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ABSTRACT. In this paper we study the existence of nontrivial solutions
for the boundary value problem

when Q c Rn is a bounded domain, n > 3, 2* = n - 2 
is the critical expo-

nent for the Sobolev embedding H~(Q) c L~(~), ~, is a real parameter.
We prove that there is bifurcation from any eigenvalue ~,~ of - A and

we give an estimate of the left neighbourhoods ] ~.~*, ~. J ] of in
which the bifurcation branch can be extended. Moreover we prove that,
if ] ~.~*, ~,~ [, the number of nontrivial solutions is at least twice the

multiplicity of ~.~ .
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The same kind of results holds also when Q is a compact Riemannian
manifold of dimension n  3, without boundary and A is the relative

Laplace-Beltrami operator.

Key~-words : Boundary value problem, critical Sobolev exponent, bifurcation, critical

points, eigenvalue, variational problem, Riemannian manifold.

RESUME. - Dans cet article, nous etudions l’existence de solutions
non triviales pour le probleme aux limites

2n
ou Q c Rn est un domaine 3, 2* = n - 2 

est l’exposant critique

pour le plongement de Sobolev c est un parametre reel.
Nous demontrons que toute valeur propre ~,~ est une valeur

de bifurcation, et nous donnons une estimation des voisinages )~* A.] ]
de A. of existent des solutions non triviales. Nous montrons en outre que
le nombre de celles-ci est au moins le double de la multiplicite de ~.~.
On a les mêmes resultats quand Q est une variete riemannienne compacte

de dimension n >_ 3, et A l’opérateur de Laplace-Beltrami.

AMS (MOS) Subject Classifications : 35 A 15, 35 J 20, 58 E 99.

INTRODUCTION

2n
Let Q be a bounded domain in Rn, n > 3, 2* = n - 2 

the critical exponent

for the Sobolev embedding For a real parameter A E R
consider the boundary value problem

corresponding to the functional f ~ : Ho(S~~ -~ LI~ given by

Since the embedding L2*(S~) is not compact the functional f ~
in general will not satisfy the Palais-Smale condition.
However, recently Brezis and Nirenberg [5] were able to establish
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the existence of positive solutions of(0.1) for any i~~ in a certain range ] ~~*, /~ 1 [,
where  ~,2 ...), denote the eigenvalues of the operator
- A : H-1(Q) = (Ho(S~))*, and ~,* > 0 is some constant depend-
ing on n and Q.

In this paper we study the existence of nontrivial solutions for (0.1)
also for ~, > ~,~ to obtain bifurcation from any eigenvalue ~~~. We give
an estimate of the left neighbourhoods ] ~.*, ~,~ in which the bifurcation
branch « can be extended » ; moreover we prove that, if ~, E ]~,*, ~,~ [, the
number of nontrivial solutions of (0.1) is at least twice the multiplicity
of ~,~ (cp. Theorem 1.1).
Our results are based on the observation that although the Palais-Smale

condition does not hold globally for f ~ (cp. Remark 2 . 3) it is satisfied

locally in a certain energy range (cp. Lemma 2.1 or [5, Remark 2 . 2 ]).
We observe that the tools used in proving the above results do not depend

on the shape of Q and on the dimension n.

With suitable modifications the existence and bifurcation results also

apply to problem (0.1) posed on a compact Riemannian manifold without
boundary of dimension n  3 (cp. Theorem 1.3).
We thank Prof. H. Brezis for his useful comments.

1 RESULTS

in LP(Q), respectively, and let

denote the best constant for the embedding Ho(S~) --~ L2*(~).

THEOREM 1.1. - For ~. > 0 let ~, + - ~,  ~,~ ~ , and suppose

Let m be the multiplicity of ~+. Then problem (0.1) admits at least m pairs
of nontrivial solutions

such that

REMARK 1. 2. If Q is starshaped, it is well known that (0.1) admits
only the trivial solution 0 (cp. [5 ] [8]).

Vol. 1, n° 5-1984.
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A result analogous to Theorem 1.1 holds for the problem

on a compact Riemannian manifold M of dimension ~ 3 and without
boundary. Here A~ is the Laplace-Beltrami operator on M, ~, > 0 a para-

meter and 2* = 2n as before. Denote by H1(M) the closure of C°° M
n-2

with respect to the norm

which in local coordinates on a covering {Th} of M is given by

g~’ denoting the metric tensor, and g = det (gi’). Note that the quadratic

form |~u |2dM is only positive semidefinite in H 1 (M), then the operator

possesses eigenvalues 111  ~c2  ... ,uk  ... which are ~ 0 (cp. Appen-
dix 1 of [4]).

THEOREM 1. 3. 2014 For ~, > 0 let ~_~_ ==  ~e.l ~ and suppose

Let m be the multiplicity of ~c+. Then problem (1.1) admits at least m pairs
of nonconstant solutions

such that

2. PROOF OF THEOREMS 1.1, 1. 3

The proof of Theorem l.l requires some lemmata.

LEMMA 2 .1. - For any 03BB E R the functional f03BB (see (0 . 2)) satisfies the

Palais-Smale condition in - S"~2 in the following sense :
Annales de 1’Institut Henri Poincaré - Analyse non linéaire
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( P. S.) If c  1 n and is a se q uence in H10(03A9) such that as m -)- o0

f03BB(um) ~ c, df03BB(um) ~ 0 strongl y in H-1(03A9), then {um} contains a sub-

sequence converging strongly in 

REMARK 2 . 2. An analogous result has been proved in [5 ]. Nevertheless
for completeness we give here a proof of lemma 2 .1 which is slightly different
from that contained in [S ].

Proof . Let A e and suppose { is a sequence in such that
as ~i -~ oo .

As in [5, estimates (2.18)] ] from (2 .1 ), (2 . 2) we obtain that

Hence we may extract a subsequence {um} (relabeled) such that
(2.4) u weakly in H6(Q)
(2. 5) u strongly in LP(Q) for any p E [1, 2* [.
Moreover u is a solution of (0.1). Indeed, letting § E by (2 . 4), (2 . 5)
and (2.2) we deduce that

Hence u weakly solves (0.1). But by regularity results (cp. [5] ] [6] ] [7]
and [10 ]) it follows that

and hence that u is regular and is a solution of (o .1) in the classical sense.
To show that u strongly in H~(Q) as m ~ oo, let vrn = u.

Testing (2.2) with vrn we obtain

By (2 . 4) and (2.5) we have

Whence from (2.7), (2.8) we deduce that

Vol. 1, n° 5-1984.
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Now we claim that

In fact, by using (2 . 5) and (2.6), we have

and (2.10) easily follows from (2.9) and (2.11).
Since

we have

Inserting into the expression for we obtain

Moreover, since u is a solution of (0.1)

Whence in particular

From (2.12) and (2.13) we now infer

Then, by (2.1), for m sufficiently large we obtain

Now, by (2.10)

Annales de 1’lnstitut Henri Poincaré - Analyse non linéaire
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Or equivalently

Taking account of (2.14) this implies that 0 strongly in 
concluding the proof..

REMARK 2.3. - Complementing the preceding lemma we have a non-

compactness result for energies 1 Sn/2. In fact we now show that for
n

any 03BB ~ R there exists a sequence { c satisfying the P-S assump-
tions in c = 1 n , which is not relatively compact in 

Let xQ E Q and choose a function § E such that § = 1 in a neigh-
bourhood ~V’ of xo. The functions R

solve the equation

Note that um E H6(Q) and moreover
(2.16) { is uniformly bounded in H6(Q) .
Also we easily derive that as m - +00

Hence also

Using (2.17) and (2.18) we deduce that

Also using (2.15)-(2.18) we obtain

Vol. 1, n° 5-1984.
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Hence satisfies the (P-S) assumptions with c == - however,
n

by (2.19) and {2. 20), ~ um ~ cannot be relatively compact in Ho(~).
LEMMA 2 . 4. > 0 let ~, + - inf ~ ~,~ ~ iL  ~,~ ~ and set

where M(~,~) denotes the eigenspace of - A corresponding to ~, J. Then

moreover, there exist constants p~ > 0, ~~ E ]4, [ such that

Proof. For any u E M _ we have

Let

Then

proving the first part of the lemma.
Since for U E M + we obtain

while

The second part of the claim is immediate. []

By lemmata 2.1, 2.4, Theorem 1.1 can be deduced by the following
result of Bartolo, Benci, Fortunato (cp. Theorem 2 . 4 of [3 ]), which is a
variant of some results contained in [o ].

THEOREM 2. 5. - Let H be a real Hilbert space with norm ~ ~ ~ ~ ~ and suppose
I E C 1 (H, is a functional on H satisfying the following conditions :

I 1 ) I(u) - I( - u), I(o) - 0 ; .

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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I2) There exists a constant /~ > 0 such that the Palais-Smale condition
(P-S) holds in ]0, (~ [ ;

I3) There exist two closed subspaces V, W cHand positive constants
p, ~, j3‘, with b  ~’  /3 such that

i) (3’ for any u E W
ii) I(u) > ~ for any u E V, ,j u ‘r = p
iii) codim V  + oo and dim W > codim V .

Then there exists at least

dim W - codim V

pairs critical points of I with critical values belonging to the interval [~, ~‘ ].
We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let H = I = f ~, V = M +, W = M ,

3 ’_ ~_ ~~, p = p~ and apply Theorem 2. 5 together with
n

lemmata 2.1, 2.4. /
For the proof of Theorem 1. 3 the following result from [2 is needed.

LEMMA 2 . 6. 1 f ~ is a sequence in H 1 (M) such that vm  0 weakly
in H 1 (M) as m -~ oo, then

Proof - By [2, Theorem 2 . 21 ] for all 03C6 E H 1 (M), B > 0

with a constant A(8) independent of ~. Applying this inequality with
03C6 = vm, and noting that by weak convergence vm ~ 0 (m ~ + oo)
we have

we deduce that for any E > 0

The lemma follows on letting E -~ 0. /

Proof of Theorem 1. 3. - Going through the proof of Lemma 2 .1
- keeping in mind Lemma 2 . 6 and the fact that, for any sequence { vm ~
Vol. 1, n° 5-1984.
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in H 1 (M) tending to 0 weakly in this space, ) ) vm ~ ~ 2 = o( 1 ) - it is now imme-
diate that also for the functional on H 1 (M)

corresponding to problem (1.1) the Palais-Smale condition is satisfied

in the interval oo, - Sn/2[.
Moreover it is easy to see that the same estimates of lemma 2 . 4 continue

to hold (obviously ~~~, ~. +, meas Q are replaced respectively 

H1(M), dM . Then Theorem 1. 3 can be proved by using again the abstract

critical point Theorem 2. 5. /
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