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ABSTRACT. – The paper addresses symmetry results for positive solutions of semilinear
elliptic differential equations on a class of non-convex symmetrical domains. An example in
two dimensions is the star of David. The moving plane method just shows that solutions coincide
on three alternate corners of the star. We will show that the solution is symmetric with respect
to remaining reflections, that is, the solution will have the full symmetry. To obtain such type of
result, even for domains in higher dimensions, we use a variant of the sliding-method and the
maximum principle for domains with small measure.

RÉSUMÉ. – Des résultats concernant la symétrie des solutions positives d’ équations elliptiques
semilinéaires sur une classe de domaines symétriques nonconvexes sont établis. Un exemple en
dimension deux est l’ étoile de David. La méthode des plans mobiles dans sa forme habituelle
permet de montrer le symétrie de telles solutions seulement par rapport à trois axes. Nous
sommes en mesure de prouver la symétrie par rapport au centre et donc la symétrie totale. Pour
obtenir ce type de résultat, même pour des domaines en dimension supérieure à deux, nous
utilisons la méthode des balayages et le principe du maximum pour les domaines de mesure
petite.
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1. Introduction

A basic question for positive solutions of the elliptic boundary value problem
{−�u= f (u) in �,
u= 0 on∂�,

(1)

with �⊂R
N bounded andf Lipschitz, is the following:

Is the symmetry of the domain passed on to the symmetry of the solution?

For � = B, a ball, this question is solved by Gidas, Ni and Nirenberg in [9]: any
positive solution of (1) with�= B is radially symmetric. The same question on other
domains may not give a positive answer. For domains such as an annulus (see [4],
[11, Theorem 3]), or a symmetric starshaped bar-less dumb-bell (see [6]), there are
nonlinearities with positive solutions that do not reflect the symmetry of the domain.

The result of [9] can be used to obtain symmetry of positive solutions on domains with
a reflection symmetry that are more general than just a ball. The additional condition
necessary for the argument of [9] is that the domain is also convex in the direction
perpendicular to the plane of symmetry. The combination of these two conditions is
known as Steiner-symmetry. And indeed, then the method of moving planes, with the
extension of [2], implies that any positive solution is symmetric and even symmetrically
(strictly) decreasing with respect to that plane. As a direct consequence it follows
that positive solutions on regular polygons inherit the symmetry of that polygon. For
example, if the domain is a square,�=Q := {x ∈R

2; |xi |< 1, i = 1,2}, then

u(x1, x2)= u(x2, x1)= u(−x2, x1) for all x ∈Q.

Obviously, a convex domain� is Steiner-symmetric in all of its planes of symmetry,
and one finds that the solution has the full symmetry. But one can do with less. We will
prove that there are many cases where Steiner-symmetry in some directions is sufficient
for any positive solution to inherit the full symmetry. A typical example inR

2 is the
star of David. Although it has 6 axes of symmetry, it is Steiner-symmetric in only 3
directions. Hence by using the arguments as in [9] one finds

u(x1, x2)= u(−x1, x2)= u
(
R2π/3(x1, x2)

)
for all x ∈ S.o.D.

(as in Fig. 1), whereR2π/3 is the rotation around the center with angle 2π/3. The
argument does not show that the solution is invariant under a rotationRπ/3. In other

Fig. 1. Star of David.
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words, if u is a solution, then, a priori,u ◦ Rπ/3 could be a different solution. We will
supply an argument that allows us to compare a solution with its reflection in a non-
Steiner direction. As a consequence positive solutions on domains such as the Star of
David have the full symmetry. The question whether or not positive solutions on the
hexagonal and pentagonal star are symmetric was mentioned in [15].

2. Main results

First let us recall the definition of Steiner-symmetry:

DEFINITION 1. –A domain�⊂ R
N is called Steiner-symmetric with respect to the

(hyper-)planex1= 0, if it is convex and symmetric in thex1-direction, in other words, if
for every(x1, x

′) := (x1, x2, . . . , xN) ∈�,

[
(x1, x

′), (−x1, x
′)

] := {
(t, x′); |t|� |x1|}⊂�. (2)

DEFINITION 2. –A functionu :� �→ R is called Steiner-symmetric with respect to
the planex1 = 0, if all of its level sets�c := {x ∈ �: u(x) > c} are Steiner-symmetric
with respect to the planex1= 0.

To present our results we distinguish two cases. First we consider domains which are
invariant under rotations about one axis, and reflections about a hyperplane containing
this axis, later those which are invariant under rotations about multiple axes.

2.1. Symmetry of � ⊂ R
N under rotations and reflections for the first two

coordinates

The domains that we consider in this section are invariant under the rotationRπ/n

in the (x1, x2)-plane of angleπ/n and a reflection across the planex1 = 0. Heren is
some fixed number inN+. Domains with this symmetry include the star of David and
domains inR3 as in Fig. 2. The corresponding algebraic group is known as the dihedral
groupD2n. We exclude geometries that are symmetric under odd rotations such as the
pentagonal “red” star or the tetrapod inR

3 from Fig. 3.

THEOREM 3. – Letn ∈ N
+ and suppose that�⊂R

N is invariant under rotation by
π/n in the(x1, x2)-plane. Moreover, assume that� is Steiner-symmetric with respect to
the planex1= 0. Then any positive solutionu ∈ C(�̄)∩C2(�) of (1) satisfies

u(x1, x
′)= u(−x1, x

′)= u
(
Rπ/n(x)

)
for all x = (x1, x

′) ∈�. (3)

Fig. 2. Invariant under rotation/reflection with a Steiner-symmetry.
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Fig. 3. Odd order rotation-symmetries, no Steiner-symmetry.

2.2. Invariance of � under cubic symmetry

Representations of this group are well known: the rotation and reflection symmetries
of both the cube and the regular octahedron. The corresponding point group is denoted
by Oh. Oh � O × Z2 where the octahedral groupO corresponds to the rotations of
the regular octahedron andZ2 with the reflection in the point(0,0,0). Since we are
interested in geometric, and not algebraic questions, we have to define the respective
group actions in relation to a fixed direction for the Steiner-symmetry. For algebraic
properties of symmetry groups we refer to [1] and [13]. For regular polyhedra see [5].
• R1 representsOh as generated by the rotations of angleπ/2 about every cartesian

axis, and the reflections in the planesxi = 0, i = 1,2,3.
• R2 representsOh as generated by the rotation of angleπ/2 about thex3-axis, the

rotations of angleπ/2 about lines through zero perpendicular to the planesx1= x2

respectivelyx1=−x2, and the reflections in the planesxi = 0, i = 1,2,3.
See [13, p. 74] to find thatOh can be generated by three elements.

In this subsection we restrict our attention to two model cases of nonconvex domains.
The first one is a three-dimensional star like the one in Fig. 4(left), whose corners point
into the direction of the axes, just like the normal vectors on a cube. This domain is
invariant under elementsT ∈ R1. It is Steiner-symmetric with respect to the planes
xi = 0, i = 1,2,3. By the method of moving planes any positive solution of (1) is
identical in opposite points, i.e.

u(x1, x2, x3)= u(±x1,±x2,±x3) for all x ∈�. (4)

However, a prioriu(x) = u(x1, x2, x3), v(x) = u(x2, x1, x3) andw(x) = u(x1, x3, x2)

could all be different from each other. Therefore the following result is new.

COROLLARY 4. – Let� be invariant underR1 and Steiner symmetric with respect
to x1 = 0, such as in Fig.4(left). Then any positive solutionu ∈ C(�̄) ∩ C2(�) of (1)
satisfies

u(x1, x2, x3)= u
(
T (x1, x2, x3)

)
for all x = (x1, x2, x3) ∈� andT ∈R1. (5)

The second model domain is constructed as follows. If we glue a regular tetrahedron
on each face of a regular octahedron, we obtain a stellated octahedron as in Fig. 4(right).
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Fig. 4. (Left) A stellated cube and (right) Kepler’s Stella Octangula, which are invariant under
R1, respectivelyR2. The symmetries of both bodies give rise to the same algebraic groupOh.

This polyhedron is known as Kepler’s Stella Octangula. One can also look at it as a
combination of two large tetrahedrons. It is invariant under the elements ofR2. From
the moving plane method we may conclude that

u(x1, x2, x3)= u(±x1,±x2, x3)= u(±x2,±x1,−x3) for all x ∈�. (6)

However, a prioriu(x)= u(x1, x2, x3) andv(x)= u(x1, x2,−x3) could be different from
each other. This is ruled out by the following result.

COROLLARY 5. – Let� be invariant underR2 and Steiner symmetric with respect
to x1 = 0, such as in Fig.4(right). Then any positive solutionu ∈ C(�̄) ∩C2(�) of (1)
satisfies

u(x1, x2, x3)= u
(
T (x1, x2, x3)

)
for all x = (x1, x2, x3) ∈� andT ∈R2. (7)

3. Proofs

Proof of Theorem 3. –Although the theorem above holds for general dimensions for
the sake of simplicity we will illustrate the proof by the two-dimensional star of David.

Using the Steiner-symmetry with respect to the planex1 = 0 and generalizations of
the result by Gidas, Ni and Nirenberg [9] to nonsmooth domains (see [2,3] and [8,
Theorem 3.3]) one finds that

u(x1, x
′) = u(−x1, x

′) for all (x1, x
′) ∈�, (8)

∂

∂x1
u(x1, x

′) < 0 for all (x1, x
′) ∈� with x1 > 0. (9)

Similar claims are true with respect to rotations in the(x1, x2)-plane by 2π/n. This does
not yield the full symmetry as claimed in the theorem, because we are not allowed to
draw conclusions for a rotation byπ/n yet. Comparing with the star of David we only
find that the value ofu is identical at identical symbols in Fig. 5.
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Fig. 5. Symmetries due to the moving
plane method.

Fig. 6. Notations used in the
proof.

In the next step we will compareu with its reflectionv in the planex2 = 0. Because
of the already known symmetries ofu this reflection coincides with a rotation byπ/n.
Even if these two functionsu andv are not identical we find by the symmetry from the
moving plane argument above, that

u(x)= v(x) for all x ∈ �i, i = 1, . . . , n, (10)

where the�i, i = 1, . . . , n, denote the remaining planes of symmetry of� (see Fig. 6).
We intend to show thatu andv coincide everywhere in�. To do so we proceed by

contradiction and consider one of the components of�\⋃n
i=1 �i. To fix the argument we

choose the one between�1 and �2 on the right half space and denote it byC1. It will
suffice to show thatu andv coincide onC1. Without loss of generality we may assume
that there isy ∈ C1 such thatu(y) < v(y).

On this component we will apply a sweeping argument. See [12] for a statement of
the so-called sweeping principle. Instead of joining the solution and a reflected copy as
in [9] we start withu and a copy ofv which is shifted to the left. Then we movev in the
x1-direction ‘under’u until it touchesu from below somewhere onC1. We set

v(t;x1, x
′) := v(x1+ t, x′) for x = (x1, x

′) ∈�, (11)

and denote by�(t) the support ofv(t; ·). Note that for large positivet the set�(t) lies
to the left of�. Suppose thatu �≡ v(0; ·).

Now let us remind that, sincex1 > 0 for x ∈ C1, the moving plane argument in the
first step of this proof gives us that bothu and v are strictly decreasing onC1 in the
x1-direction:

∂

∂x1
u(x1, x

′) < 0 for all (x1, x
′) ∈ C1,

∂

∂x1
v(x1, x

′) < 0 for all (x1, x
′) ∈ C1.
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Hence we have for 0� t1 < t2 that

v(t2;x) < v(t1;x) for x ∈ C1 ∩�(t1)∩�(t2). (12)

SettingA(t) := {x ∈ C1 ∩ �(t); u(x) < v(t;x)}, the previous observation yields that
A(t2)⊂A(t1) for 0 � t1 < t2. Since we have assumed thatu(y) < v(0;y) it follows that
A(0) is nonempty. Moreover, sinceA(t) is empty fort large and since theA(t) are open
for all t , there exists a smallestt0 > 0 such thatA(t) is empty fort � t0. Next we fix a
point z whereu andv(t0; ·) ‘touch’. Indeed by the minimality oft0, for everyn ∈ N

+
there exists azn in A(t0− 1

n
), and this sequence has a convergent subsequence with limit

z. We assume without loss of generality thatzn→ z.
Two possibilities are conceivable: eitherz ∈ �C1∩ �(t0) or z ∈ �C1∩ ∂�(t0). If z ∈

�C1∩�(t0), thenz ∈ C1∩�(t0) becauset0 > 0 and

v(t0;x) < v(0;x)= u(x) for all x ∈ ∂C1∩�(t0).

We find that
{−�(u− v(t0; ·))= g(x) · (u− v(t0; ·)) in C1∩�(t0),
(u− v(t0; ·))� 0 in C1∩�(t0),

(13)

where the Lipschitz condition forf implies thatg, defined by

g(x) :=
1∫

0

f ′
(
θu(x)+ (1− θ)v(x)

)
dθ,

is bounded. By the strong maximum principle one finds that eitheru ≡ v(t0; ·) or
u > v(t0; ·) in C1∩�(t0), which both give a contradiction.

The casez ∈ �C1 ∩ ∂�(t0) remains. Moreover, since we already excludedz ∈ �C1 ∩
�(t0), we may assume that

u > v(t0; ·) in �C1∩�(t0).

Now we will use the maximum principle for small domains. See [3] or [8, Th. 2.19]:

There existsδ = δ(n,‖c+‖∞,diam(D)), such that if the Lebesgue measure ofD

satisfies|D|< δ, then a solution of−�u� cu in D andu� 0 on∂D, is nonnegative.

Fix δ = δ(n,Lf ,diam(C1)) whereLf is the Lipschitz constant off. Next we choose
an open neighborhoodO of �C1 ∩ ∂�(t0) such that the Lebesgue measure ofN1 :=
O ∩ �C1 ∩ �(t0) satisfies|N1| < 1

2δ. OnK := {x ∈ �C1 ∩ �(t0); x /∈ N1} there isε > 0
suchu� v(t0; ·)+ ε. Hence by continuity there existst1 < t0 such that

u� v(t1; ·) onK. (14)

The numbert1 can be choosen sufficiently close tot0 such thatN2 := �C1 ∩�(t1)\�(t0)

satisfies|N2|< 1
2δ.
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Fig. 7. Notations for the sliding method.

One may conclude by noting that∂(N1∪N2)⊂ ∂K ∪ ∂�(t1) impliesu � v(t1; ·) on
∂(N1 ∪N2) and hence by the above maximum principleu � v(t1; ·) in N1 ∪N2. With
(14) it follows that

u� v(t1; ·) in N1∪N2∪K⊃ �C1∩�(t1),

which contradicts the minimality oft0. ✷
Proof of Corollary 4. –To verify this corollary, one has to realize that Theorem 3

can be applied with respect to each cartesian plane(xi, xj ), i �= j , and that the star in
Fig. 4(left) is Steiner symmetric with respect to each planexi = 0, i, j = 1,2,3. ✷

Proof of Corollary 5. –The proof of this corollary is reduced to another application of
Theorem 3, but the details are more delicate because of the star’s geometry. We notice
that� is Steiner symmetric with respect to the six planesx1 = 0, x2 = 0, x1 + x2 +√

2x3= 0, x1−x2+
√

2x3= 0, −x1+x2+
√

2x3= 0 and−x1−x2+
√

2x3= 0. From
the moving plane method we may then conclude that

u(x1, x2, x3)= u(±x1,±x2, x3)= u(±x2,±x1,−x3) for all x ∈�. (15)

These results are illustrated by each of configurations in Fig. 8, in which analogously
to Fig. 5, identical colors indicate symmetries due to the moving plane method.
Moreover, Fig. 5 shows that under this symmetry the reflection inx3= 0 coincides with
a rotation.

However, since� is reflection symmetric inx3, but not Steiner symmetric with respect
to x3 = 0, a priori u(x) = u(x1, x2, x3) and v(x) = u(x1, x2,−x3) could be different
from each other. Moreover, this reflection cannot be generated from those that are used
in the moving plane method. It is in this situation, that one can mimmick the proof of
Theorem 3. ✷
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Fig. 8. Several views of the Stella Octangula.

4. Related results and open problems

In this paragraph we record some related observations.

Remark6. – If problem (1) has a maximal positive solutionu, then thisu inherits all
the symmetries of�.

Indeed, suppose that� is invariant under some group actionT , butu is not. Thenu(x)
andu(T x) are two different, non-ordered solutions, a contradiction to the maximality
of u.

Remark7. – If problem (1) has a positive solutionu and if f (0) is positive, then (1)
has at least one positive solution with all the symmetries of�.

To see this, assume that� is invariant under a finite groupR with elementsTi, i =
1, . . . , n. Set v(x) := min{u(Tix); i = 1, . . . , n}. Then v(x) is a positive symmetric
supersolution of (1), while zero is a strict subsolution of (1). Therefore (1) has a maximal
positive solutionw(x) in the interval(0, v(x)], see [7]. Notice thatw(Tix) � v(Tix) =
v(x) for everyi = 1, . . . , n. This and the maximality ofw imply w(x)= w(Tix) for all
Ti ∈R.

For some domains the casef (0) < 0 can be excluded on other grounds.

Remark8. – If � ⊂ R
2 has an acute angle and iff (0) < 0, then (1) cannot have

a positive solution, see [14]. Therefore existence of a positive solution on the star of
David implies thatf (0)� 0.

Let us explicitly point out, that in the context of the above remarks there may also be
nonsymmetric positive solutions of (1). This is the case for instance if� is an annulus,
see [4,10,11], or a dumb-bell [6]. To rule out any nonsymmetric positive solution of (1),
as we have done in this paper, we need to assume Steiner symmetries, starshapedness
and invariance of� under an appropriate reflection, i.e. a reflection across a hyperplane,
with respect to which� is not Steiner-symmetric. However, we expect every positive
solution of (1) to be symmetric on a larger class of domains, some of which are depicted
in Fig. 9. To be more specific, we believe that any domain� with the property that
all sets�d := {x ∈ �; d(x, ∂�) > d} (for d > 0) are starshaped with respect to zero,
inherits any symmetry to any positive solution of (1).

Note that the first three domains in Fig. 9 fail to have Steiner-symmetries. Although
the last one has such a Steiner-symmetry it is not in an appropriate direction. For this
domain any positive solutionu(x1, x2, x3) of (1) satisfies (4), butu(x1, x2, x3) might still
differ from u(x2, x1, x3).
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Fig. 9. Domains without appropriate symmetry. The third one is known as a Kepler–Poinsot
polyhedron: the ‘small stellated dodecahedron’.

Remark9. – Finally we should mention that our main result, Theorem 3, remains
true if the semilinear differential equation in (1) is replaced by a quasilinear one such as
−div(a(u, |∇u|)∇u)= f (u, |∇u|), with a andf satisfying suitable assumptions.
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