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ABSTRACT. - We prove existence results for the classical first-order
Hamilton Jacobi Equations. These results rely on the notion of viscosity
solution and they are obtained under the same assumptions as the unique-
ness optimal results for bounded, uniformly continuous solutions.
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RESUME. On demontre des resultats d’existence pour les equations
classiques de Hamilton Jacobi du premier ordre. Ces resultats sont bases
sur la notion de solution de viscosite et sont obtenus sous les memes hypo-
theses que les resultats optimaux d’unicite pour les solutions bornees
uniformement continues.

Mots-elés : Solution de viscosité, résultat d’existence, résultat de comparaison.

I. INTRODUCTION

We prove here existence results for the following problems:

(1) H(x, u, Du) = 0 in Q, u = 03C6 on ~03A9,
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which we call the Dirichlet problem for Hamilton Jacobi equations, and

which we call the Cauchy problem for Hamilton Jacobi equations. Here
and below Q is any open subset of z and uo are given functions (boundary
conditions), and H(x, u, p) (resp H(x, t, u, p)) is a given continuous function
on Q x [R x [RN (resp on Q x [0, T ] x [R x [RN) which is called the
Hamiltonian. When we take Q = there is no boundary condition ;
we- will only require u to be bounded.

Problems (1) and (2) are global non linear first order problems ; and
it is well known that, in general, they do not have classical solutions 2014 i. e.
of class C~ - even if the Hamiltonian and boundary conditions are smooth.
On the other hand, several authors proved the existence of generalized
solutions (i. e. solutions in or x ]0, T [) which satisfy
the equations almost everywhere) under various assumptions : e. g. A. Dou-
glis [5], S. N. Kruzkov [1 D ] [11 ] [12 ], W. H. Fleming [6 ] [7] ] [8], A. Fried-
man [9], S. H. Benton [1 ], the most general results being given by
P. L. Lions [13 ]. The problem of uniqueness seems to be more difficult :
one proves easily that, in general, (1) and (2) have many generalized solu-
tions (see E. D. Conway and E. Hopf [2 ], M. G. Crandall and P. L. Lions [4 ],
P. L. Lions [13 ]).
To solve this problem, M. G. Crandall and P. L. Lions [4 ] introduced

the notion of viscosity solutions (called this way because the generalized
solutions of (1) and (2) obtained by the vanishing viscosity method are
proved to be viscosity solutions of (1) and (2)). This notion of solutions,
which is defined for continuous solutions, has many interesting properties,
especially uniqueness and stability results (see M. G. Crandall and
P. L. Lions [4 ], M. G. Crandall, L. C. Evans and P. L. Lions [3] ] and
P. L. Lions [13 ]). Existence results of viscosity solutions were then obtained
by P. L. Lions [13 ] [14 ] : these results are obtained under two types of
assumptions ; roughly speaking, one concerns the dependence of H in p
(in particular H ~ + oo, when |p( ~ -I-- oo) and the other concerns
the dependence of H in x. P. E. Souganidis ] has recently extended
the second case.

This paper is concerned with existence results under optimal assumptions
concerning the dependence of H in x. In fact, all the existence results are
proved under the assumptions (proved to be optimal in M. G. Crandall
and P. L. Lions [4 ]) which give uniqueness results in BUC(Q) (*) or

(*) BUC (0) is the space of bounded uniformly continuous functions in 0.

’ 
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BUC(Q x ] 0, T [) and, in the case of Q #- under the classical condition
of the existence of viscosity sub- and supersolution of (1) (or (2)) in BUC(Q)
(or BUC(Q x ]0, T [)). Let us just mention that we explain in sections II
and III when such viscosity sub- and supersolutions exist and how this
type of results extends those proved in [13 ] [14 ] or [15 ].

In section II, we briefly recall the notion of viscosity solutions (for
more details, the reader can refer to M. G. Crandall and P. L. Lions [4 ],
M. G. Crandall, L. C. Evans and P. L. Lions [3 or P. L. Lions [13 ]). In
section III, we prove the existence result for (1) in a general open subset Q,
then in Q = The section III is devoted to the proof of the-existence
result for (2) in a general open subset Q. Then we give some particular
results in the case Q = [RN.

II. ON THE NOTION OF VISCOSITY SOLUTION

We want in this section to recall the definition of viscosity solution intro-
duced by M. G. Crandall and P. L. Lions [4 ]. We only give the most useful
definition (a simple presentation can be found in M. G. Crandall, L. C. Evans
and P. L. Lions [3 ]).
We will define the notion of viscosity solution of

C~ open subset of where

REMARK II.1. - (1) and (2) are special cases of (3). For (1), take F = H,
(~ = Q and y = x ; for (2), take (!) = Q x ]0, T [ and y = (x, t) ; then

F(y, r, P) = pn + 1 + H(x, t~ r, p) where P = (p~ 1 ).

DEFINITION 11.1. - Let U E 

i) u is a viscosity subsolution of (3) if and only if, for all § E C1((~), we have:

at each local maximum point yo of u - 03C6 in O, we have

ii) u is a viscosity supersolution of (3), if and only if, for all c~ E C1((~),
we have 

_

at each local minimum point yo of u - c~ we have

iii) u is a viscosity solution of (3) if and only if u satisfies both (4) and (5).
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We do not recall here the main uniqueness results. The reader can find
them in M. G. Crandall and P. L. Lions [4 ] or M. G. Crandall, L. C. Evans
and P. L. Lions [3], P. L. Lions [13].

III. EXISTENCE RESULTS
FOR THE DIRICHLET PROBLEM

We denote by BUC(Q) the space of bounded uniformly continuous
functions on Q. We will use the following assumptions:

REMARK 111.1. - Let us just remark that (6), (7), (8) are the optimal
assumptions which give a uniqueness result for (1) in BUC(Q).

THEOREM III .1. - Under assumptions (6), (7), (8) and if we assume that
there exist u and U E BUC(Q) respectively viscosity sub- and supersolution of:

and such that _u = u on then there exists a unique viscosity solution II
in BUC(Q) of (1) With 4 = = 

In the case where Q = we can give the following corollary:

COROLLARY 111.1. - Under assumptions (6), (7), (8) and if we assume
that there exists M > 0 such that

then there exists a unique viscosity solution u in BUC(IRN) of

REMARK III. 2. - Let us just mention that in corollary III. 1, the existence
of M is insured by an assumption like:

(9) 3a > 0, Vx E Vt, s E (1~ (H(x, t, 0) - H(x, s, 0))(t - s) > a(t - s)2

REMARK III.2. - The above results extends those obtained by
P. L. Lions [14 and P. E. Souganidis [15 ]. Let us just recall that the exis-
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tence result of [14] ] similar to theorem III .1 was proved under stronger
assumptions (6) (7) and :

and finally u, u (like in theorem III.1) were supposed to be in 
Theorem III. 1 (and particularly corollary III. 1) generalized also an
existence result of P. E. Souganidis [15 ] obtained essentially under assump-
tions (6), (7) and : 

-

Let us just notice that (11) implies (8). 
, - - - - - , .

Finally, let us mention that a different type of existence result is given
in P. L. Lions [13 ] [14 under the assumption : H(x, t, p) -~ +00 when
I p ( ~ +00 uniformly in x E S~, ( t ~  R (VR  oo) (for example).

REMARK III. 3. - Let us notice a particular case (interesting for appli-
cations to optimal control problems) : if H is convex in p for all (x, x R,
then any subsolution of

is a viscosity subsolution of (1) (see [4 ] [13 for the proof of this claim).
In this case, the existence of such u is discussed in S. N. Kruskov [10] [11] ] [ lZ ],
W. H. Fleming [7] and P. L. Lions [13 ]. (In [13 ], a necessary and sufficient
condition for the existence of u is given).

Proof of theorem III. 1. _

STEP 1

Q = Let us consider the Hamiltonian H defined by:

where a A b = inf (a, b) and a V b = sup (a, b).
H is well defined because, by comparison result in ~N (see [3 ] [4 ] or [13 ]),
we have

We shall prove that there exists a unique viscosity solution u in of

and that u is also the unique viscosity solution in BUC(IRN) of:

Vol. 1, n° 5-1984.
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~ Existence for H.

It is easy to prove that H still satisfies the assumptions - / (6), (7) x and (8). B
Let us next remark that (8) implies that the function x -~ + ) p ) ~ ~ j
is uniformly continuous in uniformly with respect to p e R

(VR  (X)).
Then, if we define Hg by

by a well known result, we have

and since H is bounded, if ) R :

Let us define HE by :

then

Moreover, if Ro = max ( p u p u we claim that - Ro
and Ro are respectively viscosity sub- and supersolution of

As -Ro and Ro E it suffices to prove that Vx E f~N Ro, 0)  0
and Ro, 0) ~ 0.
We use the fact that

and then:
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Now we deduce easily that

and then, taking t = Ro or t = - Ro and p = 0, in the above inequalities.
we obtain

and

Then, by an existence result of P. L. Lions [14 ], we conclude that there
exists a unique viscosity solution u~ in BUC([RN) of:

Moreover, by comparison results, we have

But, for all B > 0, uE is a viscosity subsolution of

and uE is a viscosity supersolution of

Then, using comparison results, we obtain, for all 8 and 8’ > 0:

where

So, uf is a Cauchy sequence in and thus u~ converges to
u E uniformly in [RN. Using the stability of viscosity solution,
we conclude that u is a viscosity solution of

Moreover, by comparison results, we have u, because u and u are

respectively viscosity sub- and supersolution of H(x, u, Du) = 0 in 

b) u is a viscosity solution of H(x, u, Du) = 0 in f~N.

We just prove that u is a viscosity subsolution of H(x, u, Du) = 0.
The proof to show that u is a viscosity supersolution is exactly the same.
Let § E and let xo be a local maximum point of u - ~. We have :

Vol. 1, n° 5-1984.
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i) If H(xo, u(xo), u(xo)  - then

ii) If - H(xo, u(xo), D(~(~o)) 2014 u{xo)  - u(xo), there is nothing
to show.

iii) If H(xo, u(xo), D(~(xQ)) 2014 u(xo) > - u(xo) , then - u(xo) + 0,
and so u(xo) = u(xo).
But xo is a local maximum point of u - ~, therefore if r > 0 is such that
we have 

_ _ , ,

we deduce easily

So xo is a local maximum point of u - ~, and since u is a viscosity subsolu-
tion of H(x, u, Du) = 0 in [RN, we have

This ends to proof of the step 1.

STEP 2

We will show that solving a problem of type (1) in S~ ~ [RN is equivalent
to solve a problem of type (1) in [RN. 

_

More precisely, we consider the Hamiltonian H defined in [RN x R x (I~N

by

where M is a convenient extension of u in [RN such that u E Since

ulan = ~, H satisfies the assumption (6), (7), (8). Moreover if u 1 is
the function of BUC([RN) defined by

then obviously, u and u1 are respectively viscosity sub- and supersolutions of

Then, by step 1, there exists a unique viscosity solution u in BUC([RN) of

and by comparison results, we have

then u = u in ~N - Q, and therefore u == ~ on an.
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And, by a property of viscosity solution (see M. G. Crandall and
P. L. Lions [4 ]), since u is a viscosity of H(x, u, Du) = 0 in [RN and since
Q is an open subset of [RN, then is a viscosity solution of

This ends the proof of theorem III. 1.

REMARK III.4. - Let us finally remark that this result is proved for
any open subset Q of we don’t need any assumption of smoothness
or boundedness for Q.

IV. EXISTENCE RESULTS
FOR THE CAUCHY PROBLEM

We will use the following assumptions on H:

(9) H(x, t, r, p) is bounded uniformly continuous on

THEOREM IV 1. - Under assumptions (9), (10), (11), if there exists u and u
respectively sub- and supersolution of (2) in BUC(Q x ]0, T [), such that
u(x, t) = u(x, t) = ~(x, t) on aSZ x [0, T ] and u(x, 0) = u(x, 0) = uo(x)
in Q, then there exists a unique viscosity solution u in BUC(Q x ]0, T [) of

Let us give a more precise result in the case Q = 

COROLLARY IV . l. - Under assumptions (9), (10), (11), if Uo E 
then there exists To (0  T), which depends only on H and II Uo 
and u E x [0, T ]) a viscosity solution of

Moreover, if there exists C e fl~ such that C (VR  oo ) then To = T.
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REMARK IV .1. - The result of theorem I V.I generalizes existence
results obtained by P. L. Lions in [13 ] or [14 ] under stronger assumptions
on the dependence of H in x, t, p and on the regularity of u and u.

REMARK IV . 2. - The result of corollary IV. 1 is inspired from existence
results proved by P. E. Souganidis [15 ] in the cases where (11) is replaced by

H is Lipschitz in [RN for (t, r, p) E [0, T ] x 

or

for any R > 0.
Notice that (13) and (14) are more restrictive assumptions than (11).

REMARK IV. 3. - The local existence result of Corollary IV. 1 is quite
optimal.

Take, for example

1
The viscosity solution is given for t  To by . 

Notice that in this

example yR = - R. o "

REMARK IV . 4. - We can make the some remark as in the Dirichlet

problem for the existence of u and ~. For example, if H is convex in p for
all xeQ, t E [0, T], any generalized subsolution of

is a viscosity subsolution of (2). (See [4 ] [13 for the proof of this claim).
Again, in this case the existence of such u is discussed in W. H. Fle-

ming [6 ] [7] ] [8], A. Friedman [9], S. N. Kruzkov [70] ] [11 ] [12] ] and
P. L. Lions [13 ] (A necessary and sufficient condition for the existence
of u is given in [~ 3 ]).

REMARK IV. 5. - We will denote by
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REMARK IV. 6. By comparison results for the Cauchy problem (see [3 ],
[4 ~ or [13 ]), if u is viscosity solution of (2) in BUC(Q x ]0, T D, we have :

These inequalities justify the reduction we shall make in the proof of theo-
rem IV. 1.

Proof of theorem IV .1.

STEP 1

The step 1 consists in giving the proof when yR > 0 (VR  We

consider the Hamiltonian H defined on Q x (0, oo) x (1~ x by :

for x ~ 03A9, r e P ~ RN+1, where P = (p, pn+1).
H satisfies the assumptions (9), (10): Moreover, we have

because H satisfies (11) and

implies

Now let us define the functions ul and u2 of BUC(Q x (0, oo)) by
u 1 {x, t) = u(x, t) if t x T, t) = u(x, T) if t > T for xeQ, and u2(x, t) = u(x, t)

if t ~ T, u2(x, t) = u(x, T) if t ~ T for x E Q. Then u1 and u2 are respectively
viscosity sub- and supersolutions in Q x (0, oo ) of

If we want to use theorem 111.1, it suffices to prove that the function

t -~ , r, P is uniformly continuous, uniformly with respect
to x e Q, R, P e since this will imply that we have

LEMMA IV. - Let ~ > 0, there exists 8 > 0 such that

Vol. 1, n° 5-1984.
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Proof of Lemma IV .1. - Let us remark that

uniformly with respect to r ~  R, 
Then, there exists R~ > 0 such that, for P ~ > R 1, r ~  R and

t, s E (0, (0), we have

Now we fix R~ with the property above. We just have to look at

One concludes easily using the form of H and the assumption (9). Then,
there exists a viscosity solution u in BUC(Q x ]0, oo [) of

The same arguments as in the proof of theorem III. 1 show that u is the
unique viscosity solution of (2) in BUC(Q x ]0, T [).

STEP 2

We will show in this step that we can assume yR > 0 in (10). Let M defined
in remark I V.I and let H 1 the Hamiltonian defined by:

By the remark IV . 2, it is the same to solve (2) with H or with H 1. Moreover
H1 satisfies (9), (10), (11) and in (10) we can choose yR independent of R,
i. e. y = yM A 1. So if yM > 0 we have nothing to show. If 0, we remark
that u = is viscosity solution of
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if and only if u is a viscosity solution of

Moreover, e(03B3-1)tu and are respectively viscosity sub- and super-
solutions of (2’).

Finally H(x, t, r, p) = (1 - y)r + e~’’ -1 ~tH 1{x, t, satisfies
(9), (10) and (11) with yR = 1 (VR  oo). So, by step 1, there exists a viscosity
solution of (2’) v E x ]0, T fl. Now if we consider the function u
ofBUC(Q x ]0,TD given by :

one show easily that u is the unique viscosity solution of (2) in

BUC(Q x ]0, T [).
Now we prove the corollary IV. 1:

Proof of Corollary IV .1. The proof consists in building sub- and
supersolution in order to use the theorem I V.I.

1 St CASE .

We treat the particular case when: uo E ~b ((~N).

STEP 1

0 (VR  oo). Then, the function r -~ H(x, t, r, p) is non-decreasing.
We denote by v(x, t)=Mt+uo(x)

and w(x, t) = - Mt + uo(x). Then v and w E x ]0, T [). Moreover

Then v is a viscosity supersolution of (12) in (~N x [0, T ] and in the same
way w is a viscosity subsolution of (12) in [RN x [0, T] ; so there exists
a viscosity solution of (12) in BUC([RN x [0, T ]). Let us notice that in
this case To = T.

STEP 2

We show in this step that we can assume 0. First we look for a

priori bound on is viscosity solution of (12) (t ~ T).
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We denote by

Then

Let T~ be the greatest real number in (0, T) such that 1 + 2~ > 0;
~ 

~
then in [? x [0, T~] i~ is a viscosity subsolution of ~ + t~, Dr) = 0

(~ ~
in RN x [0, TJ ] because u1 ~ ~b(RN x [0, T0]). By the same arguments,

u2 is a viscosity supersolution of 2014 + v, Dv) = 0 in tR x [0, T0].

By comparison results for the Cauchy problem (see [3] [4] or [13]), if M is
a viscosity solution of (12) in ~ x [0, T~], we have

These inequalities justify the following reductions. Let H defined by

By the same remarks as in the proof of theorem IV .1 H satisfies (9), (10), (11)
and, in (10), we can choose y independant of R. Now we consider the asso-
ciated problem :

Since the Hamiltonian (1 - y)r + t, satisfies

(9), (10), (11) and in (10), yR = 1 (VR  00"), by step 1 there exists a unique
viscosity solution v of (12*) in BUC(IRN x [0, To])’ One shows easily
that u given by :

is the unique viscosity solution in [RN x [0, To ] of:
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and by a priori estimates on ( ~ u u is the unique viscosity solution
of :

REMARK IV. 7. - Let us notice that if there exists C E [R such that C

(VR  oo), we do not need a priori estimates on ~~ u (t  T).
Considering (12*) with To = T and y == C, we obtain, in the same way
as Step 2 above, the existence of a viscosity solution of (12) in [RN x [0, T ].

REMARK IV. 8. - We remark easily that To built in the step 2 depends
only on )( uo and H.

2nd CASE ,

We now treat the general case when Uo E If Uo E 
there exists uo E which converges uniformly in IRN to uo and which
satisfies II uo ~~ uo The viscosity solutions of (12) associated
to are defined on [RN x [0, To independent of E), and by compa-
rison results (see [3 ] [4 ] or [13 ]), we have

Then uE converges uniformly in [RN x [0, TQ ] to u which is the unique
viscosity solution of (12) by a classical stability result (see [3 ] [4 ] or [13 ]).

REMARK IV. 9. - If there exists such that C (VR  oo),
all the functions uE are viscosity solution of (12) in (~N x [0, T ] and so u is
a viscosity solution of (12) in [RN x [0, T ]. This ends the proof of Corol-
lary IV .1.
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