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ABSTRACT. — We consider (x, r) a blow-up solution oft; = Au + |u|?~1u whereu : RN x
[0,T) >R, p>1,(N—-2)p < N+2andeither(0) > 0 or (B3N —4)p < 3N + 8. The blow-up
setS c RY of u is the set of all blow-up points. Under a nondegeneracy condition, we show that
if S is continuous, then it is @1 manifold.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

RESUME — On considére(x, t) une solution singuliére de; = Au + |u|?~1u ol u RN x
[0,T) >R, p>1,(N—2p <N+ 2etsoitu(0) > 0, soit(3N —4)p < 3N + 8. On définit
I'ensemble singulies c RN dex comme étant 'ensemble de tous les points d’explosion. Sous
une certaine condition de non dégénérescence, on montre quessicontinu, alors c’est une

variété de class€?.
© 2002 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

1. Introduction

We are concerned in this paper with blow-up phenomena arising in the following
semilinear problem:

u, = Au+ lul’tu,
1)
u(.,0) = uge L*(R"),

whereu(t):x € RN — u(x,t) € R and A stands for the Laplacian iR". We assume
in addition the exponenp > 1 subcritical: if N > 3 then 1< p < (N 4+ 2)/(N — 2).
Moreover, we assume that

up>0 or (3N —4)p <3N +8. )
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This problem has attracted a lot of attention because it captures features common 1
a whole range of blow-up problems arising in various physical situations, particularly
the role of scaling and self-similarity. Without pretending to be exhaustive, we would
like nonetheless to mention some related equations: the motion by mean curvatur
(Soner and Souganidis [23]), vortex dynamics in superconductors (Chapman, Hunto
and Ockendon [6], Merle and Zaag [18]), surface diffusion (Bernoff, Bertozzi and
Witelski [2]) and chemotaxis (Brenner et al. [4], Betterton and Brenner [3]). However,
Eqg. (1) is simple enough to be tractable in rigorous mathematical terms, unlike othel
physical equations.

A solutionu(z) to (1) blows-up in finite time if its maximal existence tireis finite.
In this case,

zli_[r}”“(t)HHl(RM - tIi—I;T}Hu(t)HLOO(RN) = oo

Let us consider such a solutiof. is called the blow-up time of. A pointa € R is
called a blow-up point if

lu(x,t)| > +o0 as(x,1) —> (a, T)

(this definition is equivalent to the usual local unboundedness definition, thanks to
Corollary 2 in [21]). S denotes the blow-up set, that is the set of all blow-up points.
From [21], we know that there existsblow-up profileu* € CZ_(R" \ S) such that

u(x,t) — u*(x) inC2(RV\S)ast— T. (3)

The blow-up problem has been addressed in different ways in the literature. A majol
direction was developed by authors looking for sufficient blow-up conditions on initial
data or on the nonlinear term (see Fujita [12], Ball [1], Levine [16] and the review paper
by Deng and Levine [7]). The second main direction is about the description of the
asymptotic blow-up behaviolpcally near a given blow-up poini (see Giga and Kohn
[13], Bricmont and Kupiainen [5], Herrero and Velazquez [14,24], Merle and Zaag [21]).
Givena € R" a blow-up point ofu, we know that up to some scalings,approaches
a particular explicit function near the singularity, T) (see [24]). Up to replacing
by —u, one of the following two cases occurs:

Casel: ForallKy > 0,

1
sup (T = )7Tu(a+ Quz /(T —0[log(T — D], 1) = fi,)| >0 (4)

lzI<Ko

ast— T, whereQa is an orthonormalV x N matrix,/, =1,..., N and

1

—1)2 Lk 71

= (p-1+ 2y 2) (5)
P i
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Case2: For allKg > 0,

1 1 51
sup (T —0)P~Lu(a +z(T — )%, 1) — (p—l—l— Z Caz“> (6)
lzI<Ko lo|=2k
goesto 0 as — T,wherek=2,3,4,..., x* =x;*---xy) and|a| =a; + - + ay if

o= (ag,...,ay) and>",,_y Cox* > 0 for all x # 0.

Remark— Even though the proof of [24] is given in the positive case, it extends to
unsigned solutions under (2).

The description of the blow-up sétis a major issue. Examples whefes a set of
isolated points or a sphere are known to exist (see [17] and [19] for isolated points
and [13] for the sphere). If these solutions are artificially considered as defined or
RN x [0, T) where N’ > N, we obtain examples wherg consists in a collection of
(N’ — N)-dimensional subspaces or spheres. No other geometric configurations ar
known to occur. In [26], Velazquez proves the following result:

The(N — 1)-dimensional Hausdorff measure $is bounded on compact sets.

No other regularity result is known.

Our first goal in this paper is to improve this result and obtain partial regularity
results onS under some reasonable conditions. Let us considerS. According to
[24] (remark after Theorem 2), if (4) occurs witk= N or (6) occurs withy C,x* > 0
for all x ## 0 (no degenerate directions in the function), then the blow-up point is
isolated. The question remains open in the other cases. Even if one assumessthat
not isolated, it is unclear whether there is a continuum of blow-up pointsaneanot.
This question seems to be very difficult. Whatever the answer is, we don’t knows how
looks like neara, and how the profile:* is nearS (no relevant information on* near
a nonisolated blow-up point was known before). To make our presentation clearer, we
restrict to the cas&/ = 2 and considef: a nonisolated point of such thata belongs
to a continuous line of blow-up points without being an endpoint. More precisely, we
assume thai = a(0) € Ima C S wherea € C((—1, 1), R?) and for somexg,

Ve > 0, a(—e¢, ¢) intersects the complimentary of any
connected closed cone with vertexaaand anglex € (0, ag]

(7
(this is in a way to insure thdt is not an endpoint).

Assuming that: behaves according to (4) near the singulatiéy7'), we have the
following result:

THEOREM 1 (Regularity of the blow-up set at a point with the behavior (4) assuming
S contains a continuum). -AssumeV = 2 and consider a solution of(1) that blows-
up at timeT on a setS. Considerd = a(0) € Ima C S wherea € C((—1, 1), R?) anda
is not an endpointin the sens€7)). If u behaves neafa, T) as stated in4), then there
ares >0, 8, > 0andy € CY([—61, 81], R) such that

SN B(a,28) =graphp N B(a, 28) =Ima N B(a, 25). (8)
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In particular, S is a C! manifold near the poind.
We actually have the following refined! estimate foxp.

PrROPOSITION 2 (RefinedC? estimate forS). — There exist€, > 0 and /g such that
forall |£| < 8, and|h| < hg such thatle + k| < 81, we have:

[0 +h) — &) —he'€)| < Colhly 109|109 hIl
[log|Al|

Remark — Using the techniques of Fermanian and Zaag [9], we show in [27}tlsat
actuallyC* for anya € (0, 3).

Remark— From [24], we know that the limit function &, T') stated in (4) has a
degenerate direction, and that we cannot have two curves of blow-up points intersectin
transversally ati. With our contribution, we eliminate the possibility of two curves
meeting tangentially &t. In particular, there is no cusp &t and there is no sequence of
isolated blow-up points converging foc S.

Remark— The case we are considering does exist indeed. The techniques of [19] holc
for the one dimensional equation

N-1
dv=>02v+ ——dv+ v/
r

which is the radial case of (1). Thus, for al > 0, there is a radial solution(x, ) =
v(]x], ¢) of (1) such that for allKy > 0,

1
sup | (T — z)ﬁv<ro+z\/(r ~Hllog(T — z)|) - f(z)’ —~0 ast—T,
|zI<Ko

1
—1)2 o
(P 4p1) ZZ) P l. (9)

The blow-up set of: is the sphere,S¥—1, and near each blow-up point, (4) holds with
the degenerate profil§ .

The description of thélow-up profilex* defined in (3) near the singularity, T') is
our second concern in this paper. We claim the following:

where for allz e R, f(z) = (p -1+

THEOREM 3 (Blow-up behavior and profile near a blow-up point wherbehaves
as in (4) assuming contains a continuum). With the notations of Theoref) there
existsrg < T such that for allKg > 0, r € [15, T) and x € B(a,d) s.t. d(x,S) <
Ko/ (T — 0)|log(T —1)[, we have

log|log(T —1)|
[log(T —1)]

., (10)

1 < d(x,S)

(T =070~ (== )| < otk

where f is defined in(9). Moreover,Yx € RV \ S, u(x,t) — u*(x) ast — T with

u*(x) ~U(d(x,S)) asd(x,S)— 0andx € B(a,$9), (11)
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where

1

p—1
8 ||O—gz|>p forz > 0.

V)= ((p “17 22

Remark— This is the first time where the blow-up profile is derived near a
nonisolated point. Indeed, in the earlier work of Velazquez, the behavior along the
“tangential” direction ofS was not derived. (10) shows that in a tubular neighborhood
of S, the main term in the blow-up asymptotics is the 1D blow-up profiléunction of
only the normal coordinatg-d (x, S).

Remark—Whenp > 3, we show in [27] that up to a nonsingular functianjs a
superposition of 1D blow-up solutions of (1), organized along the normal directions to
the blow-up set.

Theorems 1 and 3 hold in higher dimensiavis> 3. However, the hypotheses should
be stated more carefully. We claim the following:

THEOREM 4 (Regularity of the blow-up set near a point with the behavior (4)

assumingsS contains a(N — [)-dimensional continuum). -Take N > 2 and [ € {1,

.., N — 1}. Consideru a solution of(1) that blows-up at timd’" on a setS and take
a € S whereu behaves locally as stated {#). Considera € C((—1, )N~/ R") such
thata =a(0) € Ima C S andIma is at least(N — I)-dimensional(in the sens€82)).

If @ is not an endpointin the sens€83) given below, then there are5 > 0, §; > 0
and ¢ € CY([—61, 811V, R") such that(8) holds andS is a C* manifold neara.

Proposition2 and Theoren3 hold as well.

Remark—If I = N — 1, then the fact thai is not isolated implies that lais at least
1-dimensional neai.

Remark— Theorem 4 can be stated without the hypotheses (82) and (83) if we
strengthen the assumption on dmindeed, if we already know that lmis a (N — [)-
dimensional differentiable manifold, then we learn from Theorem 4 shaitma is
empty, locally nea#i, and we get the blow-up profile neaias stated in Theorem 3.

Up to some complications in the notation, the proof of Theorem 4 remains the same
as in the cas&/ = 2. We will show in Section 6 how to adapt the proof of the cAse 2
to the general case.

The paper is organized as follows. In Section 2, we recall from previous work the
self-similar variables technique and a Liouville theorem for Eq. (1). In Section 3, we
show the stability of the behavior (4) (with= 1 < 2 = N) with respect to the blow-
up point in Ima. The regularity of the blow-up set is presented in Section 4 where we
prove Theorem 1 and Proposition 2. Section 5 is devoted to the blow-up profile of
(Theorem 3). In Section 6, we sketch the proof of Theorem 4.
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2. Asymptotic behavior in self-smilar variables and global estimates for blow-up
solutions of (1)

In this section, we introduce the general framework for the studyrear a singular-
ity (a, T) and recall from [21] a uniform (in space and time) comparison property of
with the solution of the associated ODE= u”.

2.1. Sdf-smilar variables

Givena a blow-up point ofu, we study the behavior of near the singularitya, T)
through the introduction of the functiaon, defined by

1
wa(y,s) = (T —t)P~Lu(x, 1),

xX—a
y= Ntk s =—log(T —1). (12)

From (1), we see thai, satisfies for all(y,s) € RY x [—logT, oo) the following
equation

1
—:Aw——y.Vw—L—i—lwl”_ w. (13)
p—1
We know from [13] that
||wa||L°O(RNx[—|ogT,oo)) <M <o0 (14)

((12) shows thad/ is independent af) and that
__1
We(y,s) >tk =x(p—1) P-1 ass—> oo (15)
in L2 where p(y) = e~P/4 /(47 )N/2 and uniformly on compact sets. Assuming that
w, — k, we define
Ve =W, — K. (16)

We know from (15) and (13) thaltv, |,z — 0 ass — oo and for all (y,s) € RV x
[—logT, c0),

v,

o5 L, + f(va) = Lvg + 2/< i+ g (va) (17)
whereL = A — 2y.V + 1, |f(v,)| < C(M)|v,|? andlg(va)l C(M)|v,|3. Operator(
is self-adjoint onL2 its spectrum is spe€ = {1 — 5 | m € N}. Its eigenfunctions are

derived from the Hermite polynomials. N = 1, all the eigenvalues of are simple. To
1— % corresponds the eigenfunction

m
(71

m!
A (y) = Z i 1" y" 2,

nO
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If N > 2, then the eigenfunctions corresponding te £ are
Hy(y) =ho,(y1) - hoy (), Witho = (a1, ..., ay) and|a| =m.

In particular:

— 1is an eigenvalue of multiplicity 1 and its eigenfunctiordg(y) = 1,

— 5 is of multiplicity N and its eigenspace is generated by the orthogonal basis

{yvili=1,...,N},
— 0 is of multiplicity %ﬂ) and its eigenspace is generated by the orthogonal basis

Since the eigenfunctions df make a total orthonormal family df2, we expand, as
follows

2
V(3 8) =Y V(3. 8) 4+ 00— (0, 5) = V4203, 5) + Vo - (3, 5) + Vo (v, 8),  (19)

m=0

wherev, ,,(y, s) is the orthogonal projection af, on the eigenspace of=1— 2,
va.—(y,s) = P_(v,)(y,s) and P_ is the projector on the negative subspace&oktet us
define aN x N symmetric matrixA,(s) by

1 1
Au(s) = / vy, HM()P() Ay whereM,;(») = Zviv; — 58 (20)
RN

Then, from (19), (18) and the orthogonality between eigenfunction wafe have
1
V23, 9) = 53T Aa(8)y =1 Ay s). (21)
From Filippas and Liu [11] and Velazquez [25], we know that
either v, ~v,2 Of v, ~v,_ inL2ass— oc. (22)

In the former case, we know that for somee {1,..., N}, 6, > 0 and aN x N
orthogonal matrixQ,, we have

- K 1 la 2 1
va(Qay’S):2—pS<la_§;yi> +O<s1+50> ass — 0o (23)

in Lf) andu behaves neaw, T) as stated in (4).

If I, = N, thena is an isolated blow-up point. We proved in [8] with Fermanian and
Merle the stability of such a behavior with respect to perturbations in initial data.

In this paper, we consider the cdse< N and assume thatis not isolated. Although
the techniques of [8] imply that this profile is unstable with respect to perturbations in
initial data, we will show in Section 3 its stability with respectttee blow-up poin{for
a fixed solution), in the smaller classmdn-isolated blow-up points.
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2.2. A Liouvilletheorem and ODE comparison for u

The following rigidity theorem (from [21]) is crucial in the blow-up study of (1). Itis
a central argument in the proof of our theorem.

PROPOSITION 2.1 (A Liouville theorem for Eq. (1)). -Let u be a solution of(1)
defined for all(x, 1) e RN x (—oo, T) such that for som€ > 0,

C
ux, 0] < ——

(T —1)r-1
Then, eithew: = 0 or there existT; € [T, +00) andwg € {—1, +1} such that

1
u(x,t) =wok(Ty —t) r-1.

This allows Merle and Zaag [21] to prove fog € C2 the following localization property
which reduces the study of the evolutionuab, ¢) for a fixedb to the study of an ODE:

PROPOSITION 2.2 (Uniform ODE comparison of blow-up solutions of (1)) Fer alll
e > 0, there exists = C(e, |lugl|c2, T) such thatv(x, 1) e RY x [0, T),

|8, — |u|P " u| < elu|” + C.

As a consequence, we have the following criterion for regular points (by definition,
nonblow-up points):

PROPOSITION 2.3 (Blow-up exclusion criterion). —For all g9 > 0, there exists
to(e) < T such that iflu(a, )| < (1 — eo)k (T — 1)"Y@P=D = (1 — go)vy(¢) for some
a e RN andt € [to(s9), T), thena is not a blow-up point.

Remark— vy is the solution ob}. = v%, vy (T) = oco.

Proof. —See Corollary 1 in [20] where the criterion is derived from the ODE
comparison (note that in [20] the criterion holds only for positive data, but since we
show in [21] the ODE comparison for unsigned data, the criterion holds in this general
case). O

3. Stability of the blow-up behavior (4) with respect to nonisolated blow-up points

From now on, we take £/ < N = 2. We conside#i a blow-up point ofx such that
a = a(0) wherea € C((—1,1), R? anda is not an endpoint of Im C S in the sense
(7). We assume that has the behavior (4) ned#, T'). From rotation and translation
invariance, we assume thiat= 0 andQ; = Id. Thus, (4) implies that

1
sup (T—z)ﬂu(z\/(T—z)Hog(T—t)|,z) —f(zl)’—>0 ast > T, (24)

lzI<Ko
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where f is defined in (9). Since has the behavior (24) nedd, T'), we know from the
previous section (see (22) and (23)) that

2
vo~vo2 and wo(y,s) —k =vo(y,s)~ L( — &> ass — oo (25)
2ps 2

in Lf), wherevy andwg are defined in (12) and (16). In the following, we will write
instead otz(0) andwv, instead ofv, ). A central argument in our proof is the following:

PrRoPOSITION 3.1 (Stability of theLf) asymptotic behavior with respect to blow-up
points in Ima). — There existq > 0, Co > 0andsg € R such that for alb € a(—o0, 09),
there exist®), a 2 x 2 orthogonal matrix such that

(i) forall |o] < ogands > so,

)

(i) Qo=Idandb € a(—oyg, 09) — Q, is continuous.
(iii) Forall Ko > 0, there isCy(Ko) > 0 such that for alls > so,

logs
>

\Os
2
L3

logs

§

Wa(Quy. ) — f(%)‘ < Cy(Ko)

sup
lo|<o0. IyI<Kov/5

where f is defined in(9).

Remark— This argument is similar to the result of [8], where we proved the stability
of the blow-up behavior (4) with= N (the isolated blow-up point case), with respect
to initial data. Therefore, we will refer to [8] for the similar steps.

The proof of this proposition follows from 4 steps.

— In Step 1, we show that the control gf near the same asymptotlép behavior as
vo reduces to the control of its neutral modg,, that is the matrix4, defined in
(20) and (21) (this is a finite-dimensional problem).

— In Step 2, we show that the eigenvaluesigfs) have uniformly the same behavior
as those ofAy(s) ass — +oo.

— In Step 3, we solve the finite-dimensional problem by finding the long time behavior
of A,.

— In Step 4, we give the solution of the infinite-dimensional problem (that is the
asymptotics ofw, ass — oo), which concludes the proof of Proposition 3.1.

Step 1: Uniform reduction to a finite-dimensional problem
In this step, the only relevant information @p we use is thabg ~ vg 2. We aim at
showing that this extends to amyo) near 0. In particular, the fact that the asymptotic

behavior in (25) has a degenerate direction is not relevant here. Thus, this step is not ne
It is exactly the same as the analogous one in the proof of the stability of the profile (4)
with / = N presented in [8]. Therefore, we just summarize the arguments of the proof

in Appendix A. Let us just remark that the Liouville theorem (Proposition 2.1) is the
central argument in getting the uniformity. We claim the following:
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PropPosITION 3.2 (Reduction to a finite-dimensional problem)There existe; >
0 such that for alls > 0, there iss1(¢) such that for alljo | < o4,

lva (2 <&, Nva — va 202 < €llvg2(s) L2,
» p b

Vs > s1(¢e) (26)

A}, (5) = 5A4a(9)?] < el Au(9)],

whereg = 2 andv, » and A, are defined in(19), (21) and(20).
Proof. —See Appendix A. O

Step 2: A spectral study of thefinite-dimensional problem
In Steps 2 and 3, we solve the finite-dimensional problem given by Step 1. 8ince
is a symmetric matrix, we can define its eigenvalues as follows:

LEMMA 3.1 (Existence of regular eigenvalues fay). — There exist2 real C*
functions/, ;(s), i = 1, 2, eigenvalues ofA,(s). Moreover, the sefl, 1(s), l,.2(s)} IS
continuous interms afz, s) € S x [—log T, c0).

Proof. —From the regularity ofw,, it is clear that for eacla € R", the symmetric
matrix A, (s) is aC* function ofs. Therefore, according to Kato [15], we can define 2
C* functions ofs, I, 1(s) andl, »(s), eigenvalues ofi,(s) (see Lemma 3.2 in [11] for a
statement). Sincd,, (s) is a continuous function af:, s) and the eigenvalues of a matrix
vary continuously with respect to the coefficier{fs,i (s), [, 2(s)} is continuous in terms
of (a,s). O

Proposition 3.2 and Section 2.1 have the following corollary:

COROLLARY 3.1. -
() (Nonuniform behavior ofv,) For all |o| < o1, (23) holds withl, = 1. In
particular,

a=-L0, (5 J)or+ol) ass— e,

and one eigenvalue is equal teg + O(s~1%) while the other is equal to
O(s~17%) ass — oo.

(i) (Equations on eigenvaluespr all ¢ > 0, there issy(¢) such that for all € {1, 2},
lo| <o ands > s1(e),

I, (s) — %la,,-(s)2 <e(lZ,+12,).

Proof. —(i) From Proposition 3.2, we hawg ~ v, » ass — oo for all |o| < o1, hence
(23) holds as stated in Section 2.1. Sirce> a(o) is continuous and (0) = 0 is not
an isolated blow-up point (otherwise, (7) cannot hold), evagy) is nonisolated irS.
Therefore, 1<, < N =2 in (23), hencd, = 1. (20) then gives the estimate fdr,,
which gives the estimate for the eigenvalues.
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(ii) Since (17 , +12 ,)*/? is a norm forA,, just evaluate the equation oh, in Proposi-
tion 3.2 at eigenfunctions to get (ii). This concludes the proof of Corollary 31.

At the pointa(0) = 0, we have from Corollary 3.1,
B 1
Ao(s) ~—=— and puo(s) = o(—) ass — 0o 27)
S S

whereig andpug are justly 1 andlp » renamed. This behavior is in fact stable with respect
to o. In the following proposition, we refine the estimates of Proposition 3.2 and state
this stability result.

ProPOSITION 3.3 (Stability of the behavior at infinity of the eigenvaluesigfs)). —
There existg, > 0, s, € R and C, > 0 such that for alljo| < oo ands > so,
(i) Nlva(s) —va2(s)lr2 < Cas 72,
(i) 1AL(s) — %A ()% < Caos73,
(ii}) 1ha(s) + £ < Cas7?logs and |, (s)| < Cas72,
wherer, =1, 1,1y, ha = la., (2 @Nd 7, IS @ permutation of1, 2}.

Let us first explain our argument for this proposition formally.
Up to the third order term, the eigenvalues satisfy the equatien %/\2, which has
two orbits going to zero as— oo:

A(s) =— and Aa(s)=0.

So

It is clear that, is stable, whereas; is not. Therefore, the stability of the behavior of

Ao In (27) comes from the dynamical stability analysis\ef This argument was enough

in [8] where all the eigenvalues were of ordeﬁ (nondegenerate profile). However, the
stability analysis of., suggests that, is not stable and does not allow us to derive
the stability of its behavior. We need a new argumeantturns out to bestableif s

is decreasing fromxo to some point. Corollary 3.1 implies that one eigenvalue (the
degenerate direction) of,(s) is o(%) at infinity, say equal ta.,(s) at infinity, up to the
order o(%). Thus, we recover the stability of the degenerate eigenvalue. We now give the
actual proof.

Proof of Proposition 3.3. Fhe proof is done in several steps. Let us sketch the main
lemmas and derive the proposition first. Thus, we let the lemmas’ proof to the end.

Let us fixé = mln(2 10 ) andsz = s1(¢) defined in Proposition 3.2. From (27) and
the continuity of the set of5 eigenvalues with respeat tave can findrs € (0, o7) where
o, appears in Corollary 3.1, such that for @il < o3,

lq ra(l)(SB) + _‘ + |la 70(2)(s3)’ 0053’
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wherez, is a permutation of1, 2}. Let us rename the eigenvalues such that [, ;, 1)
andu, =1, 1,2 Therefore,

)»a(Ss)-l-:%‘Si and |, (s3)| <

28
100s (28)

Vio| < o3,

We claim the following:

LEMMA 3.2 (Nondegeneracy of the decay rategf — There exist€; > 0 such that
forall |o| <oz ands > s3,

(i) Na(s) =124 pi>p?/(165),

(i) 1va(s)llz2 > Cas.

We then prove the stability for the nondegenerate direction.

LEMMmA 3.3 (Stability of the nondegenerate directionAf(s)). — For all |o| < o3
ands > s3,
28 B c

2B
__g)\a(s)g__ and __gﬂa(s)g .
K 2s s K

With this lemma, we can refine the equation satisfied pgnd ., .

LEMMA 3.4 (A refined equation satisfied by, (s)). — There existss, > s3 and
C4 > Osuch that for alllo| < oz ands > sg,

e = vazlliz = (Joar ©)|]7z + [va-©)l7z) " < Cas™, (29)
/ 1 2 ’ 1 2 1 1 2 -3
AL($) = S A ()% + A, — SAZ + | ul — Sl < Cas™°. (30)
p B p
Lemma 3.3 and Corollary 3.1 imply that for &dt| < o3,
fa(s) =O(s7+7%)  ass — oo. (31)

Eq. (30) propagates this estimate fremto s and improves it. More precisely,
LEMMA 3.5 (Stability of the degenerate direction 4f (s)). — There existss > s4
andCs > 0 such that for alllo| < o3 ands > ss,

With this information, we can refine the estimate’nis).

LEMMA 3.6 (Refinement of the estimate on the nondegenerate directién(ox). —
There exiskg > s5, 06 < 03 and Cg > 0 such that for alllo| < o5 ands > sg,

Aa(s>+§‘ 10gs

< Cg—.

Itis clear that Lemmas 3.4, 3.5 and 3.6 directly imply Proposition 3.3. Let us now prove
the previous lemmas.
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Proof of Lemma 3.2. Recall thatt, s3 andos are defined just before (28).
(i) From Corollary 3.1, we have for alb| < o3 ands > s3,

2 6
Ny(s) = 2(hahy + papy) > E(kﬁ 1) — 280 + pa) (Ao + pf) = 3 32
(here we used the fact that< 1o and|A2 + | < 2(32 4 p2)"?).
SinceN, (s3) > p?/(16s2) (from (28)) and

2 2 3/2
EAPEIEAN
ds \ 1652 B \ 1652
straightforward a priori estimates yield (i).
(ii) Since & < 3, Proposition 3.2 implies thatv, |l .2 > %Ilva,zlng > C(A2 + p2)t2

where C > 0 (becausei? + 2)Y/2 is a norm forA,, hence forv, » by (21)). Thus,
(i) of Lemma 3.2 follows from (i). This concludes the proof of Lemma 3.2

Proof of Lemma 3.3. We claim that for allo| < o3 ands > s3,

B
)‘a(s)+ﬂa(s)<_ﬁg~ (32)

Indeed, from Corollary 3.1, Lemma 3.2 and the fact that ﬁ, we have

Vio| < o3, Vs> d(,\+ )><l 2@)(/\2+ 2)>1 P
03, VS = 83, 1. Va a) =\ , Z A Ao
3 > s H B a THa) Z 581652
Sincei,(s) + u.(s) — 0 ass — oo (Corollary 3.1), an integration betweenand co
gives (32).

(32) shows that Lemma 3.3 follows if we prove that for|al| < o3 ands > s3,

2w <-L and ww -2 (33)
s 2s §

We proceed by contradiction. From (28), we consider s¢umne< o3 ands, > s3 such
that (33) holds for alk € [s3, s,) with an equality case at,. In the following, we rule
out those 3 cases of equality. Let us just mention that (33) and (32) yield

2
natso| < 2. (34

*

Casel: A,(s,) = —2%.
On one hand, we have

/ d/ B
ka(s*) > $<_Z> .

4
!
*
B
10
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On the other hand, Corollary 3.1, (33) and (34) imply that

AL (s4) < %Aa(s*)z + 8 (ha(5:2)2 + pa(5:)?)

1/ BN\ .((28\°, (28\*\_ B
< D = - -
) ) (2
becausé < 100,5 Contradlctlon

Case2 or 3: A, (s,) = — 2L or p1,(s,) = — 2.
Let us handle for instance Case 3. Casé 2 is exactly the same.
On one hand, we have

d 2
M; (54) < d_ (——ﬁ>
s s

2P

<
S2

S=S8x

On the other hand, Corollary 3.1, (33) and (34) imply that

1
I (54) = Gl (52)% — 8(Ma (50)% + 1a(5:)?)
2 2
(GRS
Sy Sy 52

2
.
B\ ss
becausé < 10 . Contradiction.

Thus, (33) holds for allo| < o3 ands > s3. This concludes the proof of Lemma
33. O

Proof of Lemma 3.4. We just follow ideas due to Filippas, Kohn and Liu [10,11].
See Appendix B. O

Proof of Lemma 3.5. An iteration argument fop,(s) based on (30) and (31) gives
the result. Indeed, these estimates yiejo= 87112 + O(s %) = O(s~#+%2) + O(s~3)
ass — 00.

If 28, > 1, thenu, = O( 2) If 25, < 1, thenp, = O(; l+25”) In this case, we repeat
the same argument wﬂhS;sttead ofs, until we get

1
Yio| <03, H.(s)= O<—2> ass — 0. (35)
S
Fix s5 > s4 such that
1N\ 1 1
Vs > ss, <C4+ ﬁ> 52 < (36)
wheres, andCy4 are defined in Lemma 3.4. From (35), we can define fojodlk o3,

()| <5774 (37)

sy =min{s* > s5| Vs > s
Using (30), we have for all € [s¥, 00),

1,(8)| < B ia ()| + Cas ™3 < (Ca+ )53
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Therefore,
Vs € [s,00), |ua(s)| < (Cat+p)s2/2<s7/* (38)
sinces > ss5 (see (36)). (37) then shows thgt= ss and (38) yields the result. O

Proof of Lemma 3.6. et us define

Za@>=s2(nmm-ké). (39)

From (30) and Corollary 3.1, we have for &ll| < o3,

hﬁl\)

Z,(s) =0O(s™%) ass — oo, Vs > sa,

Z L(8) —

C4S . (40)

As for Lemma 3.5, we improve the estimate Bniteratively.

From (40), we writeZ/ = O(s %) + O(s1).

If 28, > 1, thenZ, = O(logs). If 25, < 1, thenZ,(s) = O(s*%). We repeat the
same argument with 2dnstead ofs, until we get

Vio| < o3, Z,=0(ogs), hence A,= —? + O(%)
ass — oo. We need to prove that this holds uniformly with respect th.et us consider
s7 and C7 > 2C4 such that for alls > s7, |Zo(s)| < C7logs and Z,(s) is continuous
in terms of (a, s) € S x [s7, 00) (for this latter fact, remember from Lemma 3.1 the
continuity of {X,(s), 1£(s)} in terms of (a, s)). If s7 is chosen so thafss;* < £s577,
theni,(s) andu,(s) become apart for > s7; by Lemmas 3.3 and 3.5. Therefore, both
are continuous in terms @f, s) € S x [s7, 00).

Definesg > s7 and therpg < o3 such that

16C2log®s _C
Vs > sg, A < =% and Y|o| < os,
Bs? s

Z, (S6)| 2C7 |Og S6. (41)

We claim that
forall |o| <ogands >ss, |Z,(s)| <4C7logs. (42)

Indeed, if for soméo | < o ands > sg, We havelZ, (s)| > 4C;logs, then we can define
from (41)s’ such that

Vs € [s6, 5,1, |Za(s)’ < 4C;logs and]Za(s;k)] = 4C;logs;. (43)
Using (40), (41), and the fact th@t > 2C,4, we have

172 C4 _16C%(logs)? 2C, _C
wqmm,wmhe7+§<—%§i+f\s4sf
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Therefore,|Z,(s¥)| < 1Z,(ss)| + C7(logs} —logss) < 3C7logs? by (41). This contra-
dicts (43). Thus, (42) holds. This closes the proof of Lemma 3.6 by (39). Thus Proposi-
tion 3.3 is proved. O

Step 3: Solution of thefinite-dimensional problem
Now, we are ready to solve (26). We claim the following:

PROPOSITION 3.4 (Solution of the finite-dimensional problem).Fhere exist€'1o >
0 such that for allb € a(—o>, 03), there exists & x 2 orthogonal matrixQ, such that

B

logs
Aa(S) + ;La

forall |o| <oz ands > sa, < Cio—5— (44)
N

where
_ 1 0\ 7
L=0.(5 o)t (45)
Moreover,Qg = Id andb € a(—o>, 02) — Q,, IS continuous.

Proof. —It is easy to check from Proposition 3.3 that forjal| < o> ands > s»,

ra,
Al(s) — IFTA[,(S) + detA,(s) |d| < Cos ™3,

|A ()] < Cs7H, ’trAa + é‘ < Cs2logs, |detA,| < Cs~3.
S

Therefore, for allo| < oo ands > s,

logs

logs d
C;g, hence ‘—(sAa(s))‘gc 2

ds

, 1
Aa + _Aa(s) g
s

This shows that-£ A, (s) has a limit as— oo. This limit depends only oa(o) and not
ono, for A,(s) does the same (see (20)). Therefore, we call this limjt,. We define
this way a functiorb € a(—o2, 02) = L. Ly IS @ 2x 2 Symmetric matrix, such that
forall |o| < o, ands > so,

IsA.(s) + BL4| < C/t_zlogtdt < Cstlogs. (46)

Since the convergence is uniform “with respect:te’)” and since for a fixed, A, (s)
is continuous with respect @, b — L, is continuous.

Since L, is symmetric, it has 2 eigenvalues which are the limitssas oo, of
—%/\a and—%ua, say 1 and 0, according to Proposition 3.3. Therefore, sinee L,
is continuous and., is symmetric with distinct eigenvalues, we can define a 2
orthogonal matrixQ,, continuous in terms ob, such that (45) and then (44) hold
(just define continuous eigenvectors). From (i) of Corollary 3.1, we can even choose
Qo= 0o, hence,0o=1d. O
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Step 4: Asymptotic behavior of w, in L?

We prove Proposition 3.1 here. We first use the solution of the finite-dimensional
problem to find the asymptotic behavior af, ass — oo, in Lf) or equivalently
uniformly on compact sets dR". We then use techniques from [24] to extend the
convergence up to sets of the tyfie| < Ko+/s}-

Proof of Proposition 3.1. {) Take oy = 0> andsg = s, Whereo, ands, are defined
in Proposition 3.3. Considét | < og ands > so. With the change of variable= Q,y
and using (45), we have

2
_ B P
ier o+ 5 5)

2
L3

T,\2
e for £ (1 B0

s =3)

2
= ||va(z.5) — {_EZTLLIZ + é}
2s N L%
_ Br, L B _
X Hva(s) - va,Z(s)HLZ + va,Z(s) ——52 Laz+ — =FE; + E». (47)
P 2s N L%
According to Proposition 3.3, we have
C
Er = [[ua(s) = va29) 3 < 5 (48)
Using (21) and (45), we have
1
E,= ’ “72TAu(s)z —tr A (s) — {—EZTLQZ - tr(—éLa> } (49)
2 ZS S L/ZO
Therefore, we have from (44)
lo
Er<c|ao + 2L, < con. (50)
S S

Combining (47), (48) and (50) gives (i) of Proposition 3.1.

(ii) See Proposition 3.4.

(iii) The derivation of (iii) from (i) was done by Velazquez in [24] for a fixed blow-
up pointa. However, in [24], the convergence speed was not given, because the erro
estimate in theLf) convergence was not that accurate there. We shall summarize in
Appendix C the method of Velazquez, with a special care to the speed of convergence
and of course, to the uniformity with respect to the blow-up poirt.

4. Regularity of the blow-up set near a nonisolated point with the behavior (4)
4.1. Continuous differentiability of S

We prove Theorem 1 in this subsection. We proceed in 2 steps:
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— In Step 1, we derive from the stability of the blow-up behavior with respect to blow-
up points in Inu a kind of weak differentiability ofS at points of Imu: (the cone
property).

— In Step 2, we define @ function A whose image is a graph and which is equal to
S in a neighborhood of the origin.

Step 1. Thecone property for Ima
Let us introduce the cone property first.

DEFINITION 4.1 (Cone property and the weak tangent)Censider a seE C R2.
(i) E is said to have the cone property at some E if there isu e S* such that for
all ¢ > 0, there isé (a, ) > 0 such that

ENB(a,8) CQuu.={x||(x—a)u|>1-e)|x —al}. (51)

Ru is then called the weak tangent Bfat a.
(ii) E is said to have the uniform cone property at some subsgtE ifforall ¢ >0
anda € F, E has the cone property atwith §(a, &) = §(¢).

Remark -, , . is a cone with vertex. It shrinks toa + Ru ase — 0.

Remark— If E is aC? curve, then the cone property is equivalent to the differentia-
bility and the weak tangent to the tangent.

Let us explain our argument first. The function, defined in (12) describes the
local behavior ofu, neara(o). From (iii) of Proposition 3.1, we see that if we travel
along the directionQ,,e1 from 0 to y = /s wheren > 0, then we makev,(y, s)
drop down fromf(0) = « to f(n) < «. No change occurs if we travel alor@, e
(hence, we call it the degenerate direction). In the,r) variable, this means that
when we travel along the nondegenerate direciQp,e1, froma tox =a + ne—s/Z«/E,

u(x, t) drops down fromuy () = k(T — )Y P~ to (1 — eo(n))vr (¢). Therefore, ifs is

large enough, all points along this nondegenerate direction satisfy the blow-up exclusiol
criterion of Proposition 2.3. Thus, is located along the degenerate direct@p,e;.

More precisely, we have the following:

PrRopPoOsSITION 4.1 (Uniform cone property fof at points of Inu). —
(i) S has the uniform cone property dta;, -,,. The weak tangent at(o) is
RQ.)e2 Wheree, = (0, 1).
(i) Qo =Id and the weak tangent is continuous as a functioh ez (—oy, 09).

Remark — Velazquez's result in [24] implies thathas the cone property ato), but
with no uniformity with respect oé.

Proof of Proposition 4.1. Note that (ii) follows directly from (i) of Proposition 4.1
and (ii) of Proposition 3.1. Let us prove (i). We need to prove that fos allO, there is
8(¢) such that for allo | < oy, if

Ix —al <§ and |(x —a).Q.e2] < (1—¢)|x —al, (52)
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thenx ¢ S. Considers and let us first introducé(s) and then show that it is convenient.
Define

1
g0 = E(K — f(V¢)) >0 and 1=rto(eo) (53)

as defined in Proposition 2.3. Consider th&) such that
I
Vs> st (e),  Coh—s <eo, (54)
N
whereC, is defined in Proposition 3.1. Define

8(e) =e /25, wheres(s) = max(so + 1, s (¢), — log(T — 1)), (55)

wheresg is introduced in Proposition 3.1. Let us take day < op andx as in (52)
and show thatk is not a blow-up point. We will use the blow-up exclusion criterion of
Proposition 2.3. Let us introdueg, and similarity variables such that

¥ —al = /(T = 1,01100(T —ts.)].  $ae = —100(T —1,.,).
_1< X —a ) (56)
Yax = Q4 =)
The following lemma allows us to conclude.
LEMMA 4.3.—
(i) sa.x = mMaxs*(e), —log(T — t0), 50+ 1),
(”) ta,x > 10,
(”I) |ya,x| = /Sa,x»

(IV) |ya,x,2| < (1_ g)lya,xl’

(V) |)’a,x,1| 2 ESa,x»

(Vi) fu(x, ty )| < (k — 80) /(T — t,)YP~Y,

Indeed, according to (i) and (vi) of Lemma 4.3 and (53)satisfies the blow-up
exclusion criterion of Proposition 2.3 and is therefore not a blow-up point. Remains
to prove Lemma 4.3.

Proof of Lemma 4.3. £) From (56), (52) and (55), we hawe*u-*/z\/m =|x—al <
8 = e5/2/5. Therefores, . > 5. Use (55) again to conclude.

(i) Sinces, , = —log(T —1,.), use (i) to conclude.

(iii) From (56), we havey, | =[x —al//T —tax = \/1109(T — 14 )| = /Sa -

(iv) From (52), we havé(x —a).Q,e;| < (1—¢)|x —al. The conclusion follows since
Qaya,x =(x - a)/ V T— lax by (56)

(V) We havey? , ; = |ya«|> — y2 5 = Iyax (1 — (1 — &)?) by (iv). Sincee < 1, the
conclusion follows from (iii).

(vi) Using (12) and (56), we have




524 H. ZAAG / Ann. I. H. Poincaré — AN 19 (2002) 505-542

1

]u(x, ta,x)| =(T - ta,x)_p_l

X —a
Wq ( T for s sa,x)
1
=(T —t4x) p-1 ’wa(Qaya,Xv sa,x)’-
From (i), (v), the monotonicity off and Proposition 3.1, we have

log sa,x]

a,x

Ya,x,1

1
(e, ta )| ST —ta,) P72 {f( ) +Co(D)

a,x

1
(T —ta) P7L[f(Ve) +e0] (use (v), (i) and (54))
1

=(T —t,,) P~1[k —eo] (use (53))

This concludes the proof of Lemma 4.3 and the proof of (i) of Proposition 41.

Step 2: S asthegraph of a C* function

At the pointa(0) = 0, we know from Proposition 4.1 th&t is located along the
degenerate directio,e2 = e2. In the following, we will show that Ina is the
graph ofg, function of the degenerate variablg. Since at each poirit of this graph,
S is located along the degenerate directiOpe, which is continuous in terms af,
S\ graphy is empty, andp is C*. Theorem 1 follows from the following:

PROPOSITION 4.4 (S as the graph of &* function). —
(i) There exis$; > 0and A € C([—61, 81], R?) such that

IMA =1Mal 00 N BO,81) =S N B(0,3), (57)
whereB(0, 81) = {(x1, x2) | fori =1, 2, |x;| < 8;} and
Vx| <61, A(x2).ex=x3. (58)

(i) A e CY([—84,61],R?) and the tangent taS at a point A(xy) is A(¥2) +
QA()‘cz)eZ]R-

Indeed, this implies that locally near0) = 0, S is the graph of a* function¢ defined
by

Vixo| <81, A(x2) = (¢(x2), x2). (59)

Therefore, (8) follows from (57), which yields the conclusion of Theorem 1. Let us prove
Proposition 4.4.

Proof of Proposition 4.4. —

() Considerng > 0 such that the angle %o, ,, is less than 1100 and thaig where
ag is defined in (7). From the uniform cone propertySoét points of Inu (Proposition
4.1), there exist8o > 0 such tha¥|o | < 0o, SN B(a(0), 80) C Qa(0). 0ueye.n0-

Since a(.) and Q,e; are continuousa(0) = 0 and Q,e2 = e» (see (ii) of
Proposition 3.1), there exis, < oo such that for alljo| < 69, a(o) € B(0, %),



H. ZAAG / Ann. I. H. Poincaré — AN 19 (2002) 505-542 525

Q4(0). Quore2m0 C Ra(o).e0.200 ANA Qu(0)e2.€2 # 0. Hence,

8
Vio|<adg, a(o)e B(O, —O> M €20,¢5,n05
2 (60)

SN B(a(o), 30) C Qa(g)’ezgzno and Qa(g)€2.€2 #* 0.

Let5_ andd, be the infimum and the supremuma®f— a(o).e, for |o| < 6¢. Since O
is not an endpoint in Im (property (7)), we have

) )
—§0<8_<0<8+<—0. (61)

Indeed,s_ > —% follows from (60). Moreover, ifs_ > 0, then for all|o| < 6o,
a(o).ez = 0, hencen(—ao, 60) C Q0,¢,.19, N {x2 = 0} by (60). This contradicts (7), since
the angle ok, ,, is less thany,. Do the same fos...

Now, we are ready to defing. If §; = mln(8+, —38_) > 0, then for all|x;| < 81,
there is|o*(x2)| < 69 such thatu(a*(x>)). ez = x5, by continuity ofo — a(o).e;. If we
define A(x;) = a(o*(x2)), then we readily see that (58) holds and if we use (60), then
we get

Vx| <61, A(xo) =a(a*(x2)) with |O'*()C2)| <09 and |A()C2)| < 8—20 (62)

Let us prove that (57) holds. From (62) and (60), we haveAlma Ima_s, s, C
Q0.,,10, Whose angle is less thak. SinceA is defined for alllx,| < 81, this implies

that ImA C B(0, 8;). Since ImA C Imay._ —o0.00 C S, (57) holds if we just show that

SN B(0,8;) CImA, or that for allb € SN B(0, 81), b = A(b.e2). Remark that for such
ab, |b.ey| < 81 S0 thatA(b.ey) is well defined. Using (62), we write

b~ Alh.en| < Ibl + [Abe)| < VB + 2 < (? +3 )0 <o
Therefore,b € S N B(A(b.e2),80) C Qab.en).en,270 DY (62) and (60). Since.e, =
A(b.ep).ex by (58) and the linery = A(b.e2).ez INtEISECtS2 4y ¢y) ep, 24, ONlY ALA(D.€2),
this implies thath = A(b.e2). Thus, (57) holds.

Remains to prove that is continuous. Considégr;,| < §; such thatx,, — x, €
[—81, 81] asn — oo. Since (62) implies that (x;,) € SN B(0,%), a compact set, we
may assume thad (xz,) — b € SN B(0,%) (up to a subsequence). Let us show that
b= A(x,). Using (62), we haveh — A(x2)| < 2%0. Therefore, by (62) and (60), we have
b € QA(%y).e0.270 ON ONE hand. On the other hand, we have from %8),).e; = x» and
A(x2.,).€2 = x2,, hencepb.e; = X, = A(X2).e2. Since the linex, = A(Xy).e, intersects
QA (i).e0.200 ONly @t A (%), this implies thath = A(x,) and A is continuous. Thus, (i) of
Proposition 4.4 holds.

(ii) Since A is continuous, we learn from the cone propertyAdf,) that we can
make ImA (that is the graph ofy defined in (59)) as close as we want to the line
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A(X2) + Qaiype2 by taking x, close enough ta,. Therefore, this line is the tangent
to the graph ob at A(x,) andg is differentiable afr, with

(remember that,. Q a(x,e2 # 0 by (62) and (60)). Sincd andb — Q,, are continuous
(see (ii) of Proposition 4.1)p is C1. This closes the proofs of Proposition 4.4 and
Theorem 1. O

4.2. A geometric constraint yielding more regularity for S

We prove Proposition 2 in this subsection.

We first rewrite (iii) of Proposition 3.1 with the terminology of Proposition 4.4.
Thanks to (57)a(o) is viewed asb € Im A. The variabley; is orthogonal toQes,
the tangent direction t§8. Therefore,y; = £d(y, T,) whereT, is the tangent t& atb.
More precisely, we have the following:

COROLLARY 45.—Forall Kg>0,t>10=T —e ™, belmA andx € R? such
that |x — b| < Ko /(T — 0)]1log(T — 1)], we have

1 —
(T =oriutn=f («/(T -igfiozé’?f = z>|> s Cé(KO)%—(T—w?'
whereT, is the tangent t& at b.
Proof. —If we introducey ands such that
s=—log(T —t) and y= QZ(%) (63)

then we see thaty| = |x —b|//T —t < Ko+/s and s > so. Sinceb € ImA C
Imal_sy.00 DY (57), we obtain from (iii) of Proposition 3.1

1 log s

uy(Qny.5) = £ (2| < Coro 2. (64
Remark that we have from (12)
(@) = us( S —tog(T —0)) = (T~ 0P Rurn. (69)
p(Lpy,S) = Wp JT =1 g = u(x,t).

From (63), we have

.Oper

|y1l = [y.eal ‘x_b
= e = | —
y1 y.e1 \/ﬁ
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Since Qpe; is a normalized normal vector t® (see (ii) of Proposition 4.4), we have
[(x — b).Qper| =d(x, T,) whereT, is the tangent t& atb. Therefore,

| | . d(x, Tb)
WEUT =
Combining this with (63), (64) and (65) concludes the proof of Corollary 45.

Proof of Proposition 2. Given x near S (= ImA locally), Corollary 4.5 gives
different asymptotic behaviors far(x, ), depending on the choice of the poihte
ImA N B(x, Ko/(T —1)]log(T — 1)]). All these possible behaviors have to agree, up
to the error term in Corollary 4.5. This implies a geometric constrain§,amhich gives
some more regularity oA (ande).

We consider somex,| < 81 and somé: € R such thatix, + 4| < 81. SinceA is C?,
there isC* such that

(66)

|¢'(2)| <C* and |AGxz+h) — Ax)| < C*|hl. (67)

For any timer > 1y such that|A(xy) — A(xx + h)| < /(T —0)]log(T — )|, we can
estimatet(A(x, + h), t) from Corollary 4.5 in two ways:
— First by takingx = b = A(x, + h), which gives

1 log| log(T —
(T — )P Tu(AG+ h).0) — FO)] < Cé(l)%. (68)

— Second, by taking = A(x2), x = A(x2 + k), which gives

L d(AG2+ 1), Tacp) \| _ o (q,1091109(T — 1)
— -1 — e v 27
=07 (e +i.) — 1 (e )| < i 2R o
(69)
Now, if we fix t =t (x,, h) such that
A2+ 1) — A()| = VT =1 ez, INITOGT — 1Ciz, )] (70)

and takeh| < hq(tg) for someh(zp) > 0, we see from (67) tha(x,, &) > 19, hence (68)
and (69) hold. Therefore,

d(A(xz + h)a TA(xz))
|A(x2 +h) — A(x2)|

Note that sinceA (x2) € Ta(y,), We have

, - logllog(T — t(x, h))|
< 2CH(1 . 71
)‘ o) |10g(T — t (x2, h))| (1)

o

d(A(x2+h), Tacxy) <
|[A(x2+h) — A(xp)|

Therefore, (9) implies that there > 0 such that

d(A(x2+h), Taxy)
|A(x2 +h) — A(xz)]

(72)

d(A(x2+h), TA(xz))) ‘

2
<lro-
] ‘f( ) f<|A(x2+h)—A(X2)|
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Since ImA is the graph ofp, we have

lp(x2+h) — @(x2) — ho'(x2)]

V14 ¢/ (x2)?

d(A(xz 4+ h), Tay) = (73)

If 7(d) is given byd = \/r|logz], then
logtr ~2logd and loglogz|~log|logd| asd — 0.

Therefore,
log|log| < log|logd|
llogr| ~ |logd|
if |d| < dp for somedy > 0. Combining this with (70) and (67), we have for gd}| < §1
and|h| < hg for somehg > 0 such thatx, + k| < 61,

log|10g(T — t(x2, h))| o log|log|A(x2 4+ h) — A(xp)| . Clogl log|Al]
og(T —t(x2, B))|  —  |loglA(x2+h) — A(x2)l| —  |log|h||

Combining (72), (73), (71), (74) and (67) closes the proof of Proposition2.

(74)

5. Blow-up profile at a nonisolated blow-up point with the behavior (4)
We prove Theorem 3 in this section.

Step 1. Asymptotic behavior in self-similar variables around the blow-up set

We prove (10) in this step. This follows from Corollary 4.5 by takihg= Ps(x),
the orthogonal projection at on S. Indeed, taker > 7y and x € B(0,§) such that
d(x,S) < Ko/(T —0)|log(T —1)]. We definePs(x) as the orthogonal projection of
x on S. We claim thatPg(x) € B(0, 28), hencePs(x) € graphpy = Im A by (8). Indeed,
[x — Ps(x)] < |x — 0] since Oe S, therefore,| Ps(x)| < |Ps(x) — x| + |x] < 2|x| < 26.
Since|x — Ps(x)| =d(x, S) < Ko /(T — t)|log(T — 1)] andd (x, Tpy(x)) =d(x, S), (10)
follows directly from Corollary 4.5 applied with= Pg(x).

Step 2: Limiting profilein the original set of variables, near the blow-up set
We prove (11) here. This follows from (10) and the uniform ODE comparison property
of Proposition 2.2. Define(d) such that

d=/(T —t(d)|log(T —1(d))|. (75)
For allx € B(0,8) \ S and (£, 7) e RN x [—%, 1), we introduce
1
v(x,E,7)=(T — )P Lu(x +EVT — 1, + (T — 1)) (76)

wheret = t(d(x, S)). From (10), (76) and Proposition 2.2, we know that there is
go > 0 such that for alle > 0, there isC, such that ifd(x, S) < g and (¢,7) €

N 1(d(x,9))
RY x [— Tt S 1), then
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3.0 — v]P" | < e|v|? + Ce(T —z(d(x,S)))ﬁ,

log|log(7 —1(d(x, 3)))|
|log(T —t(d(x, H)|

Therefore, for alk > 0, there isp(¢) > 0 such that itZ(x, S) < n, then

|3:v —v|” M| <e(jv]” +1) and |v(x,0,0) — (D] <e. (77)
This implies that

sup |v(x,0,7) — vg(r)| = 0 asd(x,S) — 0 (78)
€[0,1)

where

vol®) = (<p Dl-o+

_ 2\ 51
(p4p1) ) p-1 (79)

is the solution ofvy(t) = vo(7)?, vo(0) = f(1), defined in particular for alt € [0, 1].
Moreover,

sup ]8 v(x, 0, r)| 2 Sup|8 vo(r)|
1€[0,1)

for d(x, S) small. Therefore, forl(x, S) small,v(x, 0, t) has a limit ast — 1, hence
(76) implies that«(x, r) has a limitu*(x) ast — T. Using (78) and (76), we see that

1
1

uw (x) ~ (T —t(d(x,5))) r~tvg(l) asd(x,S)— 0. (80)

We claim that

L
-1

(T —t(@) 7

2 _ 2\ — 1
< 1)> " asd—o. (81)

1’\/
vo(h) (IIogdl 8p

Indeed,

— 132\ p—1
vo(l)=<(p4p) ) P

from (79), logT —1(d)) ~ 2logd andT —1(d) ~ 5 ,0 7 asd — 0 from (75). (11) then
follows from (80) and (81). This closes the proof of Theorem 3.

6. Thehigher-dimensional case

We sketch the proof of Theorem 4 here. We need to review the proofs of Theorems 1
3 and Proposition 2 to adapt them to the new context. We shall stress the most delical
points in the adaptation of Theorem 1 and Proposition 2. Once this is done, Theorem .
extends in a natural way to higher dimensions, so we don'’t discuss it here.
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If N > 3, we consider a nonisolated blow-up pointvhereu has the behavior (4)
with I < N. We may takei = 0 and Q; = Id. According to [24],S satisfies neaf: the
(N —I)-cone property:

DEFINITION 4.1 ((N — I)-cone property and weak tangent plane)Censider a set
E CRNV,
(i) E is said to have théN — [)-cone property at some poiate E if there ism a
(N — 1) subspace such that for all> 0, there isé (a, ) > 0 such that

ENB@a,8) CQre={x||Pi(x—a)>1—e)lx—al},

where P, is the orthogonal projection over. r is then called the weak tangent
plane of E ata.

(i) E is said to have the uniforrV — [)-cone property at some subgétc E if for
all e >0anda € F, E has the(N — I)-cone property at: with §(a, &) = (e).

Remark -, . . is a cone with vertex. It shrinks toa + = ase — O.
We have the following consequence of [24]:

LEMMA 6.1 (Velazquez(N — [,)-cone property folS near a point with the behavior
(4)). — If u has the behavio(4) (or (23)) near a, thenS satisfies the(N — I)-cone
property ata. The weak tangent plane is spanned®ye;, j =/, +1,..., N.

Proof. —See Theorem 2 in [24]. O

Therefore,S has a weak tangent planedat= 0, spanned by;, j =/+1,..., N.One
would expectS to be locally of dimensioV —I neara. However, we are unable to prove
thatS is a continuum neai. Therefore, we assume therezig C((—1, 1)¥~/, R¥) such
thata(0) =a =0 and Imuz C S where Inu is at least(N — I)-dimensional in the sense
that

Vb € Ima, there areN — [) independent vectors, . .., vy_; in RY and
ay, ...,ay_; functions inC*([0, 1], S) such that; (0) = b anda,(0) = v;.  (82)

This hypothesis means thatis actually nonisolated iGN — /) independent directions.
We also assume théat= 0 is not an endpoint in Im in the sense that

Ve > 0, the projection ofi((—¢, ¢)V~") on the weak tangent plane
ata = 0 contains an open ball with centée= 0. (83)

Let us first show the stability result of Section 3 in the case 3.
6.1. Stability of the behavior (4)

Since we have takeir= 0 andQ; = Id, (4) implies that

—-0 ast—>T

1
sup (T — 1) P=Lu(2/(T = D[Tog(T = 1)l 1) = (1)

lz1<Ko




H. ZAAG / Ann. I. H. Poincaré — AN 19 (2002) 505-542 531

where f is defined in (9) and = (z1, 22, -..,2n5) = (Z, 2141, - - ., Zn) - Section 2 then
implies that

712
vo~vo2 and wo(y,s) —k =uvo(y,s) ~ L (l — ] ) ass — oo, (84)
2ps 2

wherey’ = (y1,..., y). We claim that Proposition 3.1 holds here (with the obvious
changesi(—oyp, ag) = a((—a0, 00)¥ 1), 2x 2— N x N andy? — S'_; y2).

Proof of Proposition 3.1 in higher dimensionsLet us follow the 4 steps of the proof
given in Section 3.

Step 1: Uniform reduction to a finite-dimensional problem
This step holds as it is in Section 2.

Step 2: A spectral study of thefinite-dimensional problem

We should defineV eigenvalues ofd,(s), [,.;(s), C* as functions ofs. The multi-
function {/,;(s), i = 1,..., N} is continuous in terms ofa,s) € S x [—logT, c0).
Corollary 3.1 has to be changed formally. The following corollary crucially uses the
(N —I)-dimensionality property of Im.

COROLLARY 3.1 (Higher-dimensional version of Corollary 3.1). —
(i) (Nonuniform behavior o, ) For all |o| < o1, (23) holds with/, < /. In particular,

Au(s) = —?Qah O +0(s71),

where ], is a N x N diagonal matrix withl,;; =1 if i <, and ,;; =0 if
i > 1, + 1. Moreover,A,(s) has(N —1,) (hence, at leas{N — 1)) eigenvalues
equal toO(s~17%), while the others are equal te% + O(s 1%,

(i) (Equations on eigenvaluespr all ¢ > 0, there iss;(¢) such that for alljo| < o1,
i=1,...,Nands > s1(¢),

N

<& la;(5)?

’ 1 2
ly.i(s) — —lai(s)
p v

wherel, ;(s) are the eigenvalues of,(s).

Proof. —(i) From Proposition 3.1, we hawg ~ v, » ass — oo for all |o| < o1, hence
(23) holds as stated in Section 2.1. Lemma 6.1 then impliesithatisfies théN —[,,)-
cone property at and therefore S has a(N — I,)-dimensional weak tangent plane
ata. This plane contains theV — /) independent directions in property (82). Therefore,
I, < 1. The estimate foA, then follows from (20), and gives the estimate for eigenvalues.

(ii) See the proof of (ii) of Corollary 3.1. O

At the pointa(0) = 0, we know from (84) thaly = /. Using Corollary 3.1, we can
rename the eigenvalues 4f(s) such that
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. B
Vi=1...,l1, Xp(s)~—— and
S

1
Vi=1,...,N—1, uo,j(s)zo(—> ass — 00. (85)
s

We claim then that Proposition 3.3 holds with eigenvalugsfori =1,...,/ andu,_;
forj=1,..., N —linstead of(A,, u.).

Proof of Proposition 3.3 in higher dimensionsWe should fix a nevé > 0 and take
s3 = s1(¢) defined in Proposition 3.2. From (85) and the continuity of eigenvalues with
respect ta:, we can findos € (0, o1) whereo; appears in Corollary 3.1, such that

Vi:lv"'vlv ara(l)(s3)+ ﬂ‘ ﬂ

1005

Vio| < o3, B
Vi=Il+1...,N, |l <—,
l + ’ Ta( )(53)’ 1005

where t, is a permutation of{1,..., N}. If we rename the eigenvalues such that
Aai(8) =lgi foralli=1....l andu, ; =14 -,q+p forall j=1,...,N -, then
we get

Vi:]-v-"vlv a1(53)+’B IB

y 100s

lo| < o3, B
Vj:l,...,N—l, |Ma](s3)’ 00%

Lemma 3.2 and its proof hold with the change

l N-I
Na($) =) 22+ ul ..
i=1 j=1

Lemmas 3.3 and 3.4 then hold, witlh,, u,) replaced by(i,;, u,, ;) and different
constants. Here comes a delicate point before Lemma 3.5: we need to prove that (3:
holds for all, ;, for j =1,..., N — /. This comes from two arguments. On one hand,
we know from Corollary 3.%i) that A,(s) has at leastvV — / degenerate eigenvalues
(that is eigenvalues satisfying (31)). On the other hand, we see from Lemma 3.3 that a
degenerate eigenvalues must be in the set i all, j =1,..., N — [, which contains
(N —1) elements. Therefore, gll, ; are degenerate and satisfy (31).

One can easily see that Lemmas 3.5 and 3.6 extend naturaly>t@® and hold for
eachu, ; andi,;. O

Step 3: Solution of thefinite-dimensional problem
Proposition 3.4 holds with¥V x N” instead of “2x 2" andL, = Q.1 QI whereJ, is
aN x N diagonal matrix with/; ;; =1if i </and/f;;; =0if i >/ + 1.

Proof of Proposition 3.4 forN > 3.—If N > 3, one needs to find the asymptotic
behavior of all principal minors of ordet of the matrix A,(s) with k = N, ..., 1,
before getting the asymptotic behavior of the coefficientsAgis) (property (46)).
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This has been done by Filippas and Liu [11], Proposition 5.1. The continuity «f
a((—og, og)VN ') — L, follows from (46) as in the cas®¥ = 2. SinceL, is symmetric,

it has N eigenvalues which are the limits as— oo of —%Aa,i i=1,...,1) and
—%Ma,j (j=1,...,N-=1I),say 1 (multiplicityl) and O (multiplicity N —), according to
Proposition 3.3. Sincé — L, is continuous and the multiplicities of eigenvalues 0 and
1 are independent df, we can define continuous eigenvectors fgr(see Oustry and
Overton [22], Corollary 2.5). Therefore, we can defin& a« N orthogonal matrixQ,,
continuous in terms df, diagonalingL,. This concludes the proof of Proposition 3.4 in
the higher-dimensional case

Step 4: Asymptotic behavior of w, in L?
This step extends naturally t& > 3, which concludes the proof of Proposi-
tion3.1. O

6.2. Regularity of the blow-up set

We prove here the part of Theorem 4 equivalent to Theorem 1. For this, we adap
Section 4 to the cas¥ > 3.

Step 1: The (¥ — I)-cone property for Ima
We claim the following:

PROPOSITION 4.1 (Uniform (N — [)-cone property fol§ at points of Imz). —

(i) S has the uniform(N — I)-cone property at((—og, 00)¥ ). The weak tangent
planer,) ata(o) is spanned by, e;, j =+ 1,..., N, wheree; is the jth
vector of the canonical basis &f".

(i) Qo =Id and the weak tangent plane has an orthogonal bégise;, j =1+ 1,
..., N) continuous as a function éfe a((—og, og)¥ 7).

Remark—If j > [ + 1, then Q,e; is a degenerate direction in the asymptotic
expansion of (iii) in Proposition 3.1. If </, thenQ,e; is a nondegenerate direction.

Proof. —(ii) follows directly from (i) by (ii) of Proposition 3.1. The proof of (i) in the
caseN = 2 extends naturally to the cage> 3. Just note that? . ; andy? . , should be

replaced respectively by'}_; y2, ;andy"Y, 1y2 .. O
Step 2: S asthegraph of a C* function

The part of Theorem 4 equivalent to Theorem 1 follows from the following:

PROPOSITION 4.4 (S as the graph of &* function). —
(i) There exis$; >0andA e C([—81, 811V, R") such that

Im A = a((—o0, 50)" ) N B(0,81) = SN B(0, 81), (86)

whereB(0,8;) ={x |Vi=1,..., N, |x;] <81} and
V(xiga, .. xn) €81, 80V, Vi=1+1,...,N,
AXi41, ..., XN).€; =X (87)
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(i) AeCY([—81,8.1"!, RY) and the tangent plane t at a pointb € S N B(0, §1)
is 7, spanned byD,e;, j=1+1,...,N.

Proof. —The “no-end-point” property ofi = 0 in Ima stated in (83) is apparently
different from (7) stated folN = 2. That is why we should carefully defirehere. Once
this is done, one should follow the ca&e= 2 to finish the proof.

From the uniform cone property ¢fat points of Imu (Proposition 4.7, there exists
80 > 0 such tha¥|o | < 69, SN B(a(o), 8p) C Qa(g),ﬂa(a)ez,l/zl.

Sincea(.) and Q,, are continuousg(0) =0 and Q,, = Id (see (ii) of Proposition
3.1), there exist$y < 0g such that for allo| < 69, a(o) € B(0, fv—o), Q40 Quoyea1/a C
Qa(a),ez,l/3 and

det )(Qa(g)ej, _]=l+1,,N);ﬁO

(ex.k=Il+1,....N

HenceY|o| < 69,

So
a(c) e B (O, —) N 90,62’1/4, SN B(a(o), 80) C Qa(g)’e2’1/3 and
N (88)

det acrei»j=1+1,...,N 0.
(ex, k=I41,..., N)(Q ©@¢€j>J + ) #

SinceQ, ) = Id, we learn from Proposition 4.1hat the weak tangent plane#0) = 0
is o, spanned by;, j =1+1,..., N. Using property (83), we finé (5o) > 0 such that
By (0,81) C Pry(al—50, Gol" ™), where

B, (0,81) = {x emo||x;| <81, for j=1+1,...,N}.

This implies thatA can be defined oré,,o(o, 81), so that (87) holds. One can then finish
the proof of Proposition 4.4y just following the proof of Proposition 4.4.0

6.3. A geometric constraint yielding some moreregularity

This subsection is dedicated to the higher-dimensional version of Proposition 2. Note
that from Proposition 4/4Im A is the graph ofp € C1([—81, 811V, RY) such that

V(-xl+l7 ey XN) S [_817 81]N_17 A(-xl+la sy XN) = ((917 e Q1 X425 - e -xN)a
wherep;, = ¢; (x;41, ..., xy). Proposition 2 holds witly (x,) replaced by; (x;11, ..., xx)
ande’ by Vg;.

Proof of Proposition 2 in higher dimensionsJust follow the cas&y = 2 with A(x»,)
replaced byA(x) wherex = (x;41,...,x5). The only delicate point is the equivalent
of (73) whichis: foralli =1, ...,1,

i (& +h) — i (%) — h.Vei (5)]

V141V (D)2

Note that we just need this inequality in our argument.

d(AG+h), ) = (89)
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To prove (89), just note that la C S;, the surface of equatiaty = ¢; (x;41, ..., xn)-
Hence,ﬂA(x) C 7 o), the (N — 1)-dimensional tangent plane 8 at A(x). Therefore
d(A(Z +h), Tai) = d(AX + h), 7 A®), equal to the right-hand side of (89) (standard
calculations).

Appendix
A. Reduction of the asymptotic blow-up behavior to afinite-dimensional problem

We prove Proposition 3.2 here. The use of the Liouville theorem is crucial here. The
proof is the same as in the proof of Propositions 1.11 and 1.12 in [8]. All is about
stability, with respect tanitial data in [8], and with respect téhe blow-up poinhere.

For this reason, we just sketch the proof and refer to [8] for the proofs.

We know from (25) thatwo(y,s) — « ass — oo in L2. If a is a blow-up point
near 0, we know from (15) that, — £« ass — oo. Only +« is selected because of
the following local constant sign property far which is a direct consequence of the
positivity of u for x = 0, and the ODE comparison of Proposition 2.2.

LEMmA A.1 (Constant sign property of for (x,t) close to(0, T)). — There exists
8 > 0 such that

Vtel[T —6,T), Vx € B(0,8), wu(x,t)>0.
Proof. —See Corollary 1.8 in [8]. O

The Liouville theorem of Proposition 2.1 allows us to show that w, —x — 0
ass — oo in Lf), uniformly for a in a neighborhood of 0. This uniformity is a central
argument in our proof.

LEMMA A.2 (Uniform smallness of,). — There exist$, > 0 such that
(i) sup, s, ||Ua(s)||L2 — 0ass — 00,
(i) forall R >0, SUHG|<GZ(SUHy|<R [v,(y,s)]) > 0ass — oo.

Proof. —See Proposition 1.10 in [8]. O

Note that this lemma yields the first estimate of Proposition 3.2. We know from (22)
that for eachu, eitherv, ~ v, 2 or v, ~ v, _ ass — oo. (25) shows thaby ~ vg 2, its
neutral mode, as — oo. The predominance of the neutral mode turns out to be a stable
behavior for solutions of (17). Indeed:

LEMMA A.3 (Uniform stability of the dynamics where, is predominant). There
existsa, with the following property
() There exists™* such that for alljo| < 64 andsg > s*,

if X,(s0) = Y,(s0) + Z,(s0), thenVs > sg, X,(s) > %(Ya(s)—l—Za(s))

where
Xa(®) = [vaz® 20 Yals) = [Jva- )] 2 + 1717?02
Zu() = [[vas )] 12
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andk = k(M) > 0 (whereM is defined in(14)) is fixed.
(i) For all e > 0, there exists3(¢) such that for alllo| < 64 ands > s3(¢),

Yi(s)+ Zu(s) < eXu(s).

Proof. —See Proposition 1.11 in [8]. O

This lemma yields the second estimate of Proposition 3.2, namely the fact tha
V, ~ Vg2 @Ss — 00, uniformly in a(o). Therefore, the study of (17) reduces to the
study of its projection over the neutral modg,, where, of course, one should take into
account the quadratic term. This leads to the equation stated in PropositioA,32 (
the matrix of the components of, ,, thanks to (21)). See Proposition 1.12 in [8] for a
proof.

This closes the proof of Proposition 3.2.

B. A refined equation on the neutral mode of (17)

We prove Lemma 3.4 here. We first prove (29). We claim the following:

CLaim B.1 (Control ofv,(s) in L7).— For all r > 1, there existsC(r) > 0 and
s5(r) > Osuch that for alllo| < o3 ands > s3 + s§(r),

, 1/r C
(/Iva(y,S)l p(y)dy> < %

Proof. —If » =2, we use Lemma 3.3to get,(s)| < Cs 1, hencef|v,, 2(s)ll .2 < Cs™t
by (21). Since||va(s)||L% ~ llva,2(9)ll 2 @ss — oo (uniformly for |o| < 03), we get the
estimate with somej(2).

If » £ 2, we combine the case= 2 with the following regularizing effect of the
operatorL.

CLAIM B.2 (Herrero—Velazquez). K v, satisfieq17), then for allr > 1, there exists
So(r) and C(r, M) such that

(/Iva(y, | p() dy) " < C(/!va(y, s =500 () dy)

Proof. —See Lemma 2.3 in [14]. This closes the proof of Claim B.11

1/2

Eq. (29) follows if we prove that for alb | < o3 ands > s3 for somess > s3,
) 1 o)
Za(s)>§Za(S)—s—2» (90)

, 1 C
¥4(5) < = Z3a(8) + (91)
2 s

wherez, (s) = ||va,+(s)||L% andy,(s) = ||va,_(s)||L%. Indeed, integrating (90) between
and+oo and (91) betweesy;; ands, we obtain for alllo| < o3 ands > s3,
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o0
24(8) < Ces/z/e_’/zt_2 dr < C's7?,

N

Ya(s) < e 69/2y (sg) + C/e_(‘v_’)/2t_2 dr < C's2.
55
(Note thaty, (s) + za(s) < lva()llzz < llva(s)llz> < M + & by (14).) Now we prove

(90). (91) follows in the same way.
Projecting (17) on the positive eigenspacelofve get

Vg + = LVg 1 + Py (f (va)),

where P, is the correspondin@f) orthogonal projector. Multiplying this by, o and
integrating oveiR", we get
1d
E& v§,+p=/£va,+-va,+p +/P+(f(va))va,+10
1/2

> %/vf,w— (/vﬁ,w)m(/ P+(f(va))2p) :

where we used the Cauchy—Schwartz inequality.
SinceP, is aLf) projector andf is quadratic, we have

(Jiretroone) < (Juwn) <c( fwt)

Using Claim B.1, we have for alb| < o3 ands > s3 + s3(4), (f vip)Y2 < C(4)s~2.
Thus, (90) follows withs; = s3 4 s¢(4). This closes the proof of (29).
Now we prove (30). The estimate on eigenvalues is obtained by evaluating the estimat
on A, at eigenfunctions. Therefore, we just focus An With (29) and Claim B.1, we
are ready to get a refined equation A5(s).
Using (20) and (17), we write for alb| < o3 ands > s3,

1/2

AL (s)=E1+ E>+ E3 (92)
where

Bi=L / Va2 (3. $)2M () p(y) dy,
E;= % /(vf —v2 ) M(»)p(y) dy,

Es= / ¢W)M()p(y) dy.

By straightforward calculations, we get from (21)

E;= %Aa (s)2 whereg = %. (93)



538 H. ZAAG / Ann. I. H. Poincaré — AN 19 (2002) 505-542
Recalling that = v, + + v,.2+ v, — (See (19)), we write
EA<C [0 = 22| M] o) dy
=C [ 100cs + valva + vial M) o () 0y

1/2 1/4
< c(/ Vot + va,_|2p) (/ va + Ua,2|4,0> </|M(y>y“p)

where we used Hdolder’s inequality.

Using (29), Claim B.1, and the norm equivalence in the finite-dimensional space (18)
wherev, » lays ([ |va.21*0 < C([ |va.220)? < C([ |va]?p)? by Proposition 3.1), we end-
up with

1/4

|Eo| < Cs™3 foralls >s5 (94)

for somes; > s3.
We finally estimatezs. From (20), (17) and the Cauchy—Schwartz inequality, we write

|Es| </!g(va>y|M(y>yp(y>dy

<c(/ |va|6p)l/2(/!M(y>yzp(y> ay) =c( [ 1ur)

Using Claim B.1, we end-up with

1/2

|E3| < Cs™2 foralls >s3+ 55(6). (95)

Combining (92), (93), (94) and (95), we obtain the firstinequality in (30), fopdlk o3
ands > 53 for somess > s3. This closes the proof of Lemma 3.4.

C. Asymptotic behavior in the % variable

We prove (iii) of Proposition 3.1 here. We follow Velazquez's work in [24]
(Proposition 2.3), with a special care to the convergence speed and to the uniformit
with respect to blow-up points.

Define

(p =Dy
4p s

“p1 K
(p(y,s):(p—l+ ) +— and g, =w, —¢.
2ps
Straightforward calculations based on (13) and (i) of Proposition 3.1 yield for all
lo| < ogands > sq,

logs

Yy eRY, 8,0 =(L+V)qu+ B(g) + R0 8), [|aa®)] 3 < Co—zm, (96)

where
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1

_ p
V(y,s)=pp’t— ——,
p—1
B(@)=lp+4qI" e +q) — 9" — pp’q,
1 ®
R(y, S)——8</>+A<0—§yV<0——+<0 (97)
p—1

Let us introduce the following norm

1/2
L2 (y) = SUD(/W(y)I p(y — S)dy> .

|E|<r

Velazquez's idea in [24] is to make estimates on solutions of (96) irLtj*fé” norm
wherer (1) = Koe"9/2 < Ko./7. The following is proved in [24]:

LEMMA C.1.- For all C3 > 0 and K3 > 0, there iss3(Cs, K3) > 0 such that if
Z(y, s) satisfies

Cs 1+ |y
(£+ )Z+C< t—a +1{|y|>21<3f})

0<Z(y,s) <Cg,

(98)

for all (y,s) e RN x [s3, 00), then, for alls’ > s3 andt € [s/, 5], we have

(t—2K3)+

Iogs e ~2Kag(1)?
8(7) < Ca(Cy) [e (HZ(S)HLZ + )+ / (1_6_(1_1_2K3))1/20dt :

whereg(r) = L2"K2™)(Z (1)), r(Ks, 1,5") = Kze™™)/2, =2 = /s and h,y =
max(h, 0).

Proof. —See Proposition 2.3 in [24] (in particular, pp. 1575-1581)1

Let us apply this to our case (96). It is readily seen from (97) that fak@h- 0, there
is C2(Ko, M) (M is defined in (14)) such that

C
Vo <= [B@I< Gl + yisarom):
(99)

+ Iyl?
[R(y, )| < CZ(T + 1{|)|>2K0«/—})

(one may consider first the cape > 2Ko./s and theny| < 2Ko./s and make a Taylor
expansion fog = y/./s bounded).

If Z, =|q.|, then we use Kato’s inequalitsg. sgn(g) < A(|g|) to derive from (96)
and (99) the following:
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For all K, there isC2(Ko, M) > 0 such that for allo | < o9 ands > sg,

c + [yl?
vyeRY, 8,7, <E+ 2>Za+C2<Z3 %+1{|)|>2K0\/_>

logs
12212 < Cop

(100)

We claim the following:

CLAIM C.2.— For all Ky > 0, there exist€s > 0 and sg such that for alljo| < o9
ands > sg,

L2504 (Z,(9) < o
Proof. —ConsiderKO > 0. Fix s5(Kg) > 2 ma>(s3(C2(Ko, M), Ky), so) such that for
all s > ss, 5 —logs > 0 whereC», s3 and M are defined in (100), (14) and Lemma C.1.
If s > s5 ands’ is defined bye®—*"/2 = /5, then it is readily seen that = s — logs >
> maX(ss, sg). Therefore, we have from (96), (100) and Lemma C.1: fotalll< og,
for all T e[s,s],

(t—2Ko)+

/ 0 T t_ZKO t 2
2(1) < C§(Co, Ko, M)[ gs n / g(1)

1— e—(t—t— 21<0))1/20

whereg(t) = L27K0™5)(Z, (1)) andr (Ko, ,5") = Koe™™*)/2,
By a standard Gronwall estimate (see Lemma 2.2 in [24]), thesg(%, Ko) >
andCs(Co, Ko) > C§ such that ifs > s, then for allt € [s/, s], g(t) < Cse™~ S/'OGS

If T =s, thenwe getf) Kov5(Z,(s)) < Cse®™* ";L; < 2C5'°%. This finishes the proof
of Clam C.2. O

To conclude the proof, we use the following result from [24]:
CLAIM C.3. —-Assume thaf satisfieg98), then
sup | Za (v, )| < C(Ca, K3) L2533 (Z,(s)).
m<B v
Proof. —See Proposition 2.3 in [24] (in particular, p. 1581)0
Thus, for alllo| < og ands > sg,

Iogs
sup |Za(y, $)| < C(Ko, Co, M)
vi<Ee s
Since
wav9) = A )| <2+ 5o
NG 2ps

this concludes the proof of (iii) of Proposition 3.1.
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