates later the following definition will be useful.
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(a) (b)
Fig. 4.

DEFINITION 5.17.—Let I be an interval ofd B, with H'(I) < 2n /3. Call a, b the
extremities of . The fork based ot is the set

Y(I)=1[0,x]U[x,a]lVUlx,b], (5.18)

where the center € B is chosen so that the&segments i1§5.18)makel2® angles atx.
(See Fig4(a).) The extended fork based énis the set

Y*(I)=Y()U {I | 0} (5.19)

where we add the radius opposite[® x]. (See Fig4(b).)

The point of the fork is that it is the shortest connected set that containsa@db,
but we shall not need to know this.

LEMMA 5.20. -Setf (o) = 2sin(%f + Z) for 0 <« < 4. Then

HYY ()= f(a) whenH(I)=amn. (5.21)
We may assume that the c_entelies on the first axis, and even that: 0, as in Fig. 5.
Then the endpoints af are &7 . HenceH([x, a]) = smﬂ and
—cos2Z 1Hl([ D — cosE L sinX (5.22)
X = > > x,al) = 5 «/é > .
Now
HY (Y (D)) +2HY([x,a]) = cos & +isn i
=X X,d = 2 \/§ 2
1 a J3 .

as needed for the lemma.
We shall need to know that

2
f (@) is an increasing function aef € <O, 5) (5.24)
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sin QT
2

Fig. 6.L N B andL* N B.

and

f(0.5) <195 f(0.4) <183, [(0.268) <1.6249,
(5.25)

f(0.251) <159, f(0.22) <153, and f(0.2) <15.

This set of values is a little arbitrary, the estimates in (5.25) are not very sharp, and we

do not propose any proof other than checking with a calculator if the reader wishes.
Let us return to our case when (5.15) and (5.16) hold and try to construct a new

set L. Call I the shortest component éfB \ K. Then H(I) < %, becauseN > 4.

Write K N9B = {ay, ay, ..., ay}, Where the indices are chosen so thaanda, are the

extremities off. Then set

L=(K\B)UY(I)U[O0,az]U---U[0, ay]l. (5.26)
Note that (5.3) and (5.4) are satisfied as usual, and

HY(I)

Hl(LmB)gf( )+N—2<f(0.5)+N—2<N— (5.27)

100

by (5.24) and (5.25). Let us defineon B \ L by a brutal application of Corollary 4.15
with o < 2. As usual we keep = u out of B, (v, L) is a competitor foKu, K), and (1.6)
yields

1 2 > 3
E+€<H(LHB)+/|VU| <2/; +N—-—<N

100 © 100 (5.28)

B\L

by (5.16). Then (5.1) says thgf’(1) > 3, as needed for Proposition 2.12.
The rest of this section will be devoted to the proof of Proposition 2.9. Let us already
check that

we can assume that/ |Vu|? < 10. (5.29)
dB\K
Indeed, if this is not the case we note tiia- ¢ < 27 by (2.4), and (5.1) yields
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1 3 1 1
—F(l) J—|—2J +N—E—(> 2/|Vu|2+2—2n
dB\K
> / \Vul? + 65— 2, (5.30)
dB\K

from which (2.11) follows easily.

Now we can easily settle the case whah> 4. Indeed, (2.11) follows from
Proposition 2.12, because of (5.29).

We continue our study with the case wh¥n= 3, and even

N=3 and w>16. (5.31)

Let us construct a first competitép, L). Call I the largest component 6B \ K and
setl =3B\ Ip. ThusH'(I) < T and HX(Y (1)) < f(0.4) < 1.83 by (5.24) and (5.25).

Call 7; and I, the two components of \ K (i.e., the two shortest components
of 9B \ K). We may as well assume that(I,) < H*(I;). Then HY(I,) < 3(2r —
H(Ip)) = — . We take

L=(K\B)UY()UD (5.32)

(see Fig. 6). The point of addink here is to make sure that (5.3) and (5.4) hold.
As usual we can define on B \ L with the help of Corollary 4.15, but we have to
takea = 2. Then (1.6) yields

E+¢<HYNLNB)+ / Vo2 < HYY (D)) + HY (L) + 2J,
B\L

o
<1834 7 — % +2/, <183+ o +2) (5.33)

(becauser > 1.6). We do not want to apply (5.1) immedialety; instead we introduce
another competitofv*, L*) which may be better i, > 1. TakeL* = (K \ B)UY*(I)U

I». This is similar to (5. 32) but we replaced the farkl) with the extended for (7).
Thus HY(L* N B) = HY(L N B) + 1. The point of takingY*(/) is that now all the
components oB \ L* are contained in half-disks, and we can use Corollary 4.15 with
a =1 to definev* on B \ L*. The same argument as for (5.33) now yields

E+¢<HYL*NB)+ / IVo*P < HYLNB)+1+J,
B\L*
<283+ o + J:. (5.34)
10
We average (5.33) and (5.34) and get that

2r 3 3
E <2 — <2 —J, .
+£<233+ 10 + 2J 96+ 2J (5.35)
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and then (5.1) says that

1 3 4
P> I 43— E—> 1> 1000/| (5.36)
IB\K

because of (5.29).
Our next case is when

N=3 and 149<w<16. (5.37)
Call Iy, I, I, the components dfB \ K, with H(Ip) > H'(I;) > H*(1,). LetI be a

closed interval ob B which contains/; U I, and whose length i& (1) = 51%)’5 Denote
by a, b the extremities of , and set

L=(K\B)UI\I)U[0,alUI0,b], (5.38)

as suggested by Fig. 7. Then (5.3) and (5.4) hold, and

_ 51n
1 1 1
= — < - — —
H(LNB)=2+H-(I)— H (I}) + 100 2(271 wIr)
517 2rn
<24+ — — — < 2.98. .
100 10< 98 (5.39)

We can constructk on B \ L by applying Corollary 4.15 witlx = 1.49. Then the usual
comparison argument yields

E+¢<HYLNB)+149J <2.98+ 149/, (5.40)
and then (5.1) says that

1 3 2
—F 1 J 3—E—-¢> 5.41
N 100 (5.41)
from which (2.11) follows because of (5.29).
Our next case is wheW = 3 andw < 1.49, but then (2.11) follows readily from
Proposition 2.13.

Fig. 7. Fig. 8.
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Thus we are left with the case whéh= 2. We can assume that> 1.49 because
otherwise (2.11) follows from Proposition 2.13.

Let us first try to get results without using our topological assumption (2.10)/ Let
denote the shortest componentdf \ K, and let us try a first competitor with

L=(K\B)UY(), (5.42)

whereY (1) still denotes the fork based dnas in Proposition 5.17. See Fig. 8, and note
that H1(1) < 27 /3 becausey > 1.49.

This is similar to what we did whenv = 3, a little simpler. We can apply
Corollary 4.15 withe = 2 and get an extension such thatfy, , |Vu|? < 2J,. Then
(1.6) yields

E+¢<HY YD)+ / IVv|? < f(2—w) + 2/, (5.43)
B\L
by Lemma 5.20, and (5.1) yields

1, 3 1 1 1
5F D> et 5 +2—E—(> et 5 +2-f2—w). (5.44)
When J, > 1 it is more advantagous to ugg = (K \ B) U Y*(I), with the extended
fork Y*(I), instead ofL.

This increases the length by 1, but now the component8 of.* are contained in
half-disks and we can apply Corollary 4.15 with= 1. The same computations as for
(5.43) and (5.44) yield

E4+e<1+f2—w)+ Jy, (5.45)
1 1 1
ZF > = = _ _ .
P25+ 50 +1-f2-w) (5.46)
and, when we average with (5.44),

1 1 3

“FFO) >z, +=— f2—-w). 5.47
> D sh+5 f(2—ow) (5.47)

These are the estimates that we can get without using (2.10). For the next one we ha
to use (2.10) and an argument of Bonnet.

LEMMA 5.48. -If N =2 and(2.10)holds,
E<wJY2JY?, (5.49)

The proof is directly out of [4]; we review it here for the convenience of the reader but
refer to [4] for (some) more details. First,

_ / ug—udHl, (5.50)
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Fig. 9.

by a standard computation that uses Green’s formula, the factuthatharmonic
on R?\ K, and the Neumann conditiof* = 0 on K N B. Next call I1, I, the two
components 0§ K \ B. Then

u )

— =0 fori=12 (5.51)

av

I;

This uses the Neumann conditi@ﬁl =0 on K again, plus the fact that since (2.10)
tells us that the two extremities df lie on the same component &, we can find a
bounded domai®2; ¢ R?\ K whose boundary is composed bf plus a subset ok
whereg—ﬁ = 0. See Fig. 9 for a hint. So that, by Green’s formula,

d d d
O:/Au: l:i/—“:i/—“. (5.52)
on an Jv
Q; 082 1; I;

Next we deduce from (5.50) and (5.51) that
ou 2 ou 2 ou
E = / ua—v:Z/ua—v:Z/(u—mi)a—v, (5.53)

IB\K i=1y, i=1ly.

wherem; denotes the mean value wfon I;. Then for each. > 0

Ju , 1/2 gu\ 2y 12
/(u—mi)5<{/(u—mi)} {/(5)}

i

A 1 ou\?
<= —m)?+ = [(=). 5.54
2/(” i) +2x[ (aw) (5.54)

Now we use an inequality of Wirtinger ah (see [14]), namely

/(u_ml_)zg(@)2/@%)2@2/(%)2- (5.55)

i i i
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Altogether

Eéé{% 2/((%) a/( )}_—w21+2'af (5.56)

We choose. = w~1J-Y271/2 and get (5.49).
We may now return to the proof of Proposition 2.9 whén= 2. Exceptionally we use
(5.2) and get that

F'(1) > J, +3J, —2E > J; +3J, — 20J2JY? = x? + 3y% — 2wxy, (5.57)

where we set = JY2andy = J/2.
With the same notations, (5.44) and (5.47) say that

F()>—-x*+y"4+4-2f2—-w), (5.58)

F'(1) >y*+3-2f2—w). (5.59)

Nothing clever will happen in the rest of the argument; we shall just distinguish cases,
depending on the values @f x, andy, and use (5.57)—(5.59) to prove th&ft1) > 10~°
in all cases. Of course (2.11) will follow, because of (5.29).

Recall that we can assume that> 1.49 because of Proposition 2.13. We start with
the case when

1.49< w < wp, With w = 1.732. (5.60)

We shall see very soon why we chosg just a little smaller that/3. Note that
0x2 4 3y? — 2wpxy > 0, because it is a square. Hence (5.57) says that

2

F'(1) > x? 4+ 3y? — 2wxy > x? + 3y% — 2woxy > (1 - %)xz >10"°x2.  (5.61)

If x2> 1074 thenF’(1) > 10~° and we are happy. Otherwise we can use (5.58) to get
that

F'()>—x>+y’4+4-2f2—w)>4—-2f(0.51)—10*> 10" (5.62)

by (5.24), (5.60), and an estimate f¢£0.51) which was not recorded in (5.25) but is
very easy to believe. This settles our first case; we may now assume that. Then

f(2—w) < f(2—wp) = £(0.268) <1.6249 (5.63)

by (5.24) and (5.25). (It looks here that we need very sharp estimates, but this is largel
a joke.) Our next case is when

(5.64)

-l>||—‘

w>wy and y?
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Then (5.59) says that
F'(1)>y>+3-2f(2—w)>325—-2f(2—w)> 1074 (5.65)

which is enough. Similary, if

3
w>wy and x*<y* 4>,

Z (5.66)
(5.58) says that
FD)>—x?+y’+4-2f2—w)>325—-2f(2—w)>10"* (5.67)
and we are equaIIy happy.
Next setw, = £ — 1073 = 1.749 and study the case when
wo < w < wy, but (5.64) and (5.66) fail. (5.68)

In particulary? < 2 andx? > y2 + 2, hencex? > 4y?. Since (5.58) and (5.59) failed us
we return to (5. 57) Set

hi(x,y) = (1—107%)x% + 3y — 2w;xy. (5.69)

It is easy to check that = 2 is a root ofi;(x, 1). The other root is smaller that 2,
because the product is quite close to 3. Helge, 1) > 0 for x > 2 andhy(x,y) >0
whenx > 2y > 0, which is the case with = /1?2 andy = J¥2. Hence (5.57) yields

F'(1) > x? +3y? — 2wxy > x? + 3y? — 2w1xy = 107 3x2 + h1(x, y)
3
>103x% > 7 1073, (5.70)

where we used (5.68), (5.69), and the fact that (5.66) fails.
We are now through with the cases wher< w;, we may assume that > w;, and
then

f2—w) < f(2—w1) = £(0.251) <1.59 (5.71)

by (5.24) and (5.25).
If y2>1/5, then (5.59) says that

F'(1)>y?+3-2f(2—w)>32-2f2—w)>1072 (5.72)
and we are happy. if? < y? + 2, we use (5.58) and get that
F'()>—x?+y24+4-2f2—w)>32-2f(2—w)>1072, (5.73)

and we are happy as well. So we may assume that 1/5 andx? > y? + % Then
x? > 5y?. We return to (5.57), consider the case when

w1 <w<w =178, (5.74)
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and set
ho(x, y) = ax? + 3y% — 2woxy, (5.75)

where we choose = Lf‘?’ By our choice ofw, (just a little smaller than 4/5),
a<1-1073.

Our choice ofa is such thath,(v/5,1) = 0. The other root ofi,(x, 1) is smaller
that /5, because the product is very close to 3. Thetx, 1) > 0 for x > +/5 and
hao(x,y) > 0forx > \/Ey > 0.

Note that this is the case for our usual choiceret J¥/2 andy = J 2. Now (5.57)
says that

F'(1) > x? + 3y? — 2wxy > x? + 3y? — 2woxy
8
=(1—a)x®+ha(x,y) > A1—a)x*>> 0 1073, (5.76)

which is fine.
So we may now assume that> w,, and then,

f2—w) < f(2—wp) = £(0.22) <1.53, (5.77)

by (5.24) and (5.25).

If y2>8.1072, (5.59) says thaF’(1) > 3.08— 2f(2— w) > 1072, and we are happy.
So we may assume that < 8- 1072. We can keep our previous information that
x?> y2 4 8/10, and hence? > 11y°.

This time we sefi3(x) = ax? + 3y%2 — 4xy, with a = % < 1— 102 Note that
h3(+/11, 1) = 0 and the other root afis(x, 1) is smaller. Thereforés(x, y) > 0 when
x > +/11y > 0, and in particular for our usual choice.ofindy. This time (5.57) yields

FD)>x?4+3y?—dxy>1—a)x®>+ha(x,y) > (1—a)x*>8-10%  (5.78)

becausevy < 2 andx? > 8/10.
This proves (2.11) in our last case, and completes our proof of Proposition 2.9.

6. Local minimizersin aball

Let B be an open ball in the plane. For definiteness, tBke B(0,1). There is
a natural notion of local minimizer irB that we describe now. Call a pair, K)
admissible whenk c B is closed inB, u € Wi2(B \ K), and HX(K N B(0, r)) +
fB(O,r)\K |Vu|? < 400 for all r < 1. Competitors fou, K) are admissible pair&, L)
that satisfy (1.2), (1.3) and (1.4) for sonke< 1 (and where we replacg? with B).
Finally define local minimizers irB to be admissible pair&:, K) such that, for each
competitor(v, L) for (u, K), we have (1.6) for alR < 1 close enough to 1.

We do not wish to define local minimizers fa wheng2 is a planar domain, because
there may be more than one reasonable definition. However we should probably demar
that if (1, K) is a local minimizer ir2 and B C 2 is an open ball, thefu, K) is a local
minimizer in B. This way the paragraph below applies(to K) as well.
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The main point of this section is to say officially that(if, K) is a reduced local
minimizer in B(0, 1), then all the propositions of Section 2 stay true when we restrict
to radiir < 1, and with the same proof. The same comment stays true for most of the
results of the next sections (those that make sense locally). We shall not insist.

A more delicate question concerns minimizers of the (usual) Mumford—Shah func-
tional in planar domains associated with/aly function g. (See Section 13 for a defini-
tion.) It is not clear at all that some version of Proposition 3.5 holds in the general case
but we can always get results indirectly, using blow-up arguments as in [4].

However, with the extra assumption thatis a Lipschitz function on the domain,
Proposition 3.5 stays true up to an additivérOterm. In the proofs of the various
monotonicity inequalities we lose an(© each time we evaluaté”*“") pecause of
the extra term/(u — g)?>dx which is an Qr?). This shows that Propositions 2.7, 2.9,
2.12 and 2.13 hold with an extra(© term. Once this is known many other results
in the sequel (like say Theorem 9.1) hold true for minimizers of the usual Mumford—
Shah functional associated with a Lipschitz functgpnnder a sufficiently small scale
depending on thé > and Lipschitz norm og.

7. C* curvesand spiders

The following definitions, although somewhat heavy, will be convenient(iekX)
RGM, as usual, an® = B(x, r) be a disk centered oki. We shall say thak N Bisa
niceC! curve if " = K N B is a simpleC* curve with its two endpoints ofiB. We also
require thatl" be the image, under a rotation Bf, of the graph of som%—Lipschitz
function : R — R. This last condition is convenient because it gives some uniformity,
and alsok N B(x, p) is a niceC* curve forp < r because of it.

By C* spider we shall mean a set composed of three sif@pleurves that all start
from a same origin (the center of the spider), make®l&tgles with each other at this
point, and are otherwise disjoint.

We shall say thak N B(x, r) is a nice spider ik N B(x, r) is aC* spider with center
in B(x, g), the extremities of the three curves that compose it ligBrx, ), and also
each of these curves is the image under a rotationfgflapschitz graph. The center of
such a spider will be called a spider pointff

Finally we say thatB(x, r) is agood curve or spider diskvhenx € K and either
K N B(x,r) is aniceC! curve, or else&k N B(x, 4r) is a nice spider. The point of this
weird definition is that it accomodates nicely the case wken B(x, 4r) is a spider
with its centre close t@ B(x, r), so thatB(x, p) stays a good curve or spider disk for
o < r. But of course there is nothing too important about these definitions.

We shall need the following result to provide us with good curve or spider disks.

THEOREM 7.1. —There exist constantsg > 0 and ag > 0 such that if (u, K) €
RGM, x € K, andr > 0 are such that

|Vu|? < gor, (7.2)
B(x,r)\K

then B(x, agr) is a good curve or spider disk.
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This is Proposition 35 on p. 445 of [15]. It is not too hard to deduce from the main
results of [7] via a compactness argument.
We shall need later the following simple result.

PrOPOSITION 7.3. —For eache > 0 we can find a constant = a(¢) > 0 such that if
(u, K) € RGM, andB(x, r) is a nice curve or spider disk, then

|Vul® < ear, (7.4)

B(x,ar)\K

and there is a propelleP throughx (but whose center may be out®fx, r)) such that
dist(y, P) <ear forall ye KN B(x,ar). (7.5)

This is far from new, and there are many ways to get it. The simplest here is probably
to prove first that

|Vul? < 273 fore <1 (7.6)
B(x,tr)\K

To prove (7.6) notice that by assumption all the point&ah 9 B(x, tr) lie in the same
connected component & whenr < 1. Then we can apply the argument of Bonnet
described in Lemma 5.48 and get the analogue of (5.56) here. That is,

A t
E(tr) = / |Vu|? < Ea)ztrJ, + %J‘), (7.7)
B(x,tr)\K

whereJ; = [i 50 mk 592 o = [y (55)?, androrr is the length of the longest
component 0B B(x, tr) \ K. SinceB(x, r) is a nice curve or spider disk, we easily get

thatw < 3/2, say. Then we take = 2/3 in (7.7) and get that

3 3
E(tr) < gtr / |Vu|? = 2 E'(tr) (7.8)
B(x,tr)\K

for r < 1. Then we integrate, use (2.4) foe 1, and get (7.6).

Of course (7.4) is trivial to get with (7.6). The argument for (7.5) is very standard (see
for instance [7] or [4]), so we only sketch it. Because of (7.6) we cangiadar, 2ar)
such thatf, ;. x IVul? < ca'3. Then we comparéu, K) with a competitor(v, L)
where L N B(x, p) is a piece of line or propeller that connects the 2 or 3 points of
K NaB(x, p) andv is obtained using Corollary 4.15, for instance. The reader may be
worried about the case whéhn B(x, r) is a spider and its center is very néad#(x, p),
but this case is easily avoided by choosingiore carefully. The computations give that
HY(K N B(x, p)) is almost optimal, and (7.5) follows.
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8. Limitsof sequences of minimizers

We want to say that sequences in RGM have subsequences that converge, and that 1
limits lie in RGM. But let us first define convergence. {éf,} be a sequence of closed
sets in the plane. We say tha,} converges tX if K c R? is closed and

lim_de(K,, K)=0 (8.1)

for eachR > 0, where
dr(K,, K)=sup{dist(x, K); x € K, N B(0, R)}
+ sup{dist(x, K,,); x € KN B0, R)} (8.2)

is a lot like the Hausdorff distance ®(0, R). We use the convention thatkf, N B(0, r)
is empty, then the first sup is zero (and similary for the second one). {lKiUuscan
converge td if the setsk,, go away toco.

Note also thatl/; is a nondecreasing function &, so we may restrict to a sequence
of radii R that tends to+oo. Because of this and the classical properties of Hausdorff
distance, we can extract from any given sequdrg a subsequence that converges.

Next consider a sequené¢e:,,, K,,)} of admissible pairs (see Section 1), andietK)
be an admissible pair. We say tHai,, K,,) } converges tdu, K) if {K,} converges to
K as above, and in additiofVu,, } converges t¢Vu} uniformly on H for every compact
subsetd of R?\ K.

Note that this makes sense becaus# it R? \ K is compact, then it is contained
in R?\ K, for n large. The reader may fear that requiring uniform convergence is too
strong (because we only know tHat:, € LZ ), but this will not matter because we shall
only consider global minimizers for which we have much better estimates.

LEMmA 8.3.—If (u,, K,) € RGM forn > 0, then we can extract a subsequerieg}
for which {(u,, ., K,,)}x>0 converges.

This is standard. We can extract a first subsequence to make th&,setmverge.
Then we notice that,, is harmonic oriR? \ K,,, and that we have the uniform bounds

Vu,|> <27R 8.4
[Vu,| (8.4)

B(O,R\K,

for eachR > 0 (as in (2.4)). Thus iH ¢ R?\ K is compact we have uniform bounds on
1V2u, | o) for n large, and the lemma follows by Montel.

THEOREM 8.5. —If {(u,, K,,)} is a sequence in RGM that converges to some limit
(u, K), then(u, K) e RGM.

This is Theorem 31 on p. 444 of [15], but the proof is almost exactly the same as in [4],
where blow-up sequences of (usual) reduced Mumford—Shah minimizers are shown t
converge to reduced global minimizers (modulo extracting subsequences). Of cours
we may apply Theorem 8.5 to sequences obtained from a single minitizégt,) by
various translations, dilations, etc.
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9. Miscellaneous properties of K

We continue with our assumption thé&t, K) € RGM and use the monotonicity
propositions of Section 2 to prove various resultsnWe start with results relative
to the existence of long connected setKin

THEOREM 9.1. —There is an absolute constamt > 0 such thatx € K, r > 0, and
K contains two disjoint connected sets that both nég@ty, a;r) and dB(x, r), then
B(x, ayr) is a nice curve or spider disk.

See the beginning of Section 7 for the meaning of the conclusion. The proof of this
theorem will keep us busy for a good part of this section, but let us first state and prove
a consequence.

COROLLARY 9.2. —If K contains two disjoint unbounded connected sets, Kiéha
line or a propeller and: is locally constant ofiR? \ K (as in our examplegl.9), (1.10)).

Indeed, we may as well assume that the origin lieskanThen Theorem 9.1 tells
us that B(0,a;r) is a nice curve or spider disk for large enough. In particular,
KN B(0,ayr) or KN B(0, 4ayr) is connected. This proves thétitself is connected, and
the result follows from [4]. We can also use Proposition 7.3 instead of [4] to conclude.
For each choice oR > 0 and ¢ >0 (small) we apply the proposition to the disko, r),
wherer = a(e)~1R, and get thak N B(0, r) is e R-close to a line or a propeller. The
conclusion follows.

To prove the theorem we may assume that 0 and r= 1. Call y1, y» the two
connected subsets &f that are given by assumption. We shall first prove the conclusion
in the special case when

Y1, 2 are contained in the same connected componekt. of (9.3)

Note that fora; < p < 1, 1 andy, meetdB(0, p). This means that itV (p) is the
number of points inK N 3aB(0, p), then N(p) > 2. Moreover, ifN(p) = 2, the two
points of K N3 B(0, p) lie ony; U y», hence on the same componentkdfby (9.3)). If

in additionp € R (the set of full measure that shows up in the propositions of Section 2),
then Proposition 2.9 applies and

oF'(p) >10710 / |Vu|?. (9.4)
dB(0,p)\K

Now (2.4), the definitions (2.1)—(2.3), and Propositon 2.5 say that

4w > F(1) > F(1) — Flay) > / F'(p)dp
RN(ag,1)
1
210—10/{ / |Vu|2dH1}d—p. (9.5)
a1 9BO,p)\K P

Let ag andeg denote the two constants of Theorem 7.1. Chdose0 smaller tharug
and such that 2w\ <gg2. Then choose an integdf so large that # - 1019/ N < gg/2.
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Then takez; = AV, and decompose the intenval, 1) into thel, = (A1, A%, 0<k <
N — 1. Because of (9.5) we can fikdsuch that

< —. (9.6)

Vi |2}dp 4 - 1010 g
N T2

I 9B(0,p)\K

/ |Vu|?= / |Vu|2+/{ / IVuIZ}d,o

B(0,M)\K B(0, A\ K Iy 9B(O,p)\K

Then

d
I 9B(0,p)\K P

<2maH 4 8—2°xk < eghk 9.7)

by (2.4), (9.6), and the definition af
We may now apply Theorem 7.1 and get tHB(0, agrX) is a good curve or spider
disk. And s0 isB(0, a1) becauser; < apr*. (See the comments before Theorem 7.1.)
This completes our verification of Theorem 9.1 when (9.3) holds.

Remark9.8. — Our proof shows tha(x, air) is a nice curve or spider disk as soon
as (9.4) holds for alp € R N (a1, 1), regardless of any special assumptionkn

For the general case of Theorem 9.1 we want to proceed by contradiction anc
compactness. So let us assume that for each inieged we can find(u,,, K,,) € RGM
such that G K,,, K, contains two disjoint connected sets, andy», that both meet
9B(0,27) andd B(0, 1), but yet for whichB (0, 27") is not a good curve or spider disk.

First we want to replace/;,, i = 1,2, with a simple curvey/, C y;, that is
contained inB (0, 1) \ B(0, 2~") and still connect§ B(0, 2~") to 8 B(0, 1). Choose points
X;i € Vin N3B(0,27") and y; € y;,, N dB(0,1) and note that we can find rectifiable
curveSyl- supported ory; , that go fromx; to y;. This is because; , is connected and
H(y,,, N B(0, R)) < +oc for everyR > 0; see for instance [12], or Lemma 19.2 in [5].
Then we can gey;/, from y; either directly by removing the unnecessary loops (as
in [12]), or by choosmg/, with the shortest length (as in Lemma 19.14 of [5], following
a suggestion of Morel and Solimini).

Since we may as well replacgu,, K,)} by a subsequence, Lemma 8.3 and
Theorem 8.5 tell us that we may assume that,, K,)} converges to some limit
(u, K) € RGM. We may also assume that eagghf,,} converges to a curvgy;}. More
precisely, we know that all thg', have lengths at most 2¢by (2.4)), hence we can find
2m-Lipschitz parameterizations of them defined on the limit interval, and it is easy to
extract subsequences for which the parameterizations converge uniformly.

The curves, andy, are contained irB(0, 1) N K and go from 0 t® B(0, 1), but we
would like to see to which extent they are disjoint. Let us check that

y1N 72N B(0, 1) = {0}. (9.9)
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Letx € y1 N B(0,1) \ {0} be given. Set = %min(lxl, 1—|x]) > 0. Choosex, € yj,
such that lim_, .. x, = x. Recall thaty; , is a simple curve frona B(0,27") to 9 B(0, 1).
Thus forn large enoughy; , \ {x,} has two connected components, which we 9;@])
andy; ,. Moreover, if|x, — x| <, yfn meetsd B(x,, p) for all p € (0, r). Sinceylfn,
Y1., Obviously lie on the same componentf&f, we can apply Theorem 9.1 (when (9.3)
holds) and get thaB(x,,, a;r) is a nice curve or spider disk fd&,,.

If K, N B(x,,ayr) is a niceCt curve, it is obviously contained iy, (which is
simple), andy, , does not meeB(x,, air) (because it is disjoint frony; ). Even in
the case wheiK, N B(x,, 4a;r) is a nice spider, we can check that, does not meet
B(x,,4a1r), because there is not enough roomAR N B(x,, 4ayr) for two disjoint
simple curves that cros8(x,, 4air). So distx,, y;,) = arr in all cases. We may now
go to the limit and get that diét, y») > a;r, from which (9.9) follows.

Eachy; contains a simple curve/ that goes from 0 t@B(0, 1). Here it is not too
important that the curves be simple, but we want them to leave 0 immediately and neve
come back. This allows us to apply the special case of Theorem 9.1 where (9.3) holds t
the disk B(0, 1) and the disjoint connected setS\ {0} C K. We get thatB(0, a1) is a
nice curve or spider disk faK.

Now let begg as in Theorem 7.1, and apply Proposition 7.3 with ¢9/2. This gives
that

Vul? < —8";“1, (9.10)
B(0,aa1)\K
with a = a(ep/2). Next we want to use the fact that
VulZ= lim / Vi, |2, 9.11)
n—-+00

B(0,aa1)\K B(0,aa1)\K,

Note that in (9.11) we shall need the inequality that does not come from Fatou’s
lemma, and which is not trivial. It is a byproduct of the proof tiiat K) is a global
minimizer; see Theorem 2.2 in [4]. Now

|Vu,|? < eoaay (9.12)
B(0,aap)\K,

for n large enough, by (9.11) and (9.10), Theorem 7.1 saysBli@taqaa,;) is a good
curve or spider disk foK,, and this contradicts our assumption tlBD, 27") is not a
good curve or spider disk.

Note that we did not really need to use (9.11) here, because it was enough to prov
that

|Vu,| < e(aar)®? (9.13)
B(0,aa1)\Kn
for a small enougle. The point is that we also know from our earlier application of

Proposition 7.3 that all points ok N B(0, aa,) are very close to some propellé,
hence the same thing holds faéf, N B(O, %aal) for n large. Then we can apply
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Theorem 4.6 p. 802 of [7], or its analogue for spiders (essentially proved in Section 1C
of [7], but unfortunately with no explicit statement to refer to), and get the desired
contradiction. The estimate (9.13) is easier to obtain than (9.11); it follows from the
uniform convergence ofVu,} to Vu on compact subsets &? \ K, the uniformL?-
estimates (8.4), Holder, and the fact th&thas neighborhoods with arbitrarily small
Lebesgue measure. We skip the details.

This completes our proof of Theorem 9.1. Our next result is a (slightly simpler) variant
of Theorem 9.1.

PrROPOSITION 9.14. —There is an absolute constast > 0 such thatifc € K, r > 0,
and if we can find two distinct connected componen®(ef r) \ K that meeb B(x, p)
for a,r < p < r, thenB(x, aor) is a nice curve or spider disk.

As before it is enough to prove the proposition whes 0 andr = 1. We want to
verify that (9.4) holds for all radip € R N (az, 1). If we succeed, the proposition will
follow from Remark 9.8.

Soletp € R N (az, 1) be given. IfN(p) > 3, (9.4) follows from Proposition 2.9. The
only other option is thaV (p) = 2, because our two distinct componentsBgD, 1) \ K
(call them,; and2,) meetd B(0, p). Leta andb denote the points oK N 9 B(0, p).
We want to show that

a andb lie in the same component &, (9.15)

because then Proposition 2.9 will tell us that (9.4) holds, as needed.

Call 11, I, the two components afB(0, 1) \ K. Recall that our component,, 22,
both meetd B(0, p). Hencel; and I, lie in different components oB(0, 1) \ K (the
two ;). In particularK N B(0, p) separated; from I, in B(0, p). By a standard fact
of two-dimensional topology (see Theorem 14.3 on p. 123 of [20]), there is a connectec
component ofK N B(0, p) that still separateg; from I, in B(0, p). Obviously this
component containg andb; (9.4) and Proposition 9.14 follow.

COROLLARY 9.16. —If R?\ K is not connected, theK is a line or a propeller, and
u is locally constant oiR? \ K.

For this we need to know that
R2\ K never has any bounded connected component. (9.17)

This is standard. The first proof is in [4], but one can also look in Section 15 of [5].
It is also fairly easy. The idea is to find a piece @t curve in the boundary of our
bounded componets2, and then open a hole in it. This is authorized by (1.4) bec&use
is bounded, and if the hole is small enough we can modify the valugsrof2 to get a
function which is smooth across the hole, without paying more than half the size of the
hole in energy.

The corollary is now easy to prove. We may assume thatkQ By assumption, we
have two distinct components R? \ K. These components are unbounded by (9.17),
and so they meeiB(0, p) for all p large enough. Proposition 9.14 says tiB&0, r) is
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a nice curve or spider disk farlarge enough, and we can conclude as in Corollary 9.2
(for instance K is connected).

PROPOSITION 9.18. —If K is symmetric with respect to the origin, th&= ¢ or K
is a line, andu is locally constant ofR? \ K.

Let p € R be given. If N(p) = 0, then (9.4) holds because of Proposition 2.7. If
N(p) > 0, thenN(p) > 2 and all components &B(0, p) \ K have lengths at mostp,
by symmetry. Hence (9.4) holds because of Proposition 2.13.

S0 (9.4) holds for alp € R, and we can continue as in the proof of Theorem 9.1 when
(9.3) holds. We get radii as large as we want such that

|Vul? < eor, (9.19)
B(0,r)\K

asin (9.7). If 0e K, we can apply Theorem 7.1 just as before and conclude. The other
case in not much harder; K is not empty, we can choose a fixed origire K and

note thath(y,r_‘yD\K |Vu|? < gor, which is essentially as good as (9.19) (especially for

r large). Our argument says th&(y, p) is a good curve or spider disk for arbitrarily
large values op, which is enough to conclude.

10. Description of a connected component of K

We still assume here thdt:;, K) € RGM, as in Section 1. LeKy be a connected
component ofK, and assume that it is not reduced to one point. We want to give a
reasonably precise description &§. We start by recalling a result from [4].

ProPOSITION 10.1. —The setK is a chord-arc tree. By this we mean thakify are
two distinct points ofKy, there is a unique simple arg, , C Ko that connects: to y,
and

length(y,,) < Cilx — yl. (10.2)
Here C, is an absolute constant.
Let us rapidly describe the argument. First observe that

K contains no loop (10.3)

(i.e., no simple closed curve). This follows from (9.17). ety € Ky be given, with
x # y. BecauseK is connected and (Ko N B(0, r)) < +oo for everyR > 0, we can
find a rectifiable curvey; , C Ko from x to y. See Lemma 19.2 in [5], for instance,
but the argument is standard. From this it is easy to deduce the existence of a simple a
Yx.y C Ko that goes fronx to y. One can start fromr; , and remove the loops, as in [12],
or takey, , directly with minimal length and show that it is simple, as in Lemma 19.14
of [5].

Next the arcy, , is unique, because of (10.3). The argument is simple, and even
written in [5], just after (31.5). So we are just left with (10.2) to prove. Let us check
the following apparently more general (but in fact equivalent) result.
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LEMMA 10.4.-If y C K is a simple curve, then it is chord-arc. This means that if
x,y €y, the length of the arc of betweernx and y is at mostCq|x — y|.

This lemma is the only place where our proof will differ from the argument in [4].
Let y, x, andy be as in its statement, and call the arc ofy betweenx andy. Let us
already check that

y' C B(x,3|x — yl/a1), (10.5)

whereaq; is the constant in Theorem 9.1, which we can safely assume to be smallel
than 7/10.

Assume not, and chooses v’ \ B(x, 3|x — y|/a;1). Call y; andy, the two connected
components of '\ {z}. Also setr = 2|x — y|/a;. Both curves/; meetB(x, a;r) (because
they containx or y) anddaB(x,r) (because ot). Hence we can apply Theorem 9.1
(and even the special case when (9.3) holds). We getRtat2|x — y|) is a nice curve
or spider disk. But then there is a simple curve framo y which is contained in
K N B(x,8|x — y|). This curve does not contai hence its existence contradicts the
uniqueness in Proposition 10.1, and (10.5) follows. Now

lengthty') = H(y') < HY(K N B(x, 3y — yl/an) < Zix—yl  (10.6)
ax

because/’ is simple, and by (10.5) and (2.4). This completes our proof of Lemma 10.4
and Proposition 10.1.

Next we want to show that our connected compornof K is a piecewiseC! (but
with possibly infinitely many pieces) tree, with some estimates. Let us introduce a few
ways to measure how far from the extremitieskefis a given pointr € K. First set

ri(x) =sup{r > 0; B(x,r) is agood curve or spider dik (10.7)

(See the beginning of Section 7 for a definition.) When there is ad as in (10.7), set
r1(x) = 0. The next quantity,(x) measures how far we can runkaway fromx in at
least two different directions. Set

r2(x) = sup{r > 0; there is an injective Lipschitz functiart [—r, r] - K
such that(0) = x and|z/(r)| = 1 almost-everywhere (10.8)
A third quantity will be the distance to the skt of points of high energy. That is,
1
K* = {x e R% limsup= / |Vu|? > o}. (10.9)
r

r—0
B(x,r)\K

This is the original definition from [15], but recall that
K*={x e K; ri(x) =0}. (10.10)

Indeed, K* C K because: is harmonic (hence smooth) di? \ K. If x € K and
r1(x) > 0, Proposition 7.3 tells us that¢ K*. Conversely, ifx € K \ K* (or even if
inf {2 [5.\k |Vutl?} < £0), Theorem 7.1 says thag(x) > 0. This proves (10.10).
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A minor variant of the distance t&'* is the distance to
tip(Ko) = Ko N K* = {x € Ko; r1(x) =0}. (10.11)

(We shall also see that (ifg) = {x € Ko; r2(x) =0}.)

We shall need later a last radiug(x), which roughly measures how far away the
pathes inR?\ K that connect the different componentsBRifx, p) \ K, p small, have to
go. The simplest is to defing(x) first whenx is a regular point oK, i.e., when we can
find p > 0 such thatk N B(x, p) is a niceC* curve. Then fix any such > 0 and set

r3(x) =inf{r > 0; there is a curve’ C B(x,r) \ K that connects
the two components d8(x, p) \ K }. (10.12)

If there is no suchr > 0, setrz(x) = +o00. This is not an important case, because
Corollary 9.16 tells us that theK is a line or propeller. Also note that(x) does not
depend on our choice gf > 0.

Whenx € K*, setr3(x) = 0. We shall see later that this is natural, becayég) tends
to 0 wheny is a regular point ofK that tends tac. When there is @ > 0 such that
K N B(x, p) is a spider centered at choose any numbesg(x) such that

Iiryn_)i)rgf r3(y) < r3(x) <limsuprs(y). (10.13)

y—x

We are now ready to state a proposition that says that all these numbers are equivalel
PROPOSITION 10.14. —There is an absolute consta@it> 1 such that

ri(x) < dist(x, K*) < dist(x, tip(Ko)) < r3(x) < Cra(x) < C%r(x) (10.15)

for x € Kj.

Let us start our proof with the most interesting case whg€n) > 0. Pickr < rp(x)
close tor,(x). By the definition (10.8), we can find a Lipschitz injective function
z:[—r,r]— K such that(0) = x and|z'(¢)| = 1 almost-everywhere. Set = z([0, r])
and y_ = z([—r,Q]). Note that lengtty,) = r, and so Lemma 10.4 tells us that
lz(E£r) — x| > CLl In particular, the disjoint arcg. both meeb B (x, p) for 0 < p < CLl
By Theorem 9.1,B(x, ) is a good curve or spider disk, amg(x) > @-. Since we

C Cp°
could choose any < ro(x), we get that

aira(x)
C,

ri(x) = (10.16)
To continue our argument we need a maximal extensian We can find an interval
I C R that containg—r, r] and an injective Lipschitz extension efto I such that
z(I) C K, |Z/(t)| = 1 almost-everywhere oh and such that there is no further extension
of z with the same properties and to an interval that contaisgictly. Such a maximal
extension exists by standard arguments that we do not wish to repeat here.
Suppose thaf # R, and leta be any extremity off. Then we can defing(a), even
if a ¢ I, because is Lipschitz. Let us check that(a) € tip(Kp). If not, (10.11) tells us
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thatr;(z(a)) > 0 and B(z(a), p)is a good curve or spider disk far small. Then it is
possible to extend to some little neighborhoodf of a, in such a way that is injective
on V. By maximality of 7, z is not injective on/ U V. Hencez|; y contains a loop,
which contradicts (10.3). This proves thdt) € tip(Ko).

Denote byy; andy, the two components of(7) \ {x}. We just proved that botl;
reach out ofB(x, p) for everyp < d = dist(x, tip(Kg)). This proves thatz(x) > d, at
least ifx is a regular point oK . The case whe® N B(x, p) is a spider centered atfor
somep follows by continuity (see (10.13)). The last case whenK* is impossible, by
(10.10) and because (10.16) says théat) > 0. Sorz(x) > d in all cases.

Let us summarize the situation. The first inequality in (10.15) is immediate, because
these is no point ok* in a good curve or spider disk (by (10.10)). The second one is
trivial because tipKo) C K* (by (10.11)). We just proved the third one, and the last one
follows from (10.16). So we just need to check thatc) < Crz(x). It is even enough to
check thatrz(x) < Cri(x), because;(x) < ra(x) trivially.

As before, it is enough to prove this whenis a regular point ofK, because the
other case (when is a spider point) will follow from (10.13) by continuity. Choose
o > 0 such thatk N B(x, p) is a niceC* curve (as for the definition (10.12)), and
call ., Q2_ the two components aB(x, p) \ K. Let 0< r < r3(x) be given; and call
Q. (r) the connected component Bfx, ) \ K that meet£2... ThenQ, (r) # Q_(r) by
definition ofr3(x). Also, each2. (r) meets all the circle8 B(x, p), 0 < p < r, because
of (9.17). Then Proposition 9.14 says ttBtx, a,r) is a good curve or spider disk. Thus
r1(x) > apr and, since we could choose any r3, r1(x) > axra(x).

This completes our proof of (10.15) whepn > 0. Whenry(x) =0, r1(x) =0 by
definition of r1(x), x € tip(Ko) = Ko N K* by (10.10) and (10.11), anc(x) = 0 by
definition. In this case also (10.15) holds; Proposition 10.14 follows.

An easy consequence of Proposition 10.14 is that there exists an absolute consta
C > 1 such that ifc andy are two distinct spider points &, then

Ix — y| > C~tmax(dist(x, K¥), dist(y, K*)).

Indeed, if B(x, r) is a good curve or spider disk, there is at most one spider point in
B(x,r), namelyx. Thus|x — y| > r and by definition of(x) andr,(y) and Proposition
10.14 we have

Ix — y| = max(r1(x), r1(y)) = C~tmax(dist(x, K*), dist(y, K*)).

At this point we know thaiKy is a chord-arc tree composed Gf-curves that can only
meet by sets of three and with ¥28ngles. The tree may have extremities (which we
called tips), and we cannot prove yet that there is only finitely many of them. Away from
the tips, the situation is nice with uniform estimates (thatig;) > C 1 dist(x, tip(Ko)),
and in particulark \ Kq does not get too close.

We end this description of nontrivial connected components @fith an estimate of
the jump ofu at regular points oK. Letx € K be a regular point oK (as in (1.12)). It
is well-known thatu(y) has limitsu®(x) wheny € R? \ K tends tox from either side
of K. Thus we can define junip) = |u™ (x) — u~ (x)| without ambiguity.
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ProrosITION 10.17. —=There is an absolute constaft> 1 such that ifK is not a
line or a propeller andx is a regular point ofK, then

C ()M < jump(x) < Cry(x)Y2 (10.18)

See the definition (10.7), and Proposition 10.14 for equivalents(ej. We start with
the first inequality. The argument is quite standard (and for instance a minor variation o
Lemma 3.19 in [7], which itself was not really new), so we shall only sketch it.

First we can apply Proposition 7.3 to the diBkx, %rl(x)) and a value of > 0 to be
chosen later. Set= 1—10a(8)r1(x); we get that

|Vu|? < Ser. (10.19)
B(x,5r)\K

The simplest case is wheétiN B(x, r) is a niceC?! curve. Choose ¢ (5.1r) such that
faB(x’p)\K |Vu|? < 10¢. Note thatk N3 B(x, p) is composed of two points (by definition

of a niceC? curve, see Section 7); cdlf” and/~ the two components @fB(x, p) \ K.
It is fairly easy to see that

lu(y) —u™(x)| < Cyfer foryel”, (10.20)

whereu® (x) denotes the boundary valuemwft x, with access from the same sidefof
as’*. We do not give the details, but simply note tkan d B(x, ¢) is a niceC* curve
and the analogue of (10.19) holds forak r, which helps.

We can build a competitaiu™*, K*) for (1, K) as follows. We seK* = K \ B(x, g),
keepu* = u out of B(x, p), and try to interpolate nicely oB(x, p) \ K*. We can manage
to get

IVu*|? < Cjump(x)? + Cer, (10.21)
B(x,p)\K*

because of (10.19) and (10.20) in particular.

We do not need to check (1.4) here, becakises not a line or a propeller and hence
R?\ K is connected (by Corollary 9.16). Thus*, K*) is an acceptable competitor and
(1.6) says that

% < H1<K nB (x, %)) < / IVi*)2 < Cjump(x)? + Cer, (10.22)

B(x,p)\K*

which implies the first inequality in (10.18) ifis small enough.

We are left with the case wheki N B(x, r) is not a niceC* curve. HowevemB (x, r)
is a good curve or spider disk; this follows from the heredity property of good curve or
spider disks mentionned just after the definition in Section 7. TKien B(x, 4r) is a
nice spider, with its center iB(x, 2r). We can proceed essentially as before, except that
in the definition ofK* we only remove the part & N B(x, r/2) which lies on the same
leg of the spider as. We omit the details.
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Now we turn to the second half of (10.18). Because of Proposition 10.14, it is enough
to prove that jumpr) < Crs(x), whererz(x) is defined by (10.12). There are probably
direct ways to do this, but we shall apply simply Lemma 21.3 in [5].

In this lemma we are given a disk= B(xo, o) and aC* function f onR? \ K such
that

IV £ ()| < Corg /2 + Codist(y, K)™Y2 fory e R?\ K. (10.23)

Here we shall takef = u, xg = x, andrg = 2r3(x). Note thatr3(x) < +o00, because
R?\ K is connected. The estimate (10.23) would be easily checked, because of (2.4) an
the harmonicity ofu, but we do not even need to do this because it is done in (25.22)
of [5] (and the termCory Y2 in (10.23) is not even needed).

In that same lemma that we want to apply, there are two peints € B \ K, which
are assumed to lie in the same connected componat\d . (See (21.2) in [5].) Then
the conclusion of the lemma is that

| f ) — £ (32)| < C3Cory’?, (10.24)

whereC; is an absolute constant.

Here we apply this with points,, y, that tend tox from both sides ofK. They lie
in the same component @& \ K by definition ofr3(x) and choice of. Then (10.24)
holds and the upper bound in (10.18) follows.

Proposition 10.17 also gives estimates on the three jumpsibé spider point, just by
taking limits. Its proof also gives a reasonable control on the oscillationinfa small
ball near a tip ofKy. We omit the detalils.

11. Stability of thesingular singular set K*

Recall from (10.9) and (10.10) that* denotes the set of points of high energy, which
is also the set of points € K for which r1(x) = 0. In particular,K* is closed.

THEOREM 11.1. —Let{(u,, K,)} be a sequence of reduced global minimizers in the
plane that converges to sonie, K). Then the set&? converge tok *.

See the beginning of Section 8 for our definition of convergence. Also note that
(u, K) e RGMby Theorem 8.5; thus it is legitimate to talk abdqt.

Half of the theorem was known from ([15], Proposition 40). That is, the fact that
if {K?} converges to some limit/, then H C K*. For the other half we shall use
Proposition 10.14 (or equivalently Theorem 9.1).

Let us prove that

lim dist(x, K*) =0 forx e K" (11.2)
n—+00
Suppose not. Then we can fince K¥, p > 0, and an increasing sequereg} such that
dist(x, Kfjk) > p for all k. Without loss of generality, we can assume that k for all .
This amounts to replacinf(u,, K,,)} with a subsequence and simplifies the notation.



G. DAVID, J.-C. LEGER/ Ann. I. H. Poincaré — AN 19 (2002) 631-682 671
SinceK is the limit of {K,,}, we can find points, € K, such thafx,} converges ta.
Then
dist(x,, K?) > p/2 (11.3)
for n large enough, and Proposition 10.14 says that
ri(x,) = Ctp forn large enough
where here (x,) is defined in terms ok,. (11.4)

Let gg be as in Theorem 7.1, then set ¢y/2 and apply Proposition 7.3 @, K,,)
and the diskB(x,, ), WhereC is as in (11.4). We get that

/ Vi, |2 < et (11.5)

B(xn,t)\Kn

with ¢t = a(e) 4. Since B(x,t/2) C B(x,,t) for n large and{Vu,} converges tovu
uniformly on compact subsets Bf\ K, Fatou’s lemma says that

IVu|? < et (11.6)
B(x,t/2\K
Then Theorem 7.1 says th&i(x, %) is a good curve or spider disk, and obviously

x ¢ K*. This contradiction proves (11.2).
Now letx € K \ K* be given, setl = dist(x, K¥), and let us check that

d
dist(x, K7) > o for n large (11.7)
1

where(C; is an absolute constant. This is the part of the argument that is very close tc
Proposition 40 in [15], but we sketch it anyway.

First note that(x) > d/C, by Proposition 10.14. Then apply Proposition 7.3 with
& = go/3 to the diskB(x, d/C). We get that

|Vul? < % (11.8)
B(x,H\K

where we set = %. Then we use Theorem 2.2 in [4] (as we did for (9.11)) to get that
t
/ Vit |2 < % (11.9)
B(x,0)\K,
for n large. As before, choosg € K, so that{x, } converges ta. Then
eot

2
[Vu,|* < >
B(xn/2\Ky

(11.10)
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for n large, just by (11.9). Theorem 7.1 says tiid,, %") is a good curve or spider
disk for K,,, and in particular dist,, K¥) > “—g’ = %. This proves (11.7).

The convergence dfk?} to K* easily follows from (11.2), (11.7), and the fact that
{K,} converges taK . The main point is that if, € K? for n > 0 and{z,} is bounded,
then we can extract a subsequencemt that converges to somee K, and (11.7)
forcesx to lie on K*. The theorem follows.

Let us say that the minimizeu, K) € RGMis exoticwhen it is not one of the usual
minimizers that are described in (1.8)—(1.11). Recall from [15] Proposition 4%thist
unbounded whelu, K) is exotic. We want to use Theorem 11.1 to improve slightly on
this.

PropPoOsSITION 11.11. -There is an absolute constagt > 1 such that if(u, K) €
RGM andx € K*, then

K* meets the annulukz € R% & < |z — x| < CA}

(11.12)
for everyx > dist(x, K* \ {x}).

Here we did not specify that:, K) is exotic, but if it is not, thenk*® is empty or
reduced to one point and dist K* \ {x}) = 400, and the proposition is empty.

We want to prove this by contradiction and compactness, so let us assume that fc
each integen > 1 we can find a minimizetu,, K,), a pointx, € K?, and a radius
Ao > d, =dist(x,, K7\ {x,}) for which (11.12) fails withC = n.

We can assume thaf, = 0 (otherwise, translate everything). Singe> d,,, we can
also assume tha* N9 B(0, A,) is not empty (otherwise, replace the annulus in (11.12)
by a similar one with a smallex). We may also assume thgt = 1, because everything
is invariant under dilations.

Now take a subsequence{df:,,, K,,)} that converges. This is possible, by Lemma 8.3,
and the limit(uy, Koo) lies in RGM, by Theorem 8.5. Moreover, Theorem 11.1 says
that K2, is the limit of the corresponding subsequencéf}. In particular Oc K2 and
K*?, meetsdB(0, 1), and so(u,, K+) is exotic. On the other hand? does not meet
{zeR% 1 < |z] < n}, and hence&k’?, C B(0, 1). This contradicts the above mentionned
Proposition 45 from [15], and Proposition 11.11 follows.

Let us rapidly see, for the sake of completeness, how to prove that

K*is unbounded whetu, K) is exotic. (11.13)
First note that
every connected component Bfcontains at least one point &f*. (11.14)
For components that are reduced to one point, this comes directly from (10.10). For othe
componenty, notice that otherwise Proposition 10.14 would say that) = +oo for
all x € Ky, and hence thak is a line or a propeller (for instance because it is connected).

Now K* cannot be empty (because of (11.14)). It cannot be reduced to one poin
either, because then (11.14) would say tkais connected. Finally assume thif is
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bounded (but not empty), to get a contradiction. Lgt, K,,) be any blow-in limit of
(u, K). This means in particular th& ., is the limit of {¢,K} for some sequencg,}
that tends to 0. Then Theorem 11.1 says #iat= {0}. Hence(u., K~ ) is a cracktip
(as in (1.11)) because, as we just said, an exotic minimizer would notkave {0}.
Now we can apply Proposition 40.5 in [5], which says thatK') also is a cracktip. This
gives the desired contradiction.

12. Global minimizersin a cone

In this section we give a complete description of the reduced global minimizers in the
cones

C,={pd’; p>0and0<6 <a} (12.1)

with aperturex < 37 /2.

The definition of global minimizers i€, is the same as for the plane. Admissible
pairs are pairgu, K) for which K is a (relatively) closed subset 6f,, u € W&,’CZ(CQ \K),
and the analogue of (1.1) witk? replaced byC, holds. The definitions of competitors
for (u, K), global minimizers, and then reduced global minimizer€inare the same
as before, except that we replaRéwith C,, everywhere. We shall denote RGM(C,,)
the set of reduced global minimizersdx,.

We want to show that whea < 37 /2, RGM(C,) reduces to the following trivial
examples. First we can také = ¢ andu constant orC,. We can also leK be a half-
line with its origin indC, andu be constant on each component®f\ K. It is easy to
see that this gives a global minimizer @, if and only if the following conditions are
satisfied. If the origin ofK lies onaC, \ {0}, K must be perpendicular ®C, at that
point. If the origin ofK is 0, K must make angles /2 with the two branches dfC,.
Finally, « > 7 is needed in all cases.

THEOREM 12.2. -If 0 < o < 37 /2 and (u, K) € RGM(C,), thenK is empty or a
half-line with its origin indC, (and the constraints explained abgyandu is locally
constant onC, \ K.

A few comments on this statement may be useful. The situatio@,iris simpler
because there is less room than in the plane; this will be clear in the proof. There is n
reason to believe that something special happens fo3r /2. We claim that somewhat
painful adaptations of the proof below would give values:&ightly larger than 3 /2,
and probably Theorem 12.2 stays true foreak 27 .

The most interesting case of Theorem 12.2 is probably wheax andC, is a
half-plane. Then the situation looks a little simpler because global minimizefs, in
correspond by reflection to global minimizers in the plane that are symmetric with
respect to the first axis. The simplification is not enormous, though.

To prove the theorem we introduce the same funchon = w as in the planar
case, where

¢ry=HYKNB@O,r) and E(r)= / |Vul|?. (12.3)
CeNB(O,r)\K
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The proof of Proposition 2.5 still works here; there is an open set of full measure
R C (0, 400) such thatF’(r) exists (and can be computed as in (2.21)) for R,
and

F(r)) — F(r) > / F'(r)dr (12.4)
RN(r1,72)
for 0 < r; < rp. Next we claim that the proof of Proposition 3.5 still applies here. The
main reason for this is that the homeomorphisppghat were used there are radial,

hence preserv€,. All this is good for us, because it allows us to go from the analogue
of (2.21) to the analogue of (3.8), namely

E(r)+£4(r)

3 1
%F’(r) >S4+, +N@) — (12.5)

2 2

whereJ, andJ, are defined as in (3.3) and (3.4), aNdr) still denotes the humber of
points inK N dB(0, r).

Proposition 2.13 also goes through (see the beginning of Section 5). Notesthat if
denotes the length of the longest componeri B0, r) N C, \ K, thenw < «/m. Thus
(2.14) yields

rF'(r)y=m / \Vul?>=m(J; + J,) (12.6)
dB(0,r)NC,\K
for r € R, where we set
2
m= min(l, 3— —“) 0. (12.7)
T

This will be our main estimat_e, but there are a few cases where we wish to improve it.
Let » € R be given and calle’:, ..., r& the points ofK N 9B(0, r), with 0 < 6; <
6, <--- <Oy < «a. Letus check that

FF(r) > 2(1—sinf;) whené; < % (12.8)

We proceed as in Section 5 and construct a competiiof.) for (u, K), where
L N B(0,r) is composed of th&V — 1 segments [0-€], i > 1, plus the shortest line
segment fromré® to 3C,. See Fig. 10. The functiom on B(0,r) N C, \ L can be
constructed using Corollary 4.15, and we can even ke 3/2 there. The comparison
yields

E(r)+€(r) < HY (LN B(O,r)) + / |Vv|?
B(0,r)NC\L

3
< (N —=1r +rsind, + Er.]r. (12.9)

We plug this back into (12.5) and get (12.8). For the same reasons,

PF'(r) > 2(1—sin(e — 6y)) whenfy > a — % (12.10)
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Next we claim that
rF'(r) >10"% whenN(r) > 2. (12.11)

If 61 < 2 or Oy > — 2, this follows from (12.8) or (12.10). Otherwigk — 6; <

O — 01 <a—E <% Call I the arc ofd B(0, r) betweenr€”s andre’, and lety

be the fork based o (as in Definition 5.17). Thed/*(Y) < rf($) < (2— 1073 (by
Lemma 5.20 and a trivial estimate). This time we téke B(0, r) = Y U (,-»I[0, re?),
as suggested by Fig. 11. We can still apply Corollary 4.15 witk 3/2, and we get that

3
E(r)+e(r) < HY(LNBO,r)) + / Vol < Nr — 1073 + Srhs (12.12)
B(0,r)NCe\L
(12.11) follows from this and (12.5).
We know from (12.4) and (12.6) thdt is nondecreasing. It is also bounded, because

Er)+L(r)<ar < 3Lzr forr >0, (12.13)

by the usual cut-off argument (adaB (0, r) N C, to K and replace everything inside by
a constant). Hence we can set

L= lm F()<3n. (12.14)

r—+00

We want to use (12.6) to prove that

im £ _

r—>+4o00 r

0. (12.15)

Let A > 1 be given. Note that

AT
/F’(t) dt < F(or)— F(r) <L —F(r), (12.16)
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by (12.4). Then

Ar AT
_E(r) = 2 L Mo
E(ur) E(r)_r/{ag(o )zc ; |Vu| }dtgr/mF(t)dzg “(L-F()  (12.17)

by (12.6) and (12.7). Sincé — F(r) tends to 0 when tends to+oco, we get that
EGr-EW also tends to 0. SincEZ < 3T by (12.13), we get that limsyp, , ., £ < &7
for any giveni > 1; (12.15) follows.

Lete > O be given, and let € R be such that F'(r) < e. Because of (12.16) (with
A = 2), Tchebychev, and (12.14) we know that we can find arbitrarily large rdikie
this. Note thatV (r) < 1 (if ¢ < 10°3), by (12.11).

If N(r) =1, we compargu, K) with the usual competitotv, L) for which L =
[0, 7€11U (K \ B(0, r)) andv is given by Corollary 4.15. We get that

2 3 3er

Er)y+e(r)<r+ / V] <r+—rJ,<r+E, (12.18)

2
B(O,)\L

by (12.6) and becauseF'(r) < ¢
If N(r) =0we canusd. = K \ B(0,r) and Lemma 4.10, which yields

3 3er
E Lry<=rJ, < —. 12.19
() + L) < Sr o ( )
Note thatL = lim,_, .o, “2, by (12.14) and (12.15). Since for each snaall 0 we can

find arbitrarily large radii- for which (12.18) or (12.19) holds (and hen€g < 1+ 3),
we see thal. < 1. Let us check that

K =@ andu is constant ifL < 1. (12.20)

Set§ = 1L > 0 and A= §"1. SinceL = lim,_ .. 2 we know that forr large
enough

HY(K N B, Ar)) = £(Ar) < (1— 28)Ar = Ar — 2r. (12.21)

SetEg={t € (0,Ar); N@) =0} and E; = (0, Ar) \ Eg. Then E; is the image of
K N B(0, Ar) under the 1-Lipschitz mapping— |z|. ConsequenthZ(E;) < Ar — 2r,
by (12.21), andH(Eg) > 2r. Since R has full measureHY(R N Eq N (r, Ar)) > r
By (12.16) and Tchebychev, we can finde R N Eg N (r, Ar) such thatF'(z) <
(L=F(@)/r.

Lete > 0 be small. Ifr is large enoughl. — F(r) < e/x andtF'(t) < £ < e. Then
(12.19) holds for (becauseV (r) =0) andE(¢) + £(2) < 3” . Thus we found arbltrarlly
large radiir for which F(r) < % This proves thal. =0, but thenF (t) = 0 because”
is nondecreasing; (12.20) follows.

We may now restrict our attention to the remaining case when

L= lim t) _ =1 (12.22)

r—>4o0o p
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re 1o reial

C* \2

Fig. 12. Fig. 13.

Next we wish to show that most & lies in the smaller cone
C*={pd’; p>0anda; <6 <a —ay}, (12.23)

wherew; € (2—’5, 7) will be chosen later. See Fig. 12 already. The reader should not

worry: the argument below will show that> 2¢; andC* is not empty. First set
R(e)={teR; tF' (1) <e} (12.24)

for ¢ > 0, and let us check that

lim %Hl([r, 2r1\R(¢)) =0 (12.25)

for eache > 0. SetZ(r) =[r, 2r] \ R(¢); then (12.16) says that

—Hl(Z(r))g/ Ll (’) / Faydi<2(L—F(),  (12.26)

e
Z) * 2

which tends to 0 when tends to+oo.

LEMMA 12.27. -f ¢ is small enough,

N(#) = 1 and the point ok N9 B(0, ¢) liesinC*
(12.28)
whent € R(¢) is large enough

Indeed (12.11) says thaV(s) < 1. If ¢ is large enough{(z) > t/2 (because of
(12.22)), and then (12.19) cannot hold farHence N(¢) = 1. Finally the point of
K N aB(0,¢) lies in C* (if ¢ is small enough) because, < 7/2 and by (12.8)
and (12.10).
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LEMMA 12.29. For eachas € (3—’5, aq1) we can findR > Osuch thatk N (VLU Vs) C
B(0, R), where
Vlz{,oeie; ,0>0and110<9<oz2}, (12.30)

Vo= {pe’; p>0anda —az <0 <a — 5} (12.31)
SetA(r) = B(0,2r)\ B(0, r) for r > 0, and callr (z) = |z| the radial projection of any
z € R2. Lemma 12.27 says that ferlarge,7 (K N A(r) N C*) contains[r, 2r) N R(¢).
Then

}Hl[K NA(r)NC* > }Hl(rr[K NA(r)NCH) > }Hl([r, 2r)NR(e)), (12.32)
r r r

which tends to 1 by (12.25). Also,

1 e@2r)—¢
im ZHYK A AG) = fim SE LD g (12.33)
r—>—+o0 r r——+00 r
by (12.22). Consequently,
1
lim “HY(K NA()\C*)=0. (12.34)

r—>4oo r

Now let z be any point ofK N (V1 U V), and setr = 2z|, r1 = (o1 — a2)r,
and B = B(z,r1). Then B c C,, and the local Ahlfors-regularity oK says that
HY(K N B) > C~'r. (We do not care ifC depends onr, a;, anda,.) On the other
hand,B C A(r) \ C*, hence (12.34) forbids to be too large. The lemma follows.

LEMMA 12.35.-The setsV; \ B(O,R) and V> \ B(0,R) lie in two different
components of, \ K.

The idea is that otherwise we can construct a better competitoe fé&f) by removing
K N B(0,t) for large values of. First we want to show that does not grow too fast
in V1 and V5.

Setfy =%, 6, =a — %, and thenz;(t) = €% and f;(1) = u(z; (1)) for j =1,2
andr large. Note that digt (1), K U9C,) > % for ¢ large, by Lemma 12.29. Sinceis
harmonic, we get that

C Yz CcE@nY?
|f}(t)|<7{ / |vu|2} el (12.36)

B(zj(1).%)
for # large enough. Then (12.15) says that,lim.,(+%/? f/(r)) = 0, and hence
; -1/2 ». _
t—Ilr—tr-]oot fi®)=0. (22.37)

Let ¢ > 0 be small, to be chosen later, and #dbe large. First choosee (r, 2r) N
R(e); this is possible, by (12.25). Kis small enough, Lemma 12.27 says that) = 1
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and that ifzg denotes the point ok N3 B(0, 1) , thenzg € C*. We also know that

IVul> <m ' tF'(1) <m™ e, (12.38)
dB(0,1)NCy\{z0}

by (12.6) and (12.24). Next (12.37) says that
| f1(t) — fo()] < eM21H? (12.39)

if » is large enough, so the values:obn the two components &B(0, r) N C, \ {zo}
are not so different.
SetK; = (K \ B(0, 1)) U[3z0, zo]. Then

HY(K1N B(O,1)) = % <L) — % =HY (KN B@O,1)) — % (12.40)

for r large, by (12.22). On the other hand, (12.38) and (12.39) allow us to construct &
smooth functions; on B(0, ) N C, \ K; that coincides witht on 9 B(0,¢) N C, \ {zo}
and for which

|Vuq|? < Cet. (12.41)
B(0,))NCy\K1

Now (uq1, K1) cannot be a competitor fofu, K), because otherwise (12.40) and
(12.41) would contradict the analogue of (1.6) £ifis small enough). Hence our
topological condition (1.4) is violated, and the only way this can happen is that the
two components 0¥ B(0, 1) N C, \ {zo} lie in different components of, \ K.

Lemma 12.35 follows, because we already know thatJ V,) \ B(O, R) Cc C, \ K.

Next we want to find a curve iIK that goes frondC, to infinity. Chooser; > R
such that; € R(e), whereg is sufficiently small for Lemma 12.27 to apply. C#{land
I, the two components adfB(0,#1) N C, \ K. Since eaclV; \ B(0, R) meets/; or I,
Lemma 12.35 tells us that separated; from I, in C,. Then(K U dC,) N B(0, t1)
separated; from I in B(0, #;), and Theorem 14.3 on p. 123 of [20] says that we can
find a connected piecEy C (K U dC,) N B(0, 11) that still separates them IB(0, 11).
Since H'(I'g) < 400, there is a rectifiable curvE; ¢ K N B(0, 11) (except for its two
endpoints) and which connects some poind 6f, to z;, the point ofK N3 B(0, t;).

Chooser, > t; + 1 such that, € R(g). There is a curv&, in K N B(0, ) \ B(0, t1)
that connects the point & N B(0, t,) to z;. The argument is the same as for. We
could also construct a curve lik&, notice that the curve has to go through(because
Lemma 12.29 prevents it from getting close a6, before), and remove the part in
B(0, 17).

We can iterate this procedure and get a curve K that starts fromdC,, and goes to
infinity. Note that

T\ BO,1) C C*=:{p€’; p>0anda, <6 <a—ay}, (12.42)

by Lemma 12.29 and becausge C*.
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Call zg € 9C,, the initial point of . We want to do a last monotonicity argument,
but this time with disks centered ab. Set £1(r) = HY(K N B(zo,r)), E1(r) =
Jscorncak |Vul? andF(r) = [Ex(r) 4 £1(r)]/r for r > 0.

We want to show that

F; is nondecreasing ofR;, +00) (12.43)

for someR; > 0. By the same sort of arguments as in Section 2,

Bn= [ v (12.44)

0B (z0,r)NC\K

and
€4(r) = Na(r) (12.45)

almost-everywhere and in the sense of distributions, wig(e) denotes the number of
points of K N dB(zo, r). Thus it will be enough to show that

Ex(r) + 61() < rNy(r) + 7 / Vul? (12.46)

0B (z0,r)NC\K

almost-everywhere o(R, +00).

To prove (12.46) we want to compage, K) with a competitor(v, L). As usual, we
keep(v, L) = (u, K) out of B(zo, r). Callay, ..., ay the points ofK N3 B(zg, r), and
set

N
LN B(z0,7) =Cy N (U[zo, a,-]> , (12.47)
i=1

as suggested by Fig. 13.

If r is large enoughK N 9 B(zo, r) contains at least a point &f, which lies inC* by
(12.42). Choose; anda; so close tor/2 thata — a; < 7. Then forr large enough, all
the components of B(zp, 7) N C, \ K have lengths less thanr (because of our point
of I).

This allows us to use Corollary 4.15, with domains contained in half disks, to construct
a functionv on B(zg, ) N C, \ L that coincides with: on 0 B(zo,7) N C, \ K and for
which

Vo2 < r / V2. (12.48)
B(z0,r)NCy\L 3dB(z0,r)NCe\K
The comparison withiu, K) yields (12.46), and then (12.43).
SetL;=Ilim,_ ; Fi(r). ThenL; =1, by (12.15) and (12.22). Henag(r) < 1 for
r > Ry, by (12.43). On the other hand, we have a curve K that starts frony, and
goes to infinity, so

r < HYT N B(zo,7)) < £1(r) < rFi(r) (12.49)
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for all » > 0. Hence all these numbers are eqéak=T, I is a half line, and: is locally
constant (becausk, (r) = 0 for r large). Our proof of Theorem 12.2 is complete.

13. Boundary behaviour of Mumford—Shah minimizersin a smooth domain

Let Q@ C R? be a bounded™! domain, ant letg € L>(2) be given. The Mumford—
Shah functional is defined by

J(u,K) = / |Vu|? + / lu — g+ HY(K), (13.1)

Q\K Q\K

where the competitors are paiig K) such thatk is closed inQ andu € W12(Q\ K).
Minimizers for J are known to exist [1,11]. The Mumford—Shah conjecture that says
that for reduced minimizerk is a finite union ofC* curve is still open, but surprisingly
the situation at the boundary ©f is much simpler. We want to rapidly explain why.

Let (u, K) be a reduced minimizer faf, and letxg € 92 be given. We want to study
blow-up limits of («, K) atxg, so we define pair&,, K,) by

K,=r"K-x0), 2 =r""Q2-1x0), (13.2)

and
u,(x) =rY2u(r(x —xo)) forxe,\ K, (13.3)

for r > 0 small.

Each(u,, K,) is a reduced minimizer for a functional liké on 2,, but for simple
reasons of homogeneity the error tefg)\,(r lu, — g-|? is multiplied by a constant that
tends to O withr.

Just like in Section 8, one can show that for each sequengéhat tends to 0, we can
extract a subsequence @i, , K,,)} that converges to some limit, K~), and that
when this happen§:.., K.) is a reduced global minimizer in some half-plahe(Here
we use the fact thalQ2 has a tangent aty.) We claim that the proof is similar to the
argument in [4], but unfortunalely we do not know of a good reference yet, and do not
wish to include a proof here.

Then we can apply Theorem 12.2 Kq, is either empty or a half-line perpendicular
to the boundary B, andu., is locally constant orP \ K .

When K, is empty, it is not too hard to show thag has a small neighborhood that
does not meeK . For instance, one may use the local Ahlfors-regularityKoinear
92 [16] to show that otherwise there is a nontrivial amountkofvery neard<2, and
then push it out using a diffeomorphism framto a slightly larger domain.

WhenK, is a half line perpendicular t®P, it is possible to show thaty has a small
neighborhood wher& is a C!-curve that starts from and is perpendicular t6Q
there. The argument is similar to those needed for Section 7, but again we do not knou
of a good reference yet.

Because of all this, there is a small neighborhood@fin Q2 whereK is composed
of finitely manyC? curves that all end up oh2 perpendicularly.
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Since Theorem 12.2 also allow us to control global minimizers in cones of aperture
< 37 /2 we can do similar arguments on piecew&tomains with interior angles
less than 3/2. A more amusing question would be to control what happens on
boundaries of Lipschitz domairss.

REFERENCES

[1] L. Ambrosio, Existence theory for a new class of variational problems, Arch. Rational
Mech. Anal. 111 (1990) 291-322.

[2] L. Ambrosio, D. Pallara, Partial regularity of free discontinuity sets I, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) 24 (1997) 1-38.

[3] L. Ambrosio, N. Fusco, D. Pallara, Partial regularity of free discontinuity sets I, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (1997) 39-62.

[4] A. Bonnet, On the regularity of edges in image segmentation, Ann. Inst. H. Poincaré,
Analyse Non Linéaire 13 (4) (1996) 485-528.

[5] A. Bonnet, G. David, Cracktip is a global Mumford—Shah minimizer, Astérisque, Vol. 274,
SMF, 2001.

[6] G. Dal Maso, J.-M. Morel, S. Solimini, A variational method in image segmentation:
Existence and approximation results, Acta Math. 168 (1992) 89-151.

[7] G. David, €1 arcs for minimizers of the Mumford-Shah functional, SIAM. J. Appl.
Math. 56 (3) (1996) 783-888.

[8] G. David, S. Semmes, Analysis of and on Uniformly Rectifiable Sets, AMS Series of
Mathematical Surveys and Monographs, Vol. 38, 1993.

[9] G. David, S. Semmes, On the singular sets of minimizers of the Mumford—Shah functional,
J. Math. Pures Appl. 75 (1996) 299-342.

[10] E. De Giorgi, Problemi con discontinuita libera, Int. Symp. Renato Caccioppoli, Napoli,
Sept. 20-22, 1989, Ricerche Mat. (suppl.) 40 (1991) 203-214.

[11] E. De Giorgi, M. Carriero, A. Leaci, Existence theorem for a minimum problem with free
discontinuity set, Arch. Rational Mech. Anal. 108 (1989) 195-218.

[12] K. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1984.

[13] H. Federer, Geometric Measure Theory, Grundlehren der Mathematischen Wissenschafte
Vol. 153, Springer-Verlag, 1969.

[14] G. Hardy, J.E. Littlewood, G. Pdlya, Inequalities, Second edition, Cambridge University
Press, 1952.

[15] J.-C. Léger, Flatness and finiteness in the Mumford—Shah problem, J. Math. Pures Appl
(9) 78 (4) (1999) 431-459.

[16] F.A. Lops, F. Maddalena, S. Solimini, Holder continuity conditions for the solvability
of Dirichlet problems involving functionals with free discontinuities, Ann. Inst. Henri
Poincaré, Anal. Non Linéaire 18 (2001) 639-673.

[17] F. Maddalena, S. Solimini, Blow-up techniques and regularity near the boundary for free
discontinuity problems, Advanced Nonlinear Studies 1 (2) (2001).

[18] P. Mattila, Geometry of Sets and Measures in Euclidean Space, Cambridge Studies i
Advanced Mathematics, Vol. 44, Cambridge University Press, 1995.

[19] D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and
associated variational problems, Comm. Pure Appl. Math. 42 (1989) 577—-685.

[20] M.H.A. Newman, Elements of the Topology of Plane Sets of Points, Second edition,
reprinted, Cambridge University Press, New York, 1961.



