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ABSTRACT. — Consider the elliptic problem
Au—Vx)u+uP=0 inR", 1)

withl<p< % n > 2,and 0< V(x) € L*°, which may decay to 0 at infinity. We prove that
if V is radial and satisfies
ai 2n-1(p—-1)

——— << VHx)<a2 and 0<b<
T pp SV s p+3

then (1) admits a (ground state) positive solution. We do not use traditional variational method:
and the result relies on the study of global solutions of the parabolic problem

Au—Vx)u+u? —3u=0 inR"x(0,00), u(x,0)=ug(x). (2)
Indeed, we will show that, under suitable conditionslor{not necessarily radial), (2) admits
global positive solutions and that whén and ug are radial some global solutions hawe

limit sets containing a positive equilibrium. The method also covers nonlinearities more genera
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thanu?, in which case the standard variational method may be hard to apply.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME. — Nous considérons le probleme elliptique
Au—V(x)u+u? =0 dansR”, Q)

avec 1< p < % n>2,et0< V(x) e L*, V(x) pouvant tendre vers 0 a l'infini. Nous

prouvons que sV est radial et satisfait

ai 2h—D(p—-1)
—— <VMx)<a2 et 0K<b<s ——F—————
Trpp SV sa p+3

’

alors (1) admet une solution positive (état fondamental). Nous n’utilisons pas les méthode:
variationnelles traditionnelles : le résultat repose sur I'étude des solutions globales du problém
parabolique

Au—Vxu+u? —u=0 dansR” x (0,00), u(x,0)=ug(x). (2)

En effet, nous montrons que, sous des conditions approprié&s(swn nécessairement radial),

(2) admet des solutions globales positives et que, lordgeéug sont radiales, 'ensembte-

limite de certaines solutions globales contient un état d’équilibre positif. La méthode s’applique
également a des non-linéarités plus généralesiupour lesquelles la méthode variationnelle
classique pourrait étre difficilement applicable.2002 Editions scientifiques et médicales
Elsevier SAS

1. Introduction

We are concerned with the existence of positive solutions to the elliptic equation
Au—-VxXu+u?=0 inR", (1.1)

and with the asymptotic behavior of global positive solutions to the corresponding
parabolic equation

{Au—V(x)u—i—u”—a,u:O inRR" x (0, 00), (1.2)

u(x, 0) =uo(x),
wheren is a positive integer and 4 p < pg = % (ps = o0 if n < 2). In what follows,
unless otherwise stated, we will assume that V (x) is a locally Hélder continuous,
nonnegative and bounded function.

Problems such as (1.1) and (1.2) arise from diverse fields such as mathematic:
physics, differential geometry and biology, etc. Consequently these problems have
played a central role in nonlinear analysis over the past few decades.

Eg. (1.1) with 1< p < pg exhibits a rich history. Whev = 1, it is well known
that (1.1) has a so-called ground state solution, meaning a positive solution decayin
exponentially to zero near infinity. In [20] and [3,4], P.L. Lions and H. Berestycki
and P.L. Lions obtained existence of nontrivial solutions to (1.1) w¥ida a suitable
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perturbation of a positive constant near infinity. Their approach is the by now famous
concentration-compactness principle, which is variational in nature. Related results ar
also obtained in [8] and [24]. Subsequently many authors have taken up the study of th
problem and produced numerous interesting results.

Despite the intensity of research, one natural question concerning (1.1) has not bee
addressed so far, even whenis a radial function, i.e.

When doegl.1) have a ground state solution when the mass t&rm V (x) decays
to zero near infinity

This question is interesting and important for a number reasons. It is well known that
the concentration-compactness principle requiresithatV (x) converges to a positive
constant near infinity. Also, the role played by the mass t&éris very delicate. In a
recent paper [33], one of us shows thavVifdecays faster than the negative square of
the distance, then (1.2) and hence (1.1) does not have any global positive solution whe
l<p<l1l+ % thus producing a similar situation as in the case= 0 (see [11,18,7]).

So it is natural to investigate the case wheéwlecays slower.

The main result of this paper (Theorem 1.1) implies that fer p < ps,n > 2,V
radial, and under suitable conditions &n (1.1) does admit a ground state. Indeed, we
will show that, under suitable conditions dn (not necessarily radial), the parabolic
problem (1.2) admits global positive solutions, eveni#p <1+ f and that wherV
andug are radial some global solutions hawdimit sets containing a positive solution
of (1.1).

Such an approach was used in [23] (see [23, Theorem A(iii)], and also [5]) in
case when the spatial domain is bounded. However the generalization to the case
unbounded spatial domain is not obvious. First, since natural candidates are solutior
lying on the boundary of the domain of attraction of 0, one must show:tka® is
stable in a suitable topology. This is not straightforward because, due to the decay c
V, the linear termVu is not strongly coercive. Next, due to the lack of compactness,
it is not clear if thew-limit set (in the same topology) is non-empty. To overcome
these difficulties, we need to work in adapted weighté€tl spaces and to use suitable
comparison arguments and energy estimates, together with a priori bounds on glob:
solutions to (1.2).

To state our main results, it will be convenient to introduce the following.

Notation — The norminL? := L7(R"), 1< g < oo, is denoted by.||,, and the norm
in H:= HY(R") = W12(R") by ||.|| 2. For eachk > 0, we define the weighted space

LY ={veL®; sup|x|flv(x)| < oo}
xeR”

Ly is a Banach space for the noffa|o x = sup(l + Ix*)|v(x)|. We also define the
xeR”

closed subspace
LS ={vely; lim |x[*v(x) = 0}.
’ Xx|—o00

Recall that, by standard theory, for alh € L>°, the Cauchy problem (1.2) has a
unigue, maximal in time, classical solutian= u(x, r). The solution at time belongs to
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L°° and will be denoted by (¢; ug) or S(¢)ug, or simplyu(z) if no confusion arises. lf
is of mixed sign, them” is understood aj:|”~u. Moreover,ug > 0 impliesu > 0. We
denote byT = T (ug) € (0, co] the maximal existence time af(.; ug). If T (ug) < oo,
then lim_ g [l4(£) [l = 0o.

If T(ug) = o0, for eachk > 0, we denote by, (1) the w-limit set of u with respect
to the L° topology, i.e.

wr(ug) = {v e LY; At; — oo, u(t;) = vin L}

We have the following result.

THEOREM 1.1. —Assumep > 1 and V = V(x) is locally Holder continuous,
nonnegative and bounded.

(a) (L5y-stability of u = 0.) SupposeV (x) > a/(1+ |x|?) with b € [0, 2), a > 0, and
letk=b/(p —1). Then there exist > 0 and C > 1 such that for allug € L}° satisfying
lolloo.x < 8, the corresponding solutiom of problem(1.2)is global in time and satisfies

suplfu(?) llock < Clluollook-
t>0

Moreover if in additionug € L%, then
Nim Jlu(@)lloos = 0. (1.3

(b) (Uniform a priori estimate for global solutionsSjpposey < ps, ug e L>* N H*
andug > 0. Assume that the corresponding solutioof (1.2)is global. Then: satisfies
the estimate

supllu(®)llec < C(lluoll g1 + lluolloes),
t>0
whereC (s) is bounded fos bounded.
(c) (w-limit sets containing positive equilibriaAssumeV = V(|x|) is radially
symmetricp < ps and

2n —1)(p — 1
U yoy<an n>2 0<p< VP =D

PR X B 14
1+ |x|b p+3 (1.4)

with a1,a, > 0. Letk =b/(p — 1) and let¢ € L, N HY, with ¢ > 0, ¢ radially
symmetric,¢ # 0. There exists. > 0 such that7 (A¢) = oo and w;(A¢) contains a
positive equilibrium of(1.2).

Concerning problem (1.1), our result is the following theorem, whose existence part
is an immediate consequence of part (c) of Theorem 1.1.

THEOREM 1.2. —Assumel < p < ps andV = V(x) is a radially symmetric, locally
Holder continuous function. Assume that

ay 2n—-1(p—-1
——— < V(x) <ay, >2,0<b< ——mmMmM, 15
<V <a LA 19
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with aq, a; > 0. Then(1.1) has a global positive solutiom. Moreover,u is radial and, if
n > 3, u satisfies

u(x) < cgexp(—ca|x|@0/2)

for somecy, ¢ > 0.

Remarksl.1. — (a) Note that the upper bound fom Theorem 1.1(c) increases to 2
asp goes topg (ortooco if n = 2). On the other hand, whén> 2 and 0 <V (x) < 1+‘|‘—X|,,

a > 0, Corollary 1.2 in [33] shows that all positive solutions to (1.2) blow up in finite
time. Thus in some sense the rangeWoin Theorem 1.1 is sharp.

(b) The method employed in this paper gives in particular a unified approach to the
existence of ground states when the mass is bounded between two positive constan
Theorem 1.2 seems to contain all the known results in the radial case for Eq. (1.1)
In particular it gives a different proof of the classical result that — u + u? =0
has a ground state solution. By Theorem 11.1 in [16], wkeis a decreasing radial
function, the concentrated compactness method does not apply directly. However suc
kind of V poses no problem to our method. In addition, we do not require What
converges at infinity or has a local minimum. The conclusion of Theorem 1.2 can
probably be obtained by a variational method. However besides the intrinsic interes
of Theorem 1.1 for the parabolic problem, the dynamical proof provides an interesting
alternative approach to the existence of ground states.

Another advantage of this approach is that it covers more general nonlinearities
f(x,u) as indicated in Remark 4.1 at the end of Section 4 (see the examples ir
Remark 4.1(f)). In this case, the traditional variational method may be hard to apply.

(c) All the conclusions of Theorem 1.1 remain true if, in Eq. (1R),is replaced by
the exterior domair2 = R" \ Bz = {x € R". |x| > R} for someR > 0, and (1.2) is
complemented by the Dirichlet boundary conditions- 0 ond2 x (0, c0).

The conclusions of Theorem 1.2 remain true if, in Eq. (1R}, is replaced by
the exterior domair = R" \ Bi = {x € R": |x| > R} for someR > 0, and (1.1)
is complemented by the Dirichlet boundary conditiong, = 0. Related problems in
exterior domains fo = 1 have been considered in, e.g., [1].

(d) At this time we do not know whether the conclusion of Theorem 1.2 still holds if
V is not radial.

Remark1.2. — In the paper [8], Ding and Ni obtained important existence results on
the related equatiomu — u + Qu? = 0. For instance, they show that this equation
possesses a radial solution iK0Q(x) = Q(|x]) < Clx|” with o < (p — D(n —1)/2
and 1< p < ps. We mention that the situation for (1.2) is quite different from the case
in [8]. For example, we have shown thHatcannot decay “too fast” near infinity for (1.2)
to have any positive solution. In contrast there is no such restrictio® for

In the more restricted range<lp <1+ % we show that global solutions of (1.2)
satisfy some stronger a priori estimates. In particular, we haweigersal bound, i.e.
independent of initial data, away from= 0.

THEOREM 1.3. —Assumd. < p < 1+% andV = V(x) is locally Hoélder continuous,
nonnegative and bounded.
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(@) (Universal bounds for global solutionsQupposeV € L* and letu be a
nonnegative global solution tf.2). For any T > 0, there exists a universal constant
C =C(V,T),independent afg, such thatu(x,r) < C forall x andr > T.

(b) (Spatial decay of global solutionsSuppose) < V(x) < 1+‘|‘—X|,, with b € [0, 2),

a > 0. Assume alsa is supported in the balBg,(0) for someRy > 0. Letu be a
nonnegative global solution t@l.2). There exists a constarif depending onRy but
otherwise independent of, such that

C

<
u(xv t) X 1+ |x|b/(17—l)’

for all x such thatlx| > 2Ry and allr > O.

Remarksl1.3. — (a) We point out that in Theorem 1.1(c), the whole trajectory
{u(®); t > to > 0} need not be precompact (unlike in the case of bounded spatial
domains, ifu is a bounded solution of (1.2)). However, we have been able to prove
(see Proposition 3.1) that at leastime subsequenée(z,)} with ¢, — oo is precompact
in Ly° for appropriate values df.

(b) For Eg. (1.2) in bounded domains with homogeneous Dirichlet boundary
conditions andV = 0, a universal bound, such as in Theorem 1.3(a), was proved in [10]
for global positive solutions whefe — 1) p < n + 1. This result was extended o< ps
whenn < 3 in [25]. Here the method of proof is different from both [10] and [25].

(c) The stability result of Theorem 1.1(a) is reminiscent of some results concerning
Eqg. (1.2) forV = 0 in other function spaces. Namely, fpr> 1 + ,—21 andg. =n(p —

1)/2, initial data which are small i% yield global solutions (see [31]). Moreover,
these solutions are bounded and decay to @.49n(see [27]). This is related to the
fact that Eq. (1.2) forV = 0 is invariant under the self-similar rescaling(x, t) :=

a? P~ Dy (ax, o’t) and that thel.9c norm is preserved by this rescaling. Similar results
are known for other equations, e.g. Navier—Stokes (see [15]) and nonlinear Schrédinge
equations (see [6]). The phenomenon observed in Theorem 1.1(a) seems different |
nature since forV # 0, Eqg. (1.2) does not admit the self-similar invariance unless
V =Clx|™2.

(d) Some results on convergence of solutions of (1.2) to a ground stae=fat and
different nonlinearities (typicallyy? — u? with 1 < ¢ < p <n/(n — 2)) can be found
in [9]. The method there is different from ours. In particular the proof useexiséence
of the ground state and its uniqueness (up to translation).

(e) One can show that= 0 is an isolated solution of (1.1) ib° fork =b/(p — 1)
andV as in Theorem 1.1(a). (This follows easily from the maximum principle.)

The rest of the paper is organized as follows. In Sections 2 and 3, we establist
preliminary results which will play a crucial role in the proof of Theorems 1.1 and
1.2. In Section 2, we prove some estimates concerning the linear part of Eq. (1.2)
namely estimates on the semigroufi*e"” acting on the spacek(°. These estimates,
which may be of some independent interest, rely on the construction of suitable
supersolutions, also used later in the proof of Theorem 1.1(a). In Section 3, we derive
key compactness property in the spdge along some subsequence for global solutions
of (1.2), which is based on an energy argument from [26]. We also give some continuou:
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dependence properties of solutions in that space. Section 4 is then devoted to the proof
Theorems 1.2 and 1.1, and of Proposition 1.1. Finally, Theorem 1.3 on universal bound
is proved in Section 5.

The main results of this paper have been announced in [28].

2. Linear estimates

We denote by € ~") the semigroup (onL*>°) associated with the linear part of
Eq. (1.2),

u;,— Au+Vxu=0 inR" x (0, 00). (2.2)

Namely, for all¢ € L™, u(x,t) = (€“~V)¢)(x) denotes the unique solution of (2.1)
with initial datag¢.

PROPOSITION 2.1. —Supposé/ (x) > 1+‘|’—x|b withb € [0, 2), a > 0and letk > 0.
(a) There existg > 1 such that for allp € L$°,

€479 < Clglloos> =0 (2.2)
(b) Forall ¢ € L%, it holds
Jim |||, =0.

Proof of Proposition 2.1. {a) ForA > 0, put

U)=(A+x?) " (2.3)
A straightforward calculation shows that
AU = k k(k +2)|x|? (n—Dk
T A+ P (A+ [x)*DH2 (A + |x[D) D+
k(k+2— k(k+2—
(k+2—-n)  k(k+2—n) 2.4)

= (A+|x|2)(k/2)+1_ A+|x|2
For A = A(a, b, k) large enough, we have

k(k+2—n)(1+ |x]?) <alx|* + Ci(a, b, k) <a(A + |x|?),

hence
a

UL —
1+ |x|?
It thus follows from the maximum principle that‘®&="’U < U. Since, for allp € L$°,

¢ loo.k
14 |x|*

U< VxU inR".

()| < < C2(A, D)@,k U (x),

we deduce, using the maximum principle again, that



690 P. SOUPLET, Q.S. ZHANG / Ann. I. H. Poincaré — AN 19 (2002) 683—-703

|€AVp| < Co(A, D) B lloo i€ ™ U < Co(A, K)l|§lloo kU

C3(A, k) 9 lloo,k

<
1+ |x[k

, t>=0.

Estimate (2.2) is proved.
(b) First assume that € Lo° for somem > k. We claim that for alk > O,

€49 <Cot ™" | Pllom. 1> 0. (2.5)

If 1 + |x| > +¥?, then by (2.2), we have

m—k

Cli¢lloom _ Clidlloomt™ 2

et(A—V) < <
| Pl < T A+ [x5)

(2.6)

On the other hand, note that for apy- n/m, we have||¢|l, < C;ll¢llo,n. Therefore, if
1+ |x| < tY?, then

_(n/q)—k
CyllPlloo,mt

(A=V) A —n/2q
e o|(x) < |€%¢[(x) < Clidllyt < 11l

2.7)

The claim follows by combining (2.6) and (2.7), sincg; can be made arbitrarily close
tom.

Now, sinceL;; is dense inL7, (consider the sequeneg (x) := ¢ (x) Ly <jy, j =
1,2,...), the property follows from (2.5) and (2.2).0

Remark?2.1. — An alternate proof of Proposition 2.1 can be deduced from the
estimates of Schrodinger heat kernels obtained in [32].

3. Energy and compactness properties

To begin with, let us recall some well-known facts related to the existence of an energy
functional for Eq. (1.2).

Forug e L* N H?' it is well known thatu € C([0, T (ug)); H') and that the energy
E (1), defined as

1 1 1
E(t) = §/|Vulzdx + E/Vuzdx - —p - 1/u1’+1dx

R» R? ke
satisfies the identity

E(O)—E(t)://|ut(x,s)|2dxds.

0 Rll
We will use the following two classical lemmas.
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LEMMA 3.1.—Letuge L>® N HL. If T (ug) = oo, thenE(¢) > 0 for all r > 0, hence
in particular

//m,(x, )P dxds < EO) < Cllugls.
0

Proof. —This is a consequence of the classical concavity argument of Levine
(see [17]). O

LEMMA 3.2.—Letuge L>®N H. If T (up) = oo, then for eachk > 0 the w-limit set
wy (ug) consists of equilibrigi.e., of solutions of{1.1)).

Proof. —~Assumeu(t;) — v in Ly and fix + > 0. By continuous dependence of
solutions of (1.2) over initial data in°°, it follows thatu(r +¢;) — S(z)v in L*°. For
eachR > 0, we have

1+t
/|u(x,t+tj)—u(x,tj)|2dx<C(R)/ / u, (x, 5)|?dx ds
[x|<R tj |x|<R

<C(R)7/|u,(x,s)|2dxds.

tj Rn

Since the RHS goes to 0 gs— oo in view of Lemma 3.1, we deduce that

/ [(S(H)v)(x) — v(x)[*dx =0,
|x|<R
henceS(r)v = v for all ¢t > 0, which means that is an equilibrium. O

The following compactness property is an essential ingredient to the proof of
Theorem 1.2(c) and Theorem 1.1.

PROPOSITION 3.1. —Letug € L>® N H* and assume thak (1g) = co.
(a) Then there exists — oo such that

@) s + IVu@) N2+ [|[VY2u )], < Clluollyr),  j=1,2,....

(b) Assume in addition that > 2 and p < pg, that V and ug are radially symmetric
and thatV satisfies

V) > —2 withb e[0,2) anda > O. (3.1)
X

Let k satisfy0 < k < 25t — 2. Then the sequenag(; + 1) is precompact inL{° for

somer > 0. In particular, w; (1g) # 0.

Proof. —(a) We use an energy argument from [26, Theorem 2] (given thené {20).
Let f(t) = [gn u?(x, 1) dx, then by Lemma 3.1,
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f(l)—f(0)=2/t/uusé2(/[/ufdxds>l/2</t/u2dxds>

0 R» 0 R» 0 R~

<2E(0)Y? ( / £5) ds>
0

1/2

1/2

This easily implies
FO) <C(EO)(fO0) +1) <C(luolly)+1), >0

Multiplying both sides of(1.2) by u and integrating, we obtain, far > 0,

T T
//u”“(x,t)dxdtz//(IVu(x,t)|2+V(X)Mz(x»t))dx‘h

0 R» 0 R»

+ % /(u2(x, T) — u*(x,0)) dx

Rll
T
=2 E(t)dt+ uPt e, tydx dt + = (f(T)—f(O)).
[roas 2] f

Hence

N =

T T
“ p+1 fMH-fO 2
O/R/u” (x,t)dxdt < ( o7 + T O/E(t)dt

P+1(f(T)
p—1

LF +260) < Cllugl). T>1
In particular, for each integefr > 1, there exists; € [, 2] such thatfg, u?™(x, ;) dx
< 2C(|luolly1). Since E(t;) < E(0), we also have [o,(|Vul?> + Vu?)(x,t;)dx
< C'(|lug|l 1) The conclusion follows.

(b) Sincep + 1 > n(p — 1)/2 by assumption, it follows from well-known smoothing
properties of semilinear heat equations (see [29,30]) that foKa# 0, there exist
T =1(K) > 0andM(K) > 0 such that for alt > 0, [lu(?)|| ,+1 < K implies

lu(t +9)llp41<2K, O0<s<t and [u(t+v)llwie < M(K),

for p + 1< g < oo, where||.||y1, denotes the norm in the Sobolev spadé? =
WLla(R"). From part (a) and the fact that(r) < E(0), we then obtain

IVut; +0)ll2+ | VY2u(t; + 0, + lult; + ) llwe < Cluoll g2, (3.2)

forp+1<g<ocandj=12,.
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Now, lettingr = |x| and using the fact thai(., ¢) is radial and lim_, ., u(r, t) =0, we
have

[o,] oo
u?(x, 1) = / 2udpu(p,t)dp =2 / (P D720 ,u) (p 1P/ 2u) p= 02D g

Sincey :=n—1-(b/2) > 0, we get

o0

00 1/2 1/2
I/l2(x, l) < 2r~Y (/(apu)an—ldp> (/ MZPn—l—b d,o> ]

r

On the other hand, (3.1) implies that
/uz(p, Np" 1 tds < C/V(x)uz(x, Hdx, r>1
r Rn

It follows that
juCe. 0] < CIVuOIF V2|72 r>1 (3.3)

Since 0< k < y/2 by assumption, (3.2) and (3.3) imply that the sequdn¢g + 1)} is
precompact inLy®. O

We end this section with an auxiliary lemma concerning persistence and continuous
dependence of local solutions of (1.2) Iry°, which will be useful in the proof of
Theorem 1.2(b) and (c).

LEMMA 3.3. —Supposée¥ (x) is a locally Holder continuous and bounded function
(not necessarily nonnegative_etk > 0 and assumeg € L;°.
(@)Forall 0 <t < T(up), it holds

sup flu(®)lloox < 00. (3.4)
t€[0,7]

(b) For all 0 < v < T(uo), if ug € Ly° and |lug — uplloo IS sufficiently small, then
T (ug) > 7, and we have

sup |lu(t; ug) —u(t; uo)lleox — 0, as|lug — uolloo,x — O.
1€[0,7]

Proof. —(a) We may assumag > 0 and u> 0 without loss of generality. Since
T < T'(uo), we haveM := sup o 14 (?) [l < 00. PuttingK = ||V ||, we observe that
u satisfies

uw—A—Du=u’ +u—V@u< (M +14+K)u inR" x (0, 7].
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Lettinga = MP~* + 1+ K andz(x, 1) = e “u(x,t), we obtain
zz—(A—=1)z<0 inR" x(0,7],

so thatz(x, 1) < € Dugin R" x (0, t] by the maximum principle. It then follows from
Proposition 2.1(a) (applied with = 1), that

lu@lloox < CE luollock, O<I<T,

which proves (3.4).
(b) Letu(t) = u(t; ug), u(t) = u(t; ug), w(t) =u(t) —u(t) and

M = sup |lu(t)lle-
te(0,7]

By continuous dependence itt°, which is well known, if||ug — ol IS Sufficiently
small, thenT (o) > T and sup.jo ,; [[#(#)[lc < M + 1. Sincew satisfies

w;—(A—Dw=u’—-u"+w—-Vxw=alx,H)w inR" x (0, ],

with |a(x, )| < p(M + )P~ + K + 1, a calculation similar to that in part (a) with
o = p(M + 1?71 + K + 1 shows that

lw® lloox < CEllug —Uollook, 0<1<T,

and the conclusion follows. O

4. Proof of Theorems1.1and 1.2

Proof of Theorem 1.1, part (a). 1 view of the comparison principle, we can assume
u > 0 without loss of generality.

Let U be defined by (2.3). For=b/(p — 1) andA = A(a, b) > 0 large enough, we
have
k(k+2—n) ap/2

A+IxP (At |x)ke-Dr2

Vix) =

hence, by (2.4),

ar/2 U
(A + |x|2)k(p=D/2
Letting W = U with & = (a/2)Y =Y, it follows that

—(A=V)U 2

—~(A—V)W>=W” inR".

The comparison principle thus implies thatif| < W, then|u(x, )| < W(x) for all x
and allr < T (up). Therefore, if|uo|lcox < & < 8o sufficiently small, we deduce that

sup  lu(®)llsox < C'llugllosr < 00,
1€[0,T (ug))
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hence in particulaf (1q) = oco. The first part follows.
Now, sinceb = k(p — 1), we have, for alk € R” and¢ > 0,

1 1 crsrt a/2
— — —yP — _ —
Au+2Vu—u Vu<(1+|x|k(p—l) 1+|x|b)u<

2

provideds < min(60, (a1/(2C")Y =Dy, It follows from the maximum principle that
0 < u(r) < €@y, If in addition ug € L%, Proposition 2.1(b) then implies that
(1.3) holds.

Proof of Theorem 1.1, part (b). Fhe proof is based on rescaling and is modeled
after [13] (where the cas¥ = 0 was considered for Eq. (1.2) in a bounded domain).
First, by standard local theory, there exists: t(|luglls) > 0 such that

lu(r; uo)lloe < lluolloo +1, O0<t<T. (4.1

We argue by contradiction and assume that there exist a sequgntglobal solutions
ands; > 0 such that

lu; Ol g1+ llu; (Ol <C and [SOUIO] llj (1) lloo — 00. (4.2)
te ,S

Choose(x;,t;) e R" x [0, s;] such that

1
Mj :ZMj(Xj,t') éts[up ||M (t)”oo
€[0,s

By (4.1), we may assume > . We puti; = M; "~ - 0 and rescale; about the
point (x;, ¢;) as follows:

v (y,s) t],O].

2/(p—-1 n
:)Lj/(l’ )uj(xj' + Ay, ¢t —|—)»§S), o, S)EQ] =R [ i

The functionv; satisfies
dsv; — Ayv; =vf — A3V (x; + A;y)v; in Q;

and
l)j(0,0):l, O<v1<2 ian.

By using interiorL¢ parabolic estimates (see [19, Theorem 7.13]), standard imbedding
and a diagonal procedure, it follows that (some subsequenee ofnverges, uniformly
on compact subsets @f = R" x (—o0, 0], to a (bounded) solution > 0 of

v —Ayu=0v" inQ,

such thatw(0, 0) = 1. On the other hand, for eael > 0, using Lemma 3.1 and (4.2),
for all j large enough,
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0 tj
/ / (0yv))2dyds <AZPHH/ =D / / (Oyu;)?dx dt
“m lyf<m tj-mi2 B

2 1 1 2 1 1
<C)\. (p+1)/(p—1)— n” (0)||H1\C)" (p+1)/(p—1)—n

Since Zp + 1)/(p — 1) — n > 0 by assumption, the RHS goes to OﬁS—) oo. It
follows that for all Q" cC Q, [10,vll.2(py < liminf; [0,v;l,2o, = 0, henced;v = 0.
Therefore—Ayv = v” in R", with v > 0, v(0) = 1, which contradicts a Liouville
theorem from [12]. The conclusion follows.

Proof of Theorem 1.1, part (c). Befine
Do = {ug € LTy; T(ug) = oo andu(t; ug) — 01in L ast — oo}.

By Theorem 1.2(a), it follows thabg contains an open neighborhodd of 0 in L,
and that

Do = {uo S L,C{X,DO; T (ug) = oo and Oe a)k(uo)}. (43)

We claim thatDy is open inL7%,. Indeed, ifug € Do, there exists > 0 such that
u(t; ug) € W. But by continuous dependence of solutions of (1.2)jh(Lemma 3.3(b)),
if |0 — uollo.« is sufficiently small, them(z; wo) € W C Dy, so thatiip € Do. The claim
follows.

Let now

1*=sup{i > 0; A¢ € Do}.
We have just seen that¢ € Dy when A > 0 is small, and it is well known that

T (M) < oo if A is large. Therefore, & A* < oc.
LetX; + A* with 1 ;¢ € Do. By Theorem 1.2(b), we have

supllu(t; Aj@)lloo < C(Aj (Il g2 + llPllc)) <C,  j=1,2,....

t>0

Since by continuous dependencdift, we have, for eache [0, T (A*¢)),
lu(t; A P)loo = |i5_n lu(@; 2jP)lleo < C,

it follows that 7T (A*¢) = oo

On the other hand, by the opennesdgf A*¢ ¢ Do, and (4.3) thus implies that@
wr(\*p). The assumption (1.4) implies thiat= ﬁ < 2 — 2 Thereforew(A*¢) #
by Proposition 3.1(b) and we deduce from Lemma 3.24h&t*¢) contains a nontrivial
nonnegative equilibriumy. The strong maximum principle finally implies that- 0 in
R”™. The proof is complete. O

Proof of Theorem 1.2. Fhe existence of a radial positive equilibriunfollows from
Theorem 1.1 part (c). Then estimates (3.2) and (3.3) imply:ttsattisfies

Co

v(x) <



P. SOUPLET, Q.S. ZHANG / Ann. |. H. Poincaré — AN 19 (2002) 683—-703 697
SinceV > 1+| T andy /2> b/(p — 1), there existRy > 0 such that

V(x)

u»wwm—wm((” w*uﬁ

> u( )( n c Cs ) 0
Zv(x — >
2(1+ |x|?) 1+ |x|r(P-D/2

when|x| > Rq. Thereforev satisfies
Av(x) = V(x)v(x)/220, |x] = Ro; v(x) 2C >0, |x|=Ro.

Let ug(x) =T'1(0, x), wherel'; is the Green’s function of the operatar— V /2. Since
both v andI"; vanish near infinity, by the maximum principle, there exists- O such
thatu(x) < coup(x) when|x| > Rg. SinceV /2 > 2(1+x pTae by [22] or Corollary 1 in [32],

under the assumptions in the theorem, there exist positive constaptissuch that, for
all x,yanda =(2-0)/2,

T1(x, y) < cpe eI/ Qtx”1 geeall—yl/ Aty /2" ¢ .
lx — |2
Taking y = 0 in the above inequality, we have
v(x) < col1(x, 0) < Cepexp(—calx|®P/?). O

We close the section by a remark indicating some extension of Theorems 1.1 ant
1.2 covering broader nonlinearities. We omit the proof since it is a straightforward
generalization of the current one.

Remarks4.1. — Letf = f(x, u) be Ctin u and locally Holder continuous in.

(a) The result of Theorem 1.1(a) still holdsuf is replaced byf (x, u) satisfying
| f(x,u)] < Clul? for smallu.

(b) If u? is replaced byf (x, u) satisfying(2+ &) F (x, u) < uf(u) foru > 0,x e R",
where F(x,u) = [y f(x,s)ds ande > 0, then Proposition 3.1(a) remains valid with
()l p+1 replaced bylu(z;) f (., u(@;))ll1.

(c) Proposition 3.1(b) continues to holduf is replaced byf (x, u) = f (x|, u) such
thatlg—f;(x, u)| <CA+|ul"Y,1<r < ps. The main change in the proof is that one no
longer knows thafiu(z;)|l ,+1 < K. Instead, one can show that

el < K (4.4)

for somem > n(p — 1)/2. If n > 3, (4.4) withm =2n/(n — 2) > n(p — 1)/2 follows
from [|Vu(z;)]l2 < C (Proposition 3.1(a)) and the Sobolev inequalityz K= 2, we first
use (3.3) for =¢;, r =1 and VY2u(t;) |2 + | Vu(t;)|2 < C, along with the Poincaré
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and Sobolev inequalities, to deduce thatz;) |l .~ s, 0) < Cm, 2< m < co. Applying
(3.3) again, we then get (4.4) for all sufficiently large< co.

(d) Theorem 1.1(b) is valid whem? is replaced byf (x, u). Here f(x, u) satisfies
f(x,0) =0, the conditions in (b) and either of the assumptions below.

(i) M, o L% = K > 0 uniformly inx € R”, with 1 < r < pg;

(i) fx,u)=Cw" —Cy u>0,withl<r<n/(n—2),, C,Cr>0.

In case (ii) one substitutes to the Liouville Theorem in [12] a Liouville Theorem in
[2], which is valid for the elliptic inequalityAu + u” < 0 (see Theorem 2.2 in [2] for
n > 3 and the proof of Theorem 2.1 far< 2).

(e) Theorems 1.1(c) and 1.2 hold whae# is replaced byf(x,u) = f(|x|,u)
satisfying the assumptions in (a), (b), (c) and (d).

(f) Here are some examples ¢f(|x|, u) for which Theorems 1.1(c) and 1.2 hold.
The functionsz = a(]x|) andh = h(|x|) are assumed to be bounded and locally Holder
continuous. Also, recall thai is the number which appears in assumptions (1.4), (1.5)
(note that the behaviors gf at bothu — 0 andu — oo are important).

fx,u)=u? —h(xDu?, withl<g<p<ps, h =0

fx,u)=a(xDu” —h(xDu?, withl<g<p<

,a=>C1>0, h >0
n—2

fx,u)=a(xDu” +u?, withl<p<gqg < ps;

n
n—2°

fG,u)=u? +h(xDu?, withl<p<gqg< h>Cy>0.

5. Proof of Theorem 1.3: universal boundsfor 1 < p < 1+§
Throughout this section we lét, n € C*°([0, c0)) be two functions satisfying

o(r)y=1 rel0,1/2], O<o(r)y<l, re(1/2,3/9),

¢(r)=0, rel3/4,00), 0<n<l, n@®) =1 1te][0,1/4],

n()=0, 1e[l 00), —C<¢'(r <0, l¢" ("] < C, -C<n'( <0

LEMMA 5.1.— SupposeV(x) < ;7 With b €[0,2), a > 0 and letu be a
nonnegative global solution {d.1). Given anyr and lettingR = max(2, |x|*/?), it holds

4+R2
/ uP(y,s)dyds < CR"™?7%, (5.1)

T Br(x)

whereqg = p/(p —1) andt > 0.
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Proof. —Without loss of generality let us assume= 0. For anyxg and anyR > 0
defineQr ., = Br(x0) x [0, R?]. We also need a cut-off function

Yr(x, 1) = ¢r(lx — xo)nr(?),

wheregr (r) = ¢ (r/R) andng = n(t/R?). Clearly

C  d¢r 2pr| C C c
——<—2K0, < =, Apr| < =, —— <nhR()<0. (6.2
R ar 9r2 R2 ’ ¢R’ R2 R2 nR( ) ( )
We set

Ir = / u? (x, Oy (x, t)dx dt,

QR,xO

where% + % = 1. Sinceu is a solution of (1.1), we have

Ig = / [, (x, 1) — Aux, 1) + V(x)ux, )] Yg(x, 1) dx dt.

QR,xO
Noting thatg? € C2, this implies, via integration by parts,

Ip= / wx, e, IE dx — / u(x, PG (O () dx dt
B (x0) OR.xy

R2

+72 / u(x,t)wdsxdt—/ / z//,‘{,g—u(x,t)dsxdt

ar r
0 9Bg(x0) 0 9Bg(x0)

— / u(x,t)Aqb%(x)n%(t)dxdt—i— / u(x,t)V(x)z//;]g(x,t)dxdt.

QR.xO QR,xO

Usingu(x, 0) > 0, Y& (x, R?) = 0 andy (x, t) = % — 0 0ndBr(xo) x [0, R2], we
obtain

Ig<— / u(x, Q% X)gnk (O (t) dx dt — / u(x, ) Agh(x)nk (1) dx dt

QR,xO QR,xO
+ / u(x, V) wi(x,t)dxde.
QR.xO
SinceA¢t = g% Adr + q(q — D)% | Vr|?, the above yields
<= [ G0t O dxds

QR,xO

— / u(x,t)q(d)f(lA(bR)(x)n;’e(t)dxdt+ / u(x, V) vi(x,t)dxde.

QR,xO QR,)(O
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Consequently, by (5.2), we have

_ C _
<oy [ utonshoonk odxdi+ o [ uenngy ko dxds
QR,XO QR,)(O
+ / u(x, H)Vx)ya(x,t)dx de.
QR,XO

Sincegr, ng < 1, by Hélder’s inequality we have

¢ p(g—1) Hr Ha
IRQE uPyrp (x,t)dx dt dxdt

QR,xO QR,XO

C o 1/p 1/q
+ﬁ ulrp (x,t)dxdt dxdt

R,xg R,xg

1/p 1/q
+</ ul’xpg“"l)(x,t)dxdt) (/ V(x)qudt> .

QR,XO QR,XO
Therefore

R? 1/q
Ik <CIYPR' T2 cri? (/ / V(x)?dx dt> . (5.3)
0 Bgr(xo)

Take NOWR = max(2, |xo|?/?). If |xo|?/? > 2, asb < 2, we havelx| > |xg| — |x — xo| >
cR?® whenx € Bg(xp). SinceV (x) < T We get
V(x) <CR™2, x e Bg(xo). (5.4)

If |x0|”/? < 2= R, then (5.4) is also true sindé is bounded. It follows from (5.3) and
(5.4) that

Ir <CR'™? 2, 0

Next we will prove Theorem 1.3 part (b). The proof of part (a), which is similar but
easier, will follow shortly.

Proof of Theorem 1.3 part (b).We will use the standard parabolic Harnack
inequality [21] and Lemma 5.1. Fix and let R = max(2, |x|*/?). Put Qg(x,t) =
Br(x) x [t — R%,t] and Q% (x, 1) = Bg(x) x [t + R?,t + 2R?]. We need to divide the
proof in two cases.

Casel: ¢ > R?. Sinceu is a solution to (1.1), we can recognize it as a solution to the
linear equation

Au—wu —u, =0, (5.5)
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wherew = V — u?~1. Using a standard scaling argument on the parabolic Harnack
inequality, we have

ulx, ) <C(R,w) ir1f u (5.6)

x,R

whereC (R, w) is a constant depending only on the dimensicaand the quantity
REM2H200 | w] g, e llg

whereqg = p/(p — 1) > (n + 2)/2. For the reader's convenience we give a short
proof of (5.6). For simplicity we take =0, r = 0. It is well known that (5.6) holds
when R = 1. SupposeR > 1, we take the substitutiony’ = y/R, s’ = s/R? and

w’ = R>w(Ry’, R?%s’). If u is a solution of (5.5) inQ»z(0,0), thenu’ = u'(y,s') =
u(Ry’, R?s") is a solution to

Au'—w'u' —u, =0
in 0-(0, 0). Hence

ux,t) <C@w) inf u.
Q%1

(5.6) is proven by noticing that
lw'l0y0.0lg = RT"Z20/4) w] g, 0.0 llg-

If |x|/? > 2, for all y € Bog(x), we have|y| > |x| — 2R = R?®> — 2R > ¢R?/".
ThereforeV (y) < C/R?. It follows that

||V|Q2R(x,t)||q < CR(n+2—2q)/q. (57)

Note that (5.7) remains true |f|”/? < 2= R since V is bounded. Using (5.7) and
Lemma 5.1 we obtain

1/q
R(_n_2+2q)/q||w|Q2R(x,t)“q S RO (”VlQZR(X’t)”q * ( / u(p_l)q> ) =
Q2r(x,1)

Inequality (5.6) then implies
1 1/p
ulx,t) <C inf u§C< / u”)

0h(x.) Q% (x, 1)
0k,

whereC is independent o andR. Applying Lemma 5.1 again, one has

u(x,t) < C[R2R22)"P = CR=2/P = CR2/r-D ¢

<irppen 69

This proves the result in case 1.



702 P. SOUPLET, Q.S. ZHANG / Ann. I. H. Poincaré — AN 19 (2002) 683—-703

Case2: + < R2% If |x| = C(1 + Ryp), then Byr(x) N Bg, is empty for R =
max(2, |x|”/?). Let us define a function; in Q. 2 in the following manneruy(y, s) =
u(y,s) whens > 0, u1(y, s) = 0 when s< 0. Sinceug is supported inBz(0), we know
thatu, can be recognized as a weak solution to the equation

Aul — Wil — 8,u1 =0

in Q.2r. Herewy(y, s) = V(y,s) —u?~1(y,s) if s > 0 andwi(y, s) =0if s <0. Note
that wy is a bounded function, so the Harnack inequality still applies. Now the same
argument as in case 1 yields (5.8).

Finally, if 2Ry < |x| < C(1+ Rp), take insteadR = Ro/2 S0 thatByg(x) N Bg, is
empty. Observing that foR’ = max(2R, 2, |x|*/?), we havef,, .., u” < fQR,(x,t)uP <
C(Rp) by Lemma 5.1, one can then obtain (5.8) by arguing as abowe.

We close the section by giving

Proof of Theorem 1.3 part (a). Fhis part can be proven just like part (b). The only
change is that we may take= 0 and that (5.1) in Lemma 5.1 is then valid for &It 0.
We then choos® = /7 /2 in the proof of part (b) and only Case 1 occurs (so that we
do not need to assumg compactly supported). O
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