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ABSTRACT. – We consideru(x, t) a blow-up solution ofut =�u+ |u|p−1u whereu :RN ×
[0, T )→ R, p > 1, (N −2)p <N +2 and eitheru(0)� 0 or(3N −4)p < 3N +8. The blow-up
setS ⊂ RN of u is the set of all blow-up points. Under a nondegeneracy condition, we show that
if S is continuous, then it is aC1 manifold.

RÉSUMÉ. – On considèreu(x, t) une solution singulière deut = �u + |u|p−1u où u :RN ×
[0, T ) → R, p > 1, (N − 2)p < N + 2 et soitu(0) � 0, soit (3N − 4)p < 3N + 8. On définit
l’ensemble singulierS ⊂ R

N deu comme étant l’ensemble de tous les points d’explosion. Sous
une certaine condition de non dégénérescence, on montre que siS est continu, alors c’est une
variété de classeC1.

1. Introduction

We are concerned in this paper with blow-up phenomena arising in the following
semilinear problem:

ut = �u+ |u|p−1u,

u(. ,0) = u0 ∈L∞(
R
N
)
,

(1)

whereu(t) :x ∈ R
N → u(x, t) ∈ R and� stands for the Laplacian inRN . We assume

in addition the exponentp > 1 subcritical: ifN � 3 then 1< p < (N + 2)/(N − 2).
Moreover, we assume that

u0 � 0 or (3N − 4)p < 3N + 8. (2)
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This problem has attracted a lot of attention because it captures features common to
a whole range of blow-up problems arising in various physical situations, particularly
the role of scaling and self-similarity. Without pretending to be exhaustive, we would
like nonetheless to mention some related equations: the motion by mean curvature
(Soner and Souganidis [23]), vortex dynamics in superconductors (Chapman, Hunton
and Ockendon [6], Merle and Zaag [18]), surface diffusion (Bernoff, Bertozzi and
Witelski [2]) and chemotaxis (Brenner et al. [4], Betterton and Brenner [3]). However,
Eq. (1) is simple enough to be tractable in rigorous mathematical terms, unlike other
physical equations.

A solutionu(t) to (1) blows-up in finite time if its maximal existence timeT is finite.
In this case,

lim
t→T

∥∥u(t)∥∥
H1(RN)

= lim
t→T

∥∥u(t)∥∥
L∞(RN)

= +∞.

Let us consider such a solution.T is called the blow-up time ofu. A point a ∈ R
N is

called a blow-up point if

∣∣u(x, t)∣∣→ +∞ as(x, t)→ (a, T )

(this definition is equivalent to the usual local unboundedness definition, thanks to
Corollary 2 in [21]).S denotes the blow-up set, that is the set of all blow-up points.
From [21], we know that there existsa blow-up profileu∗ ∈C2

loc(R
N \ S) such that

u(x, t)→ u∗(x) in C2
loc

(
R
N \ S) ast → T . (3)

The blow-up problem has been addressed in different ways in the literature. A major
direction was developed by authors looking for sufficient blow-up conditions on initial
data or on the nonlinear term (see Fujita [12], Ball [1], Levine [16] and the review paper
by Deng and Levine [7]). The second main direction is about the description of the
asymptotic blow-up behavior,locally near a given blow-up point̂a (see Giga and Kohn
[13], Bricmont and Kupiainen [5], Herrero and Velázquez [14,24], Merle and Zaag [21]).
Given a ∈ R

N a blow-up point ofu, we know that up to some scalings,u approaches
a particular explicit function near the singularity(a, T ) (see [24]). Up to replacingu
by −u, one of the following two cases occurs:

Case1: For allK0 > 0,

sup
|z|�K0

∣∣∣(T − t)
1

p−1u
(
a + Q̃az

√
(T − t)| log(T − t)|, t

)
− fla (z)

∣∣∣→ 0 (4)

ast → T , whereQ̃a is an orthonormalN ×N matrix, la = 1, . . . ,N and

fla (z)=
(
p − 1+ (p− 1)2

4p

la∑
i=1

z2
i

)− 1
p−1

. (5)
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Case2: For allK0 > 0,

sup
|z|�K0

∣∣∣∣(T − t)
1

p−1u
(
a + z(T − t)

1
2k , t

)−
(
p − 1+ ∑

|α|=2k

Cαz
α

)− 1
p−1

∣∣∣∣ (6)

goes to 0 ast → T , wherek = 2,3,4, . . . , xα = x
α1
1 · · ·xαNN and|α| = α1 + · · · + αN if

α = (α1, . . . , αN) and
∑

|α|=2k Cαx
α � 0 for all x �= 0.

Remark. – Even though the proof of [24] is given in the positive case, it extends to
unsigned solutions under (2).

The description of the blow-up setS is a major issue. Examples whereS is a set of
isolated points or a sphere are known to exist (see [17] and [19] for isolated points
and [13] for the sphere). If these solutions are artificially considered as defined on
R
N ′ × [0, T ) whereN ′ > N , we obtain examples whereS consists in a collection of

(N ′ − N)-dimensional subspaces or spheres. No other geometric configurations are
known to occur. In [26], Velázquez proves the following result:

The(N − 1)-dimensional Hausdorff measure ofS is bounded on compact sets.

No other regularity result is known.
Our first goal in this paper is to improve this result and obtain partial regularity

results onS under some reasonable conditions. Let us considerâ ∈ S. According to
[24] (remark after Theorem 2), if (4) occurs withl =N or (6) occurs with

∑
Cαx

α > 0
for all x �= 0 (no degenerate directions in the function), then the blow-up point is
isolated. The question remains open in the other cases. Even if one assumes thatâ is
not isolated, it is unclear whether there is a continuum of blow-up points nearâ or not.
This question seems to be very difficult. Whatever the answer is, we don’t know howS

looks like nearâ, and how the profileu∗ is nearS (no relevant information onu∗ near
a nonisolated blow-up point was known before). To make our presentation clearer, we
restrict to the caseN = 2 and consider̂a a nonisolated point ofS such thatâ belongs
to a continuous line of blow-up points without being an endpoint. More precisely, we
assume that̂a = a(0) ∈ Ima ⊂ S wherea ∈C((−1,1),R2) and for someα0,

∀ε > 0, a(−ε, ε) intersects the complimentary of any

connected closed cone with vertex atâ and angleα ∈ (0, α0]
(7)

(this is in a way to insure that̂a is not an endpoint).
Assuming thatu behaves according to (4) near the singularity(â, T ), we have the

following result:

THEOREM 1 (Regularity of the blow-up set at a point with the behavior (4) assuming
S contains a continuum). –AssumeN = 2 and consideru a solution of(1) that blows-
up at timeT on a setS. Considerâ = a(0) ∈ Ima ⊂ S wherea ∈C((−1,1),R2) and â
is not an endpoint(in the sense(7)). If u behaves near(â, T ) as stated in(4), then there
are δ > 0, δ1 > 0 andϕ ∈ C1([−δ1, δ1],R) such that

S ∩B(â,2δ)= graphϕ ∩B(â,2δ)= Ima ∩B(â,2δ). (8)
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In particular, S is aC1 manifold near the point̂a.

We actually have the following refinedC1 estimate forϕ.

PROPOSITION 2 (RefinedC1 estimate forS). – There existsC0 > 0 andh0 such that
for all |ξ |< δ1 and |h|< h0 such that|ξ + h|< δ1, we have:

∣∣ϕ(ξ + h)− ϕ(ξ)− hϕ′(ξ)
∣∣� C0|h|

√
log| log |h||

| log|h|| .

Remark. – Using the techniques of Fermanian and Zaag [9], we show in [27] thatϕ is
actuallyC1,α for anyα ∈ (0, 1

2).

Remark. – From [24], we know that the limit function at(â, T ) stated in (4) has a
degenerate direction, and that we cannot have two curves of blow-up points intersecting
transversally at̂a. With our contribution, we eliminate the possibility of two curves
meeting tangentially at̂a. In particular, there is no cusp atâ, and there is no sequence of
isolated blow-up points converging tôa ∈ S.

Remark. – The case we are considering does exist indeed. The techniques of [19] hold
for the one dimensional equation

∂tv = ∂2
rrv + N − 1

r
∂rv + |v|p−1v

which is the radial case of (1). Thus, for allr0 > 0, there is a radial solutionu(x, t) =
v(|x|, t) of (1) such that for allK0 > 0,

sup
|z|�K0

∣∣∣(T − t)
1

p−1v
(
r0 + z

√
(T − t)| log(T − t)|

)
− f (z)

∣∣∣→ 0 ast → T ,

where for allz ∈ R, f (z)=
(
p− 1+ (p − 1)2

4p
z2
)− 1

p−1
. (9)

The blow-up set ofu is the spherer0S
N−1, and near each blow-up point, (4) holds with

the degenerate profilef1.
The description of theblow-up profileu∗ defined in (3) near the singularity(â, T ) is

our second concern in this paper. We claim the following:

THEOREM 3 (Blow-up behavior and profile near a blow-up point whereu behaves
as in (4) assumingS contains a continuum). –With the notations of Theorem1, there
exists t0 < T such that for allK0 > 0, t ∈ [t0, T ) and x ∈ B(â, δ) s.t. d(x, S) �
K0

√
(T − t)| log(T − t)|, we have

∣∣∣∣(T − t)
1

p−1u(x, t)− f

(
d(x, S)√

(T − t)| log(T − t)|
)∣∣∣∣� C ′

0(K0)
log | log(T − t)|

| log(T − t)| , (10)

wheref is defined in(9). Moreover,∀x ∈ R
N \ S, u(x, t)→ u∗(x) as t → T with

u∗(x)∼U
(
d(x, S)

)
asd(x, S)→ 0 andx ∈ B(â, δ), (11)
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where

U(z)=
(

8p

(p− 1)2
| logz|
z2

) 1
p−1

for z > 0.

Remark. – This is the first time where the blow-up profileu∗ is derived near a
nonisolated point. Indeed, in the earlier work of Velázquez, the behavior along the
“tangential” direction ofS was not derived. (10) shows that in a tubular neighborhood
of S, the main term in the blow-up asymptotics is the 1D blow-up profilef , function of
only the normal coordinate±d(x, S).

Remark. – Whenp > 3, we show in [27] that up to a nonsingular function,u is a
superposition of 1D blow-up solutions of (1), organized along the normal directions to
the blow-up set.

Theorems 1 and 3 hold in higher dimensionsN � 3. However, the hypotheses should
be stated more carefully. We claim the following:

THEOREM 4 (Regularity of the blow-up set near a point with the behavior (4)
assumingS contains a(N − l)-dimensional continuum). –TakeN � 2 and l ∈ {1,
. . . ,N − 1}. Consideru a solution of(1) that blows-up at timeT on a setS and take
â ∈ S whereu behaves locally as stated in(4). Considera ∈ C((−1,1)N−l ,RN) such
that â = a(0) ∈ Ima ⊂ S and Ima is at least(N − l)-dimensional(in the sense(82)).
If â is not an endpoint(in the sense(83) given below), then there areδ > 0, δ1 > 0
and ϕ ∈ C1([−δ1, δ1]N−l ,Rl) such that(8) holds andS is a C1 manifold near â.
Proposition2 and Theorem3 hold as well.

Remark. – If l =N − 1, then the fact that̂a is not isolated implies that Ima is at least
1-dimensional near̂a.

Remark. – Theorem 4 can be stated without the hypotheses (82) and (83) if we
strengthen the assumption on Ima. Indeed, if we already know that Ima is a (N − l)-
dimensional differentiable manifold, then we learn from Theorem 4 thatS \ Ima is
empty, locally near̂a, and we get the blow-up profile nearâ as stated in Theorem 3.

Up to some complications in the notation, the proof of Theorem 4 remains the same
as in the caseN = 2. We will show in Section 6 how to adapt the proof of the caseN = 2
to the general case.

The paper is organized as follows. In Section 2, we recall from previous work the
self-similar variables technique and a Liouville theorem for Eq. (1). In Section 3, we
show the stability of the behavior (4) (withl = 1< 2 = N ) with respect to the blow-
up point in Ima. The regularity of the blow-up set is presented in Section 4 where we
prove Theorem 1 and Proposition 2. Section 5 is devoted to the blow-up profile ofu

(Theorem 3). In Section 6, we sketch the proof of Theorem 4.
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2. Asymptotic behavior in self-similar variables and global estimates for blow-up
solutions of (1)

In this section, we introduce the general framework for the study ofu near a singular-
ity (a, T ) and recall from [21] a uniform (in space and time) comparison property ofu

with the solution of the associated ODEu′ = up.

2.1. Self-similar variables

Givena a blow-up point ofu, we study the behavior ofu near the singularity(a, T )
through the introduction of the functionwa defined by

wa(y, s) = (T − t)
1

p−1u(x, t), y = x − a√
T − t

, s = − log(T − t). (12)

From (1), we see thatwa satisfies for all(y, s) ∈ R
N × [− logT ,∞) the following

equation

∂w

∂s
=�w− 1

2
y.∇w − w

p− 1
+ |w|p−1w. (13)

We know from [13] that

‖wa‖L∞(RN×[− logT ,∞)) �M <∞ (14)

((12) shows thatM is independent ofa) and that

wa(y, s)→ ±κ ≡ ±(p− 1)
− 1
p−1 ass → ∞ (15)

in L2
ρ whereρ(y) = e−|y|2/4/(4π)N/2 and uniformly on compact sets. Assuming that

wa → κ , we define

va =wa − κ. (16)

We know from (15) and (13) that‖va‖L2
ρ

→ 0 ass → ∞ and for all (y, s) ∈ R
N ×

[− logT ,∞),

∂va

∂s
= Lva + f (va)≡ Lva + p

2κ
v2
a + g(va) (17)

whereL = �− 1
2y.∇ + 1, |f (va)| � C(M)|va |2 and|g(va)| � C(M)|va |3. OperatorL

is self-adjoint onL2
ρ , its spectrum is specL = {1 − m

2 | m ∈ N}. Its eigenfunctions are
derived from the Hermite polynomials. IfN = 1, all the eigenvalues ofL are simple. To
1− m

2 corresponds the eigenfunction

hm(y)=
[m2 ]∑
n=0

m!
n!(m− 2n)!(−1)nym−2n.
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If N � 2, then the eigenfunctions corresponding to 1− m
2 are

Hα(y)= hα1(y1) · · ·hαN (yN), with α = (α1, . . . , αN) and|α| =m.

In particular:
– 1 is an eigenvalue of multiplicity 1 and its eigenfunction isH0(y)= 1,
– 1

2 is of multiplicity N and its eigenspace is generated by the orthogonal basis
{yi | i = 1, . . . ,N},

– 0 is of multiplicity N(N+1)
2 and its eigenspace is generated by the orthogonal basis

{yiyj | i < j} ∪ {y2
i − 2 | i = 1, . . . ,N

}
. (18)

Since the eigenfunctions ofL make a total orthonormal family ofL2
ρ , we expandva as

follows

va(y, s) =
2∑

m=0

va,m(y, s)+ va,−(y, s)≡ va,2(y, s)+ va,−(y, s)+ va,+(y, s), (19)

whereva,m(y, s) is the orthogonal projection ofva on the eigenspace ofλ = 1 − m
2 ,

va,−(y, s) = P−(va)(y, s) andP− is the projector on the negative subspace ofL. Let us
define aN ×N symmetric matrixAa(s) by

Aa(s)=
∫

RN

va(y, s)M(y)ρ(y)dy whereMi,j (y)= 1

4
yiyj − 1

2
δij . (20)

Then, from (19), (18) and the orthogonality between eigenfunctions ofL, we have

va,2(y, s)= 1

2
yTAa(s)y − trAa(s). (21)

From Filippas and Liu [11] and Velázquez [25], we know that

either va ∼ va,2 or va ∼ va,− in L2
ρ ass → ∞. (22)

In the former case, we know that for somela ∈ {1, . . . ,N}, δa > 0 and aN × N

orthogonal matrixQ̃a , we have

va(Q̃ay, s)= κ

2ps

(
la − 1

2

la∑
i=1

y2
i

)
+ O

(
1

s1+δa

)
ass → ∞ (23)

in L2
ρ andu behaves near(a, T ) as stated in (4).

If la =N , thena is an isolated blow-up point. We proved in [8] with Fermanian and
Merle the stability of such a behavior with respect to perturbations in initial data.

In this paper, we consider the casela < N and assume thata is not isolated. Although
the techniques of [8] imply that this profile is unstable with respect to perturbations in
initial data, we will show in Section 3 its stability with respect tothe blow-up point(for
a fixed solution), in the smaller class ofnon-isolated blow-up points.
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2.2. A Liouville theorem and ODE comparison for u

The following rigidity theorem (from [21]) is crucial in the blow-up study of (1). It is
a central argument in the proof of our theorem.

PROPOSITION 2.1 (A Liouville theorem for Eq. (1)). –Let u be a solution of(1)
defined for all(x, t) ∈ R

N × (−∞, T ) such that for someC > 0,

∣∣u(x, t)∣∣� C

(T − t)
1

p−1

.

Then, eitheru≡ 0 or there existT1 ∈ [T ,+∞) andω0 ∈ {−1,+1} such that

u(x, t)= ω0κ(T1 − t)
− 1
p−1 .

This allows Merle and Zaag [21] to prove foru0 ∈C2 the following localization property
which reduces the study of the evolution ofu(b, t) for a fixedb to the study of an ODE:

PROPOSITION 2.2 (Uniform ODE comparison of blow-up solutions of (1)). –For all
ε > 0, there existsC = C(ε,‖u0‖C2, T ) such that∀(x, t) ∈ R

N × [0, T ),

|∂tu− |u|p−1u| � ε|u|p +C.

As a consequence, we have the following criterion for regular points (by definition,
nonblow-up points):

PROPOSITION 2.3 (Blow-up exclusion criterion). –For all ε0 > 0, there exists
t0(ε) < T such that if|u(a, t)| � (1 − ε0)κ(T − t)−1/(p−1) ≡ (1 − ε0)vT (t) for some
a ∈ R

N and t ∈ [t0(ε0), T ), thena is not a blow-up point.

Remark. – vT is the solution ofv′
T = v

p
T , vT (T )= ∞.

Proof. –See Corollary 1 in [20] where the criterion is derived from the ODE
comparison (note that in [20] the criterion holds only for positive data, but since we
show in [21] the ODE comparison for unsigned data, the criterion holds in this general
case). ✷

3. Stability of the blow-up behavior (4) with respect to nonisolated blow-up points

From now on, we take 1= l < N = 2. We consider̂a a blow-up point ofu such that
â = a(0) wherea ∈ C((−1,1),R2) and â is not an endpoint of Ima ⊂ S in the sense
(7). We assume thatu has the behavior (4) near(â, T ). From rotation and translation
invariance, we assume thatâ = 0 andQ̃â = Id. Thus, (4) implies that

sup
|z|�K0

∣∣∣(T − t)
1

p−1u
(
z
√
(T − t)| log(T − t)|, t

)
− f (z1)

∣∣∣→ 0 ast → T , (24)
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wheref is defined in (9). Sinceu has the behavior (24) near(0, T ), we know from the
previous section (see (22) and (23)) that

v0 ∼ v0,2 and w0(y, s)− κ = v0(y, s) ∼ κ

2ps

(
1− y2

1

2

)
ass → ∞ (25)

in L2
ρ , wherev0 andw0 are defined in (12) and (16). In the following, we will writea

instead ofa(σ ) andva instead ofva(σ). A central argument in our proof is the following:

PROPOSITION 3.1 (Stability of theL2
ρ asymptotic behavior with respect to blow-up

points in Ima). – There existσ0 > 0,C0 > 0 ands0 ∈ R such that for allb ∈ a(−σ0, σ0),
there existsQb a 2× 2 orthogonal matrix such that:

(i) for all |σ |< σ0 ands � s0,

∥∥∥∥wa(Qay, s)−
{
κ + κ

2ps

(
1− y2

1

2

)}∥∥∥∥
L2
ρ

� C0
logs

s2
.

(ii) Q0 = Id andb ∈ a(−σ0, σ0)→Qb is continuous.
(iii) For all K0 > 0, there isC ′

0(K0) > 0 such that for alls � s0,

sup
|σ |<σ0, |y|�K0

√
s

∣∣∣∣wa(Qay, s)− f

(
y1√
s

)∣∣∣∣� C ′
0(K0)

logs

s

wheref is defined in(9).

Remark. – This argument is similar to the result of [8], where we proved the stability
of the blow-up behavior (4) withl = N (the isolated blow-up point case), with respect
to initial data. Therefore, we will refer to [8] for the similar steps.

The proof of this proposition follows from 4 steps.
– In Step 1, we show that the control ofva near the same asymptoticL2

ρ behavior as
v0 reduces to the control of its neutral modeva,2, that is the matrixAa defined in
(20) and (21) (this is a finite-dimensional problem).

– In Step 2, we show that the eigenvalues ofAa(s) have uniformly the same behavior
as those ofA0(s) ass → +∞.

– In Step 3, we solve the finite-dimensional problem by finding the long time behavior
of Aa.

– In Step 4, we give the solution of the infinite-dimensional problem (that is the
asymptotics ofwa ass → ∞), which concludes the proof of Proposition 3.1.

Step 1: Uniform reduction to a finite-dimensional problem
In this step, the only relevant information onv0 we use is thatv0 ∼ v0,2. We aim at

showing that this extends to anya(σ ) near 0. In particular, the fact that the asymptotic
behavior in (25) has a degenerate direction is not relevant here. Thus, this step is not new.
It is exactly the same as the analogous one in the proof of the stability of the profile (4)
with l = N presented in [8]. Therefore, we just summarize the arguments of the proof
in Appendix A. Let us just remark that the Liouville theorem (Proposition 2.1) is the
central argument in getting the uniformity. We claim the following:
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PROPOSITION 3.2 (Reduction to a finite-dimensional problem). –There existsσ1 >

0 such that for allε > 0, there iss1(ε) such that for all|σ |< σ1,

∀s � s1(ε)




‖va(s)‖L2
ρ
� ε, ‖va − va,2(s)‖L2

ρ
� ε‖va,2(s)‖L2

ρ
,

|A′
a(s)− 1

β
Aa(s)

2| � ε|Aa(s)|2,
(26)

whereβ = κ
2p andva,2 andAa are defined in(19), (21) and(20).

Proof. –See Appendix A. ✷
Step 2: A spectral study of the finite-dimensional problem

In Steps 2 and 3, we solve the finite-dimensional problem given by Step 1. SinceAa

is a symmetric matrix, we can define its eigenvalues as follows:

LEMMA 3.1 (Existence of regular eigenvalues forAa). – There exist2 real C1

functions la,i(s), i = 1,2, eigenvalues ofAa(s). Moreover, the set{la,1(s), la,2(s)} is
continuous in terms of(a, s) ∈ S × [− logT ,∞).

Proof. –From the regularity ofwa, it is clear that for eacha ∈ R
N , the symmetric

matrixAa(s) is aC1 function of s. Therefore, according to Kato [15], we can define 2
C1 functions ofs, la,1(s) andla,2(s), eigenvalues ofAa(s) (see Lemma 3.2 in [11] for a
statement). SinceAa(s) is a continuous function of(a, s) and the eigenvalues of a matrix
vary continuously with respect to the coefficients,{la,1(s), la,2(s)} is continuous in terms
of (a, s). ✷

Proposition 3.2 and Section 2.1 have the following corollary:

COROLLARY 3.1. –
(i) (Nonuniform behavior ofva) For all |σ | < σ1, (23) holds with la = 1. In

particular,

Aa(s)= −β

s
Q̃a

(
1 0
0 0

)
Q̃T

a + O
(
s−1−δa ) ass → ∞,

and one eigenvalue is equal to−β

s
+ O(s−1−δa ) while the other is equal to

O(s−1−δa ) ass → ∞.
(ii) (Equations on eigenvalues)For all ε > 0, there iss1(ε) such that for alli ∈ {1,2},

|σ |< σ1 ands � s1(ε),∣∣∣∣l′a,i(s)− 1

β
la,i(s)

2
∣∣∣∣� ε

(
l2a,1 + l2a,2

)
.

Proof. –(i) From Proposition 3.2, we haveva ∼ va,2 ass → ∞ for all |σ |< σ1, hence
(23) holds as stated in Section 2.1. Sinceσ → a(σ ) is continuous anda(0) = 0 is not
an isolated blow-up point (otherwise, (7) cannot hold), everya(σ ) is nonisolated inS.
Therefore, 1� la < N = 2 in (23), hencela = 1. (20) then gives the estimate forAa ,
which gives the estimate for the eigenvalues.
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(ii) Since(l2a,1 + l2a,2)
1/2 is a norm forAa , just evaluate the equation onAa in Proposi-

tion 3.2 at eigenfunctions to get (ii). This concludes the proof of Corollary 3.1.✷
At the pointa(0)= 0, we have from Corollary 3.1,

λ0(s)∼ −β

s
and µ0(s)= o

(
1

s

)
ass → ∞ (27)

whereλ0 andµ0 are justl0,1 andl0,2 renamed. This behavior is in fact stable with respect
to σ . In the following proposition, we refine the estimates of Proposition 3.2 and state
this stability result.

PROPOSITION 3.3 (Stability of the behavior at infinity of the eigenvalues ofAa(s)). –
There existsσ2 > 0, s2 ∈ R andC2 > 0 such that for all|σ |< σ2 ands � s2,

(i) ‖va(s)− va,2(s)‖L2
ρ
� C2s

−2,

(ii) |A′
a(s)− 1

β
Aa(s)

2| � C2s
−3,

(iii) |λa(s)+ β

s
| � C2s

−2 logs and |µa(s)| �C2s
−2,

whereλa = la,τa(1), µa = la,τa(2) andτa is a permutation of{1,2}.

Let us first explain our argument for this proposition formally.
Up to the third order term, the eigenvalues satisfy the equationλ′ = 1

β
λ2, which has

two orbits going to zero ass → ∞:

λ1(s)= − β

s + s0
and λ2(s)≡ 0.

It is clear thatλ1 is stable, whereasλ2 is not. Therefore, the stability of the behavior of
λ0 in (27) comes from the dynamical stability analysis ofλ1. This argument was enough
in [8] where all the eigenvalues were of order−β

s
(nondegenerate profile). However, the

stability analysis ofλ2 suggests thatµa is not stable and does not allow us to derive
the stability of its behavior. We need a new argument.λ2 turns out to bestable if s

is decreasing from∞ to some point. Corollary 3.1 implies that one eigenvalue (the
degenerate direction) ofAa(s) is o(1

s
) at infinity, say equal toλ2(s) at infinity, up to the

order o(1
s
). Thus, we recover the stability of the degenerate eigenvalue. We now give the

actual proof.

Proof of Proposition 3.3. –The proof is done in several steps. Let us sketch the main
lemmas and derive the proposition first. Thus, we let the lemmas’ proof to the end.

Let us fix ε̂ = min(1
2,

1
100β) ands3 = s1(ε̂) defined in Proposition 3.2. From (27) and

the continuity of the set of eigenvalues with respect toa, we can findσ3 ∈ (0, σ1) where
σ1 appears in Corollary 3.1, such that for all|σ | � σ3,

∣∣∣∣la,τa(1)(s3)+ β

s3

∣∣∣∣+ ∣∣la,τa(2)(s3)
∣∣� β

100s3
,
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whereτa is a permutation of{1,2}. Let us rename the eigenvalues such thatλa = la,τa(1)
andµa = la,τa(2). Therefore,

∀|σ | � σ3,

∣∣∣∣λa(s3)+ β

s3

∣∣∣∣� β

100s3
and

∣∣µa(s3)
∣∣� β

100s3
. (28)

We claim the following:

LEMMA 3.2 (Nondegeneracy of the decay rate ofva). – There existsC3 > 0 such that
for all |σ |< σ3 ands � s3,

(i) Na(s)≡ λ2
a +µ2

a � β2/(16s2),
(ii) ‖va(s)‖L2

ρ
�C3/s.

We then prove the stability for the nondegenerate direction.

LEMMA 3.3 (Stability of the nondegenerate direction ofAa(s)). – For all |σ | < σ3

ands � s3,

−2β

s
� λa(s)� − β

2s
and −2β

s
� µa(s)� C

s
.

With this lemma, we can refine the equation satisfied byλa andµa .

LEMMA 3.4 (A refined equation satisfied byAa(s)). – There existss4 � s3 and
C4 > 0 such that for all|σ |< σ3 ands � s4,

‖va − va,2‖L2
ρ
≡ (∥∥va,+(s)∥∥2

L2
ρ
+ ∥∥va,−(s)∥∥2

L2
ρ

)1/2 �C4s
−2, (29)∣∣∣∣A′

a(s)− 1

β
Aa(s)

2
∣∣∣∣+

∣∣∣∣λ′
a − 1

β
λ2
a

∣∣∣∣+
∣∣∣∣µ′

a − 1

β
µ2
a

∣∣∣∣�C4s
−3. (30)

Lemma 3.3 and Corollary 3.1 imply that for all|σ |< σ3,

µa(s)= O
(
s−1−δa) ass → ∞. (31)

Eq. (30) propagates this estimate from∞ to s and improves it. More precisely,

LEMMA 3.5 (Stability of the degenerate direction ofAa(s)). – There exists5 � s4

andC5 > 0 such that for all|σ |< σ3 ands � s5,

∣∣µa(s)
∣∣�C5s

−2,

With this information, we can refine the estimate onλa(s).

LEMMA 3.6 (Refinement of the estimate on the nondegenerate direction ofAa(s)). –
There exists6 � s5, σ6 < σ3 andC6 > 0 such that for all|σ |< σ6 ands � s6,

∣∣∣∣λa(s)+ β

s

∣∣∣∣�C6
logs

s2
.

It is clear that Lemmas 3.4, 3.5 and 3.6 directly imply Proposition 3.3. Let us now prove
the previous lemmas.
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Proof of Lemma 3.2. –Recall that̂ε, s3 andσ3 are defined just before (28).
(i) From Corollary 3.1, we have for all|σ |< σ3 ands � s3,

N ′
a(s)= 2

(
λaλ

′
a +µaµ

′
a

)
� 2

β

(
λ3
a +µ3

a

)− 2ε̂(λa +µa)
(
λ2
a +µ2

a

)
� − 6

β
N3/2
a

(here we used the fact thatε̂ � 1
100β and|λna +µn

a| � 2(λ2
a +µ2

a)
n/2).

SinceNa(s3) > β2/(16s23) (from (28)) and

d

ds

(
β2

16s2

)
<− 6

β

(
β2

16s2

)3/2

,

straightforward a priori estimates yield (i).
(ii) Since ε̂ � 1

2, Proposition 3.2 implies that‖va‖L2
ρ

� 1
2‖va,2‖L2

ρ
� C(λ2

a + µ2
a)

1/2

whereC > 0 (because(λ2
a + µ2

a)
1/2 is a norm forAa, hence forva,2 by (21)). Thus,

(ii) of Lemma 3.2 follows from (i). This concludes the proof of Lemma 3.2.✷
Proof of Lemma 3.3. –We claim that for all|σ |< σ3 ands � s3,

λa(s)+µa(s) <− β

50s
. (32)

Indeed, from Corollary 3.1, Lemma 3.2 and the fact thatε̂ � 1
100β, we have

∀|σ |< σ3, ∀s � s3,
d

ds
(λa +µa)�

(
1

β
− 2ε̂

)(
λ2
a +µ2

a

)
� 1

2β

β2

16s2
.

Sinceλa(s) + µa(s) → 0 ass → ∞ (Corollary 3.1), an integration betweens and∞
gives (32).

(32) shows that Lemma 3.3 follows if we prove that for all|σ |< σ3 ands � s3,

−2β

s
< λa(s) <− β

2s
and µa(s) >−2β

s
. (33)

We proceed by contradiction. From (28), we consider some|σ | < σ3 ands∗ > s3 such
that (33) holds for alls ∈ [s3, s∗) with an equality case ats∗. In the following, we rule
out those 3 cases of equality. Let us just mention that (33) and (32) yield

∣∣µa(s∗)
∣∣� 2β

s∗
. (34)

Case1: λa(s∗)= − β

2s∗ .
On one hand, we have

λ′
a(s∗)� d

ds

(
− β

2s

)∣∣∣∣
s=s∗

� β

2s2∗
.
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On the other hand, Corollary 3.1, (33) and (34) imply that

λ′
a(s∗)�

1

β
λa(s∗)2 + ε̂

(
λa(s∗)2 +µa(s∗)2

)

� 1

β

(
β

2s∗

)2

+ ε̂

((
2β

s∗

)2

+
(

2β

s∗

)2)
� β

3s2∗
becausêε � 1

100β. Contradiction.

Case2 or 3: λa(s∗)= −2β
s∗ orµa(s∗)= −2β

s∗ .
Let us handle for instance Case 3. Case 2 is exactly the same.
On one hand, we have

µ′
a(s∗)� d

ds

(
−2β

s

)∣∣∣∣
s=s∗

� 2β

s2∗
.

On the other hand, Corollary 3.1, (33) and (34) imply that

µ′
a(s∗)� 1

β
µa(s∗)2 − ε̂

(
λa(s∗)2 +µa(s∗)2

)

� 1

β

(
2β

s∗

)2

− ε̂

((
2β

s∗

)2

+
(

2β

s∗

)2)
� 3β

s2∗
becausêε � 1

100β. Contradiction.
Thus, (33) holds for all|σ | < σ3 and s � s3. This concludes the proof of Lemma

3.3. ✷
Proof of Lemma 3.4. –We just follow ideas due to Filippas, Kohn and Liu [10,11].

See Appendix B. ✷
Proof of Lemma 3.5. –An iteration argument forµa(s) based on (30) and (31) gives

the result. Indeed, these estimates yieldµ′
a = β−1µ2

a + O(s−3)= O(s−(2+2δa))+ O(s−3)

ass → ∞.
If 2δa � 1, thenµa = O( 1

s2 ). If 2δa < 1, thenµa = O( 1
s1+2δa ). In this case, we repeat

the same argument with 2δa instead ofδa until we get

∀|σ |< σ3, µa(s)= O
(

1

s2

)
ass → ∞. (35)

Fix s5 � s4 such that

∀s � s5,

(
C4 + 1

β

)
1

2s2
<

1

s7/4
, (36)

wheres4 andC4 are defined in Lemma 3.4. From (35), we can define for all|σ |< σ3,

s∗
σ = min

{
s∗ � s5 | ∀s � s∗,

∣∣µa(s)
∣∣� s−7/4}. (37)

Using (30), we have for alls ∈ [s∗
σ ,∞),

∣∣µ′
a(s)

∣∣� β−1∣∣µa(s)
∣∣2 +C4s

−3 �
(
C4 + β−1)s−3.
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Therefore,

∀s ∈ [s∗
σ ,∞),

∣∣µa(s)
∣∣� (C4 + β−1)s−2/2< s−7/4 (38)

sinces∗
σ � s5 (see (36)). (37) then shows thats∗

σ = s5 and (38) yields the result.✷
Proof of Lemma 3.6. –Let us define

Za(s)= s2
(
λa(s)+ β

s

)
. (39)

From (30) and Corollary 3.1, we have for all|σ |< σ3,

Za(s)= O
(
s1−δa) ass → ∞, ∀s � s4,

∣∣∣∣Z′
a(s)− Z2

a

βs2

∣∣∣∣� C4s
−1. (40)

As for Lemma 3.5, we improve the estimate onZa iteratively.
From (40), we writeZ′

a = O(s−2δa )+ O(s−1).
If 2δa � 1, thenZa = O(logs). If 2δa < 1, thenZa(s) = O(s1−2δa ). We repeat the

same argument with 2δa instead ofδa until we get

∀|σ |< σ3, Za = O(logs), hence λa = −β

s
+ O

(
logs

s2

)

ass → ∞. We need to prove that this holds uniformly with respect toσ . Let us consider
s7 andC7 � 2C4 such that for alls � s7, |Z0(s)| � C7 logs andZa(s) is continuous
in terms of (a, s) ∈ S × [s7,∞) (for this latter fact, remember from Lemma 3.1 the
continuity of {λa(s),µa(s)} in terms of(a, s)). If s7 is chosen so thatC5s

−2
7 � β

4 s
−1
7 ,

thenλa(s) andµa(s) become apart fors � s7 by Lemmas 3.3 and 3.5. Therefore, both
are continuous in terms of(a, s) ∈ S × [s7,∞).

Defines6 � s7 and thenσ6 � σ3 such that

∀s � s6,
16C2

7 log2 s

βs2
� C4

s
and ∀|σ | � σ6,

∣∣Za(s6)
∣∣� 2C7 logs6. (41)

We claim that

for all |σ |< σ6 ands � s6,
∣∣Za(s)

∣∣� 4C7 logs. (42)

Indeed, if for some|σ |< σ6 ands � s6, we have|Za(s)|> 4C7 logs, then we can define
from (41)s∗

σ such that

∀s ∈ [s6, s
∗
σ ],

∣∣Za(s)
∣∣� 4C7 logs and

∣∣Za(s
∗
σ )
∣∣= 4C7 logs∗

σ . (43)

Using (40), (41), and the fact thatC7 � 2C4, we have

∀s ∈ [s6, s
∗
σ ], ∣∣Z′

a(s)
∣∣� 1

β

Z2
a

s2
+ C4

s
� 16C2

7(logs)2

βs2
+ C4

s
� 2C4

s
� C7

s
.
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Therefore,|Za(s
∗
σ )| � |Za(s6)| + C7(logs∗

σ − logs6) � 3C7 logs∗
σ by (41). This contra-

dicts (43). Thus, (42) holds. This closes the proof of Lemma 3.6 by (39). Thus Proposi-
tion 3.3 is proved. ✷
Step 3: Solution of the finite-dimensional problem

Now, we are ready to solve (26). We claim the following:

PROPOSITION 3.4 (Solution of the finite-dimensional problem). –There existsC10>

0 such that for allb ∈ a(−σ2, σ2), there exists a2× 2 orthogonal matrixQb such that:

for all |σ |< σ2 ands � s2,

∣∣∣∣Aa(s)+ β

s
La

∣∣∣∣� C10
logs

s2
, (44)

where

La =Qa

(
1 0
0 0

)
QT

a . (45)

Moreover,Q0 = Id andb ∈ a(−σ2, σ2)→Qb is continuous.

Proof. –It is easy to check from Proposition 3.3 that for all|σ |< σ2 ands � s2,

∣∣∣∣A′
a(s)− trAa

β
Aa(s)+ detAa(s) Id

∣∣∣∣� C2s
−3,

∣∣Aa(s)
∣∣� Cs−1,

∣∣∣∣trAa + β

s

∣∣∣∣�Cs−2 logs, |detAa| � Cs−3.

Therefore, for all|σ |< σ2 ands � s2,

∣∣∣∣A′
a + 1

s
Aa(s)

∣∣∣∣� C
logs

s3
, hence

∣∣∣∣ d

ds

(
sAa(s)

)∣∣∣∣� C
logs

s2
.

This shows that− s
β
Aa(s) has a limit as→ ∞. This limit depends only ona(σ ) and not

on σ , for Aa(s) does the same (see (20)). Therefore, we call this limitLa(σ). We define
this way a functionb ∈ a(−σ2, σ2) → Lb. La(σ) is a 2× 2 symmetric matrix, such that
for all |σ |< σ2 ands � s2,

∣∣sAa(s)+ βLa

∣∣� C

∞∫
s

t−2 log t dt � Cs−1 logs. (46)

Since the convergence is uniform “with respect toa(σ )” and since for a fixeds, Aa(s)

is continuous with respect toa, b → Lb is continuous.
SinceLa is symmetric, it has 2 eigenvalues which are the limits ass → ∞, of

− s
β
λa and− s

β
µa , say 1 and 0, according to Proposition 3.3. Therefore, sinceb → Lb

is continuous andLb is symmetric with distinct eigenvalues, we can define a 2× 2
orthogonal matrixQb, continuous in terms ofb, such that (45) and then (44) hold
(just define continuous eigenvectors). From (i) of Corollary 3.1, we can even choose
Q0 = Q̃0, hence,Q0 = Id. ✷
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Step 4: Asymptotic behavior of wa in L2
ρ

We prove Proposition 3.1 here. We first use the solution of the finite-dimensional
problem to find the asymptotic behavior ofwa as s → ∞, in L2

ρ or equivalently
uniformly on compact sets ofRN . We then use techniques from [24] to extend the
convergence up to sets of the type{|y| �K0

√
s}.

Proof of Proposition 3.1. –(i) Takeσ0 = σ2 ands0 = s2 whereσ2 ands2 are defined
in Proposition 3.3. Consider|σ |< σ0 ands � s0. With the change of variablez =Qay

and using (45), we have∥∥∥∥wa(Qay, s)−
{
κ + κ

2ps

(
1− y2

1

2

)}∥∥∥∥
L2
ρ

=
∥∥∥∥wa(z, s)−

{
κ + β

s

(
1− (QT

az)
2
1

2

)}∥∥∥∥
L2
ρ

(
β = κ

2p

)

=
∥∥∥∥va(z, s)−

{
− β

2s
zTLaz+ β

s

}∥∥∥∥
L2
ρ

�
∥∥va(s)− va,2(s)

∥∥
L2
ρ
+
∥∥∥∥va,2(s)−

{
− β

2s
zTLaz+ β

s

}∥∥∥∥
L2
ρ

≡E1 +E2. (47)

According to Proposition 3.3, we have

E1 = ∥∥va(s)− va,2(s)
∥∥
L2
ρ
� C2

s2
. (48)

Using (21) and (45), we have

E2 =
∥∥∥∥1

2
zTAa(s)z− trAa(s)−

{
− β

2s
zTLaz− tr

(
−β

s
La

)}∥∥∥∥
L2
ρ

. (49)

Therefore, we have from (44)

E2 � C

∣∣∣∣Aa(s)+ β

s
La

∣∣∣∣� CC10
logs

s2
. (50)

Combining (47), (48) and (50) gives (i) of Proposition 3.1.
(ii) See Proposition 3.4.
(iii) The derivation of (iii) from (i) was done by Velázquez in [24] for a fixed blow-

up pointa. However, in [24], the convergence speed was not given, because the error
estimate in theL2

ρ convergence was not that accurate there. We shall summarize in
Appendix C the method of Velázquez, with a special care to the speed of convergence,
and of course, to the uniformity with respect to the blow-up point.✷

4. Regularity of the blow-up set near a nonisolated point with the behavior (4)

4.1. Continuous differentiability of S

We prove Theorem 1 in this subsection. We proceed in 2 steps:
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– In Step 1, we derive from the stability of the blow-up behavior with respect to blow-
up points in Ima a kind of weak differentiability ofS at points of Ima (the cone
property).

– In Step 2, we define aC1 functionA whose image is a graph and which is equal to
S in a neighborhood of the origin.

Step 1: The cone property for Im a
Let us introduce the cone property first.

DEFINITION 4.1 (Cone property and the weak tangent). –Consider a setE ⊂ R
2.

(i) E is said to have the cone property at somea ∈E if there isu ∈ S
1 such that for

all ε > 0, there isδ(a, ε) > 0 such that

E ∩B(a, δ)⊂>a,u,ε ≡ {
x | ∣∣(x − a).u

∣∣� (1− ε)|x − a|}. (51)

Ru is then called the weak tangent ofE at a.
(ii) E is said to have the uniform cone property at some subsetF ⊂E if for all ε > 0

anda ∈ F , E has the cone property ata with δ(a, ε)= δ(ε).

Remark. –>a,u,ε is a cone with vertexa. It shrinks toa + Ru asε → 0.

Remark. – If E is aC1 curve, then the cone property is equivalent to the differentia-
bility and the weak tangent to the tangent.

Let us explain our argument first. The functionwa(σ) defined in (12) describes the
local behavior ofu, neara(σ ). From (iii) of Proposition 3.1, we see that if we travel
along the directionQa(σ)e1 from 0 to y = η

√
s whereη > 0, then we makewa(y, s)

drop down fromf (0) = κ to f (η) < κ . No change occurs if we travel alongQa(σ)e2

(hence, we call it the degenerate direction). In theu(x, t) variable, this means that
when we travel along the nondegenerate directionQa(σ)e1, from a to x = a+ηe−s/2√s,
u(x, t) drops down fromvT (t)≡ κ(T − t)−1/(p−1) to (1− ε0(η))vT (t). Therefore, ifs is
large enough, all points along this nondegenerate direction satisfy the blow-up exclusion
criterion of Proposition 2.3. Thus,S is located along the degenerate directionQa(σ)e2.
More precisely, we have the following:

PROPOSITION 4.1 (Uniform cone property forS at points of Ima). –
(i) S has the uniform cone property atIma|σ |<σ0. The weak tangent ata(σ ) is

RQa(σ)e2 wheree2 = (0,1).
(ii) Q0 = Id and the weak tangent is continuous as a function ofb ∈ a(−σ0, σ0).

Remark. – Velázquez’s result in [24] implies thatS has the cone property ata(σ ), but
with no uniformity with respect ofa.

Proof of Proposition 4.1. –Note that (ii) follows directly from (i) of Proposition 4.1
and (ii) of Proposition 3.1. Let us prove (i). We need to prove that for allε > 0, there is
δ(ε) such that for all|σ |< σ0, if

|x − a|< δ and
∣∣(x − a).Qae2

∣∣< (1− ε)|x − a|, (52)
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thenx /∈ S. Considerε and let us first introduceδ(ε) and then show that it is convenient.
Define

ε0 = 1

2

(
κ − f (

√
ε)
)
> 0 and t0 = t0(ε0) (53)

as defined in Proposition 2.3. Consider thens∗(ε) such that

∀s � s∗(ε), C ′
0(1)

logs

s
� ε0, (54)

whereC ′
0 is defined in Proposition 3.1. Define

δ(ε)= e−s̃/2√s̃, wheres̃(ε)= max
(
s0 + 1, s∗(ε),− log(T − t0)

)
, (55)

wheres0 is introduced in Proposition 3.1. Let us take any|σ | < σ0 and x as in (52)
and show thatx is not a blow-up point. We will use the blow-up exclusion criterion of
Proposition 2.3. Let us introduceta,x and similarity variables such that

|x − a| =
√
(T − ta,x)| log(T − ta,x)|, sa,x = − log(T − ta,x),

ya,x =Q−1
a

(
x − a√
T − ta,x

)
.

(56)

The following lemma allows us to conclude.

LEMMA 4.3. –
(i) sa,x � max(s∗(ε),− log(T − t0), s0 + 1),
(ii) ta,x � t0,

(iii) |ya,x| = √
sa,x ,

(iv) |ya,x,2| � (1− ε)|ya,x|,
(v) |ya,x,1| � √

εsa,x ,
(vi) |u(x, ta,x)| � (κ − ε0)/(T − ta,x)

1/(p−1).

Indeed, according to (ii) and (vi) of Lemma 4.3 and (53),x satisfies the blow-up
exclusion criterion of Proposition 2.3 and is therefore not a blow-up point. Remains
to prove Lemma 4.3.

Proof of Lemma 4.3. –(i) From (56), (52) and (55), we havee−sa,x/2√sa,x = |x− a| �
δ = e−s̃/2√s̃. Therefore,sa,x � s̃. Use (55) again to conclude.

(ii) Sincesa,x = − log(T − ta,x), use (i) to conclude.
(iii) From (56), we have|ya,x| = |x − a|/√T − ta,x =√| log(T − ta,x)| = √

sa,x .
(iv) From (52), we have|(x−a).Qae2| � (1−ε)|x−a|. The conclusion follows since

Qaya,x = (x − a)/
√
T − ta,x by (56).

(v) We havey2
a,x,1 = |ya,x|2 − y2

a,x,2 � |ya,x|2(1 − (1 − ε)2) by (iv). Sinceε < 1, the
conclusion follows from (iii).

(vi) Using (12) and (56), we have
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∣∣u(x, ta,x)∣∣= (T − ta,x)
− 1
p−1

∣∣∣∣wa

(
x − a√
T − ta,x

, sa,x

)∣∣∣∣
= (T − ta,x)

− 1
p−1

∣∣wa(Qaya,x, sa,x)
∣∣.

From (i), (v), the monotonicity off and Proposition 3.1, we have

∣∣u(x, ta,x)∣∣� (T − ta,x)
− 1
p−1

[
f

(
ya,x,1√
sa,x

)
+C ′

0(1)
logsa,x
sa,x

]

� (T − ta,x)
− 1
p−1

[
f (

√
ε)+ ε0

]
(use (v), (i) and (54))

= (T − ta,x)
− 1
p−1 [κ − ε0] (use (53)).

This concludes the proof of Lemma 4.3 and the proof of (i) of Proposition 4.1.✷
Step 2: S as the graph of a C1 function

At the point a(0) = 0, we know from Proposition 4.1 thatS is located along the
degenerate directionQa(0)e2 = e2. In the following, we will show that Ima is the
graph ofϕ, function of the degenerate variablex2. Since at each pointb of this graph,
S is located along the degenerate directionQbe2 which is continuous in terms ofb,
S \ graphϕ is empty, andϕ isC1. Theorem 1 follows from the following:

PROPOSITION 4.4 (S as the graph of aC1 function). –
(i) There existδ1 > 0 andA ∈C([−δ1, δ1],R2) such that

ImA= Ima|(−σ0,σ0) ∩ B̃(0, δ1)= S ∩ B̃(0, δ1), (57)

whereB̃(0, δ1)= {(x1, x2) | for i = 1,2, |xi | � δ1} and

∀|x2| � δ1, A(x2).e2 = x2. (58)

(ii) A ∈ C1([−δ1, δ1],R2) and the tangent toS at a point A(x̄2) is A(x̄2) +
QA(x̄2)e2R.

Indeed, this implies that locally nearâ(0)= 0, S is the graph of aC1 functionϕ defined
by

∀|x2| � δ1, A(x2)= (
ϕ(x2), x2

)
. (59)

Therefore, (8) follows from (57), which yields the conclusion of Theorem 1. Let us prove
Proposition 4.4.

Proof of Proposition 4.4. –
(i) Considerη0 > 0 such that the angle of>0,e2,η0 is less than 1/100 and thanα0 where

α0 is defined in (7). From the uniform cone property ofS at points of Ima (Proposition
4.1), there existsδ0 > 0 such that∀|σ |< σ0, S ∩B(a(σ ), δ0)⊂>a(σ),Qa(σ)e2,η0.

Since a(.) and Qa(.)e2 are continuous,a(0) = 0 and Qa(0)e2 = e2 (see (ii) of
Proposition 3.1), there exists̃σ0 � σ0 such that for all|σ | < σ̃0, a(σ ) ∈ B(0, δ0

2 ),
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>a(σ),Qa(σ)e2,η0 ⊂>a(σ),e2,2η0 andQa(σ)e2.e2 �= 0. Hence,

∀|σ |< σ̃0, a(σ ) ∈ B

(
0,
δ0

2

)
∩>0,e2,η0,

S ∩B
(
a(σ ), δ0

)⊂>a(σ),e2,2η0 and Qa(σ)e2.e2 �= 0.

(60)

Let δ− andδ+ be the infimum and the supremum ofσ → a(σ ).e2 for |σ |< σ̃0. Since 0
is not an endpoint in Ima (property (7)), we have

−δ0

2
� δ− < 0< δ+ � δ0

2
. (61)

Indeed, δ− � − δ0
2 follows from (60). Moreover, ifδ− � 0, then for all |σ | < σ̃0,

a(σ ).e2 � 0, hencea(−σ̃0, σ̃0)⊂>0,e2,η0 ∩ {x2 � 0} by (60). This contradicts (7), since
the angle of>0,e2,η0 is less thanα0. Do the same forδ+.

Now, we are ready to defineA. If δ1 = 1
2 min(δ+,−δ−) > 0, then for all|x2| � δ1,

there is|σ ∗(x2)| � σ̃0 such thata(σ ∗(x2)).e2 = x2, by continuity ofσ → a(σ ).e2. If we
defineA(x2) = a(σ ∗(x2)), then we readily see that (58) holds and if we use (60), then
we get

∀|x2| � δ1, A(x2)= a
(
σ ∗(x2)

)
with

∣∣σ ∗(x2)
∣∣� σ̃0 and

∣∣A(x2)
∣∣< δ0

2
. (62)

Let us prove that (57) holds. From (62) and (60), we have ImA ⊂ Ima|(−σ̃0,σ̃0) ⊂
>0,e2,η0, whose angle is less that1100. SinceA is defined for all|x2| � δ1, this implies

that ImA ⊂ B̃(0, δ1). Since ImA ⊂ Ima|(−σ0,σ0) ⊂ S, (57) holds if we just show that
S ∩ B̃(0, δ1)⊂ ImA, or that for allb ∈ S ∩ B̃(0, δ1), b =A(b.e2). Remark that for such
ab, |b.e2| � δ1 so thatA(b.e2) is well defined. Using (62), we write

∣∣b−A(b.e2)
∣∣� |b| + ∣∣A(b.e2)

∣∣� √
2δ1 + δ0

2
�
(√

2

4
+ 1

2

)
δ0 < δ0.

Therefore,b ∈ S ∩ B(A(b.e2), δ0) ⊂ >A(b.e2),e2,2η0 by (62) and (60). Sinceb.e2 =
A(b.e2).e2 by (58) and the linex2 =A(b.e2).e2 intersects>A(b.e2),e2,2η0 only atA(b.e2),
this implies thatb =A(b.e2). Thus, (57) holds.

Remains to prove thatA is continuous. Consider|x2,n| � δ1 such thatx2,n → x̄2 ∈
[−δ1, δ1] asn → ∞. Since (62) implies thatA(x2,n) ∈ S ∩ B̄(0, δ0

2 ), a compact set, we
may assume thatA(x2,n) → b ∈ S ∩ B̄(0, δ0

2 ) (up to a subsequence). Let us show that
b =A(x̄2). Using (62), we have|b−A(x̄2)|< 2δ0

2 . Therefore, by (62) and (60), we have
b ∈ >A(x̄2),e2,2η0 on one hand. On the other hand, we have from (58)A(x̄2).e2 = x̄2 and
A(x2,n).e2 = x2,n, hence,b.e2 = x̄2 = A(x̄2).e2. Since the linex2 = A(x̄2).e2 intersects
>A(x̄2),e2,2η0 only atA(x̄2), this implies thatb = A(x2) andA is continuous. Thus, (i) of
Proposition 4.4 holds.

(ii) Since A is continuous, we learn from the cone property atA(x̄2) that we can
make ImA (that is the graph ofϕ defined in (59)) as close as we want to the line
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A(x̄2) + QA(x̄2)e2 by taking x2 close enough tōx2. Therefore, this line is the tangent
to the graph ofϕ atA(x̄2) andϕ is differentiable at̄x2 with

ϕ′(x̄2)= e1.QA(x̄2)e2

e2.QA(x̄2)e2

(remember thate2.QA(x2)e2 �= 0 by (62) and (60)). SinceA andb →Qb are continuous
(see (ii) of Proposition 4.1),ϕ is C1. This closes the proofs of Proposition 4.4 and
Theorem 1. ✷
4.2. A geometric constraint yielding more regularity for S

We prove Proposition 2 in this subsection.
We first rewrite (iii) of Proposition 3.1 with the terminology of Proposition 4.4.

Thanks to (57),a(σ ) is viewed asb ∈ ImA. The variabley1 is orthogonal toQbe2,
the tangent direction toS. Therefore,y1 = ±d(y, Tb) whereTb is the tangent toS at b.
More precisely, we have the following:

COROLLARY 4.5. – For all K0 > 0, t � t0 ≡ T − e−s0, b ∈ ImA and x ∈ R
2 such

that |x − b| �K0
√
(T − t)| log(T − t)|, we have

∣∣∣∣∣(T − t)
1

p−1u(x, t)− f

(
d(x, Tb)√

(T − t)| log(T − t)|
)∣∣∣∣∣� C ′

0(K0)
log | log(T − t)|

| log(T − t)|

whereTb is the tangent toS at b.

Proof. –If we introducey ands such that

s = − log(T − t) and y =QT
b

(
x − b√
T − t

)
, (63)

then we see that|y| = |x − b|/√T − t � K0
√
s and s � s0. Since b ∈ ImA ⊂

Ima|(−σ0,σ0) by (57), we obtain from (iii) of Proposition 3.1

∣∣∣∣wb(Qby, s)− f

(
y1√
s

)∣∣∣∣� C ′
0(K0)

logs

s
. (64)

Remark that we have from (12)

wb(Qby, s)=wb

(
x − b√
T − t

,− log(T − t)

)
= (T − t)

1
p−1u(x, t). (65)

From (63), we have

|y1| = |y.e1| =
∣∣∣∣ x − b√

T − t
.Q̃be1

∣∣∣∣.
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SinceQbe1 is a normalized normal vector toS (see (ii) of Proposition 4.4), we have
|(x − b).Qbe1| = d(x, Tb) whereTb is the tangent toS atb. Therefore,

|y1| = d(x, Tb)√
T − t

. (66)

Combining this with (63), (64) and (65) concludes the proof of Corollary 4.5.✷
Proof of Proposition 2. –Given x near S (= ImA locally), Corollary 4.5 gives

different asymptotic behaviors foru(x, t), depending on the choice of the pointb ∈
ImA ∩ B(x,K0

√
(T − t)| log(T − t)|). All these possible behaviors have to agree, up

to the error term in Corollary 4.5. This implies a geometric constraint onS, which gives
some more regularity onA (andϕ).

We consider some|x2| < δ1 and someh ∈ R such that|x2 + h| < δ1. SinceA is C1,
there isC∗ such that∣∣ϕ′(x2)

∣∣� C∗ and
∣∣A(x2 + h)−A(x2)

∣∣� C∗|h|. (67)

For any timet > t0 such that|A(x2) − A(x2 + h)| �
√
(T − t)| log(T − t)|, we can

estimateu(A(x2 + h), t) from Corollary 4.5 in two ways:
– First by takingx = b =A(x2 + h), which gives

∣∣(T − t)
1

p−1u(A(x2 + h), t)− f (0)
∣∣�C ′

0(1)
log | log(T − t)|

| log(T − t)| . (68)

– Second, by takingb =A(x2), x =A(x2 + h), which gives∣∣∣∣(T − t)
1

p−1u
(
A(x2 + h), t

)− f

(
d(A(x2 + h), TA(x2))√
(T − t)| log(T − t)|

)∣∣∣∣�C ′
0(1)

log | log(T − t)|
| log(T − t)| .

(69)

Now, if we fix t = t (x2, h) such that∣∣A(x2 + h)−A(x2)
∣∣=√

(T − t (x2, h))| log(T − t (x2, h))| (70)

and take|h|< h1(t0) for someh1(t0) > 0, we see from (67) thatt (x2, h)� t0, hence (68)
and (69) hold. Therefore,∣∣∣∣f (0)− f

(
d(A(x2 + h), TA(x2))

|A(x2 + h)−A(x2)|
)∣∣∣∣� 2C ′

0(1)
log | log(T − t (x2, h))|

| log(T − t (x2, h))| . (71)

Note that sinceA(x2) ∈ TA(x2), we have

d(A(x2 + h), TA(x2))

|A(x2 + h)−A(x2)| � 1.

Therefore, (9) implies that there isC > 0 such that

C

[
d(A(x2 + h), TA(x2))

|A(x2 + h)−A(x2)|
]2

�
∣∣∣∣f (0)− f

(
d(A(x2 + h), TA(x2))

|A(x2 + h)−A(x2)|
)∣∣∣∣. (72)
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Since ImA is the graph ofϕ, we have

d
(
A(x2 + h), TA(x2)

)= |ϕ(x2 + h)− ϕ(x2)− hϕ′(x2)|√
1+ ϕ′(x2)2

. (73)

If τ(d) is given byd = √
τ | logτ |, then

logτ ∼ 2 logd and log| logτ | ∼ log | logd| asd → 0.

Therefore,

log | logτ |
| logτ | � log | logd|

| logd|
if |d| � d0 for somed0 > 0. Combining this with (70) and (67), we have for all|x2|< δ1

and|h|< h0 for someh0 > 0 such that|x2 + h| � δ1,

log | log(T − t (x2, h))|
| log(T − t (x2, h))| � log | log|A(x2 + h)−A(x2)||

| log |A(x2 + h)−A(x2)|| � C
log | log|h||

| log |h|| . (74)

Combining (72), (73), (71), (74) and (67) closes the proof of Proposition 2.✷
5. Blow-up profile at a nonisolated blow-up point with the behavior (4)

We prove Theorem 3 in this section.

Step 1: Asymptotic behavior in self-similar variables around the blow-up set
We prove (10) in this step. This follows from Corollary 4.5 by takingb = PS(x),

the orthogonal projection ofx on S. Indeed, taket � t0 and x ∈ B(0, δ) such that
d(x, S) � K0

√
(T − t)| log(T − t)|. We definePS(x) as the orthogonal projection of

x on S. We claim thatPS(x) ∈ B(0,2δ), hencePS(x) ∈ graphϕ = ImA by (8). Indeed,
|x − PS(x)| � |x − 0| since 0∈ S, therefore,|PS(x)| � |PS(x) − x| + |x| � 2|x| < 2δ.
Since|x−PS(x)| = d(x, S)�K0

√
(T − t)| log(T − t)| andd(x, TPS(x))= d(x, S), (10)

follows directly from Corollary 4.5 applied withb = PS(x).

Step 2: Limiting profile in the original set of variables, near the blow-up set
We prove (11) here. This follows from (10) and the uniform ODE comparison property

of Proposition 2.2. Definet (d) such that

d =√
(T − t (d))| log(T − t (d))|. (75)

For all x ∈ B(0, δ) \ S and(ξ, τ ) ∈ R
N × [− t (d(x,S))

T−t (d(x,S)),1), we introduce

v(x, ξ, τ )= (T − t̃ )
1

p−1u
(
x + ξ

√
T − t̃ , t̃ + τ(T − t̃ )

)
(76)

where t̃ = t (d(x, S)). From (10), (76) and Proposition 2.2, we know that there is
ε0 > 0 such that for allε > 0, there isCε such that ifd(x, S) < ε0 and (ξ, τ ) ∈
R
N × [− t (d(x,S))

T−t (d(x,S)),1), then



H. ZAAG / Ann. I. H. Poincaré – AN 19 (2002) 505–542 529

∣∣∂τv − |v|p−1v
∣∣� ε|v|p +Cε

(
T − t

(
d(x, S)

)) p

p−1 ,∣∣v(x,0,0)− f (1)
∣∣�C ′

0(1)
log | log(T − t (d(x, S)))|

| log(T − t (d(x, S)))| .

Therefore, for allε > 0, there isη(ε) > 0 such that ifd(x, S) < η, then

∣∣∂τv − |v|p−1v
∣∣� ε

(|v|p + 1
)

and
∣∣v(x,0,0)− f (1)

∣∣� ε. (77)

This implies that

sup
τ∈[0,1)

∣∣v(x,0, τ )− v0(τ )
∣∣→ 0 asd(x, S)→ 0 (78)

where

v0(τ )=
(
(p− 1)(1− τ)+ (p− 1)2

4p

)− 1
p−1

(79)

is the solution ofv′
0(τ ) = v0(τ )

p, v0(0) = f (1), defined in particular for allτ ∈ [0,1].
Moreover,

sup
τ∈[0,1)

∣∣∂τv(x,0, τ )∣∣� 2 sup
τ∈[0,1]

∣∣∂τv0(τ )
∣∣

for d(x, S) small. Therefore, ford(x, S) small, v(x,0, τ ) has a limit asτ → 1, hence
(76) implies thatu(x, t) has a limitu∗(x) ast → T . Using (78) and (76), we see that

u∗(x)∼ (
T − t

(
d(x, S)

))− 1
p−1v0(1) asd(x, S)→ 0. (80)

We claim that

(
T − t (d)

)− 1
p−1v0(1)∼

(
d2

| logd|
(p− 1)2

8p

)− 1
p−1

asd → 0. (81)

Indeed,

v0(1)=
(
(p − 1)2

4p

)− 1
p−1

from (79), log(T − t (d))∼ 2 logd andT − t (d)∼ d2

2| logd | asd → 0 from (75). (11) then
follows from (80) and (81). This closes the proof of Theorem 3.

6. The higher-dimensional case

We sketch the proof of Theorem 4 here. We need to review the proofs of Theorems 1,
3 and Proposition 2 to adapt them to the new context. We shall stress the most delicate
points in the adaptation of Theorem 1 and Proposition 2. Once this is done, Theorem 3
extends in a natural way to higher dimensions, so we don’t discuss it here.
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If N � 3, we consider a nonisolated blow-up pointâ whereu has the behavior (4)
with l < N . We may takêa = 0 andQ̃â = Id. According to [24],S satisfies near̂a the
(N − l)-cone property:

DEFINITION 4.1′ ((N − l)-cone property and weak tangent plane). –Consider a set
E ⊂ R

N .
(i) E is said to have the(N − l)-cone property at some pointa ∈ E if there isπ a

(N − l) subspace such that for allε > 0, there isδ(a, ε) > 0 such that

E ∩B(a, δ)⊂>a,π,ε ≡ {
x | ∣∣Pπ(x − a)

∣∣� (1− ε)|x − a|},
wherePπ is the orthogonal projection overπ . π is then called the weak tangent
plane ofE at a.

(ii) E is said to have the uniform(N − l)-cone property at some subsetF ⊂E if for
all ε > 0 anda ∈ F , E has the(N − l)-cone property ata with δ(a, ε)= δ(ε).

Remark. –>a,π,ε is a cone with vertexa. It shrinks toa + π asε → 0.

We have the following consequence of [24]:

LEMMA 6.1 (Velázquez,(N − la)-cone property forS near a point with the behavior
(4)). – If u has the behavior(4) (or (23)) near a, thenS satisfies the(N − l)-cone
property ata. The weak tangent plane is spanned byQ̃aej , j = la + 1, . . . ,N .

Proof. –See Theorem 2 in [24]. ✷
Therefore,S has a weak tangent plane atâ = 0, spanned byej , j = l+ 1, . . . ,N . One

would expectS to be locally of dimensionN− l nearâ. However, we are unable to prove
thatS is a continuum near̂a. Therefore, we assume there isa ∈ C((−1,1)N−l ,RN) such
thata(0) = â = 0 and Ima ⊂ S where Ima is at least(N − l)-dimensional in the sense
that

∀b ∈ Ima, there are(N − l) independent vectorsv1, . . . , vN−l in R
N and

a1, . . . , aN−l functions inC1([0,1], S) such thatai(0)= b anda′
i (0)= vi. (82)

This hypothesis means thatb is actually nonisolated in(N − l) independent directions.
We also assume thatâ = 0 is not an endpoint in Ima in the sense that

∀ε > 0, the projection ofa((−ε, ε)N−l ) on the weak tangent plane

at â = 0 contains an open ball with centerâ = 0. (83)

Let us first show the stability result of Section 3 in the caseN � 3.

6.1. Stability of the behavior (4)

Since we have taken̂a = 0 andQ̃â = Id, (4) implies that

sup
|z|�K0

∣∣∣(T − t)
1

p−1u
(
z
√
(T − t)| log(T − t)|, t

)
− f

(|z′|)∣∣∣→ 0 ast → T
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wheref is defined in (9) andz = (z1, z2, . . . , zN) ≡ (z′, zl+1, . . . , zN). Section 2 then
implies that

v0 ∼ v0,2 and w0(y, s)− κ = v0(y, s) ∼ κ

2ps

(
l − |y′|2

2

)
ass → ∞, (84)

wherey′ = (y1, . . . , yl). We claim that Proposition 3.1 holds here (with the obvious
changesa(−σ0, σ0)→ a((−σ0, σ0)

N−l), 2× 2 →N ×N andy2
1 →∑l

i=1 y
2
i ).

Proof of Proposition 3.1 in higher dimensions. –Let us follow the 4 steps of the proof
given in Section 3.

Step 1: Uniform reduction to a finite-dimensional problem
This step holds as it is in Section 2.

Step 2: A spectral study of the finite-dimensional problem
We should defineN eigenvalues ofAa(s), la,i(s), C1 as functions ofs. The multi-

function {la,i(s), i = 1, . . . ,N} is continuous in terms of(a, s) ∈ S × [− logT ,∞).
Corollary 3.1 has to be changed formally. The following corollary crucially uses the
(N − l)-dimensionality property of Ima.

COROLLARY 3.1′ (Higher-dimensional version of Corollary 3.1). –
(i) (Nonuniform behavior ofva) For all |σ |< σ1, (23)holds withla � l. In particular,

Aa(s)= −β

s
Q̃aIlQ̃

T
a + O

(
s−1−δa),

where Il is a N × N diagonal matrix withIl,ii = 1 if i � la and Il,ii = 0 if
i � la + 1. Moreover,Aa(s) has (N − la) (hence, at least(N − l)) eigenvalues
equal toO(s−1−δa ), while the others are equal to−β

s
+ O(s−1−δa ).

(ii) (Equations on eigenvalues)For all ε > 0, there iss1(ε) such that for all|σ |< σ1,
i = 1, . . . ,N ands � s1(ε),

∣∣∣∣l′a,i(s)− 1

β
la,i(s)

2
∣∣∣∣� ε

N∑
j=1

la,j (s)
2

wherela,j (s) are the eigenvalues ofAa(s).

Proof. –(i) From Proposition 3.1, we haveva ∼ va,2 ass → ∞ for all |σ |< σ1, hence
(23) holds as stated in Section 2.1. Lemma 6.1 then implies thatu satisfies the(N − la)-
cone property ata and therefore,S has a(N − la)-dimensional weak tangent plane
ata. This plane contains the(N − l) independent directions in property (82). Therefore,
la � l. The estimate forAa then follows from (20), and gives the estimate for eigenvalues.

(ii) See the proof of (ii) of Corollary 3.1. ✷
At the pointa(0) = 0, we know from (84) thatl0 = l. Using Corollary 3.1′, we can

rename the eigenvalues ofA0(s) such that
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∀i = 1, . . . , l, λ0,i(s)∼ −β

s
and

∀j = 1, . . . ,N − l, µ0,j (s)= o
(

1

s

)
ass → ∞. (85)

We claim then that Proposition 3.3 holds with eigenvaluesλa,i for i = 1, . . . , l andµa,j

for j = 1, . . . ,N − l instead of(λa,µa).

Proof of Proposition 3.3 in higher dimensions. –We should fix a neŵε > 0 and take
s3 = s1(ε̂) defined in Proposition 3.2. From (85) and the continuity of eigenvalues with
respect toa, we can findσ3 ∈ (0, σ1) whereσ1 appears in Corollary 3.1, such that

∀|σ | � σ3,

∀i = 1, . . . , l,
∣∣∣∣la,τa(i)(s3)+ β

s3

∣∣∣∣� β

100s3
,

∀i = l + 1, . . . ,N,
∣∣la,τa(i)(s3)

∣∣� β

100s3
,

where τa is a permutation of{1, . . . ,N}. If we rename the eigenvalues such that
λa,i(s) = la,τa(i) for all i = 1, . . . , l andµa,j = la,τa(l+j) for all j = 1, . . . ,N − l, then
we get

∀|σ | � σ3,

∀i = 1, . . . , l,
∣∣∣∣λa,i(s3)+ β

s3

∣∣∣∣� β

100s3
,

∀j = 1, . . . ,N − l,
∣∣µa,j (s3)

∣∣� β

100s3
.

Lemma 3.2 and its proof hold with the change

Na(s)=
l∑

i=1

λ2
a,i +

N−l∑
j=1

µ2
a,j .

Lemmas 3.3 and 3.4 then hold, with(λa,µa) replaced by(λa,i,µa,j ) and different
constants. Here comes a delicate point before Lemma 3.5: we need to prove that (31)
holds for allµa,j , for j = 1, . . . ,N − l. This comes from two arguments. On one hand,
we know from Corollary 3.1′(i) that Aa(s) has at leastN − l degenerate eigenvalues
(that is eigenvalues satisfying (31)). On the other hand, we see from Lemma 3.3 that all
degenerate eigenvalues must be in the set of allµa,j , j = 1, . . . ,N − l, which contains
(N − l) elements. Therefore, allµa,j are degenerate and satisfy (31).

One can easily see that Lemmas 3.5 and 3.6 extend naturally toN � 3 and hold for
eachµa,j andλa,i. ✷
Step 3: Solution of the finite-dimensional problem

Proposition 3.4 holds with “N ×N ” instead of “2× 2” andLa =QaIlQ
T
a whereIl is

aN ×N diagonal matrix withIl,ii = 1 if i � l andIl,ii = 0 if i � l + 1.

Proof of Proposition 3.4 forN � 3. – If N � 3, one needs to find the asymptotic
behavior of all principal minors of orderk of the matrixAa(s) with k = N, . . . ,1,
before getting the asymptotic behavior of the coefficients ofAa(s) (property (46)).
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This has been done by Filippas and Liu [11], Proposition 5.1. The continuity ofb ∈
a((−σ0, σ0)

N−l )→ Lb follows from (46) as in the caseN = 2. SinceLa is symmetric,
it has N eigenvalues which are the limits ass → ∞ of − s

β
λa,i (i = 1, . . . , l) and

− s
β
µa,j (j = 1, . . . ,N − l), say 1 (multiplicityl) and 0 (multiplicityN− l), according to

Proposition 3.3. Sinceb → Lb is continuous and the multiplicities of eigenvalues 0 and
1 are independent ofb, we can define continuous eigenvectors forLb (see Oustry and
Overton [22], Corollary 2.5). Therefore, we can define aN ×N orthogonal matrixQb,
continuous in terms ofb, diagonalingLb. This concludes the proof of Proposition 3.4 in
the higher-dimensional case.✷
Step 4: Asymptotic behavior of wa in L2

ρ

This step extends naturally toN � 3, which concludes the proof of Proposi-
tion 3.1. ✷
6.2. Regularity of the blow-up set

We prove here the part of Theorem 4 equivalent to Theorem 1. For this, we adapt
Section 4 to the caseN � 3.

Step 1: The (N − l)-cone property for Im a
We claim the following:

PROPOSITION 4.1′ (Uniform (N − l)-cone property forS at points of Ima). –
(i) S has the uniform(N − l)-cone property ata((−σ0, σ0)

N−l ). The weak tangent
planeπa(σ) at a(σ ) is spanned byQa(σ)ej , j = l + 1, . . . ,N , whereej is thej th
vector of the canonical basis ofR

N .
(ii) Q0 = Id and the weak tangent plane has an orthogonal basis(Qbej , j = l + 1,

. . . ,N) continuous as a function ofb ∈ a((−σ0, σ0)
N−l).

Remark. – If j � l + 1, then Qbej is a degenerate direction in the asymptotic
expansion of (iii) in Proposition 3.1. Ifj � l, thenQbej is a nondegenerate direction.

Proof. –(ii) follows directly from (i) by (ii) of Proposition 3.1. The proof of (i) in the
caseN = 2 extends naturally to the caseN � 3. Just note thaty2

a,x,1 andy2
a,x,2 should be

replaced respectively by
∑l

i=1y
2
a,x,i and

∑N
j=l+1y

2
a,x,j . ✷

Step 2: S as the graph of a C1 function
.
The part of Theorem 4 equivalent to Theorem 1 follows from the following:

PROPOSITION 4.4′ (S as the graph of aC1 function). –
(i) There existδ1 > 0 andA ∈C([−δ1, δ1]N−l ,RN) such that

ImA= a
(
(−σ0, σ0)

N−l)∩ B̃(0, δ1)= S ∩ B̃(0, δ1), (86)

whereB̃(0, δ1)= {x | ∀i = 1, . . . ,N , |xi| � δ1} and

∀(xl+1, . . . , xN) ∈ [−δ1, δ1]N−l , ∀j = l + 1, . . . ,N,

A(xl+1, . . . , xN).ej = xj . (87)
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(ii) A ∈ C1([−δ1, δ1]N−l ,RN) and the tangent plane toS at a pointb ∈ S ∩ B̃(0, δ1)

is πb, spanned byQbej , j = l + 1, . . . ,N .

Proof. –The “no-end-point” property of̂a = 0 in Ima stated in (83) is apparently
different from (7) stated forN = 2. That is why we should carefully defineA here. Once
this is done, one should follow the caseN = 2 to finish the proof.

From the uniform cone property ofS at points of Ima (Proposition 4.1′), there exists
δ0 > 0 such that∀|σ |< σ0, S ∩B(a(σ ), δ0)⊂>a(σ),πa(σ)e2,1/4.

Sincea(.) andQa(.) are continuous,a(0) = 0 andQa(0) = Id (see (ii) of Proposition
3.1), there exists̃σ0 � σ0 such that for all|σ | < σ̃0, a(σ ) ∈ B(0, δ0

N
), >a(σ),Qa(σ)e2,1/4 ⊂

>a(σ),e2,1/3 and

det
(ek,k=l+1,...,N)

(Qa(σ)ej , j = l + 1, . . . ,N) �= 0.

Hence,∀|σ |< σ̃0,

a(σ ) ∈ B

(
0,
δ0

N

)
∩>0,e2,1/4, S ∩B

(
a(σ ), δ0

)⊂>a(σ),e2,1/3 and

det
(ek, k=l+1,...,N)

(Qa(σ)ej , j = l + 1, . . . ,N) �= 0.
(88)

SinceQa(0) = Id, we learn from Proposition 4.1′ that the weak tangent plane ata(0)= 0
isπ0, spanned byej , j = l+1, . . . ,N . Using property (83), we findδ1(σ̃0) > 0 such that
B̃π0(0, δ1)⊂ Pπ0(a[−σ̃0, σ̃0]N−l ), where

B̃π0(0, δ1)= {
x ∈ π0 | |xj | � δ1, for j = l + 1, . . . ,N

}
.

This implies thatA can be defined oñBπ0(0, δ1), so that (87) holds. One can then finish
the proof of Proposition 4.4′ by just following the proof of Proposition 4.4.✷
6.3. A geometric constraint yielding some more regularity

This subsection is dedicated to the higher-dimensional version of Proposition 2. Note
that from Proposition 4.4′, ImA is the graph ofϕ ∈C1([−δ1, δ1]N−l ,Rl) such that

∀(xl+1, . . . , xN) ∈ [−δ1, δ1]N−l , A(xl+1, . . . , xN)= (ϕ1, . . . , ϕl, xl+1, . . . , xN),

whereϕi = ϕi(xl+1, . . . , xN). Proposition 2 holds withϕ(x2) replaced byϕi(xl+1, . . . , xN)

andϕ′ by ∇ϕi .
Proof of Proposition 2 in higher dimensions. –Just follow the caseN = 2 withA(x2)

replaced byA(x̃) where x̃ = (xl+1, . . . , xN). The only delicate point is the equivalent
of (73) which is: for alli = 1, . . . , l,

d
(
A(x̃ + h̃), πA(x̃)

)
� |ϕi(x̃ + h̃)− ϕi(x̃)− h̃.∇ϕi(x̃)|√

1+ |∇ϕi(x̃)|2
. (89)

Note that we just need this inequality in our argument.
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To prove (89), just note that ImA⊂ Si , the surface of equationxi = ϕi(xl+1, . . . , xN).
Hence,πA(x̃) ⊂ πi,A(x̃), the(N − 1)-dimensional tangent plane toSi atA(x̃). Therefore,
d(A(x̃ + h̃), πA(x̃))� d(A(x̃ + h̃), πi,A(x̃)), equal to the right-hand side of (89) (standard
calculations).

Appendix

A. Reduction of the asymptotic blow-up behavior to a finite-dimensional problem

We prove Proposition 3.2 here. The use of the Liouville theorem is crucial here. The
proof is the same as in the proof of Propositions 1.11 and 1.12 in [8]. All is about
stability, with respect toinitial data in [8], and with respect tothe blow-up pointhere.
For this reason, we just sketch the proof and refer to [8] for the proofs.

We know from (25) thatw0(y, s) → κ as s → ∞ in L2
ρ . If a is a blow-up point

near 0, we know from (15) thatwa → ±κ ass → ∞. Only +κ is selected because of
the following local constant sign property foru, which is a direct consequence of the
positivity of u for x = 0, and the ODE comparison of Proposition 2.2.

LEMMA A.1 (Constant sign property ofu for (x, t) close to(0, T )). – There exists
δ > 0 such that

∀t ∈ [T − δ, T ), ∀x ∈ B(0, δ), u(x, t) � 0.

Proof. –See Corollary 1.8 in [8]. ✷
The Liouville theorem of Proposition 2.1 allows us to show thatva ≡ wa − κ → 0

ass → ∞ in L2
ρ , uniformly for a in a neighborhood of 0. This uniformity is a central

argument in our proof.

LEMMA A.2 (Uniform smallness ofva). – There exists̃σ2 > 0 such that
(i) sup|σ |<σ̃2

‖va(s)‖L2
ρ
→ 0 ass → ∞,

(ii) for all R > 0, sup|σ |<σ̃2
(sup|y|<R |va(y, s)|)→ 0 ass → ∞.

Proof. –See Proposition 1.10 in [8].✷
Note that this lemma yields the first estimate of Proposition 3.2. We know from (22)

that for eacha, eitherva ∼ va,2 or va ∼ va,− ass → ∞. (25) shows thatv0 ∼ v0,2, its
neutral mode, ass → ∞. The predominance of the neutral mode turns out to be a stable
behavior for solutions of (17). Indeed:

LEMMA A.3 (Uniform stability of the dynamics wherev2 is predominant). –There
existsσ̃4 with the following property:

(i) There existss∗ such that for all|σ |< σ̃4 ands0 � s∗,

if Xa(s0)� Ya(s0)+Za(s0), then∀s � s0, Xa(s)� 1

2

(
Ya(s)+Za(s)

)
where

Xa(s)= ∥∥va,2(s)∥∥L2
ρ
, Ya(s)= ∥∥va,−(s)∥∥L2

ρ
+ ∥∥|y|k/2va∥∥2

ρ
,

Za(s)= ∥∥va,+(s)∥∥L2
ρ
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andk = k(M) > 0 (whereM is defined in(14)) is fixed.
(ii) For all ε > 0, there existss3(ε) such that for all|σ |< σ̃4 ands � s3(ε),

Ya(s)+Za(s)� εXa(s).

Proof. –See Proposition 1.11 in [8].✷
This lemma yields the second estimate of Proposition 3.2, namely the fact that

va ∼ va,2 as s → ∞, uniformly in a(σ ). Therefore, the study of (17) reduces to the
study of its projection over the neutral mode,va,2, where, of course, one should take into
account the quadratic term. This leads to the equation stated in Proposition 3.2 (Aa is
the matrix of the components ofva,2, thanks to (21)). See Proposition 1.12 in [8] for a
proof.

This closes the proof of Proposition 3.2.

B. A refined equation on the neutral mode of (17)

We prove Lemma 3.4 here. We first prove (29). We claim the following:

CLAIM B.1 (Control of va(s) in Lr
ρ). – For all r > 1, there existsC(r) > 0 and

s∗
0(r) > 0 such that for all|σ |< σ3 ands � s3 + s∗

0(r),

(∫ ∣∣va(y, s)∣∣rρ(y)dy
)1/r

� C(r)

s
.

Proof. –If r = 2, we use Lemma 3.3 to get|Aa(s)| � Cs−1, hence‖va,2(s)‖L2
ρ
� Cs−1

by (21). Since‖va(s)‖L2
ρ
∼ ‖va,2(s)‖L2

ρ
ass → ∞ (uniformly for |σ |< σ3), we get the

estimate with somes∗
0(2).

If r �= 2, we combine the caser = 2 with the following regularizing effect of the
operatorL.

CLAIM B.2 (Herrero–Velázquez). –If va satisfies(17), then for allr > 1, there exists
s̃0(r) andC(r,M) such that

(∫ ∣∣va(y, s)∣∣rρ(y)dy
)1/r

�C

(∫ ∣∣va(y, s − s̃0)
∣∣2ρ(y)dy

)1/2

.

Proof. –See Lemma 2.3 in [14]. This closes the proof of Claim B.1.✷
Eq. (29) follows if we prove that for all|σ |< σ3 ands � s′

3 for somes′
3 � s3,

z′
a(s)� 1

2
za(s)− C

s2
, (90)

y′
a(s)� −1

2
ya(s)+ C

s2
, (91)

whereza(s)= ‖va,+(s)‖L2
ρ

andya(s)= ‖va,−(s)‖L2
ρ
. Indeed, integrating (90) betweens

and+∞ and (91) betweens′
3 ands, we obtain for all|σ |< σ3 ands � s′

3,
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za(s)�Ces/2
∞∫
s

e−t/2t−2 dt � C ′s−2,

ya(s)� e−(s−s ′3)/2ya(s′
3)+C

s∫
s ′3

e−(s−t )/2t−2 dt < C ′s−2.

(Note thatya(s) + za(s) � ‖va(s)‖L2
ρ

� ‖va(s)‖L∞ � M + κ by (14).) Now we prove
(90). (91) follows in the same way.

Projecting (17) on the positive eigenspace ofL, we get

∂sva,+ = Lva,+ + P+
(
f (va)

)
,

whereP+ is the correspondingL2
ρ orthogonal projector. Multiplying this byva,+ρ and

integrating overRN , we get

1

2

d

ds

∫
v2
a,+ρ =

∫
Lva,+.va,+ρ +

∫
P+
(
f (va)

)
va,+ρ

� 1

2

∫
v2
a,+ρ −

(∫
v2
a,+ρ

)1/2(∫
P+
(
f (va)

)2
ρ

)1/2

,

where we used the Cauchy–Schwartz inequality.
SinceP+ is aL2

ρ projector andf is quadratic, we have

(∫ [
P+
(
f (va)

)]2
ρ

)1/2

�
(∫ (

f (va)
)2
ρ

)1/2

� C

(∫
(va)

4ρ

)1/2

.

Using Claim B.1, we have for all|σ | < σ3 and s � s3 + s∗
0(4), (

∫
v4
aρ)

1/2 � C(4)s−2.
Thus, (90) follows withs′

3 = s3 + s∗
0(4). This closes the proof of (29).

Now we prove (30). The estimate on eigenvalues is obtained by evaluating the estimate
onAa at eigenfunctions. Therefore, we just focus onAa . With (29) and Claim B.1, we
are ready to get a refined equation onAa(s).

Using (20) and (17), we write for all|σ |< σ3 ands � s3,

A′
a(s)=E1 +E2 +E3 (92)

where

E1 = p

2κ

∫
va,2(y, s)

2M(y)ρ(y)dy,

E2 = p

2κ

∫ (
v2
a − v2

a,2

)
M(y)ρ(y)dy,

E3 =
∫
g(va)M(y)ρ(y)dy.

By straightforward calculations, we get from (21)

E1 = 1

β
Aa(s)

2 whereβ = κ

2p
. (93)
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Recalling thatv = va,+ + va,2 + va,− (see (19)), we write

|E2| �C

∫ ∣∣v2
a − v2

a,2

∣∣∣∣M(y)
∣∣ρ(y)dy

=C

∫
|va,+ + va,−||va + va,2|

∣∣M(y)
∣∣ρ(y)dy

�C

(∫
|va,+ + va,−|2ρ

)1/2(∫
|va + va,2|4ρ

)1/4(∫ ∣∣M(y)
∣∣4ρ)1/4

where we used Hölder’s inequality.
Using (29), Claim B.1, and the norm equivalence in the finite-dimensional space (18)

whereva,2 lays (
∫ |va,2|4ρ � C(

∫ |va,2|2ρ)2 � C(
∫ |va|2ρ)2 by Proposition 3.1), we end-

up with

|E2| � Cs−3 for all s � s′′
3 (94)

for somes′′
3 > s3.

We finally estimateE3. From (20), (17) and the Cauchy–Schwartz inequality, we write

|E3| �
∫ ∣∣g(va)∣∣∣∣M(y)

∣∣ρ(y)dy

�C

(∫
|va|6ρ

)1/2(∫ ∣∣M(y)
∣∣2ρ(y)dy

)
= C

(∫
|va|6ρ

)1/2

.

Using Claim B.1, we end-up with

|E3| � Cs−3 for all s � s3 + s∗
0(6). (95)

Combining (92), (93), (94) and (95), we obtain the first inequality in (30), for all|σ |< σ3

ands � s̃3 for somes̃3 � s3. This closes the proof of Lemma 3.4.

C. Asymptotic behavior in the y√
s

variable

We prove (iii) of Proposition 3.1 here. We follow Velázquez’s work in [24]
(Proposition 2.3), with a special care to the convergence speed and to the uniformity
with respect to blow-up points.
Define

ϕ(y, s)=
(
p − 1+ (p− 1)2

4p

y2
1

s

)− 1
p−1 + κ

2ps
and qa =wa − ϕ.

Straightforward calculations based on (13) and (i) of Proposition 3.1 yield for all
|σ |< σ0 ands � s0,

∀y ∈ R
N, ∂sqa = (L+ V )qa +B(qa)+R(y, s),

∥∥qa(s)∥∥L2
ρ
� C0

logs

s2
, (96)

where
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L=�− 1

2
y.∇ + 1,

V (y, s)=pϕp−1 − p

p − 1
,

B(q)= |ϕ + q|p−1(ϕ + q)− ϕp − pϕp−1q,

R(y, s)= −∂sϕ +�ϕ − 1

2
y.∇ϕ − ϕ

p − 1
+ ϕp. (97)

Let us introduce the following norm

L2,r
ρ (ψ)= sup

|ξ |<r

(∫ ∣∣ψ(y)∣∣2ρ(y − ξ)dy
)1/2

.

Velázquez’s idea in [24] is to make estimates on solutions of (96) in theL2,r(τ )
ρ norm

wherer(τ)=K0e
(τ−s0)/2 �K0

√
τ . The following is proved in [24]:

LEMMA C.1. – For all C3 > 0 and K3 > 0, there is s3(C3,K3) > 0 such that if
Z(y, s) satisfies

∂sZ �
(
L+ C3

s

)
Z +C3

(
Z2 + 1+ |y|2

s2
+ 1{|y|>2K3

√
s}
)
,

0 �Z(y, s)� C3,

(98)

for all (y, s) ∈ R
N × [s3,∞), then, for alls′ � s3 andτ ∈ [s′, s], we have

g(τ)�C4(C3)

[
eτ−s

′
(∥∥Z(s′)

∥∥
L2
ρ
+ logs′

s′2

)
+

(τ−2K3)+∫
s ′

eτ−t−2K3g(t)2

(1− e−(τ−t−2K3))1/20
dt

]
,

whereg(τ) = L2,r(K3,τ,s
′)

ρ (Z(τ)), r(K3, τ, s
′) = K3e

(τ−s ′)/2, e(s−s ′)/2 = √
s and h+ =

max(h,0).

Proof. –See Proposition 2.3 in [24] (in particular, pp. 1575–1581).✷
Let us apply this to our case (96). It is readily seen from (97) that for allK0 > 0, there

isC2(K0,M) (M is defined in (14)) such that

V (y, s)� C2

s
,

∣∣B(q)∣∣� C2
(|q|2 + 1{|y|�2K0

√
s}
)
,

∣∣R(y, s)∣∣� C2

(
1+ |y|2

s2
+ 1{|y|�2K0

√
s}
) (99)

(one may consider first the case|y| � 2K0
√
s and then|y| � 2K0

√
s and make a Taylor

expansion forξ = y/
√
s bounded).

If Za = |qa|, then we use Kato’s inequality�g.sgn(g) � �(|g|) to derive from (96)
and (99) the following:
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For allK0, there isC2(K0,M) > 0 such that for all|σ |< σ0 ands � s0,

∀y ∈ R
N, ∂sZa �

(
L+ C2

s

)
Za +C2

(
Z2
a + 1+ |y|2

s2
+ 1{|y|�2K0

√
s}
)
,

∥∥Za(s)
∥∥
L2
ρ
� C0

logs

s2
.

(100)

We claim the following:

CLAIM C.2. – For all K0 > 0, there existsC6 > 0 and s6 such that for all|σ | < σ0

ands � s6,

L2,K0
√
s

ρ

(
Za(s)

)
�C6

logs

s
.

Proof. –ConsiderK0 > 0. Fix s5(K0) � 2max(s3(C2(K0,M),K0), s0) such that for
all s � s5,

s
2 − logs � 0 whereC2, s3 andM are defined in (100), (14) and Lemma C.1.

If s � s5 ands′ is defined bye(s−s ′)/2 = √
s, then it is readily seen thats′ = s − logs �

s
2 � max(s3, s0). Therefore, we have from (96), (100) and Lemma C.1: for all|σ |< σ0,
for all τ ∈ [s′, s],

g(τ)� C ′
5(C0,K0,M)

[
eτ−s

′ logs′

s′2 +
(τ−2K0)+∫

s ′

eτ−t−2K0g(t)2(
1− e−(τ−t−2K0)

)1/20 dt

]

whereg(τ)= L2,r(K0,τ,s
′)

ρ (Za(τ)) andr(K0, τ, s
′)=K0e

(τ−s ′)/2.
By a standard Gronwall estimate (see Lemma 2.2 in [24]), there iss6(C0,K0) � s5

andC5(C0,K0) > C ′
5 such that ifs � s6, then for allτ ∈ [s′, s], g(τ)� C5e

τ−s ′ logs ′
s ′2 .

If τ = s, then we getL2,K0
√
s

ρ (Za(s))� C5e
s−s ′ logs ′

s ′2 � 2C5
logs
s

. This finishes the proof
of Claim C.2. ✷

To conclude the proof, we use the following result from [24]:

CLAIM C.3. –Assume thatZ satisfies(98), then

sup
|y|�K3

2
√
s

∣∣Za(y, s)
∣∣�C(C3,K3)L

2,K3
√
s

ρ

(
Za(s)

)
.

Proof. –See Proposition 2.3 in [24] (in particular, p. 1581).✷
Thus, for all|σ |< σ0 ands � s6,

sup
|y|�K0

2
√
s

∣∣Za(y, s)
∣∣� C(K0,C0,M)

logs

s
.

Since ∣∣∣∣wa(y, s)− f1

(
y√
s

)∣∣∣∣�Za + κ

2ps
,

this concludes the proof of (iii) of Proposition 3.1.
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