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ABSTRACT. — Given any constant C > 0, we show that there exists &9 > 0 such that for any
¢ < 0, the problem Pe: —Aup = ul"?/"™? 4, > 0in A.; us = 0 on 3 Ay, has no solution u,,
whose energy, | A, |Vue|?, is less than C, where A, is a ringshaped open set in R” and n > 4.
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RESUME. — Etant donné une constante positive C arbitraire, nous montrons qu’il existe &9 > 0
tel que pour tout € < gg, le probleme Pe: —Au, = u§'1+2)/(n_2), ug > 0dans Ag; ug =0sur 0A;,
ne posséde pas de solution u, dont I’energie, [ a, Ve |2, est plus petite que C, oil A, est un ouvert

de R" ayant la forme d’un anneau et n > 4.
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1. Introduction and the main results
Let us consider the nonlinear elliptic problem

—Au=uP, u>0 1in<,
P& {uzO on 0€2,
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where €2 is a bounded regular domain in R”, n > 3 and p+ 1 = 2n/(n —2) is the critical
Sobolev exponent.

The interest in this type of equation comes from its resemblance to some nonlinear
problems in geometry (Yamabe problem, Harmonic maps,...) and physics (Yang—
Mills equations, The n body problem, ...) where some lack of compactness occurs
(see Brezis [6]). It is well known that if €2 is starshaped, P(€2) has no solution (see
Pohozaev [13]) and if 2 has nontrivial topology, in the sense that Hy,_1(£2; Q) # 0 or
H(2; Z/2Z) # 0 for some k € N, Bahri and Coron [3] have shown that P(€2) has a
solution. Nevertheless, Ding [9] (see also Dancer [8]) gave the example of contractible
domain on which P(£2) has a solution. Then, the question related to existence or
nonexistence of solution of P (£2) remained open.

In this paper, we study the problem P (£2) when 2 = A, is a ringshaped open set in
R" and ¢ — 0. More precisely, let f be any smooth function:

RV (1,21, B1,....60,-0)— f61,...,0,_1)

which is periodic of period 7 with respect to 61, ..., 8,_, and of period 27 with respect
to 0,,_1. We set

Sl(f):{XE]Rn|r=f(015---59n—1)}

where (r, 61, ...,0,_1) are the polar coordinates of x. For & positive small enough, we
introduce the following map

gasl(f)%gs(sl(f)):SZ(f)v x'_>g£(x):x+8nx

where n, is the outward normal to S;(f) at x. We denote by (A).-¢ the family of
annulus shaped open sets in R” such that dA, = S1(f) U S2(f). Our main result is the
following theorem.

THEOREM 1.1.— Assume that n > 4. Let C be any positive constant. Then, there
exists &y > 0 such that for any € < &g, the problem P.: —Au, = ué””)/(”_z), Uy >
0in A;,u, =0o0n dA,, has no solution such that ng |[Vu, > <C.

Remark 1.2. — We believe the result to be true also for n = 3 (see Remark 1.4 below).

The proof of Theorem 1.1 is given in two principal steps:

Step 1. We suppose that P, has a solution u, which satisfies [ A, |[Vu,|?> < C, C being
a given constant. We study the asymptotic behavior of u, when ¢ tends to zero. We prove
that u, blows up at p points (p € N*), then the location of blow up points is studied. In
order to formulate the result of this step, we need to introduce some notations.

We denote by G, the Green’s function of Laplace operator defined by Vx € A,

—AG.(x,.) =c,0, 1nA,, G.(x,.)=0 onodA, (1.1)

where §, is the Dirac mass at x and ¢, = (n — 2)meas(S"~'). We denote by H, the
regular part of G, that is,

H, (x1, X2) = |x1 — x2/*™" — Go(x1, x2), for (x1,x7) € A, X A,. (L.2)
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For p e N*and x = (x1,...,x,) € A?, we denote by M = M, the matrix defined by
M = (mjj)i<ij<p, Where my; = He(x;, x;), mjj = —Go(x;, X)), [ # ], (1.3)

and define p,(x) as the least eingenvalue of M(x) (p,(x) = —o0 if x; = x; for some
i #j).ForaeR"and A > 0, §,,,) denotes the function

n=2
A2

(1+22x —a)T

5(a,x)(x) =Co (1.4)

It is well known that if ¢ is suitably chosen (co = (n(n — 2))%) the function §, ;) are
the only solutions of equation

+2

~Au=ur—, u>0 inR" (1.5)
and they are also the only minimizers for the Sobolev inequality

S =inf{|Vu2oglul ™%, st.Vuel® ueLis, u#0}. (1.6)
Ln—Z(]R’l)

We also denote by P.d, ;) the projection of §, ;) on HO1 (Ay), that is,
—AP88(G,,\) = —A(S(a,)h) in As, Psé(a,,\) =0on 8A8
Lastly, we define on HO1 (Ag) \ {0} the functional

I, |Vul?

Je(u) = ———F5——
(ng [u|n=2) """

(1.7)

whose positive critical points, up a multiplicative constant, are solutions of P,.
Now we are able to state the main result of step 1.

THEOREM 1.3. — Let u, be a solution of problem P, assume ng |Vu,|> < C, where
C is a positive constant independent of ¢. Then, after passing to a subsequence, there
exist pe N*, (ar¢,...,a,¢) € AL, (M ey ...y Ape) € (RY)P such that:

()
— 0,

)4
\4 (”a - Psfs(a,-,g,k,-,g))
i=1 L2(4,)

)"i,s — 400, )"i,sdi,s — 400, 8ij -0

when ¢ — 0, where d; . = d(a; ., 0A.) and

_n=2
2

ie Aj

i, Jj.e 2

&ij = <} + A + )‘i,s-)‘j,smi,s - aj,s|
Jj-e i€
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(i) Moreover p =2 and if n > 4, then we have: 3k < p, iy, ...,y €{1,2,..., p}
such that

d" 2 @iy es i) = 0, A"V (G ey dig ) = O
Vm,l e{l,...,k} |a, . —a;.| < Cod, where d =min{d(a;, ., 0A;) | 1 <I <k}
and Cy is a positive constant independent of €.

Remark 1.4.— We believe the result of part (ii) in the Theorem 1.3 to be true for
n = 3. For n = 3 our method also proves easily d”_ng(ailys, ..., a; ) — 0, but for the
proof of d”_IV,os(a,-l,g, ..., a; ) — 0 we need a more careful estimates of the rests in
Propositions 3.2 and 3.3 below.

The main ingredients of the proof of the Theorem 1.3 are a fine blow-up analysis, on
the one hand, and a very delicate expansion of VJ near infinity, on the other hand.
Step 2. We prove the following result.

THEOREM 1.5.— Forn >3, let Cy > 0 and let (x1,x3,...,X;) € A’; such that
d"2p.(x1,...,x) = 0 whene— 0and |x; —x;| < Cod, Vi, j,
where d = min{d (x;, 0A,) | 1 <i < k}. Then
A" 'Vp.(x1,....,x) A0 whene— 0.

We notice that Theorem 1.1 is an easy consequence of Theorems 1.3 and 1.5.

The remainder of the present paper is organised as follows. Section 2 is devoted to the
proof of the first part of Theorem 1.3, while the second part of Theorem 1.3 is proved in
Section 3. In Section 4 we give the proof of Theorem 1.5. Lastly, we give in Appendix A
some technical lemmas needed in Section 3.

2. Asymptotic behavior of solutions with bounded energy

In this section, we will study the asymptotic behavior of solutions u#, of P, when &
is small enough and their energy is bounded. Thus, in the remainder, we assume that
Ja, |[Vu,|> < C, where C is a positive constant independent of &. We begin by proving
the following lemma.

LEMMA 2.1. — We have the following claim
/quglz 40, M,— +oo, whene—0, where M, = |u,| = 4,)-
Ag

Proof. — On the one hand, since u, is a solution of P, we have

s [
/|Vu£| :/ug‘ .
Ag

Ae
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On the other hand, we have

n—2
o n 1 )
g |2 <= [V |
S
Ag Ae

where S denotes the Sobolev constant defined in (1.6). Thus

z o 2_"2
§3 |V, |> = ul <ceMi™

and our lemma follows. O

LEMMA 2.2.—There exists a positive constant ¢ such that for ¢ small enough, we
have

2
eM{™ >c, where M, = |u.|La,)-

Proof. — On the one hand, we have

2n 4
/Iwgl —/ M z/ug(x)dx.

&

/ug(x)dx :g"/vg(X) dx

Ag B

On the other hand, we have

where v, (X) = u,(¢X) and where B, = ¢(A,), with ¢ : x — ¢(x) = ¢~ 'x. Observe that

n 2 " 2 & 2
e [VI(X)dX < — [ [Vu(X)PdX = — [ |Vue (@) dx.
& &
B, Ag

By

Thus
_4_
Ce < 82M8n—2

According to Lin [12], we have lim,_, ¢, = ¢ > 0, therefore our lemma follows. O

~ 2
Now let A, = M;* (A, — a1;), where a;, € A, such that M, = u(a;,), and we

denote by v, the function defined on A, by

__2
0e(X) = M ug(ar 0 + MITX). 2.1)

It is easy to see that v, satisfies

142 ~
{ Av,=v¢7, O<wv., <1 inA,, 2.2)
v:(0)=1, v, =0 on dA,.
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2 2 2 2
[ vl = [1vup = [+ = [ul" <c,
XF AS & AS

A

Observe that

Let us prove the following lemma.
LEMMA 2.3. — We have the following claim
2
M!*d(ay e, 0A:) — +00, whene— 0.

Proof. — Let | = lim,_, Msz/(”_z)d(al,g, dA,.). First we will prove / # 0. A similar
result has been proved by Harrabi, Rebhi and Selmi [11]. We will adapt their proof to
our case. Let a; . € A, such that d; :=d(a; ., 0A;) = |a;, — a1 .|. We may assume
without loss of generality that the unit outward normal to 0A, at a; . is e,, where e,
is the last element of a canonical basic of R". We see that d, = a; .e, = af ,, where
aje = (all,g, .o, af ). ve is well defined in

B(0, (2/3)e MYy {(x", ..., x")/ —d.MY"P < x" < (2¢/3 — d.) MY "},
Letze = (0, ..., —d. M=) and let 0, (X) = v¢ (X + z.), for
X € B(—z¢, 2e/IMY ") N {0 < x" < 2¢/3)MZ/ "2}
We suppose, arguing by contradiction, that |z.| =/, — 0 as ¢ — 0. Then —z, €

B*(0,0) = B(0,0) N {(x',...,x")/x" > 0}, where 6 is a fixed positive real small
enough choosen below. Let R > 0 be such that

2 2
B"(0,0) C BT (0, R) C B(—z., (2/3)eM{ ) N {0 <x" < (2/3)eM{ ™ }
for ¢ small enough. We consider the following equation

{ —Aw, =0 1in BT(0, R),
We = U on BT (0, R).

Then w, € C*(B*(0, R)) N C°(B*(0, R)). We derive that
|ljg —a)8|W2,q(B+(0,R)) <C, Vq < Q.
In particular, grad(v, — w,) is bounded in B*(0, R), and we have

0V, 0w,

<c .
ax" axn

Observe that

G
w0, (x) = — / 2w dy in B*0,6).
3B+(0,R)
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Thus

dw, d 0Gp+

=— dy.

() | s ema
3B+(0,R)

According to Lemma 2.6 [10], we have

d 0Gp+
ax" dv

1
3 >0,3c>0 0<— (x,y) <c, VyeaB+(0,R), x| < x 0<x" <.
Since w, < 1, we derive that dw,/dx" is bounded for 0 < x" < §. Thus 97, /9x" < ¢'.
Let f.(t) = v.(te,), then we have

00, ,
fa(ls) - fs(o) = fg/(cs)ls = gvn(csen)ls <l

2
where I, = M?2d,. Hence f.(I,) — f.(0) = 9,(0) — 9, (z,) = 1 < ¢'l, which contradicts
the assumption /[, — 0. We derive that [ £ 0. We suppose, arguing by contradiction,
[ < 00. Then it follows from (2.2) and standard elliptic theories that there exists some
positive function v, such that (after passing to subsequence), v, — v in C},.(R2), where
Q2 is a half space or a strip of R", and v satisfies

[N

n+

{—Av:vﬁ, v>0 in&,
v(0)=1, v=0 on 9<2.
But if 2 is a half space or a strip of R”, by Pohozaev Identity (see Theorem III.1.3 [15]),

then v must vanish identically. Thus we derive a contradiction and our lemma
follows. O

From Lemma 2.3, we derive that there exists some positive function v, such that (after
passing to a subsequence), v, — v in Clloc (R™), and v satisfies

n+2 . on
{—Av:vnz, v>0 inR" 2.3)

v(0)=1, Vv(0) =0.
It follows from Cafferalli, Gidas and Spruck [7]

V(X) =804 (X), witha, = (n(n —2)) "
Hence

-2
M ug(ay e + M7 X) — 8(0.4)(X) — 0 in CpL.(R"), when & — 0.

Observe that

&

__2
M e (are + M7 X) — 8000 (X) = M (e (x) — 84y, ) (X))

2
where Ay . = o, M.
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In the sequel, we denote by u! the function defined on A, by

Uy (%) = e (x) — Pediay , 1y 0 (X). (2.4)

Notice that A , — 400 and A d(a; ., dA;) = +00 when ¢ — 0.
LEMMA 2.4.— Let u! be defined by (2.4). Then we have
() —Aul = |L{1|n4T2u1 + g, with Igng(qu> — 0, when ¢ — 0.
(ii) fA |Vu! |2 fA |Vus|2 S, +o(1).
i) [y, [l [72 = [, |72 =S, +o(1) where S, = S%.

Proof. —
(i) We have
1 s e 1 1
_Aus —Au, + AP, S(GHM &) =ue 8(a15A15) ’us " 2 +g8
where
a2 a2 14 1
8e =Us 8(“18 P Sl L Ky T

Observe that
4

= O(|1P.8|7 7 up — P8 + |uy — Po8|77 P.8) 4+ O (877 (8, — P.9))

where P.8 = P.8(a, 1, ) and 8, =8, . 5, ). Since L7 — H~!, it is sufficient to prove
that

8 |u8—P8|n+2—>0 and /8”*2| e — P8|n —4—>0 when ¢ — 0.

Ag

Observe that

n2 4 2n n§n74 2n
5 |8—P8|n+2<c 5 g — 8,72 ¢ [ 822748, — P82

=2 2n
s "/ 5£§a4><x>|vs<X> — M8 (a1 + MITX) [T dX

+O(|8 _P8|n+2 )

/ +o(1)

BO,R)  A\B(0,R)

where R is a large enough positive constant such that [, 3 ) 8(0 ay = 0o(1).
Now we are going to estimate the 2nd integral
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8)1
/ 812 (X [0:(X) = 8000y (|77 dX
A\B(O,R)
4 n=2

)12 2 2_,12 "2

<< / (Oa,,)(X)) ( / |ve (X) — "_)
A:\B(O,R) A:\B(O,R)

2 =

<Cl< / 5(%_,an>(X)>

R\ B(0,R)

indeed [; v-2 < C. For the first integral, we have

2n
5t () 00 (X) — B0y (X[ dX < C / [0 (X) = 80,000 (X)| 2 dX — 0,

B(0,R) B(0,R)

when & — 0, indeed v, — 8(0.4,) — 0 in C.(R"). In the same way, we prove that

_8n_
/8"+2| o = Ped]?=4 — 0, whene—0.

(i) We also have
/|Vu;|2:/|Vu£|2+/|VP88|2—2/Vu8VP88.
A Ag Ae A

Observe that

)12
/|VP8|_ P8_/8 /5 (5. — P.3)

n+2

8(‘02 )~ 8_ (8: — Ped)

n+2

R™\A,
For the 2nd integral, we have

n+2

SSnTZ (83 - PE(S) < C|85 - PslezT"z(A ) < C()\'l,sdl,&‘)z%n - 0’ when & — 0
Ag 8

where dl’g = d(algg, 8A8)
For the first integral, we have
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indeed A, — R" and 80, € L2 (R"). Then

/Wm2 =5, +o(1).

We also have

/VMSVPE(S =/V(u8 — PSS)VP88+/|VP88|2.

Observe that

/V(uS—P(S)VPS—/(uS—P(S)S
_/(ug 5)5"+2+/(3 _ Pt

2
- / (v = B0a)3fay + 0D

2
< /(v8—8<o,a,,)>8g‘oj§,,l)+ / (Ve — 80,08 2 + (D).
B(0,R) R"\B(0,R)

Notice that, on the one hand

n+2

)H% 2_712 2n

( 8(0 a”))S(’b ap) X C < / 8(”0,“}1)) = 0(1)
R™"\B(0,R) R\ B(0,R)
On the other hand
n+2 . ) |
(Ve = 80.0))8 (0.0 = O(1),  since v = 80,4, in Cje (R").
B(0,R)
Then

/Vu8VP88 =S, +o(1).
Ag
Thus (i1) of Lemma 2.4 follows.
(iii) The proof of (iii) in Lemma 2.4 is similar to the proof of (ii), so we will
omitit. O

Now, we distinguish two cases

@ [y, IVu}]* — 0 when e — 0.

(i) [y, |[Vul|? A 0 when & — 0.

If [, |Vu}|* — 0, the proof of (i) (Theorem 1.3) is finished.
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In the sequel, we consider the second case, that is | A, |Vu;|2 -0, when ¢ — 0 and
we are going to look for a second point of blow up of ;.

In order to simplify the notations, in remainder we often omit the index € of a, and A,.

Let us introduce the following notations

n=2
us(ax) :=x,> = max u.(x), (2.5)
(Ae\\ B(a1,¢))

n—=2

n=2 n—=2 n=2
hgzggllags)lx—all Tu(x) =lar —az| T uc(az) =lay —az| 7 A7 . (2.6)
1,

We distinguish two cases.
Case 1. h, — +00 when ¢ — 0.
Case 2. h, < c,when ¢ — 0.
Now we study the first case, that is 7, — co when ¢ — 0. Let

2

Ay =max(Ay, Az) 1= ui™? (as).

For X € B(0, %|a, — as|) N D, we set

—(n=2)

we(X) =4y > ue(ag+1;'X), with D, = Ag(A; — ay).
It is easy to check the following claims
Mlay —agl = (1/2)A3la; —as3|, and  A4e > (1/2)A3]la; — azl.

Thus
Mlay —ag] = 400 and Age — 400 ase — 0.
We also have
we(X)<c, VXeB(0,(1/2) sla; —as]) N D,.

As in Lemma 2.3, we can prove
Md(a4,0A,) — +00, ase— 0.

Thus, there exist b € R and A > 0 such that w, — 8, in CL.(R"). Therefore we
have found a second point of blow up a, of u, with the concentration A, in this case
(@ =as+b/rs and Xy = Ady).

Next we study the second case, that is s, remains bounded when ¢ — 0, where /. is
defined in (2.6). In this case we consider two subcases.

@ Sse.20) ILt;IHZTn2 — 0ase— 0.

.. 2n_
(i) fB(al,Zs) |ui|”_2 -+»0ase—0.
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Let us consider the first case, that is /. remains bounded and [y, lul|i=2 — 0 as
g — 0. Thus there exists ¢ > 0 such that

1,2 2 2 2
O0<c< lug |72 <chy [ u; <c(err)”.
Ae\ Blay.2¢) Ae

Hence, there exists ¢ > 0 such that

Aalay — ax| > Are > 2c.

Now, for X € E, = Ay(A; — ay), we introduce the following function

2—n
Us(X) = 2y% ue(ay + 251 X).
As in Lemma 2.3, we can prove Ayd(as, dA,;) — +o00. It is easy to see that U, satisfies
U <1, inB(0,(1/2)Az]a; — asl).

Thus, there exists b € R" and A > 0 such that U, — (.5 in CL_(R"). Therefore we
have also found a seC(_)nd point of blow up a, of u, with the concentration X, in this case
(ay=ay+ b/ y and Ay = AAy).

Now, we study the second case, that is /., remains bounded and [, 5., |u;|nzT"2 -0
as € — 0. We introduce the following function defined on F, = ¢~ !(A, — a;) by

Wo(X)=¢"T u(a +eX).
Observe that F, “converges” to a strip of R” when ¢ — 0. We notice that W, satisfies
4 .
{ —AW, = |W,["=2 W, + f; in F,
W, =0 on dF,,
with | fo| -1,y — 0 as ¢ — 0. We also have

2n

wit = [l

2n_
"0, ase—0

B(0,2)NF; B(a;,2¢)NA,
and
2
/|VW£|2=/|W; <C
Fe Ag

It is easy to check that there exists some fixed domain F C B(0,2) N F, such that

|W€|nzTn2 — 0 almost everywhere and |W€|nzTn2 — 0 in L'(F). From Dunford—Pettis
Lemma [5], we have

2n

360 > 0, o, >0, @, — 0, I, € F s.t. / |Weln=2 = . 2.7)

B(be,ae)NFe
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We can choose b; and o, such that o, is minimum and [, , g [Wel7=2 = So.

727

LEMMA 2.5.—Let (., b.) be defined by (2.7) and let = (ea.) Y, and @ =

ay + &b.. Then we have

A A -
i—1—>+oo or )\—2—>+oo or Mhla; —dy* — +oo whene— 0
2 1
2_
where Ay = M ™*

Proof. — We argue by contradiction. Let us suppose that A,/ X2, Ao /A1 and )\1)_\2|a1 —

a,|* are bounded when ¢ — 0.
For X € A, := A1 (A, — a1), we introduce w, defined by

we(X) = M 'ul(a) + 271 X).
Observe that, on the one hand

e (X)|72 dX = Jul (x)
/ /

BOu1(@2—ar), M /22)NAs B(az,1/A2)N A,

2n_
=2 dx

= / W, (X)|72dX =38 > 0.

B(be,0e)NFe

On the other hand, since A|a; — a;| and A/ X, are bounded, we have

3R > Osuch that B(A(a —a1), A1/A2) C B(O, R).

Thus
/ . (X)|22 dX
BO1(@y—ar),h1/A)NAe
< [ weortax
B(0,R)NA,
o
_ / M g (ar + A7 X) = M7 Pbia, oy (ar + A7 X) |72 dX
B(0,R)NA.
2n 2n_
< [ o= b0a) (0 +e [ 500 = P,
B(O,R) Ag
Thus
/ IW.(X)|72dX — 0 when & — 0

B(hi(az—ap), M A2)NA,

which yields a contradiction and our lemma follows. O

(2.8)
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Now we set A, = (A, — @) and we introduce the function V, defined by

D)

Ve(X) =1y 7 ul(a+25'X).

Observe that
2n_ 1,-2n
| V8| n—-2 — |1,[8 | n—2 — 80 > 0 (2.9)

B(0.1)NA, B(az,1/A2)NAs

and we also have

2n

/|VV8|2<C, V. < C.

It is easy to see that there exists some functions V such that (after passing to a
subsequence), V, — V in H! () and V satisfies

4
—AV=|V|=—2V inQ, V=0 7012,
{ V| n on 2.10)

JoIVVE<C, [V <cC,
where 2 is a half space or a strip or a R”.
From (2.9), it is easy to see that V # 0.
LEMMA 2.6.— Let V be defined by (2.10). Then, we have V > 0.

Proof. — We have

_ewm e R
VeX) =2y 7 ue(@r+2,'X) =20y 7 a0 (@2 + 245" X)
_en

+ 37 (S (@ + 25" X) = Pebday (@2 + 25 X)). (2.11)

Thus, it is sufficient to prove that

_@2-n

)»22 8(a1’)hl)(6_12+)_»2_1X)—>0 in H,!

loc

(R").

Observe that

n=2 n

_@2-n )\’12 n—
1= / (xz : — L 2) dx
s L AR A X —a )

-(3)

=5
If A;/Ahy — O it is clear that I, — 0 when ¢ — 0. If A1, — 400, let y = (A1 /1) X.
Thus

T
[

(S

[N

n+
2

(2.12)

/ dXx
pin (1 Oa/A22IX = Rolay — @) )T

n+2

)_\2 152 1 )
I. < | — / — 2) dy—0 whene— 0.
Ay L+ |y = 2ri(a1 — a2)l

Rn
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Lastly if A;/A> 400 and A,/A; # 400, then, by Lemma 2.5, we have

MAslay — a)* — +oo,  when e — 0.

Observe that for X € B(0, R), we have

| X —dalar — @)| = |halar — @)| — |X| = c|ra(ar — @)

Therefore

A\ 2 1
Isg T

I - n+2
b2 (c(3) Ralar — @) )

B(0,R)

C(R)—0,

X — _ +2
(MAzla) — @)=

Then, our lemma follows. O

when ¢ — 0.

729

Now, from Theorem III 1.3 [15], we derive Q = R”". Thus, using (2.10) and
Lemma 2.6, we also obtain a second point of blow up of u. in this case. Thus in all
cases we have built a second point a, . of blow up of u, with the concentration A, . such
that A, , — 400 and A, d(az ¢, 0A;) = +00 as ¢ — 0. It is clear that we can proceed

by inductions. Thus, we obtain a sequence (ulg‘)k such that

/|Vu’§|2=/|Vu§‘1!2—Sn+o(1>=/|wg|2—ksn+o(1>.
Ag Ag Ag

Thus

0</|Vu'€‘|2:/|Vu5|2—kSn—|—o(1)<C—kSn—|—o(1).
Ag Ag

(2.13)

Since the later term in (2.13) will be negative for large k, the induction will terminate
after some index p € N*. Moreover, for this index, we have

— 0,
L2(Ae)

P
\% (us — Z Pas(a,',g,?»;_s)>
i=1

)\i,sd(ai,sa 8As) — +00,

i€ )‘j,s

.. A,
Vi£j, &= (A— + =+ AieAjelaie —

€ )‘i,s

as desired in the first part of Theorem 1.3.

)"i,s — 400,

_n=2
2

2
ajgsl) -0
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3. Proof of the second part of Theorem 1.3

Let, for p € N* and n > 0 given

Ve(p,n) = {u e TT(A,) s.t. dxi, ..., x, € Ay, g, ..., A, > 0 with

P , 1 1
u—C(p)Y  Pebxa) <n, Viki>—, hd(x;,04A;) = —,
i=1 HY () " n
., Al Aj ) -7
Vl;ﬁ_} 8ij: —+—+)\,-)\j|xl-—xj| <n
YRy

where ©F(A,) = {u € Hi (A,) |u >0, |M|H01(Ag) =1}.
If a function u belongs to V.(p, n), then, for n > 0 small enough, the minimization
problem

14
u—Y Pz (3.1)

i=1

min
o, Ai>0, xj€eA;

HL(Ag)

has a unique solution, up to permutation (see Lemma A.2 in [3]).
Therefore, for ¢ > 0 sufficiently small, Section 2 implies that u.(solution of P.) can
be uniquely writen as

Ug

Ug

=Y i Pedia;, ) + Ve (3.2)

|us|H(}

where v, satisfies the following conditions:

and o; . satisfies:

n 4
(J@) ™l =1+0(1), Vj.

In order to simplify the notations, in the remainder, we write «;, a;, A;, §; and P§; instead
of ¢, @ies Mies 04y, 0, and Py, , 5, Tespectively and we also write u, instead of .
As usual in this type of problems, we first deal with the v.-part of u,.

PROPOSITION 3.1. — Let v, be defined by (3.2). Then, we have the following estimate

n=2
1 —1\\ 7 .
> Gy + 2 & (Log(e ) ifn <6,
Ivelgiian < €

5L+ el (Loge; ) ¥ a6
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Proof. — From (3.2), we derive

—Ave=—Au,+ A(Y @i Ps;)
= (J )™ (D P —l—vg)
= (J(u))™ {(Zoz,-P(S,-) i ”J_r
Jro(sllp(z(x,lhsl,ug)i vl )} st

Thus, since J (u,) is bounded,

|+
I\)

it
-2 b,

(ZaiPS,-)nA_zvs—i—O(lvs

731

/IVvs|2= (J(us))””_z[(f n+2/(2a,P8)%v3] +0(Jv |“‘f<3 20/ (1=2)y

£

where
%
/(Z(X,PS )
Then
Qe v0) = (J ) ™2 (£, v2) + (| 1°20),
where

Q(vs,vs)—/IV P2 ) /(ZW(S)Lz

4
Observe that, since J (u:)"2a/ > =1+ o(1), then Q(v, v) is close to

n+2 2,
/|VU|2——Z/P8i"_2U
-24

Ae " LA

and therefore Q is a positive definite quadratic form on v (see [2]). Thus
el < Q(ve. ve) + O (fue ")
= (@) (£ ve)

<CIf vl gy
Hence

el gt < C'I1.

Now we estimate | f|. We have

L _4_
fUS ZO( /P 2U5—|—O(Z / P81’12P8j|U6|).

P§;j< P

(3.3)
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Observe that

n+2 n+2
/P(S 21)8_/1)88”‘2+O
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(fore

P&Nwo

4 n+2
:O( / (Sin—z 6 — P&)lvsl) +O< / 81}12|v8|>

B(ai,di)
where d; =d(a;,0A,). Thus

n+2 5‘" n
[ poiu=o(luly 16— Pai= ([ 7)
Ag

R"™\B(a;,d;)

n+2

B(a;,d;)
n+2
2n_ 2n
+ 81-”‘2) }) (3.4
B<(a;,d;)
Notice that
#—o()
(Aidi)"
R"\B(a;,d;)
and
8n %
81"12_4
B(a;.d;)
n—6
di ? . g( i l) 1 .
=0 5 (ifn>6)+ ————((fn=6)+ —=(fn <6) . 3.5
)‘i )\'l Y
Therefore
n+2
/P(Si”’2 Ve
Ag
1 . Log(Ad;) . 1 D
=0 v ——+(fn=60)——+({fn<5——|). (3.6
(l el [(A,-d,-)"T+2 ( ) (Aidi)* ( )()»idi)"_2 G0

We also have

n+2
4 2] o
/ P&”P%WJ<hu[(/ «Pawzpayﬂ] | 3.7)
P5j<P5i P(SngBl
If n > 6, we have %:’2 > - and thus
L 2_” n L
(P82 P§;)"™ < (P§; P8;)72 =0(e/; " Log(e;;')).  (3.8)
P5j<P5i Péngé,-
If n <35, we have 1 < —5 , thus
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2(n—2)
2n 2(n—2)

P ce( [ @sp) T < Logle) T 69)

Ps§j<PS; PS§j<PS;

Using (3.6), (3.7), (3.8) and (3.9) we conclude that

4
2

(P8~

1

(n=2)

! I\ T :
2 Gy T 228 (Log(e;;)) ifn <6,

NARS e e
(i d)% + Zs (Log(gij )) o ifn>6

and Proposition 3.1 follows. O

PROPOSITION 3.2. — For n > 4, we have the following expansion

(vu >A-%) —2J(u,) [—(”_2) @) (14 o)
Ug), Aj EYe Hol(Ag)_ Ug)Cq 3 Ui )\?—2 0
38;] (n —Z)Hs(ai,aj)> | ]
V) (1+0(1) + R|,
Z‘x’( 2 s (1+o()
where
_ Log(Ady) L -1 )
R_O<§k: (Adi)" +;8U Log(e;) )
Proof. — We have
VI () = 20 () [ue + I )2 A ()], (3.10)

Thus

IPS; IPS;
(VJ(uS) b >—2J(u8)[ZaJ<P8J,A >y )

i

— J(u,)m™ [)‘i/<Z%P8 >;+§8P3.
2 [ (Seran) o B
—|—O(| |1nf(2 ,(n+2)/(n— 2))>”_ (3‘11)
Notice that if n > 4, we have
(S a;Ps; )ZH S (o P32 +—Z(a,P3 )iTa, P,
I#J
+0( Z(aipai)%(ajpsj)n’f’z>
i#]
+0( 3 (ajpaj)%(akpak)) (3.12)

ke(i.j}is)
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and

(Zajpa) = (@; P87 2+O(ZP8” U ps; + PO ) (3.13)
J#i

Combining (3.12), (3.13) and (3.11) and using the fact that |A;0 P§;/dA;| < ¢§; and
P3d < &, we need to estimate the following integrals

futeis [+ [+ ]

Si<lvel  Silvel el <inf(;,65)

n+2
O(uel ) + O(luel) +o</(3 ) 2) (3.14)
5i
/ P8/ zvg ;
B(a;,d;) l
8(8 — P§;) 88,-
- [ [l
oA 3)»1'
|v8|H1 8n n;’lz
<722</ —4) +/8"2 +O(/ ,-”ZUS((S,-—PS,-))
(nd?)T ,
1 . Log(ridi) . 1 )
= O(|v, _— fn=6——-— fn<5——, (3.15
(IU |H01)(()\.idi)# + (it ) (Aidi)* +tn )()\idi)n_z ( )
4 o0PS; 1
P§; vg)\ia—)\i =0 |vg|H1W (3.16)
R™\ B(a;,d;)

Now, using Proposition 3.1, Lemmas A.5-A.9 in Appendix A, and the fact that

4
J(ue) 2o =1+o0(1),
Proposition 3.2 follows. O

PROPOSITION 3.3. — For n > 4, we have the following expansion

8P81 i aHs( i i)
(Wwa) » oa, ) _J(”)Cl{xa azi (1 o(1)

1

1 9e;; 1 dH,(a;,a;)
_2§ N il A L ) 1 1
a] <)\’l aai ()\‘ )\‘ )n 2 aai ( + 0( ))

+O(R+ij|a, ajlels 2)]

where R is defined in Proposition 3.2.
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h 18P5

Proof. — As in the proof of Proposition 3.2, we obtain (3.11) but wit S instead

of A; 22% and using Lemmas A.10-A.14 in Appendix A our proposition follows |

v
Next we are going to give the proof of the second part of Theorem 1.3. From
Proposition 3.2 we easily derive that p > 2. Now for i € {1, ..., p}, we introduce the
following condition
P
277N e <Y Helag, a) ik ) (3.17)
ki j=1

We divide the set {1, ..., p} into T; U T, with
T, ={i| s.t.i satisfies (3.17)},
T, ={i | s.t. i does not satisfy (3.17)}.
In 7, we order the A}s: A; < X;, <--- < A;,. We begin by proving the following lemma
LEMMA 3.4. - For n > 4, we have the following estimate
Z (eij + (Md)*™) =Ry
J€D, j#i
where Ry = O[Yyp, (W20 4 5 el Log(ep, ).
Proof. — Using Proposition 3.2, we derive

3 PS;
0= szau (VJ(uS) A, ak")

k=1 Lk

zzj(us)clz[ > 2aja ki /\f_”f( +o(1))

k=15 j#ik tk
P H k] 1
Z %( 1+o(1)) + R] (3.18)
= hi) T
Notice that
881']' n—2 2)\7 %
Thus,if A; > A and i, j € T, we have
88,‘j 881']' 881']' n—2

—2X; Aj (3.20)

A e 4 Y
For j € T1 and i € T3, two cases may occur.
@) 1d d < 2d;. Using in this case the fact that j satisfies (3.17) and H,(q;, a;) <

(d; dk) , we obtain

n—2 n=2 P

—(n=2)

N\ 2 N\ 2 P
(X—j) &ij < (K—j) CZM \CZ (hid)) Oudy)) 2

Ai Ai k=1 (AjAg) 2



736 M. BEN AYED ET AL. / Ann. L. H. Poincaré — AN 19 (2002) 715-744

We deduce that
A i o( ! ) (3.21)
—E&: . = . .
A Y (A1d1)?
(ii) In other cases, we have |a; —a;| > %max(d,-, d;), then
Aj & _ A 2\ 1 -2 1
)\‘_igij <)L—i()\i)\j|ai_aj| ) < (hilai —a;l) =O(m

and (3.21) follows in this case. Using (3.18)—(3.20), and (3.21), we see that

P
0> ((n=2)/4) Z(Zszj — 2"y H, (4, a) (uih)) +R>.

il \ j#i j=1
Since i € T, and H,(a;; a;) ~ c/d{’_2 for ¢ small enough (see [1]), then

1
0>CZ(ZSU+W)(1+0(1)) + R,

ieT, ]751
Therefore our lemma follows. 0O
Now, in T; we order all the A;d;: 1d; <Xj,d;, <---<Aj;d;, . Inorder to simplify

the notations, we suppose that 71 = {1,2, ..., g} and A d; < dody <--- < Ayd,.
Let us introduce the following sets:

KOZ{iETl|3k1,...,km€T1 st.ky=i,....k,=1

lax; — Akj 1 |
inf(dy;, di;.,)
B=KyNn{1,...,1} (3.23)
where [ = max{i € T1 | A;d;/A;—1di—1 < C1} and Cy and C; are positive constants
choosen later.

LEMMA 3.5.— Let B be defined by (3.23). Then, there exists i € Ty such that i € B
andi # 1.

Proof. — We argue by contradiction. We assume that B = {1}. Using Proposition 3.2,
and the fact that H,(a;; a;) ~ c/df_z, we derive

0 (VJ( ), A apsl)
= u8 ) T
Yo,

and < co}, (3.22)

-2) H,
—2J(u)ey [_ (n )0(1 s(il_vzal) (1 +O(1)) —|—O<Z€k1)].
2 AT =
Thus
0< —c(d)> ™" + o( Zelk>. (3.24)

k£l
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Observe that:
— for k € T5, we have by Lemma 3.1, g1, = O(R;);
— for k € T, two cases may occur.

If k > [, then

n=2

2p“z:H(ak,a] ( 1 )T< 1 1
RO E SN\ owdomay) S =2 2 (Oud) (d)) T

Thus &1; = o((A1d;)*>™") if we choose C; large enough.
In the other case, we have k ¢ K, then |a; — a;| > Cy inf (dy, di), then

1 2 1 1 1
1k S ( 2) < ci- 2 :0( —2)
MAglar — agl ((mdy) idy)) T (Ady)"

if we choose C( large enough. Thus (3.24) yields a contradiction and our lemma
follows. O

In order to finish the proof of the second part of Theorem 1.3, it is sufficient to prove
the following lemma.

LEMMA 3.6.—For n > 4, we have d"?pg — 0 and d""'Vpg — 0,when ¢ — 0,
where d = inficpd(a;, 0A,) and pp = p(a;,, ..., a;,), with B ={iy,...,i,} the set
defined by (3.23).

Before giving the proof of this lemma, we begin by studying the vector A defined by

2—n 2—n

A=T 00 (3.25)

Im

We denote by e the eingenvector associated to pp. We know that all components of e are
strictly positive (see [4]). Let > O be such that for any y belongs to a neighborhood

C(e,n) of e, we have
oM 00 1
lyP? and Ty BV=( B+0< )>|V|2

TyMpy — pply|* <

d” -2 da; da; dr—
(3.26)
and for y € (R*)" \ C(e, n) , we have
T 2 C3|V|2
yMpy —psly|”> —5 (3.27)
where
m y
Cenc{ye®ymse | —ef<n}.
y

m = card By and Mg = M(a;, i € B) the matrix defined by (1.3).
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LEMMA 3.7.— Let A be defined by (3.25). Then A € C(e, ).

Proof of Lemma 3.7. — We argue by contradiction. We assume that A € (R})™ \
C(e,n). Let

(L—DA+1|Ale _ y(®)
|(L=0OA +1]Ale]  y@I

A1) =|A]
From Proposition 3.2, we derive

(V‘](MS)’Z)|I:O:_C TA(I)MBA(I)) +O< Z 8,’j>

ieB, je(T\\B)UT,

d

L

R+ o(é)
(Ady)"—2

where Z is the vector field defined on the variables A along the flow line defined by A(%).
Observe that

TA@MpA() 2
a1 ( A(I)MBA(I)) a (WU\(ON )
_ zg< (1—0? 1 _ ) )
=|A(0)] a7 ,03+7|y(t)|2 (" A(O)MpA(0) — pplA(0)[7)
2(1 —
= IA(O)IZ( |(y(t)|i) (" A©)M5A ) — ps|AO)]?)

X (=(1=0)|A0)|(e, A(0)) —tIAIZ))-
Thus

(VI(e), Z)|,_y= AMpA — pp|A?) (—|Al{e, A0)))

C
|A|2(

1
+o(7n_>+o< > gif)‘
(Mdy)"2 ieB.je(T)\B)UT,

Since |e| = 1, then there exists k such that ¢; > % Thus
(e, A(0)) Ze, P >

Using (3.27), we obtain

1
(VIWe), Z)|,_g = —5 | Al A +o<7n_)+0( > s,-j)
=0 d - (dy)"? ieB,je(T|\B)

c 1
) o5 )
O»ldl)»kdk)T2 (ady)"—2 icB.jeTi\B !

Observe that
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— if j >, since j € T}, we have

c 1 c 1
8ij n=2"* n=2 < _2 (—u)’
(Md)) 7 (hjdj) T 2 Oudind)'T (AidiArdi) 2
- if j ¢ Ko
1 Tz C2 n
8,] X <—2> < —u
()\ A |al _ajl ) ()\'ldl)\'jdj) 2
crert ( 1 )
T Qadiad)' T \Gadid) T

if we chose Cy > C;.
Thus

c 1 1 -
0> > _ . .
<(k1dlkkdk)" ) " 0((k1d1>"—2) ((xldo"—z) <(cl)"7 ol )) g

This yields a contradiction and our lemma follows. O

Proof of Lemma 3.6. — Using Proposition 3.2, we have

0= Z(Vf(us)k P‘S)

ieB l
H,(a;, a;) H¢(a;,a;)

_Z{ Y (I+o(D) — > (s,-,-— u)(1+o(1))

ieB j#i,jeB (Airj) 2

+o< > e,-,-) +R}

JE(M\B)UT
1
T
(Ardy)"=2 je(TI\B), ieB

Observe that, for i € B and j € T; \ B, we have, as in the proof of Lemma 3.5,
gij = o((Ad;)>™), for Cy and C large enough. Thus

0="AMpA +o0((rd))*™). (3.28)

We assume, arguing by contradiction, that d"%pg -+ 0, when ¢ — 0. Therefore, there
exists Cy4 > 0 such that |ppd" 2| > Cj.

Now, we distinguish two cases.

st case: pg > 0. In this case, we derive from (3.28)

02,03|A|2+o<¥) cz|A|2 ~|—o< ! )>0.
(Mdy)"—2 dn—2 (Mdp)"—2

This yields a conttradiction and we derive that d"2pg — 0 in this case.
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2nd case: pp < 0. In this case, we derive from (3.26) and (3.28),

| A2 ( 1 )
0< A+ +of ————
,OB| | dn—2 ()lel)n—Z

|A?
= dn—2
IAI2

n—2 1 )
(ppd" ™+ C2) + 0<7()\1d1)”—2

1

g2 e °(<A1dl>n—2>'
If we choose C; < %C4, we obtain a contradiction. Then d"~2pz — 0, when ¢ — 0 also
in this case.

Observe that, since d"~2pg — 0, then there exists Cs > 0 such that |a; — a il = Csd,
forany i, j € B andi # j.

We assume, arguing by contradiction, that d"~'V pg 4 0 when & — 0.
Using Proposition 3.3, we derive

d ag;; 1 J0H,
om0 (Tt )
da ieTiB oa; (Aihj)z 04
11 i1
+o0 dm +)\,R+O Z)\ikﬂa, Clj|8 +O Z)x&‘,j
JjeTy JET2

Observe that:
— for j € T5, we have by Lemma 3.1 A;¢;; = O(A; Ry);
— for j ¢ Ky, we have

_
(i2) T

0H,
da;

88,-j
80,‘

—(a;,a;)

< c 2( 1 n 1 )
(ir) T \lai —a;I"  dila; —a;|"?
g (amaa) @)
(hdidjd) =T Co

2c 1 1 ( 1 )
n—2 g 2 o n—2 ;
Ci?d (Mdy) d(kidy)

— for j > [, we have

88,‘j 1 H
A DN (laa])
(Aidj) T > | 0a;

< c 1 1 )
h 1 ((K dy)"~ 2d) (d(Mdl)”‘z)’

n+l

)\,-)\jla,- —aj gl? =0(d()\1d1)1_n)'

tj

— for j € T}, we have
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Therefore, by (3.26) we have

IMp 1 s 4 >|A|2 ( 1 )
0="A A — = =a" 1 — .
a2+ (amays) = (™ +o0) g + oGy

Thus

0> (|52
da

This yields a contradiction and our lemma follows. O

a + (1)) AP + ( ! )>C AP + ( ! ) 0
0 ol ———— | > 0 > 0.
dn—1 d()\ldl)n—Z 6dn—l d()\ldl)n—Z

4. Proof of Theorem 1.5

Let (xq,...,x;) € A, such that
d" 2 pe(x1,...,xx) =0 whene— 0and |x; — xj| < Cod, Vi, j, 4.1)

where C is a fixed positive constant and d = min;¢;<x d(x;, 0A,).
We may assume, without loss of generality, that d; = inf; ;< d;.
Now we introduce the map

Ag—>gg, x»—>£:d1_1(x—x1).

According to [1], we have
Pe(X1s . X)) =di" 560, X, Ky 4.2)

where f, is the function defined, replacing A* by A¥ in (1.3), and A, converges in the
C'-topology on every compact set to 2, where 2 is a half-space or a strip.

Observe that |x;| < Co, Vi €{2,...,k}.

Now, we have the following Lemmas.

LEMMA 4.1.—-For e > 0, let
F(e)={(X1,...,X0) € A |3i # jst. X, = X, }.

Then p, converges in the C'-topology to pg, when € — 0, on every compact set that does
not intersect 'V, where V is any neighborhood of F;(¢) and pg is the function defined,
replacing A’g by QF in (1.3).

The proof of Lemma 4.1 is similar to the proof of Lemma 4.1 in [1].

LEMMA 4.2. - Let pq the function defined replacing A* by QF in (3). Then the map
10,11>R, t+>1"pa(0,tXs, ..., tX)

decreases when t decreases for any X, ..., X; € Q.

The same arguments in the proof of Lemma 4.5 in [1] prove easily our lemma. From
(4.1), (4.2) and Lemmas 4.1 and 4.2, we easily deduce our theorem.
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Appendix A

In this appendix, we collect the estimates of the different integral quantities which
occur in the paper. For the proof of these estimates, we refer the interested readers to [2]
and [14]. In the sequel, we assume that ¢ is small enough.

LEMMA A.1.— We have the following estimate

H.(a, LogAd
/|VP5(a,k)|2:Sn_cl .(a,a) O( og )

An—2 (Ad)n

where ¢c; > 0and d =d(a, 0A,). Futhermore ¢, and O are independent of ¢.

LEMMA A.2.— For n > 4, we have the following estimate

2n
Psi1 =S, —

2n o H.(a,a) +O(logkd>
n—2 An=2 (Ad)"

&€

where c; and O are independent of ¢.
LEMMA A.3.- Fori # j, we have

1 = (@i, ;) + Z Log(Ardy)
(P8i’ 8) ! =c <8i' - 7,,) O( = 2Log )
e A\ (Xidj) 2 kei,)) (Ardi)"

where c; and O are independent of ¢.
LEMMA A.4.— For n >4, we have the following estimate

n+2

P& P§; = (P§;, P(Sj)H(} + R
Ag
where R = 0(8” = Log(eijl) + 2 ke j) L?i%f;ff‘))
LEMMA A.5.— We have

P -2 H Log(X
(P(S,)\a 8) _n o g(a,a)+o< og( d))
oA 2 A2 (Ad)r

where c; and O are independent of ¢.
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LEMMA A.6.— Forn >4, we have

o 0P8 ) Log(Ad
/ J = :2<P8,A—) +O<M).
an on ) d)”

Ag

LEMMA A.7.— Fori # j, we have

8P8 88,‘j n—ZHS(a,-,aj)
P5 Ai—— _Cl A + — + R
oA oA 2 (Airj) T

where R is defined in Lemma A.4.

LEMMA A.8.— Forn >4 andi # j, we have

v 9P, aPs;
/PS" Ai—— P&j, hi—— + R
ori /m

where R is defined in Lemma A.4.
LEMMA A.9.— Forn >4 andi # j, we have

ke, j)

LEMMA A.10. — We have

P ok w20 b (@,

)

nt2 1 0P8 10P8 Log(Ad
/P8n+2——_2( 8 _—> +O(m>.
A da A da (Ad)"

&

LEMMA A.12.— Fori # j, we have

1 0P§; C1 oH C1 881]
P(Sja_— = ,12 (alaa])+
A; 0a; 1 ()\)\) A 0a; A 0a;

1 n+l
—I—O( -ZA-la-—a-I).
,(; ()»kdk)" KA

LEMMA A.13.- Fori # j and n > 4, we have

P§;” ——— = P§j, ——— 0 .
/ T ki da ( P hi day )Hol + (Z (Ody)" +81/ Log(e;; )>

kei, j

2 2 dPs; Log(A«d,
nt /P(S (Pa" ¥ ) ( 8, A ) +0( 3 M).
A OA; / m (Ard)"
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LEMMA A.14.— Forn >4 andi # j, we have

2 41 0P¢; 1 dP6; 1
nt /P(sjps,."-z— = (P(S,-, — ) +o< 3 )
n — 2A )\i Bai )\.1’ Bai H(} ) ()\.](dk)n

ke{i, j

n

+ 06l Log(+¢;")).
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